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Abstract 

Pseudechis (black snakes) is an Australasian elapid snake genus that inhabits much of mainland 

Australia, with two representatives confined to Papua New Guinea. The present study is the first to 

analyse the venom of all 9 described Pseudechis species (plus one undescribed species) to 

investigate the evolution of venom composition and functional activity. Proteomic results 

demonstrated that the typical Pseudechis venom profile is dominated by phospholipase A2 toxins. 

Strong cytotoxicity was the dominant function for most species. P. porphyriacus, the most basal 

member of the genus, also exhibited the most divergent venom composition, being the only species 

with appreciable amounts of procoagulant toxins. The relatively high presence of factor Xa 

recovered in P. porphyriacus venom may be related to a predominantly amphibian diet. Results of 

this study provide important insights to guide future ecological and toxinological investigations.  

 

Keywords: venom evolution, Pseudechis, black snakes, diet, toxins, proteomic, enzymology, 

Oxyuraninae, PLA2 

 

INTRODUCTION 

The production of venom is considered to be metabolically ‘expensive’ (reviewed by Morgenstern 

& King 2013), and this can create selection pressure for the ‘fine-tuning’ of venom to target specific 

prey (Jackson et al. 2013). For this reason, venom composition and activity can vary according to 
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diet; For instance Gibbs et al. (2013) found that Sistrurus rattlesnakes which have more lizards (and 

fewer mammals) in their diet also had a higher proportion of CRiSP toxins in their venom. Even 

more surprisingly, venom variation has been observed at the intraspecific level, as in Echis 

(Viperidae) and Pseudonaja (Elapidae) spp. (Barlow et al. 2009; Jackson et al. 2016; Rogalski et al. 

2017). Venom is inevitably linked to an antagonistic evolutionary arms race with prey (Dawkins & 

Krebs 1979; Casewell et al. 2013; Arbuckle 2017), in which both predator and prey are continually 

experiencing selection to counteract adaptations of their natural enemies, as encapsulated in Van 

Valen’s (1973) concept of ‘Red Queen’ coevolution. Importantly, arms races have been linked to 

diversification of lineages and their traits (Ehrlich & Raven 1964) and so the coevolutionary 

interactions between venomous snakes and their prey may have contributed to the dramatic venom 

diversification that occurred in the colubroid (advanced) snakes. 

 

Snake toxins can be classified into two broad categories: enzymes (e.g. phospholipases, serine 

proteinases, metalloproteinases, LAOOs,) and non-enzymatic toxins (e.g. three-finger toxins 

(3FTx), lectins, sarafotoxins, Kunitz peptides, CRiSP) (Sunagar et al. 2013). However, the 

biological reality is not so binary since toxins such as phospholipase A2 (PLA2) have secondarily 

evolved novel non-enzymatic functions ranging from antiplatelet activity to neurotoxicity, with 

functional sites distinct from those used for the plesiotypic enzymatic function (Cull-Candy et al. 

1976; Harris et al. 2000; Howell et al. 2014).  

 

Australasia is a diversity hotspot for the Elapidae, being home to almost 50% of all species in this 

venomous snake family, many of which are endemic (Shine 1995; Jackson et al. 2013). Throughout 

geological history, several ice ages have dropped the sea level by up to 100 meters, exposing the 

Sunda and Sahul continental shelves (Barber et al. 2000; Rowe et al. 2009). These events facilitated 

dispersal and migration of many organisms between Asia and Australia, including elapid snakes 

(Wüster et al. 2005). Phylogenetic studies demonstrate that Australo-Melanesian elapids 

(Hydrophiinae) do not represent a Gondwanan group but arrived in Australasia only relatively 

recently (<25 mya) (e.g. Wüster et al. 2005; Sanders et al. 2008; Hsiang et al. 2015; Lee et al. 

2016). At this time, only pythons and blind snakes were present among the local snake fauna and so 

the elapid snakes likely diversified (to >100 extant terrestrial species) at least in part due to 

exploitation of empty niche space (McPeek & Brown 2007); elapids are relatively agile and 

combined with their possession of venom this would have made them ecologically distinct snakes 

in the region. The clade is ecologically diverse and includes species with a range of body sizes, 

activity periods, and habitats, as well as many that are dangerous to humans (Sanders et al. 2008). 

Among all Australian elapids, five genera are considered the ‘big 5’ due to their substantial medical 

impact; these are Oxyuranus (taipans), Pseudonaja (brown snakes), Pseudechis (black snakes), 

Acanthophis (death adders), and Notechis (tiger snakes). 

 

Pseudechis Wagler, 1830 is a genus of nine described, plus one as yet undescribed, elapid species 

(Elapidae F. Boie, 1827). The genus ranges from less than 1 meter (e.g. P. weigeli) up to 3 meters 

(P. australis) in length and all species are considered potentially dangerous (Ramasamy et al. 2005; 

Cogger 2014). They are distributed throughout Australia, except for Tasmania (Georgieva et al. 

2011), and two species are endemic to Papua New Guinea and the islands of Torres Strait (P. 

papuanus, P. rossignoli) (Wilson & Swan 2003; Wüster et al. 2005). P. australis is particularly 

wide-ranging (across most of Australia), yet it displays extremely low levels of genetic diversity 

across its range consistent with a recent and rapid range expansion. 

 

Most Australian elapid snake venoms are typified by being rich in 3FTx with phospholipase A2 

(PLA2) toxins in lower amounts (Fry et al. 2003). However, previous studies have found Pseudechis 

venoms to be rich in PLA2 toxins, suggesting a relatively unusual venom, of toxinological and 

toxicological interest (Vaughan et al. 1981; Nishida & Tamiya 1991; Fatehi et al. 1995; Laing et al. 

1995; Viala et al. 2014; Pla et al. 2017). Pseudechis venoms are known to have strong myotoxic 
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activity and antiplatelet action, which are mediated by PLA2 toxins (Geh et al. 1992; Lane et al. 

2011). 

 

This study analyses the venom composition and activity of all ten species of Pseudechis in order to 

investigate the evolution of the venom throughout the genus. Multiple samples are investigated for 

some species in order to enlighten on intraspecific/regional variation in venom composition and 

activity.  

 

MATERIALS AND METHODS 

Species identification and venom collection 

All venoms investigated were collected, milked, and delivered by Venom Supplies Pty Ltd 

(Tanunda, SA, Australia), or part of the Venom Evolution Lab long-term research collection. 

Samples from a minimum of three adult individuals of the same species were pooled. Species and 

localities studied were: Pseudechis australis (Kulgera, NT, Mt Isa, QLD, Eyre SA, Pt Headland, 

WA), Pseudechis butleri (Yalgoo, WA), Pseudechis collettii (Longreach, QLD), Pseudechis 

guttatus (Glen Morgan, QLD), Pseudechis pailsei (Mt Isa, QLD), Pseudechis papuanus (Saibai 

Island, QLD), Pseudechis porphyriacus (Brisbane, QLD), Pseudechis rossignolii (Merauke, Irian 

Jaya), Pseudechis sp unnamed (Daly River, Northern Territory), and Pseudechis weigeli 

(Kununurra, WA). Lyophilized venom was dissolved in MilliQ and filtered through a 0.45 μm pore 

size and 25 mm diameter filter (Agilent® Captiva Econofilter) to remove impurities that may have 

interfered with the analysis processes. The concentration of the filtered sample was then measured 

(Thermo Fisher Scientific® NanoDrop 2000) and aliquots were made and stored at -80C until 

further analysis.  

 

Proteomics 

Liquid Chromatography – Mass Spectrometry (LC-MS) 

HPLC analysis of 25 μg crude venom was performed on a Nexera system (Shimadzu) using a 

Zorbax 300SB C18, 3.5 μm column (2.1 x 100 mm, Agilent) at a flow rate of 300 μl/min. The 

gradients adopted were: 2-40% Buffer B (90% acetonitrile) over 35 min, 40-98% Buffer B in 2 min, 

and left stable at 98% Buffer B for 2 min. Buffer A was 0.1% formic acid in water. The HPLC was 

directly connected to a DuoSpray™ ion source (ESI SCIEX) - TripleTOF 5600, operated in positive 

ion acquisition mode. Data were acquired for 46 min over the m/z range 350-2000 Da with a cycle 

time of 0.5 sec. Raw results were analyzed in Analysts® (SCIEX) and protein mass picks have been 

manually reconstructed. Subsequently, the total ion currents (TICs) were assessed in PeakView® 

2.1 (SCIEX). The spectra and the protein masses of each species were then averaged to reproduce a 

single output per species. MSMS spot guide is available in Supplementary Figure 1 and MSMS data 

available in Supplementary Table 1. 

 

Electrophoresis SDS-PAGE and MS/MS were carried out as previously described by us (Ali et al. 

2013a,b; Ali et al. 2015).  

 

Molecular evolution analyses using all available Pseudechis (set in supplementary files) sequences 

were conducted as we have previously described (Koludarov et al. 2017) with customized protein 

structures were generated by using a representative sequence (Q45Z17) as input to the Phyre2 

webserver.2017) .   

 

Bioactivity testing 

Enzymology sPLA2 and Factor Xa assays were carried out as previously described (Cipriani et al. 

2017; Debono et al. 2017). 

Cytotoxicity assays were carried out as previously been described (Panagides et al. 2017). Raw data 

is available in Supplementary Table 2.  
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Phylogenetic comparative analyses All comparative analyses of the venom activities were 

conducted as previously described by us (Rogalski et al. 2017). Phylogeny used was as per 

Maddock et al. (2017) and Wüster et al. (2005). Analyses were implemented in R v3.2.5 (R Core 

Team 2016) using the ape package for basic data manipulation (Paradis et al. 2004). Ancestral 

states of each functional trait (PLA2 activity, Factor Xa activity, and cytotoxicity on each cell line) 

were estimated via maximum likelihood with the contMap function in phytools (Revell 2012). We 

then fit pGLS models using the caper package (Orme et al. 2013) to test the relationships between 

PLA2 activity and cytotoxicity on each cell line, and also to test whether cytotoxicity on the non-

cancerous NFF cell line predicts cytotoxicity on the malignant melanoma MM96L skin cell line or 

the reciprocal. 

 

RESULTS AND DISCUSSION 

All species possessed PLA2 rich venoms, as revealed by LC/MS (Figure 1) and 1D/2D gels (Figure 

2) showing a preponderance of components in the PLA2 characteristic 12-15 kDa range. In addition, 

1D gels revealed significant amounts of snake venom metalloprotease (SVMP) (Figure 2). MS/MS 

of 1D bands confirmed identity. Examination of the molecular evolution of the PLA2 toxins 

displayed evidence of considerable duplication and diversification (Figure 3). The overall dN/dS 

value for those PLA2 sequences for which nucleotide data were available was 1.07, which indicates 

that the overall sequence coding for the mature protein has been subject to net neutral selection. 

However, the FUBAR and MEME methods detected a number of individual sites that most likely 

have been subjected to diversifying selection (Figure 4). This suggests that these sites may be 

important in the co-evolutionary arms race between Pseudechis snakes and their prey and may be 

functionally valuable sites. 

 

Venoms displayed significant variation in PLA2 enzymatic activity and also cytotoxicity. PLA2 

enzymatic activity was not related to cytotoxicity on either cell line according to our pGLS analyses 

(MM96L: t1,11 = -0.817, P = 0.431; NFF: t1,11 = -0.034, P = 0.974; Figure 5), suggesting that PLA2s 

are not key mediators of cytotoxicity in Pseudechis. Consequently, we suggest that cytotoxicity is 

most likely driven by toxic SVMPs (possibly in combination with PLA2) some of which have 

previously been found to kill cells (Casewell et al. 2015) and are abundant in the Pseudechis 

venoms examined here (Figure 2). 

 

Consistent with previously published studies, only P. porphyriacus displayed appreciable fXa 

activity (Martin 1893; Lane et al. 2011; Maddock et al. 2017) (Figure 6). Since P. porphyriacus is 

the most basal member of the genus it appears that fXa activity has been lost (or heavily reduced) 

once at the base of the clade containing all other Pseudechis (Figure 6). Jackson et al. (2016) 

hypothesised that fXa toxins may be more abundant in Australian elapid snakes which feed on 

‘high-metabolism’ prey, of which they considered frogs a potential example due to raised 

metabolism of calling males. The current study provides only mixed evidence for this hypothesis. P. 

porphyriacus has a broad diet but one containing more amphibians than other Pseudechis species 

previously studied (~60%) (Shine 1987), consistent with the idea, but amphibians also comprise a 

relatively large proportion of P. guttatus diets (~40%) (Shine 1987) and this species has no 

detectable fXa activity (Figure 6). In addition, most species of Pseudechis opportunistically feed 

upon mammals (which undoubtedly possess high metabolic rates), and yet their venoms exhibit no 

fXa activity. Hence, one concordant datapoint and universally low fXa activity in the rest of the 

clade doesn’t provide strong evidence in support of the hypothesis, but neither does it provide a 

strong refutation as other selection pressures may dominate the evolution of fXa activity in this 

genus. 

 

We initially found evidence that cytotoxicity on the two cell lines were positively related (pGLS: 

t1,11 = 2.368, P = 0.037), however this effect disappeared when P. papuanus was excluded (pGLS: 

t1,10 = -1.468, P = 0.173). Therefore the apparent relationship is driven only by the unusual venom 
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of P. papuanus which has very low cytotoxicity on both cell lines compared to other members of 

the genus (Figure 7). Interestingly, this lack of relationship between cytotoxicity to non-cancer and 

malignant melanoma cell lines suggests that Pseudechis venom is a promising candidate for 

biodiscovery of novel anticancer drugs as it appears to typically contain toxins that selectively 

attack cancer cells.   

 

Although each venom possessed a similar generalised profile in being PLA2 rich, there was 

extensive functional diversification between venoms. With the exception of the high conservation 

of relative PLA2 enzymatic activity between the P. australis populations, there was extensive 

variation in activity across the genus. For instance, while two of the pygmy mulga species (P. 

rossignolii and P. weigeli) were amongst the venoms with the most potent PLA2 enzymatic activity 

of all the venoms tested, the other two (P. sp and P. pailsei) were amongst the weakest (Figure 5). 

This is indicative of multiple rises and falls of PLA2 enzymatic driven function within this genus. 

While all species except P. papuanus displayed high levels of cytotoxicity on the human melanoma 

MM96L cell line, their effect on the healthy fibroblast (NFF) cell line was as variable as that of the 

PLA2 (Figure 7). The lack of cytotoxic activity in P. papuanus is in contrast to the high 

concentration of PLA2 in this study and a previous study (Williams et al. 2006), which reinforces 

the multifunctionality of PLA2 toxins, as they are clearly functioning as something other than 

cytotoxins in Pseudechis. 

 

Despite the vast range of P. australis, the venom results correlate with the recent (late Pliocene - 

early Pleistocene) and rapid range expansion observed in phylogeographic analyses (Wüster et al. 

2005). The rapid expansion of the species range was probably facilitated by its generalised ecology, 

which allows it to occupy diverse ecosystems. Conversely, there was significant protein 

composition and functional variation between the species of pygmy mulga species P. pailsei, P. 

rossignolii, P. sp and P. weigeli, with even the closely related P. pailsei, P. sp and P. weigeli 

differing markedly in their PLA2 and NFF potencies. This venom diversification correlates with the 

results of the genetic analyses of Wüster et al. (2005) and Maddock et al. (2017) by reinforcing the 

taxonomic distinctiveness of these species. The closely related species P. guttatus and P. collettii 

also differed in their PLA2 activities, but were similar in their cytotoxicity profiles (again suggesting 

a lack of cytotoxic function of Pseudechis PLA2). P. porphyriacus is the only species with fXa 

activity, corroborating the previous results of Lane et al. (2011) who demonstrated that at 

concentrations of over 100 ng/μl of P. porphyriacus venom, procoagulant activity of fXa 

overcomes the anticoagulant activity of the PLA2.  

 

Considering morphological data (Shine 1987) and venom yield information (Cogger 2000; Cogger 

2014) in the context of our results, it appears that over time, Pseudechis species have increased the 

complexity of the PLA2 component of their venom and increased their body size which enables 

them to inject a larger venom yield. This venom is consequently less toxic for a given quantity than 

that of other large Australian elapids (Jackson et al. 2016; Lister et al. 2017), and we therefore 

suggest that Pseudechis have shifted toward a more quantitative rather than qualitative means for 

overpowering their prey. This is supported by the example of P. australis, which has one of the 

highest venom yields of any snake (Stiles et al. 1991). Pseudechis australis is also known for 

hanging on and chewing vigorously with its powerful jaws, thus driving the venom in deeper than 

simple fang length due to the compression of the flesh. This focus upon select toxins in the venom 

in tandem with a shift to a higher venom yield is in accordance with the ‘race to redundancy’ 

conjecture (Jackson et al. 2016), in which venom maintains only a few specific compounds, e.g. 

PLA2 toxins, that undergo positive selection to increase the intraclass variation of the toxin group in 

order to ensure the greatest success during prey subjugation. 

 

The evolutionary pathway of Pseudechis seems driven by two major components: vacant ecotone 

occupations (Australia was a ‘snake-free continent’ (Wüster et al. 2005)) and rapid diversification 
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at the species level subsequent to the evolution of the last common ancestor of Pseudechis (ten 

species appeared in less than 8 million years (Wüster et al. 2005; Sanders et al. 2008)). Considering 

the virtual absence of FXa activity in all species other than P. porphyriacus findings suggest that 

the ancestral Pseudechis most likely expressed only low to moderate quantities of procoagulant 

toxins (fXa activity) in its venom, with a secondary increase in the lineage leading to P. 

porphyriacus, and secondary reduction/loss in other species. PLA2s have experienced substantial 

diversification across the clade, resulting in high interspecific variability of PLA2 activity. 

Collectively, this research has contributed to our understanding of the evolution of Australian snake 

venoms by considering evolutionary trends in venom composition and activity across the entire 

genus Pseudechis.  
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Figure 1: LC/MS comparison of Pseudechis venoms with reconstructed masses in Daltons above 

each peak.  
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Figure 2: 1D and 2D SDS PAGE gel comparison of representative Pseudechis venoms. Molecular 

weight markers are shown for each. Lane 1 = P. porphyriacus 2 = P. australis (Eyre), 3 = P. pailsi 

(Mt.Isa), 4 = P. australis (Kulgera), 5 = P. colletii, 6 = P., papuanus, 7 = P. guttatus, 8 = P. butleri,  

9 = P. rossingnoli. 
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Figure 3: Phylogenetics of the Pseudechis-specific clade of PLA2 toxins. Notechis scutatus PLA2 

outgroup is not shown. Node values indicate posterior probabilities.  
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Figure 4:  Three dimensional structure of Pseudechis PLA2 toxin diversity coloured according to 

(A) AL2CO amino acid conservation score (conserved sites in teal and variable sites in orange), (B) 

FUBAR strength of persistent selection (sites under purifying selection in blue and sites under 

diversifying selection in red), and (C) MEME significance levels for episodes of diversifying 

selection during the evolution of the toxin family (moderately significant sites in dark green, highly 

significant sites in light green, and extremely significant sites in yellow). 
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Figure 5: Ancestral state reconstruction of relative bioactivty, where warmer colours represent 

greater activity. Bars indicate 95% confidence intervals for the estimate at each node. Note that due 

to the high dynamicity of venom evolution the ranges quickly become broad as one moves down 

the tree. Phylogeny used was as per Maddock et al. (2017) and Wüster et al. (2005). 
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Figure 6: Ancestral state reconstruction of relative Factor Xa, where warmer colours represent 

greater activity. Bars indicate 95% confidence intervals for the estimate at each node. Note that due 

to the high dynamicity of venom evolution the ranges quickly become broad as one moves down 

the tree. Phylogeny used was as per Maddock et al. (2017) and Wüster et al. (2005). 
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Figure 7: Ancestral state reconstruction of relative cytotoxicity, where warmer colours represent 

greater activity. Bars indicate 95% confidence intervals for the estimate at each node. Note that due 

to the high dynamicity of venom evolution the ranges quickly become broad as one moves down 

the tree. Phylogeny used was as per Maddock et al. (2017) and Wüster et al. (2005). 
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