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Abstract
This article is based on the library CSP-Agda, which represents the process algebra CSP coin-
ductively in the interactive theorem prover Agda. The intended application area of CSP-Agda
is the proof of properties of safety critical systems (especially the railway domain). In CSP-
Agda, CSP processes have been extended to monadic form, allowing the design of processes in a
more modular way. In this article we extend the trace semantics of CSP to the monadic setting.
We implement this semantics, together with the corresponding refinement and equality relation,
formally in CSP-Agda. In order to demonstrate the proof capabilities of CSP-Agda, we prove in
CSP-Agda selected algebraic laws of CSP based on the trace semantics. Because of the monadic
settings, some adjustments need to be made to these laws. The examples covered in this article
are the laws of refinement, commutativity of interleaving and parallel, and the monad laws for the
monadic extension of CSP. All proofs and definitions have been type checked in Agda. Further
proofs of algebraic laws will be available in the repository of CSP-Agda.
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1 Introduction

Communicating Sequential Processes (CSP) [20, 28] is a formal specification language which
was developed in order to model concurrent systems through their communications. It was
developed by Hoare in 1978 [20]. It is a member of the family of process algebras. Process
algebras are one of the most important concepts for describing concurrent behaviours of
programs.
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12:2 Defining Trace Semantics for CSP-Agda

The starting point of this work was the modelling of processes of the European Railway
Train Management System (ERTMS) in CSP by the first author. Having expertise in
modelling railway interlocking systems in Agda (PhD project by Kanso [24, 25]), we thought
that an interesting step forward would be to model CSP in Agda. A first step towards this
project was the development of the library CSP-Agda [22, 21]. CSP-Agda represents CSP
processes coinductively and in monadic form. The purpose of this article is to introduce CSP
trace semantics in Agda, and carry out examples of proofs in CSP-Agda.

In CSP-Agda we developed a monadic extension of CSP, which is based on Moggi’s
IO monad [27]. This IO monad (IO A) is currently the main construct for representing
interactive programs in pure functional programming. An element of (IO A) is an interactive
program, which may or may not terminate, and, if it terminates, returns an element of type
A. The monad provides the bind construct for combining elements of (IO A): It composes a
p : IO A with a function f : A→ IO B to form an element of (IO B). The program is executed
by first running p. If p terminates with result a, one continues running (f a). This allows to
write sequences of operations in a way which looks similar to sequences of assignments in
imperative style programming languages.

Hancock and the second author [18, 17, 19] have developed a version of the IO monad in
dependent type theory, which we call the HS-monad. The HS-monad reduces the IO monad
to coinductively defined types. An element of (IO A) is either a terminated program, or it is
node of a non-well-founded tree having as label a command to be executed, and as branching
degree the set of responses the real world gives in response to this command. The HS-Monad
has been extensively used for writing interactive programs in the paper [4] on object-based
programming in Agda.

In [22], we modelled processes in a similar way as a monad and developed the library
CSP-Agda. In the IO monad a program can terminate or it can issue a command and
depending on the response continue. Similarly, a CSP-Agda process can either terminate,
returning a result. Or it can be a tree branching over external and internal choices, where
for each such choice a continuing process is given. So instead of forming processes by using
high level operators, as it is usually done in process algebras, our processes are given by
these atomic one step operations. The high level operators are defined operations on these
processes. CSP-Agda introduces a new concept to process algebra, namely that of a monadic
processes. A monadic process may run or terminate. If it terminates, it returns a value. This
facilitates the combination of processes in a modular way. Processes are defined coinductively,
and therefore we can introduce processes directly corecursively without having to use the
recursion combinator.

One can regard process with return type A as well as possibly non-well-founded trees,
with each node branching over external and internal choice, and having leaves labelled by
elements of the return type A (which are terminated processes).3

Abel, Pientka, Thibodeau and the second author have [5, 31] developed the notion of
coinductive types as being defined by their elimination rules or observations. This notion
has now been implemented in Agda. It turns out that classes and objects in object oriented
programming are of similar nature: Classes are defined by their methods, and therefore
given by their observations. The second author [30] has used this approach in order to
develop the notion of objects in dependent type theory. This has recently been substantially
extended together with Abel and Adelsberger [4] to a library [3] for objects in Agda including
correctness proofs, state dependent objects, server side programs, and a methodology for

3 This way of viewing processes was suggested by one of the anonymous referees.
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developing graphical user interfaces in Agda.
In CSP-Agda [22, 21] we made extensively use of the aforementioned representation of

coinductive types by their elimination rules. Using a record type, we accessed directly for
non-terminating processes the choice sets and corresponding subprocesses, without having to
extract them first using auxiliary definitions. This gives rise to compact definitions, see for
instance the definition of +�= in Subsect. 4.2.1 below.

The goal of this paper is to extend CSP-Agda by adding (finite) trace semantics of CSP.
Because of the monadic settings, possible return values need to be added to the traces. It
turns out that in the algebraic laws of CSP, the return values of the left and right hand side
of the laws are usually different. Therefore one needs to add an extra function fmap in these
laws to adjust these return values. We show how to prove selected (adjusted) algebraic laws of
CSP in Agda using this semantics: the laws of refinement, commutativity of interleaving and
parallel, and the monad laws for the monadic extension of CSP. Further proofs of algebraic
laws will be available in the repository of CSP-Agda [21].

Use of literal Agda. All displayed proofs in this article have been written using literal
Agda [7] (which allows to combine LATEX-code and Agda) and have been type checked in
Agda. However, as usual when presenting formal code, only the most important parts of
the definitions and proofs are presented. Full versions can be found in the repository of
CSP-Agda [21].

The structure of this paper is as follows: In Sect. 2, we review the process algebra
CSP. In Sect. 3, we give a brief introduction into the type theoretic language of Agda. In
Sect. 4, we review CSP-Agda, and introduce the CSP operators used in the examples of this
paper (monadic bind, interleaving, and parallel). In Sect. 5 we extend CSP-Agda by adding
(finite) trace semantics of CSP. In Sect. 6 we prove selected algebraic laws of CSP processes.
In Sect. 7, we will look at related work, give a short conclusion, and indicate directions for
future research.

2 CSP

Process algebras were initiated in 1982 by Bergstra and Klop [9] in order to provide a
formal semantics to concurrent systems. A “process” is a representation of the behaviour
of a concurrent system. “Algebra” means that the system is dealt with in an algebraic
and axiomatic way [8]. In this article we represent a process algebra in the interactive
theorem prover Agda in order to prove properties of processes. The process algebra chosen is
Communicating Sequential Processes (CSP). CSP [20, 28, 29] was developed by Hoare in
1978 [20].

Processes in CSP form a labelled transition system, where the one step transition is
written as

P µ→ Q where P,Q are processes and µ is an action,

which means that process P can evolve to process Q by event µ. The event µ can be a label,
the silent transition τ , or the termination event X. In case of the label X, Q will always be
the specific process STOP. Using standard CSP syntax, the process (a → P) is the process
which has an only transition (a → P)

a→ P.4 As an example, we give here the execution of
the process (a → b → STOP):

4 In Agda we use an arrow which looks similar to the one used for the function type, but is a different
Unicode character. The reason for this choice is to be as much as possible in accordance with standard
CSP syntax.

TYPES 2016
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( a → b → STOP) a→ (b → STOP) b→ STOP

The operational semantics of CSP defines processes as states, and defines the transition
rules between the states using firing rule. In CSP-Agda [22, 21] we introduced the firing rules
for CSP operators (taken from [29]), and modelled them in Agda. We followed the version of
CSP used in [29, 28]. All rules (as well those in this paper) are taken from [29]. In the rules
we follow the convention of [29] that a ranges over Label ∪ {X} and µ over Label ∪ {X, τ}.
AX denotes A ∪ {X}.

In the following table, we list the constructs for forming CSP processes. Here Q represent
CSP processes (Page numbers refer to [29] where the constructs are introduced):

Q ::= STOP STOP p.6
| SKIP SKIP p.11
| prefix a → Q p.6
| external choice Q 2 Q p.18
| internal choice Q u Q p.22
| hiding Q \ a p.53
| renaming Q[R] p.60
| parallel Q X‖Y Q p.29
| interleaving Q ||| Q p.43
| interrupt Q 4 Q p.70
| composition Q o

9 Q p.67

There are as well indexed versions of 2, u, ‖, |||. They are indexed over finite sets, and
therefore can be reduced to the binary case.

3 Agda

In this chapter we introduce the main concepts of Agda [6, 10], a more extensive introduction
can be found in [22].

Agda is based on dependent type theory. There are several levels of types in Agda, the
lowest is for historic reasons called Set. Types in Agda are given as dependent function types,
and inductive types. In addition, there exist record types (which are in the newer approach
used as well for defining coinductive types) and a generalisation of inductive-recursive and
inductive-inductive definitions. Inductive data type are dependent versions of algebraic data
types as they occur in functional programming. Inductive data types are given as sets A
together with constructors which are strictly positive in A. For instance, the set of vectors
(i.e. lists of fixed length) of elements of A and of length n is given as

data Vec (A : Set) : N → Set where
[] : {n : N} → Vec A zero

:: : {n : N} (a : A) (l : Vec A n) → Vec A (suc n)

Here {n : N} is an implicit argument. Implicit arguments are omitted, provided they can
be uniquely determined by the type checker. We can make a hidden argument explicit by
writing for instance ([] {n}) for the application of [] to the hidden argument n. The symbol
:: is Agda’s notation for mixfix symbols. The arguments of a mixfix operator are denoted

by underscore ( ). The expression a :: l stands for ( :: a l).
The above definition introduces a new type Vec : (A : Set)→ N→ Set, where (Vec A n)

is a type of vectors of type A of length n. A is a parameter, so the constructors always refer
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to the same parameter A. The variable n is an index, and constructors refer to different
indices. The vectors have constructors [] and :: . The elements of (Vec A n) are those
constructed from applying these constructors. Therefore we can define functions by case
distinction on these constructors using pattern matching. The following defines the sum of
elements of a vector of type N:

sum : ∀ {n} → Vec N n → N
sum [] = 0
sum (n :: l) = n + sum l

Here we used the notation ∀ {n}→ · · · , which stands for {n : A}→ · · · , where A (here
N) can be inferred by Agda. Nested patterns are allowed. The coverage checker checks
completeness and the termination checker checks that the recursive calls follow a schema of
extended primitive recursion.

In this paper we use the approach of defining coinductive types in Agda by their elimination
rules as introduced in [5, 31]. The standard example is the set of streams:

record Stream (i : Size) : Set where
coinductive
field
head : N
tail : {j : Size< i} → Stream j

If we first ignore the arguments Size, Size<, which will be discussed below, we see that the
type Stream is given as a record type in Agda. It is defined coinductively by its observations
head, tail. So we have if a : Stream i then head a : N and tail a : {j : Size< i} → Stream j.
Elements of Stream are defined by copattern matching, i.e. by determining the result of
applying head, tail to them. A simple (non-recursive) operation is the function cons for
adding a new element in front of a stream (the symbol ↑ will be explained when discussing
Size below):

cons : {i : Size} → N → Stream i → Stream (↑ i)
head (cons n s) = n
tail (cons n s) = s

Functions introduced by the principle of guarded recursion [11] or primitive corecursion can
only make corecursive calls to the same functions applied to arbitrary arguments. Especially,
no functions can be applied to the corecursive calls. However, there are no restrictions on
the arguments, the corecursive function calls can be applied to. As an example we give the
pointwise addition of two streams:

+s : ∀ {i} → Stream i → Stream i → Stream i
head (s +s s’) = head s + head s’
tail (s +s s’) = tail s +s tail s’

+s makes a corecursive call to (tail s +s tail s′). Note that s, s′ are arguments of +s ,
so we can apply tail to them freely.

Without the guarded recursion restriction, one could define non productive definitions,

TYPES 2016
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e.g. define tail (f x) = tail (f x). However, the guardedness restriction makes it difficult to
define streams in a modular way, since we cannot in a corecursive call refer to other functions
for forming streams at all, although many operations will not cause problems. Therefore
Abel has introduced sized types [1, 2] in the context of coinductive types, which allow to
apply size preserving and size increasing functions to corecursive calls.

Sizes are essentially ordinals (without infinite branching one can think of them as natural
numbers), however there is an additional infinite size ∞. We have as operations for forming
sizes the infinite size ∞, the successor operation on sizes ↑, and have the type of sizes less
than i denoted by (Size< i).

For ordinal sizes i 6=∞, a stream s : Stream i allows up to i applications of tail. The true
streams is the set Stream ∞ and s : Stream ∞ allows arbitrary many applications of tail.
When defining an element f : (i : Size) → A i → Stream i by corecursion, (tail (f i a) {j})
must be an element of size ≥ j which can refer to a corecursive call (f j a′), and we can
apply functions to it as long as the resulting size is ≥ j. Elimination on the corecursive
call is prevented, since we do not have access to any size < j. However, we can apply size
preserving and size increasing functions to the corecursive call. This guarantees that streams
are productive. We have ∞ : Size<∞, so a corecursive definition of elements of (Stream∞)

can refer to itself.
Agda offers let and where expressions in order to declare a local definition. In comparison,

where expressions allow a pattern matching or recursive function, whereas pattern matching
and recursive functions are not allowed in let expressions. In Agda the let expressions can be
represented as follows:

let
a1 : A1

a1 = s1
a2 : A2

a2 = s2
...

an : An
an = sn
in t

In the above definition, we use let expressions in order to introduce new local constants:

a1 : A1 s.t. a1 = s1,
a2 : A2 s.t. a2 = s2,

...

an : An s.t. an = sn

The syntax for where is similar, except that the auxiliary definitions introduced by where
occur after the main definition they are used in, whereas for let they occur before it.

4 The Library CSP-Agda

In this section we repeat the main definition of processes in CSP-Agda from [22]. The reader
might consult that paper for a more detailed motivation of the definitions in CSP-Agda.
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4.1 Representing CSP Processes in Agda
As outlined before, we represent processes in Agda in a monadic way. Therefore, a process
P : Process A is either a terminating process (terminate a), which has return value a : A,
or it is process (node Q) which progresses. Here Q : Process+ A, where (Process+ A) is the
type of progressing processes. A progressing process can proceed at any time with labelled
transitions (external choices), silent transitions (internal choices), or X-events (termination).
After a X-event, the process becomes deadlocked, so there is no need to determine the process
after that event. We will however add a return value a : A to X-events. Note that there is
a subtle difference between terminated processes and processes with termination events (see
[23] for full details.5)

Elements of (Process+ A) are therefore determined by
(1) an index set E of external choices, and for each external choice e the Label (Lab e) and

the next process (PE e);
(2) an index set of internal choices I, and for each internal choice i the next process (PI i);

and
(3) an index set of termination choices T corresponding to X-events, and for each termination

choice t the return value PT t : A.

In addition we add in CSP-Agda a type (Process∞ A). This makes it easy to define
processes by guarded recursion, when the right hand side is defined directly and without
having to define all 8 components6 of (Process+ A). Furthermore, in order to display processes,
we add eliminators Str+ and Str∞ to (Process+ A) and (Process∞ A), respectively. They
return a string representing the process. In case of (Process∞ A), this cannot be reduced
to the string component of (Process+ A): in order to do this one would need a smaller size,
which we do not have in general for arbitrary sizes.

We model the sets of external, internal, and termination choices as elements of an
inductive-recursively defined universe Choice. Elements c of Choice are codes for finite
sets, and (ChoiceSet c) is the set it denotes. In addition we define a string (choice2Str c)
representing c, and a function choice2Enum which computes from c a list of all choices. This
can be used to print a list of choices, for instance for testing or simulating CSP processes.

We require as well that the set of return values are elements of Choice. This allows us to
print the result returned when a process terminates. However, for the return types it is not
needed that they are finite sets. So one could use a different universe for the return values of
processes, which would allow for instance the set of natural numbers as a return type.

The resulting code for processes in Agda is as follows7:

mutual
record Process∞ (i : Size) (c : Choice) : Set where
coinductive
field

5 For instance, let P0 have a τ -transition to (terminate a), and an l′-transition to STOP. Let P1 having
a X-event with return value a and the same l′-transition to STOP. Process (P0 ||| R) can have a τ
transition to ((terminate a) ||| R), a state in which it can refuse l′. Process (P1 ||| R) cannot execute
the X-transition, since it needs to synchronise with a X-transition for R. It is stable, and cannot refuse
l′.

6 The 8th component Str+ is introduced in the next sentence.
7 Both occurrences of coinductive are needed by the current version of Agda; one could argue that in case

of Process+ Agda should allow to omit it, allowing η-equality for Process+.

TYPES 2016
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forcep : {j : Size< i} → Process j c
Str∞ : String

data Process (i : Size) (c : Choice) : Set where
terminate : ChoiceSet c → Process i c
node : Process+ i c → Process i c

record Process+ (i : Size) (c : Choice) : Set where
constructor process+
coinductive
field
E : Choice
Lab : ChoiceSet E → Label
PE : ChoiceSet E → Process∞ i c
I : Choice
PI : ChoiceSet I → Process∞ i c
T : Choice
PT : ChoiceSet T → ChoiceSet c
Str+ : String

So an element of Process+ is defined by copattern matching, e.g. by determining its
components E, Lab, PE, etc. Note that the Agda notation E : Choice means that if we
apply E to an element of (Process+ i c) we obtain an element of Choice, so the full type is
Process+ i c → Choice. Therefore, an element of Q : Process+ is determined by determining
E Q : Choice, Lab Q l : Label , etc. An example of a process is as follows:

P = node Q : Process String where
E Q = code for {1, 2} I Q = code for {3, 4}
T Q = code for {5}
Lab Q 1 = a Lab Q 2 = b PE Q 1 = P1

PE Q 2 = P2 PI Q 3 = P3 PI Q 4 = P4

PT Q 5 = "STOP"

P1
a

b

P2 P3 P4P1

2
3 τ

5
Xτ

"STOP"

4

The universe of choices is given by a set Choice of codes for choice sets, and a function
ChoiceSet, which maps a code to the choice set it denotes. Universes were introduced by
Martin-Löf (e.g. [26]) in order to formulate the notion of a type consisting of types. Universes
are defined in Agda by an inductive-recursive definition [13, 12, 14, 15]: we define inductively
the set of codes in the universe while recursively defining the decoding function.

We give here the code expressing that Choice is closed under fin, ]’, ×’, subset’, Σ’,
and namedElements, which correspond to the set operations Fin, ], ×, subset, Σ, and
NamedElements. Here (fin n) denotes the set (Fin n), which is the finite set having n
elements. The element (Σ’ a b) denotes the set (Σ[ x ∈ ChoiceSet a ] (ChoiceSet (b x))),
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where (Σ’[ x ∈ A ] B) is the set of pairs (x , y) where x : A and y : B, and B might
depend on x .8 The element (namedElements l) denotes the type (NamedElements l), which is
essentially (Fin (length l)).9 The function choice2Str will for elements of this set print the nth
element of l, giving them more meaningful names.10 We do not equate (NamedElements l)
with (Fin (length l)). This facilitates type inference.11

The set (subset A f ) is the set of a : A such that (f a) is true. The definition of ChoiceSet
is as follows:

data Choice : Set where
fin : N → Choice
]’ : Choice → Choice → Choice
×’ : Choice → Choice → Choice

namedElements : List String → Choice
subset’ : (E : Choice) → (ChoiceSet E → Bool)

→ Choice
Σ’ : (E : Choice) → (ChoiceSet E → Choice)

→ Choice

ChoiceSet : Choice → Set
ChoiceSet (fin n) = Fin n
ChoiceSet (s ]’ t) = ChoiceSet s ] ChoiceSet t
ChoiceSet (E ×’ F) = ChoiceSet E × ChoiceSet F
ChoiceSet (namedElements s) = NamedElements s
ChoiceSet (subset’ E f ) = subset (ChoiceSet E) f
ChoiceSet (Σ’ A B) = Σ[ x ∈ ChoiceSet A ] ChoiceSet (B x)

choice2Str : {c : Choice} → ChoiceSet c → String
choice2Str {fin n} m = showN (toN m)

. . .

choice2Enum : (c : Choice) → List (ChoiceSet c)
choice2Enum (fin n) = fin2Option0 n

. . .

8 The type (A ×’ B) has essentially the same elements as (Σ[ x ∈ A ] B) for some fresh x. However, if we
know a type C is of the form (A ×’ B), we can pattern match and obtain A and B from it, whereas
from the form (Σ[ x ∈ A ] B) we can only infer A because B is a function type. This requires to make
frequently hidden arguments A and B explicit.

9 It was suggested to us to let NamedElements depend on an n and an element of (Vec String n). But
those two elements are just a long form for writing an element of (List String). The only advantage of
Vec is that the standard library has a lookup function for it, which should be added as well for List.

10As pointed out by one of the anonymous referees, (fin n) is redundant and could be replace by
(namedElements l) for some suitable l. We keep it because when developing proofs, (fin n) behaves
better because one does not have length expressions of the form (length l) for some long expression l.

11Assume c is a hidden argument of type Choice, and l : ChoiceSet c. If we equated (NamedElements l)
with (Fin (length l)), then from the type of l we could not infer c, since in case l : Fin n we could have
c = fin n and c = namedElements l for some l. Therefore, one would need to make the hidden argument
explicit.

TYPES 2016
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4.2 Definition of the Monadic Bind, Interleaving, and the Parallel
Operators

We introduce the three operators, for which we will prove algebraic properties in this paper:
monadic bind, interleaving and the parallel operator. Monadic bind and interleaving have
already been defined in [22], and are repeated here to make it easier to follow the proofs of
the algebraic laws.

As in [22], when defining operators on processes, we introduce in most cases simultaneously
operators on the three categories of processes Process∞, Process, and Process+. We use
qualifiers ∞, p, + attached to the operators for refer to the 3 categories of processes,
respectively. For infix operators they will occur before the infix symbol if they refer to the
first argument, otherwise after the infix symbol. Note that we deviate from [22], where all
qualifiers were put after the symbol. We often omit p. We have as well a string forming
operation indicated by Str. For some binary operators we need versions where the arguments
are from different categories of processes, in which case we add two qualifiers to the operators,
one before and one after the operator, and sometimes we need even 3 or more qualifiers.
We will only present the main cases of the operators. Especially, we will usually omit the
functions involving Process∞, which follow usually the same pattern (an example can be
found in Subsect. 4.2.1 below when defining ∞�= ). The full code can be found at [21].

4.2.1 The Monadic Bind Operator
In our article [22] we introduced the monadic bind operation. In Sect. 6.2 we will prove the
monadic laws and therefore will briefly repeat the definition of the monadic bind. A more
extensive motivation can be found in [22]. The monadic bind (P�= Q) allows to compose
two processes P and Q while allowing the second process depend on the return type c0 of P.
So Q has an an extra argument of the return type (ChoiceSet c0).

Let us consider first the version +�= where the first process is an element of set of
progressing processes Process+. The transitions of (P +�= Q) are as follows: First they
follow external and internal choices of P. If P is the terminated process with return type
a, the process continues as process (Q a). A special case is a termination event in P with
return value a. Following the operational semantics of CSP, (P +�= Q) has in this case an
internal choice (i.e. a τ -transition) to process (Q a). In total, (P +�= Q) has two possible
internal choice events, namely internal choices of P and termination events of P. It has no
termination events.

In case of the monadic bind �= on Process, we have a special case, when P = terminate x.
In this case P �= Q is equal to (Q x) (one needs to apply forcep in order to obtain an
element of Process). This is different from termination events for P, where a silent transition
is required before obtaining (Q x). In case of progressing processes P �= Q makes a direct
call to +�= . The function ∞�= makes as well a direct call to �= .

The full definition of monadic bind is as follows (the symbol “()” in the definition of PT
below denotes the empty case distinction on the empty type (ChoiceSet ∅’))12:

�=Str : {c0 : Choice} → String
→ (ChoiceSet c0 → String) → String

s �=Str f = s ++s ";" ++s choice2Str2Str f

12Note that ++s is concatenation of string.
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mutual
∞�= : {i : Size} → {c0 c1 : Choice}

→ Process∞ i c0
→ (ChoiceSet c0 → Process∞ i c1)
→ Process∞ i c1

forcep (P ∞�= Q) = forcep P �= Q
Str∞ (P ∞�= Q) = Str∞ P �=Str (Str∞ ◦ Q)

�= : {i : Size} → {c0 c1 : Choice}
→ Process i c0
→ (ChoiceSet c0 → Process∞ (↑ i) c1)
→ Process i c1

node P �= Q = node (P +�= Q)
terminate x �= Q = forcep (Q x)

+�= : {i : Size} → {c0 c1 : Choice}
→ Process+ i c0
→ (ChoiceSet c0 → Process∞ i c1)
→ Process+ i c1

E (P +�= Q) = E P
Lab (P +�= Q) = Lab P
PE (P +�= Q) c = PE P c ∞�= Q
I (P +�= Q) = I P ]’ T P
PI (P +�= Q) (inj1 c) = PI P c ∞�= Q
PI (P +�= Q) (inj2 c) = Q (PT P c)
T (P +�= Q) = ∅’
PT (P +�= Q) ()
Str+ (P +�= Q) = Str+ P �=Str (Str∞ ◦ Q)

4.2.2 The Interleaving Operator
The interleaving operator executes the external and internal choices of its arguments P
and Q completely independently of each other. The CSP rules are as follows (having two
conclusions of a rule is an abbreviation for two rules having the same premises: one deriving
the first and one deriving the second conclusion):

P X→ P̄ Q X→ Q̄

P ||| Q X→ P̄ ||| Q̄

P µ→ P̄ µ 6= X
P ||| Q µ→ P̄ ||| Q

Q ||| P µ→ Q ||| P̄

The definition of the two main cases in CSP-Agda is as follows:

||| : {i : Size} → {c0 c1 : Choice} → Process i c0
→ Process i c1 → Process i (c0 ×’ c1)

node P ||| node Q = node (P +|||+ Q)
terminate a ||| Q = fmap (ń b → (a „ b)) Q
P ||| terminate b = fmap (ń a → (a „ b)) P

+|||+ : {i : Size} → {c0 c1 : Choice}
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→ Process+ i c0 → Process+ i c1
→ Process+ i (c0 ×’ c1)

E (P +|||+ Q) = E P ]’ E Q
Lab (P +|||+ Q) (inj1 c) = Lab P c
Lab (P +|||+ Q) (inj2 c) = Lab Q c
PE (P +|||+ Q) (inj1 c) = PE P c ∞|||+ Q
PE (P +|||+ Q) (inj2 c) = P +|||∞ PE Q c
I (P +|||+ Q) = I P ]’ I Q
PI (P +|||+ Q) (inj1 c) = PI P c ∞|||+ Q
PI (P +|||+ Q) (inj2 c) = P +|||∞ PI Q c
T (P +|||+ Q) = T P ×’ T Q
PT (P +|||+ Q) (c „ c1) = (PT P c „ PT Q c1)
Str+ (P +|||+ Q) = Str+ P |||Str Str+ Q

When processes P and Q have not terminated, then (P ||| Q) will not terminate. The
external choices are the external choices of P and Q. The labels are the labels from the
processes P and Q, and we continue recursively with the interleaving combination. The
internal choices are defined similarly. A termination event can happen only if both processes
have a termination event.

If one process terminates but the other not, the rules of CSP express that one continues
as the other process, until it has terminated. We can therefore equate, if P has terminated,
(P |||Q) with Q. However, we record the result obtained by P, and therefore apply fmap to
Q in order to add the result of P to the result of Q when it terminates. Here (fmap f P) is
the process obtained from P by applying f to any termination results.

If both processes terminate with results a and b, then, the interleaving combination
terminates with result (a „ b), since (fmap (λ b → (a „ b)) (terminate b)) evaluates to this
expression.

4.2.3 The Parallel Operator
The parallel operator gives the possibility to enforce two processes to work together and
interact through synchronous events. For each of the two processes sets of labels A,B are
given. For labels which are not in the intersection, both processes can execute independently,
as long as their processes are in A or B, respectively. For labels in the intersection, both
processes need to synchronise on that event. The transition rules for the parallel operator
are as follows:

P a→ P̄ Q a→ Q̄
[ a ∈ AX ∩ BX]

P A‖B Q a→ P̄ A‖B Q̄

P µ→ P̄ [ µ ∈ ((A ∪ τ)\B)]

P A‖B Q µ→ P̄ A‖B Q

Q B‖A P µ→ Q B‖A P̄

In CSP-Agda we define the parallel operator as follows: Assume A B : Label→ Bool,
which determine the label sets A and B as above. The external choices of (P [ A ]+||+[ B ] Q)

are:
The external choices of c : E P, for which the label in P is in (A \ B), i.e. such that
((A \ B) (Lab P c)) = true. Here (A \ B) : Label→ Bool is defined by (A \ B) b = true if
and only if A b = true and B b = false. For such c the label for this external choice is the
label of P for choice c, and the process obtained following this transition is the parallel
construct applied to (PE P c) and Q.
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The external choices of c : E Q, for which the label in Q is in (B \ A), with similar
definitions of the label and next process obtained.
The combined external choices for P and Q, i.e. pairs (e1 , e2) s.t. e1 : E P and e2 : E Q,
and s.t. their labels are equal, and the labels are in A and in B, i.e. such that

((Lab P e1 ==l Lab Q e2) ∧ A (Lab P e1) ∧ B (Lab Q e2)) = true

Here ==l is Boolean valued equality on Labels, and ∧ is Boolean valued conjunction.
The label for this external choice is the label of P (which is w.r.t. ==l equal to the
corresponding label of Q). The process obtained when following this external choice is
the parallel construct applied to the result of following the external choices in both P
and Q.

Furthermore
The internal choices are the internal choices of P and Q, and the process obtained when
following those transitions is obtained by following the corresponding transition in process
P or Q, respectively.
A termination event can happen only if both processes have a termination event. If
they terminate with results a and b, then the parallel combination terminates with result
(a „ b). Therefore the result type of the parallel construct is the product of the result
type of the first and second process.

In order to define the above we use the subset’ constructor of Choice which has equality
rule

ChoiceSet (subset’ E f ) = subset (ChoiceSet E ) f

Here, (subset a f ) is the set of pairs (sub a b) such that a : A and b : T (f a), i.e. it is
essentially the set {a : A | f a = true}. We have T : Bool → Set, such that (T true) is
provable and (T false) is empty, i.e. not provable.

The definition of the parallel operator in CSP-Agda for Process+ is as follows:

[ ]+||+[ ] : {i : Size} → {c0 c1 : Choice}
→ Process+ i c0
→ (A B : Label → Bool)
→ Process+ i c1
→ Process+ i (c0 ×’ c1)

E (P [ A ]+||+[ B ] Q) = subset’ (E P) ((A \ B) ◦ (Lab P)) ]’
subset’ (E Q) ((B \ A) ◦ (Lab Q)) ]’
subset’ (E P ×’ E Q)

(ń {(e1 „ e2)
→ Lab P e1 ==l Lab Q e2 ∧ A (Lab P e1) ∧ B (Lab Q e2)})

Lab (P [ A ]+||+[ B ] Q) (inj1 (inj1 (sub c p))) = Lab P c
Lab (P [ A ]+||+[ B ] Q) (inj1 (inj2 (sub c p))) = Lab Q c
Lab (P [ A ]+||+[ B ] Q) (inj2 (sub (c0 „ c1) p)) = Lab P c0
PE (P [ A ]+||+[ B ] Q) (inj1 (inj1 (sub c p))) = PE P c [ A ]∞||+[ B ] Q
PE (P [ A ]+||+[ B ] Q) (inj1 (inj2 (sub c p))) = P [ A ]+||∞[ B ] PE Q c
PE (P [ A ]+||+[ B ] Q) (inj2 (sub (c0 „ c1) p)) = PE P c0 [ A ]∞||∞[ B ] PE Q c1
I (P [ A ]+||+[ B ] Q) = I P ]’ I Q
PI (P [ A ]+||+[ B ] Q) (inj1 c) = PI P c [ A ]∞||+[ B ] Q
PI (P [ A ]+||+[ B ] Q) (inj2 c) = P [ A ]+||∞[ B ] PI Q c
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T (P [ A ]+||+[ B ] Q) = T P ×’ T Q
PT (P [ A ]+||+[ B ] Q) (c0 „ c1) = (PT P c0 „ PT Q c1)
Str+ (P [ A ]+||+[ B ] Q) = Str+ P [ A ]||Str[ B ] Str+ Q

When defining the parallel construct for elements of Process, we need to deal with the
case one of the processes is the terminated process. As for ||| , one continues in this case as
the other process, until it has terminated. However, in case of P having terminated, only
labels in the set (B \ A) are allowed for Q. We can therefore equate, if P has terminated,
(P [ A ]+||+[ B ] Q) with (Q � (B \ A)). Here for a process P ′ and a set of labels A′ the
process P � A′ is the process obtained by restricting the external transitions to those with
label in A′. Note that this is different from hiding, external transitions with labels not in A′

are not turned into τ -transitions. As for ||| , we need to record the result obtained by P,
and therefore apply fmap to Q in order to add the result of P to the result of the restriction
of Q, when it terminates.

The definition of the parallel operator for Process is therefore as follows:

[ ]||[ ] : {i : Size} → {c0 c1 : Choice}
→ Process i c0
→ (A B : Label → Bool)
→ Process i c1
→ Process i (c0 ×’ c1)

node P [ A ]||[ B ] node Q = node (P [ A ]+||+[ B ] Q)
terminate a [ A ]||[ B ] Q = fmap (ń b → (a „ b)) (Q � (B \ A))
P [ A ]||[ B ] terminate b = fmap (ń a → (a „ b)) (P � (A \ B))

5 Defining Trace Semantics for CSP-Agda

In CSP, traces of a process are the sequences of actions or labels of external choices a process
can perform. Since the processes in CSP, are non-deterministic, a process can follow different
traces during its execution. The trace semantics of a process is the set of its traces.

Since in CSP-Agda processes are monadic, we need to record, in case after following a
trace we obtain a terminated process, the result returned by the process following this trace.
So we add a possible element of the result set to the trace. We can use for the set of possible
elements the set (Maybe (ChoiceSet c)). Here the type (Maybe A) has elements (just a) for
a : A, denoting defined elements, and an undefined element nothing. So (just a) denotes that
the process has terminated with result a, whereas nothing means that it has not terminated
(or more precisely not been determined to have terminated13).

Taking this together, we obtain that traces are given by a list of labels and an element of
(Maybe (ChoiceSet c)). We define the set of traces (Tr l m P) as a predicate which determines
for a process the lists of labels l and elements m : Maybe (ChoiceSet c), which form a
trace. We define as well traces (Tr+ l m P) and (Tr∞ l m P) for processes in Process+ and
Process∞, respectively.

In the trace semantics of CSP, a process having a termination event has two traces, the
empty list, and the list consisting of a X-event. In order to be consistent with CSP, we will
add therefore in case of a termination event or terminated process two traces: the empty list

13A process having trace l with result (just a) has as well trace l with result nothing, see below.
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together with possible return value nothing, and with possible return value (just a) for the
return value a.

For an element of (Process+∞ c) we obtain the following traces:
The empty trace without termination is a trace of any process, and we denote the proof
by empty.
If a process P has external choice x , then from every trace for the result of following this
choice, consisting of a list of labels l and a possible result res, we obtain a trace of P
consisting of the result of adding in front of l the label of that external choice, and of the
same possible result res. The resulting proof will be denoted by (extc l res x tr).
Internal choices are ignored in traces. Therefore if a process P has an internal choice
x, every trace of the result of following this choice is as well a trace of P. The proof is
denoted by (intc l res x tr)
If a process has a termination event x with return value t, then the empty trace with
termination choice (just t) is a trace of process, having proof (terc x).

The corresponding definition for Process+ is as follows:

data Tr+ {c : Choice} : (l : List Label) → Maybe (ChoiceSet c) → (P : Process+ ∞ c)
→ Set where

empty : {P : Process+ ∞ c} → Tr+ [] nothing P
extc : {P : Process+ ∞ c} → (l : List Label) → (res : Maybe (ChoiceSet c))

→ (x : ChoiceSet (E P)) → Tr∞ l res (PE P x) → Tr+ (Lab P x :: l) res P
intc : {P : Process+ ∞ c} → (l : List Label) → (res : Maybe (ChoiceSet c))

→ (x : ChoiceSet (I P)) → Tr∞ l res (PI P x) → Tr+ l res P
terc : {P : Process+ ∞ c} → (x : ChoiceSet (T P)) → Tr+ [] (just (PT P x)) P

In case of Process we need to consider the termination events:
The terminated process has two traces, namely the empty list of labels [] with termination
event nothing, and the same list but with termination event (just x), where x is the return
value.
The traces of a non-terminated process are the traces of the corresponding element of
Process+.

We obtain the following definition of the traces of Process:

data Tr {c : Choice} : (l : List Label) → Maybe (ChoiceSet c) → (P : Process ∞ c)
→ Set where

ter : (x : ChoiceSet c) → Tr [] (just x) (terminate x)
empty : (x : ChoiceSet c) → Tr [] nothing (terminate x)
tnode : {l : List Label} → {x : Maybe (ChoiceSet c)} → {P : Process+ ∞ c}

→ Tr+ {c} l x P → Tr l x (node P)

Finally the traces for Process∞ are just the traces of the underlying Process:

record Tr∞ {c : Choice} (l : List Label) (res : Maybe (ChoiceSet c))
(P : Process∞ ∞ c) : Set where

coinductive
field
forcet : Tr l res (forcep P)
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In CSP, a process P refines a process Q, written (P v Q) if and only if any observable
behaviour of Q is an observable behaviour of P, i.e. if traces(Q) ⊆ traces(P):

v : {c : Choice} (P : Process ∞ c) (Q : Process ∞ c) → Set
v {c} P Q = (l : List Label) → (m : Maybe (ChoiceSet c)) → Tr l m Q → Tr l m P

Two processes P, Q are equal w.r.t. trace semantics, written P ≡ Q, if they refine each
other, i.e. if traces(P) = traces(Q):

≡ : {c0 : Choice} → (P Q : Process ∞ c0) → Set
P ≡ Q = P v Q × Q v P

6 Proof of the Algebraic Laws

Trace equivalence gives rise to algebraic laws for individual operators, and also concerning
the relationships between different operators. Laws for individual operators are concerned
with general algebraic properties such as commutativity and associativity of operators, the
identification of zeros and units for specific operators, and idempotence of operators; these
properties allow a process to be composed in any order, and allow process descriptions to be
simplified. An example of the relationship between different operators is the expansion of
the interleaving of processes, each of which is introduced by an event prefix, into a prefix
choice process. We will present examples of how to prove algebraic laws of CSP in Agda
using this semantics. The examples covered in this article are commutativity of interleaving
and parallel, and the monad laws for the monadic extension of CSP. Further examples will
be available in the repository of CSP-Agda.

6.1 Proof of the Laws of Refinement
The refinement relation is reflexive, anti-symmetric and transitive, i.e. fulfils the following
laws:

P v P
P0 v P1 ∧ P1 v P0 ⇒ P0 = P1

P0 v P1 ∧ P1 v P2 ⇒ P0 v P2

These laws are a direct consequence of the fact that P v Q means essentially traces(Q) ⊆
traces(P) and P ≡ Q means traces(P) = traces(Q):

reflv : {c : Choice} (P : Process ∞ c) → P v P
reflv {c} P l m x = x

antiSymv : {c0 : Choice} → (P Q : Process ∞ c0) → P v Q → Q v P → P ≡ Q
antiSymv P Q PQ QP = PQ , QP

transv : {c : Choice}(P : Process ∞ c)(Q : Process ∞ c)(R : Process ∞ c)
→ P v Q → Q v R → P v R
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transv {c} P Q R PQ QR l m tr = PQ l m (QR l m tr)

6.2 Proof of the Monadic Laws
We defined processes in a monadic way, and will in this section prove the monad laws for
processes.

In functional programming, a monad is given by a functor M together with morphisms
�= : M A→ (A→ M B)→ M B and return : A→ M A such that the following laws hold:

return a�= f = f a
p�= return = p
(p�= f )�= g = p�= (λ x → f x �= g)

For each monadic law we have to prove 2 directions, (“v” and “w”). Furthermore the laws
need to be shown for Process+, Process and Process∞. We will present only one direction
and one version of the processes for each law. Since proofs of ≡ just follow from the left
to right and right to left refinement, we will present this proof only for the first monadic law.

The proof of the first monadic law is trivial since (terminate a �= P) is definitionally
equal to P:
monadLaw1 : {c0 c1 : Choice} (a : ChoiceSet c0)(P : ChoiceSet c0 → Process ∞ c1)

→ (terminate a �= P) v P a
monadLaw1 a P l m q = q

≡monadLaw1 : {c0 c1 : Choice} (a : ChoiceSet c0)(P : ChoiceSet c0 → Process ∞ c1)
→ (P a) ≡ (terminate a �= P)
≡monadLaw1 {c0} {c1} a P = (monadLaw1 a P) , (monadLaw1r a P)

In case of the second monadic law the proof is by induction over the proofs of traces for
(P�=+ terminate), which immediately turn into traces of P:

monadLaw2+ : {c0 : Choice} (P : Process+ ∞ c0)→ (P �=+ terminate) v+ P
monadLaw2+ P .[] .nothing empty = empty
monadLaw2+ P .(Lab P x :: l) m (extc l .m x x1) = extc l m x (monadLaw2∞ (PE P x) l m x1)
monadLaw2+ P l m (intc .l .m x x1) = intc l m (inj1 x) (monadLaw2∞ (PI P x) l m x1)
monadLaw2+ P .[] .(just (PT P x))(terc x) = intc [] (just (PT P x)) (inj2 x) (lemTrTerBind P x)

In third monadic law the proof is by induction over the proofs of traces for
(P �=+ (Q �=+ R)). In most cases the proof of traces carry over after applying the
induction hypothesis. One special case if the first process P has a termination event, which
results in an internal choice to (Q x �= R) on both sides. In this case the traces are
essentially the same, but only after applying forcet. We use here an operation

monadPT+ P Q R y l m tr

which is modulo an application of forcet equal to tr . There are no immediate termination
events, and therefore no proofs of traces of the form (terc x). We use efq (ex falsum quodlibet),
which constructs from an element of the empty set an element of any set, for dealing with
this case. The resulting proof is as follows:
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monadLaw3+ : {c0 c1 c2 : Choice} (P : Process+ ∞ c0)
(Q : ChoiceSet c0 → Process ∞ c1)
(R : ChoiceSet c1 → Process ∞ c2)

→ ((P �=+ Q) �=+ R) v+ (P �=+ (ń x → Q x �= R))
monadLaw3+ P Q R .[] .nothing empty = empty
monadLaw3+ P Q R .(Lab P x :: l) m (extc l .m x x1) =

extc l m x (monadLaw∞ P Q R l x m x1)
monadLaw3+ P Q R l m (intc .l .m (inj1 x) x1) =

intc l m (inj1 (inj1 x))(monadLaw3∞ (PI P x) Q R l m x1)
monadLaw3+ P Q R l m (intc .l .m (inj2 y) x1) =

intc l m (inj1 (inj2 y))(monadPT+ P Q R y l m x1)
monadLaw3+ P Q R .[] .(just (PT (P �=+ (ń x → Q x �= R)) x)) (terc x) = efq x

6.3 Proof of Commutativity of the Interleaving Operator

The interleaving combination (P ||| Q) executes each component completely independent of
the other, until termination. Traces of the interleaving combination (P ||| Q) will, therefore,
appear as interleaving of traces of the two component, and therefore it is easy to see that
(P ||| Q) and (Q ||| P) are trace equivalent.

However, because of the monadic setting, for most algebraic laws the return types of
the left and right hand side of an equation are different. Assume the return types of P and
Q are c0 and c1, respectively. Then for instance the return type of (P ||| Q) is (c0 ×’ c1)
whereas the return type of (Q ||| P) is (c1 ×’ c0). Therefore the algebraic laws hold only
modulo applying an adjustment of the return types using the operation fmap, which applies
a function to the return types.

Once we have taken this into account, a proof of commutativity of ||| is obtained by
exchanging the external/internal/termination choices, which means swapping inj1 and inj2.
Here inj1 refers to choices in the first and inj2 to choices in the second process. We give here
the main case referring to Process+ (swap× swaps the two sides of a product):

S+|||+ : {c0 c1 : Choice} (P : Process+ ∞ c0) (Q : Process+ ∞ c1)
→ (P +|||+ Q) v+ (fmap+ swap× (Q +|||+ P))

S+|||+ P Q .[] .nothing empty = empty
S+|||+ P Q .(Lab Q x :: l) m (extc l .m (inj1 x) q) = extc l m (inj2 x) (S+|||∞ P (PE Q x) l m q)
S+|||+ P Q .(Lab P x :: l) m (extc l .m (inj2 x) q) = extc l m (inj1 x) (S∞|||+ (PE P x) Q l m q)
S+|||+ P Q l m (intc .l .m (inj1 x) q) = intc l m (inj2 x) (S+|||∞ P (PI Q x) l m q)
S+|||+ P Q l m (intc .l .m (inj2 x) q) = intc l m (inj1 x) (S∞|||+ (PI P x) Q l m q)
S+|||+ P Q .[] .(just (PT P x „ PT Q y)) (terc (y „ x)) = terc (x „ y)

≡S+|||+ : {c0 c1 : Choice} (P : Process+ ∞ c0) (Q : Process+ ∞ c1)
→ (P +|||+ Q) ≡+ (fmap+ swap× (Q +|||+ P))
≡S+|||+ P Q = (S+|||+ P Q) , (S+|||+R P Q)
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6.4 Proof of Commutativity of the Parallel Operator
Most cases in the proof of the commutativity of [ ]||+[ ] are similar to the proof of
commutativity ||| – one swaps inj1 and inj2 and uses induction. The only more difficult case
is when we have two processes synchronising, resulting in both processes following choices
having the same labels. This case uses a proof that the two choices for the two processes
result have the same label and that both labels are in the synchronised sets. We obtain in
this case from a proof that we have a trace a proof of the Boolean conjunction:

Lab Q x ==l Lab P x1 ∧ B (Lab X x) ∧ A (Lab P x1)

which we need to transform into a proof of the Boolean conjunction

Lab P x1 ==l Lab Q x ∧ A (Lab X x1) ∧ B (Lab P x)

We will make use of functions which introduce and eliminate proofs of Boolean conjunc-
tions, i.e.

∧BoolIntro : (a b : Bool)→ T a→ T b→ T (a ∧ b)
∧BoolEliml : (a b : Bool)→ T (a ∧ b)→ T a
∧BoolElimr : (a b : Bool)→ T (a ∧ b)→ T b

Furthermore, we make use of a proof sym of symmetry of the Boolean equality ==l on
labels, and the transfer lemma

transf : (Q : Label→ Set)→ (l l ′ : Label )→ T (l ==l l ′ )→ Q l→ Q l ′

We now take the proof of the conjunction apart into its three components, apply the proof of
symmetry to the equality proof and recombine them. Finally we need to carry out a transfer
to replace the first label (Lab P x1) in the trace by (Lab Q x), which are known to be equal.
The resulting proof is as follows:

S+||+ : {c0 c1 : Choice} (P : Process+ ∞ c0) (A B : Label → Bool) (Q : Process+ ∞ c1)
→ (P [ A ]+||+[ B ] Q) v+ fmap+ swap× (Q [ B ]+||+[ A ] P)

S+||+ P A B Q .[] .nothing empty = empty
S+||+ P A B Q .(Lab Q a :: l) m (extc l .m (inj1 (inj1 (sub a x))) x1) =

extc l m (inj1 (inj2 (sub a x))) (S+||∞ P A B (PE Q a) l m x1)
S+||+ P A B Q .(Lab P a :: l) m (extc l .m (inj1 (inj2 (sub a x))) x1) =

extc l m (inj1 (inj1 (sub a x))) (S∞||+ (PE P a) A B Q l m x1)
S+||+ P A B Q .(Lab Q x :: l) m (extc l .m (inj2 (sub (x „ x1) x2)) x3) =
let

lxlx1 : T (Lab Q x ==l Lab P x1)
lxlx1 = ∧BoolEliml (Lab Q x ==l Lab P x1)

(B (Lab Q x) ∧ A (Lab P x1)) x2

BQx : T (B (Lab Q x))
BQx = ∧BoolEliml (B (Lab Q x)) (A (Lab P x1))

(∧BoolElimr (Lab Q x ==l Lab P x1)
(B (Lab Q x) ∧ A (Lab P x1)) x2)

TYPES 2016
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APx1 : T (A (Lab P x1))
APx1 = ∧BoolElimr (B (Lab Q x)) (A (Lab P x1))

(∧BoolElimr (Lab Q x ==l Lab P x1)
(B (Lab Q x) ∧ A (Lab P x1)) x2)

lx1lx : T (Lab P x1 ==l Lab Q x)
lx1lx = sym (Lab Q x) (Lab P x1) lxlx1

x2’ : T ((Lab P x1 ==l Lab Q x) ∧ A (Lab P x1) ∧ B (Lab Q x))
x2’ = ∧BoolIntro (Lab P x1 ==l Lab Q x)

(A (Lab P x1) ∧ B (Lab Q x))
lx1lx
(∧BoolIntro (A (Lab P x1)) (B (Lab Q x)) APx1 BQx)

auxpr : Tr+ (Lab P x1 :: l) m (P [ A ]+||+[ B ] Q)
auxpr = extc l m (inj2 (sub (x1 „ x) x2’))

(S∞||∞ (PE P x1) A B (PE Q x) l m x3)

in transf (ń l’ → Tr+ (l’ :: l) m (P [ A ]+||+[ B ] Q))
(Lab P x1) (Lab Q x) lx1lx auxpr

S+||+ P A B Q l m (intc .l .m (inj1 x) x1) = intc l m (inj2 x) (S+||∞ P A B (PI Q x) l m x1)
S+||+ P A B Q l m (intc .l .m (inj2 y) x1) = intc l m (inj1 y) (S∞||+ (PI P y) A B Q l m x1)
S+||+ P A B Q .[] .(just (PT P x1 „ PT Q x)) (terc (x „ x1)) = terc (x1 „ x)

≡+||+ : {c0 c1 : Choice} (P : Process+ ∞ c0)(A B : Label → Bool)(Q : Process+ ∞ c1)
→ (P [ A ]+||+[ B ] Q) ≡+ (fmap+ swap× ((Q [ B ]+||+[ A ] P)))

≡+||+ P A B Q = (S+||+ P A B Q) , (S+||+r P A B Q)

7 Related Work and Conclusion

Related Work. A detailed report on related work, which we do not want to repeat here,
can be found in our previous paper [22].

Conclusion. The aims of this research is to give the type theoretic interactive theorem
prover Agda the ability to model and verify concurrent programs by representing the process
algebra CSP in monadic form. We implement trace semantics of CSP in Agda, together
with the corresponding refinement and equality relation, formally in CSP-Agda. In order to
demonstrate the proof capabilities of CSP-Agda, we prove in CSP-Agda selected algebraic
laws of CSP based on the trace semantics. In our approach we define processes coinductively
and the trace semantic inductively.

Future Work. We are currently working on defining the failures/divergences model and
stable failures model of CSP in Agda. Since those semantics are rather complicated, proofs
of algebraic properties are much more involved. The first author has developed elements
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of the European Rail Traffic Management System ERTMS [16] in CSP, and one goal is to
implement those processes in CSP-Agda and prove safety properties. For larger case studies
automated theorem proving techniques will be used. Here we can build on Kanso’s PhD
thesis [24] (see as well [25]), in which he verified real world railway interlocking systems in
Agda. Verifying larger examples might require to upgrade the integration of SAT solvers
into Agda2, which has been developed by Kanso [24], to the current version of Agda.

One goal is to integrate the CSP model checker FDR2 into Agda. One ambitious goal is
to write prototypes of programs, e.g. of some elements of the ERTMS, in Agda and make
them directly executable in Agda. This uses the unique feature of Agda of being both a
theorem prover and a dependently typed programming language. So in Agda there is no
distinction between proofs and programs, between data types and propositions, and therefore
the prototype can be implemented and verified in the same language, without the need to
translate between two different languages.
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