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Abstract

Background and Objective While Minimally Invasive Surgery (MIS) offers considerable
benefits to patients, it also imposes big challenges on a surgeon’s performance due to well-
known issues and restrictions associated with the field of view (FOV), hand-eye misalign-
ment and disorientation, as well as the lack of stereoscopic depth perception in monocular
endoscopy. Augmented Reality (AR) technology can help to overcome these limitations
by augmenting the real scene with annotations, labels, tumour measurements or even a
3D reconstruction of anatomy structures at the target surgical locations. However, previ-
ous research attempts of using AR technology in monocular MIS surgical scenes have been
mainly focused on the information overlay without addressing correct spatial calibrations,
which could lead to incorrect localization of annotations and labels, and inaccurate depth
cues and tumour measurements. In this paper, we present a novel intra-operative dense
surface reconstruction framework that is capable of providing geometry information from
only monocular MIS videos for geometry-aware AR applications such as site measurements
and depth cues. We address a number of compelling issues in augmenting a scene for a
monocular MIS environment, such as drifting and inaccurate planar mapping.
Methods A state-of-the-art Simultaneous Localization And Mapping (SLAM) algorithm
used in robotics has been extended to deal with monocular MIS surgical scenes for reliable
endoscopic camera tracking and salient point mapping. A robust global 3D surface recon-
struction framework has been developed for building a dense surface using only unorganized
sparse point clouds extracted from the SLAM. The 3D surface reconstruction framework
employs the Moving Least Squares (MLS) smoothing algorithm and the Poisson surface
reconstruction framework for real time processing of the point clouds data set. Finally, the
3D geometric information of the surgical scene allows better understanding and accurate
placement AR augmentations based on a robust 3D calibration.
Results We demonstrate the clinical relevance of our proposed system through two exam-
ples: a) measurement of the surface; b) depth cues in monocular endoscopy. The perfor-
mance and accuracy evaluations of the proposed framework consist of two steps. First, we
have created a computer-generated endoscopy simulation video to quantify the accuracy of
the camera tracking by comparing the results of the video camera tracking with the recorded
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ground-truth camera trajectories. The accuracy of the surface reconstruction is assessed by
evaluating the Root Mean Square Distance (RMSD) of surface vertices of the reconstructed
mesh with that of the ground truth 3D models. An error of 1.24mm for the camera trajecto-
ries has been obtained and the RMSD for surface reconstruction is 2.54mm, which compare
favourably with previous approaches. Second, in vivo laparoscopic videos are used to ex-
amine the quality of accurate AR based annotation and measurement, and the creation of
depth cues. These results show the potential promise of our geometry-aware AR technology
to be used in MIS surgical scenes.
Conclusions The results show that the new framework is robust and accurate in dealing
with challenging situations such as the rapid endoscopy camera movements in monocular
MIS scenes. Both camera tracking and surface reconstruction based on a sparse point cloud
are effective and operated in real-time. This demonstrates the potential of our algorithm for
accurate AR localization and depth augmentation with geometric cues and correct surface
measurements in MIS with monocular endoscopes.

Keywords: SLAM, Surface Reconstruction, Augmented Reality, Minimally Invasive
Surgery

1. Introduction

In Minimally Invasive Surgery (MIS), medical procedures are technically demanding,
and the difficulty is exacerbated by well-known issues and restrictions associated with MIS,
such as the limited field of view (FOV), lack of hand-eye alignment and orientation, and
the lack of stereoscopic depth perception in monocular endoscopy. Augmented Reality (AR)
technology can help overcome these limitations by overlaying additional information onto
the real scene such as annotations at target surgical locations [18], labels [45], measurements
of tumour sites [4] or even overlay a 3D reconstruction of anatomy [14] [15].

Despite recent advances in powerful miniaturized AR hardware devices and improve-
ments on vision based software algorithms, many issues in medical AR remain unsolved. In
particular, the dramatic changes in tissue surface illumination and tissue deformation as well
as the rapid movements of the endoscope during insertion and extrusion, all give rise to a
set of unique challenges that call for innovative approaches. As with any other technological
assisted medical procedure, the accuracy of AR in MIS is paramount.

The miniaturized devices in MIS mean that the Field of View (FOV) captured by a
monocular endoscopic camera is usually very small, for example, only 30% to 40% of the
whole liver surface is visible in one frame at one time [38]. Traditional AR approaches (i.e.
marker-less AR) for MIS are mainly based on feature tracking methods that require those
selected feature points to be within the field of view [14]. Given the restricted FOV, the
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algorithmic limitations of traditional methods can severely affect the precision of AR for
procedure guidance. Our proposed geometry-aware AR framework addresses the issue by
providing global 3D geometric information of the entire surgical scene so that the information
overlay does not depend on the frame by frame local feature extractions, hence, greatly
improving the reliability of AR augmentations.

Studies have shown that a typical human uses 14 visual cues to perceive depth, and 11
of the 14 cues do not require binocular vision [11]. For example, depth information can
be inferred in monocular vision through occlusions, motion parallax, shadows and texture
gradient, and relative size and familiar size etc. The cognitive process of monocular vision
enables surgeons to perform laparoscopic under a 2D environment [30]. However, monocu-
lar depth cues can only roughly estimate the general depth between objects, the accurate
distance between objects cannot be perceived [41]. Although examples of stereoscopic endo-
scopes do exist, they are not commonly accessible in medical practice [47] [50]. We address
the aforementioned challenges by providing accurate geometric measurements and artifi-
cially generating depth cues through AR technology, which are important improvements in
monocular endoscope environment for surgeons to carry out complex procedures. In our AR
framework, the distance between objects can be deciphered by relative sizes of AR labels
and annotations.

A stereo endoscope can provide stereoscopic vision and such systems are currently avail-
able and often integrated into robotic systems (e.g. the da Vinci system from Intuitive
Surgical, Inc.). 3D depth information can then be recovered using the disparity map from
rectified stereo images during a laparoscopic surgery [42] [43] [8], so that a 3D reconstruction
using a dense point cloud of the laparoscopic scene can be achieved by a propagation method
[44] and/or a cost-volume algorithm [6]. Stereo vision based reconstructions, however, can
only recover the structure of a local frame without a global overview of the scene, and are
very sensitive to noise and luminance changes. Surgeons have to wear 3D glasses or use a
binocular viewer on the robotic surgical system. In addition, stereo endoscopic surgery is
still too expensive and yet to be widely used in practice. Hence, providing depth cues in
monocular endoscope operations will have a significant impact on the accuracy of surgical
procedures.

In this paper, we present a novel method and a computational framework to achieve
accurate geometry-aware AR through: (i) extracting 3D depth information from camera
motions and 3D surface reconstructions; and (ii) using AR technology to fuse rich 3D struc-
tural information with a monocular endoscope video stream, such that accurate spatial
information in the scene can be derived from the scene geometry, and artificial depth cues
can be provided based on the collaboration of the 3D spatial scene with the real-time video
streams (i.e real-virtual overlay and simultaneous mapping). To this end, we explore the po-
tential of the state-of-the-art SLAM framework by modifying and fine-tuning the algorithm
for endoscopic camera tracking and mapping, so that the balance between point cloud den-
sity and computational performance can be achieved. A 3D surface reconstruction method
based on the Moving Least Squares (MLS) smoothing and the Poisson surface reconstruc-
tion algorithms are proposed to recover a smooth surface from the unstructured sparse map
points extracted from the MIS scene. Simulated laparoscopic sequences generated in a 3D
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modelling package have been used to evaluate the performance of the proposed framework
in terms of robustness of the camera tracking and the accuracy of the surface mesh recon-
struction. Camera trajectories are compared with the ground truth camera trajectories,
and the 3D surface reconstructions are measured against the 3D models of the simulated
laparoscopic scene. The experimental results yield root mean square errors (RMSE) of 1.24
mm for camera trajectories and 2.54mm for the surface reconstruction.

The obtained global geometric information can be seamlessly integrated into our pro-
posed AR framework, which is capable of achieving AR augmentations at the correct depth
and detailed accurate surface measurements. Our method provides new possibilities for
novel geometrically informed AR augmentations in monocular endoscopic MIS, including
accurate annotations, labels, tumour measurement and artificial depth cues at correct depth
locations that are demonstrated with two example applications: i.e. generations of artificial
depth cues and the surface measurements of target sites in MIS.

2. Previous work

Recent advances in computer hardware and software technologies have facilitated the use
of computer vision techniques for MIS scene guidance and information augmentation. For
example, AR guidance systems have been used to visualize pre-operative CT images [18] [45],
for tumour AR visualization in laparoscopic surgery [4] and anatomy structures AR mapping
in liver MIS surgery [14] [15]. There are, however, some particular challenges faced with
AR in MIS. The luminance changes dramatically and an endoscope can move rapidly during
insertion and extrusion. Traditional tracking methods for AR in MIS usually involve feature
points based tracking such as Scale-Invariant Feature Transform (SIFT) [18], Speeded Up
Robust Features (SURF) [22], Optical Flow tracking [38] or other approaches specifically
designed to work with soft tissues that account for changes in scale, rotation and brightness
[31]. As these invariant descriptors are designed for 2D tracking, the information regarding
the depth within a scene has not been recovered and selected feature points extracted from
vision algorithms must be within the field of view, resulting in the lack of global information
in AR augmentations.

Constraint-based factorization methods (CBFM) [51] provided a computational solution
for 3D structure reconstructions from 2D endoscopic images, but external tracking devices
are needed to provide the surgical instruments position, reducing its usability in practice.
Additional work has also investigated using shadows for inferring the depth from monocular
endoscopic images [48], but these shape from shading methods rely on the strong assumption
that a single point illumination source is being used without any reflection and can also be
affected by different tissue colours. Whereas in real laparoscopic surgery, the diffuse and
specular reflection does exist due to the complex surface conditions of different tissues. This
will severely affect the accuracy of shape form shading, and we compared our reconstruction
results with shape form shading in Section 4. Lin et al [25] combined structured lighting with
structure from motion for monocular endoscopic image reconstruction. Although special
optical probe is needed, better reconstruction density and robustness are achieved with
extra benefit of super spectral resolution. With the recent development of deep learning
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technology, it is possible to use Convolutional Neural Networks (CNN) for estimating depth
from a single endoscopic image [49]. However, the inference results of the network highly
depends on the dataset used for training; it is still very difficult to build a large dataset with
groundtruth for surgical scenes.

Recently, the maturity of the method of simultaneous localization and mapping (SLAM)
designed for robot navigation in unknown 3D environments has opened up new opportunities
for developing novel endoscopic camera tracking approaches in MIS. SLAM-enabled systems
make it possible to estimate the 3D structure of the MIS scene from a moving endoscope
camera and simultaneously track the pose of the camera. The scenario of the camera track-
ing and scene reconstruction in endoscopic surgeries is similar to that of a typical SLAM
application in robotic vision, albeit with additional challenges. SLAM based approaches do
not require the use of optical or magnetic trackers and have been tested for camera tracking
with laparoscopic image sequences [32] [13] [5] [2]. A motion compensation model [33] and
the stereo semi-dense reconstruction method [46] have also been integrated into the EKF-
SLAM framework to deal with the tissue motion problem. However, due to the linearization
of the motion and sensor models by a first-order Taylor series expansion, the accuracy of the
EKF-SLAM cannot be guaranteed, thus, it is prone to inconsistent estimation and drifting
in the camera motion estimation. The PTAM (Parallel Tracking and Mapping) algorithm
was a breakthrough in visual SLAM and has been also used in MIS for stereoscope track-
ing [24]. Derived from the PTAM, ORB–SLAM (Oriented FAST and Rotated BRIEF) is a
well-designed SLAM system that utilities ORB binary features for a fast and reliable feature
point tracking. Mahmoud et al [28] tested ORB–SLAM on endoscope videos and presented
a method for densifying map points, but the algorithm has some loss of accuracy.

3. Methodology

The flowchart in Figure 1 demonstrates our intra-operative MIS AR framework. As
can be seen from Figure 1 (a), the endoscope is inserted into the patient abdominal cavity,
which is inflated with carbon dioxide gas to create the pneumoperitoneum. Image sequences
captured by the moving endoscopic camera are the input to our AR framework as shown in
Figure 1 (b). The SLAM algorithm recovers the camera pose and generates an unorganized
sparse point cloud. 3D geometric information is then built based on the point cloud by our
proposed surface reconstruction framework. The dense surface mesh is then aligned with
the input image sequences via a camera space transformation. Finally, the virtual object
can be displayed onto the reconstructed surface to provide both depth cues and any virtual
augmentation at the correct depth.

3.1. Introducing of the surface coordinate

The difference between our approach and the feature based tracking method used in the
previous AR work in MIS [18] [15] is shown in Figure 2, illustrating the use of different
coordinate systems. The endoscope is represented as a probe in the camera coordinate
system and pc is a 2D point in the camera’s view and the virtual object (the face) to be
displayed. Figure 2 (a) shows the feature tracking based AR environment. When the feature
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Figure 1: (a). A moving monocular endoscopic camera can capture a series of image sequences which can
be used to build a 3D sparse point cloud by using a SLAM system. (b) The flowchart of our proposed AR
framework.
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Figure 2: The comparison of the marker-less tracking (a) and our proposed AR framework (b).

is detected and tracked, the virtual object will be placed in the feature coordinate system.
Assuming Pf is a 3D point in the MIS scene, then the 3D point can be transformed to the
2D point in the endoscopic camera’s view by the following equation:

pc = K ∗ Tcf ∗ Pf (1)

where Tcf can be computed by solving the Perspective-n-Point (PnP) problem, and K is the
camera intrinsic parameters. For our proposed AR framework, as can be seen from Figure
2 (b), we add a surface local space S as an agent, which serves as the intermediary and
is incrementally built from the point cloud sensed in the environment, which allows us to
achieve great robustness. A 3D point in the model space Pm can be transformed to the 2D
camera space pc by:

pc = K ∗ Tsc′ ∗ Tsm ∗ Pm (2)

where Tsc is estimated by the SLAM and Tsm is a user-defined matrix. By using the local
surface space as an agent, we solved two important issues for AR in MIS: (i) no pre-captured
or manually selected features are needed, which saves time and enables 360 degree tracking;
(ii) AR objects can be placed anywhere on the surface at the correct depth.

3.2. Monocular endoscopic camera tracking and mapping

We use ORB–SLAM [35], which outperforms many SLAM systems such as Mono-SLAM
[10], PTAM [19] and LSD-SLAM [12], for the task of monocular endoscopic camera track-
ing and mapping. ORB–SLAM combines many state-of-the-art techniques into one SLAM
system, such as using an ORB descriptor [40] for tracking, local keyframe for mapping,
graph-based optimization, the Bag of Words algorithm for re-localization, and an essential
graph for loop closure. These features can enable real-time endoscopic camera tracking and
sparse point mapping in an abdominal cavity as shown in Figure 1. Real-time performance
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is crucial in time-demanding medical interventions. Since ORB [40] is a binary feature point
descriptor, it is an order of magnitude faster than SURF [1] and more than two orders faster
than SIFT [27] with better accuracy. In addition, ORB features are invariant to rotation,
illumination and scale, which means that it is capable of dealing with some of the main
challenges in MIS scenes including rapid movements of endoscope cameras (rotation and
zooming) and the change of brightness.

Initialization

A common problem for monocular scene analysis using SLAM is the initialization, a step
required for generating an initial map, because the depth cannot be recovered from a single
image frame. An automatic approach is used in ORB–SLAM to calculate homography for
planar scenes and a fundamental matrix for non-planar scenes dynamically. This approach
can greatly increase the success rate of initialization and reduce the time required for the
initialisation step. It also facilitates the initialization on an organ surface or to compute a
fundamental matrix when the endoscopic camera is pointing at complex structures.

Training of data sets

One of the huge challenges that is unique to AR in MIS is the rapid movement of
endoscopes due to constant extraction and insertion of the device. The tracking algorithm
must be robust to accommodate the loss of image sequences after an extraction, and recover
the tracking during a re-insertion. The Bags of Words (BoW) algorithm solves this re-
localization problem during the tracking. In the BoW algorithm, the vocabulary is created
offline with a large number of ORB descriptors extracted from very large data sets of images
that cover almost all of the patch patterns that may be encountered. The vocabulary serves
as a classifier or a dictionary to assign each descriptor an index. When a new image appears
in the system, each descriptor of features in this image is looked up, and a unique vector will
be built based on the index of descriptors. In doing so, the rough similarity of two images can
be acquired by simply comparing the two unique vectors, therefore, it can greatly increase
the speed of re-localization.

The default BoW database in ORB–SLAM contains a very large image data set with
different genres captured from the real world scenes. Such a universal database would be too
sparse and general for specific MIS tasks. When processing endoscopic videos, images are
generally captured inside of human bodies for different organs, tissues and vessels. These
MIS scenes are more homogeneous and specific than the real word scenes. Therefore, we
trained our vocabulary list specifically for its use in MIS based on 877 images sampled
from ten in vivo sequences obtained from the Hamlyn Centre Endoscopic Video database
[26] [52]. By training a specific MIS BoW database, the specific features existing in the
minimally invasive surgery scenes are collected and saved. The length of the unique vectors
for similarity measurements will be decreased, hence, reducing not only the loading time of
the AR framework, but also the time of BoW query as shown in Table 1.

1Based on the average time of 1000 times’ BoW query experiment
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Table 1: Comparison of the original and our trained BoW database

Item Original BoW Database Database Trained for MIS
Training Source: Images with Different Genres Endoscopy Videos [52]
Database Size: 145.3 MB 41.8 MB

Number of Words: 971815 259677
BoW Query Time1: 4.85ms 4.42ms

This approach generalizes well to different MIS scenes since the training based on the
Hamlyn Centre Endoscopic Video Database covers a range of medical scenarios from gas-
trointestinal examinations, diaphragm dissection, lung lobectomy, coronary artery bypass,
to cardiac examination.

Parameter tuning and increasing surface points

We fine-tuned some of the parameters that were used by default in the ORB–SLAM by
increasing the limit of the number of features extracted per image by a factor of two, which
allows a maximum of 2000 feature points to be detected. The maximum threshold that
is allowed between keypoints and reprojected map points for triangulation is reduced by a
factor of ten to constrain the range of the points to be selected so that strictly robust 3D
points are chosen and feature points moved by tissue deformation are rejected. This approach
can greatly improve the tracking accuracy. Finally, the Hamming distance threshold for the
ORB descriptor comparisons is decreased by 0.8 for more strict applications of the pair point
rule. After tuning the default parameters, around 50% more map points can be detected
for the reliable surface reconstruction pipeline. Furthermore, the system has the ability to
filter small drifts caused by tissue deformations with strict map point selection criteria.

3.3. Intra-operative 3D surface reconstruction

One of the main advantages of our proposed AR system is its ability to use a sparse
3D point cloud extracted from a moving monocular endoscopic camera to construct a dense
and smooth surface through our novel surface reconstruction framework. Our framework
processes the unstructured sparse point clouds using a combination of outlier removal filters,
the Moving Least Square algorithm to smooth noise data and a Poisson surface reconstruc-
tion method to generate the smooth surface from an unstructured sparse point cloud. This
pipeline is illustrated in Figure 3. Details of each processing step are presented in the
following sections.

Point cloud pre-processing

The point cloud P given by ORB–SLAM represents salient points that are visible at
different camera keyframes, giving a sparse representation of the intra-operative scene. MIS
scenes are very complex due to issues associated with camera calibrations and movements
and reflections of tissues. Hence, the result is a noisy point cloud mixed with many outliers
that can affect the final surface reconstruction. Our approach to solve this problem is to
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apply two outlier removal filters to remove the noisy points located amongst the raw data
points before feeding the point cloud into the reconstruction pipeline.

Firstly, a radius filter is used to process points in a cloud based on the number of
neighbour points. Points with very few neighbours are labelled as outliers or isolated points
that should not contribute to the overall structure of the 3D scene. Since some texture-
abundant areas gain many more points than other areas, a voxel-grid filter is then used to re-
sample the point cloud into a more evenly distributed point cloud. After the filtering process,
the point cloud becomes ’clean’ and ready for MLS (Moving Least Square) smoothing and
3D surface reconstruction.

Moving Least Square point smoothing

The Moving Least Squares (MLS) algorithm [23] reconstructs surfaces locally by solving
an optimization problem to find a local reference plane and fit a polynomial to the surface.
Let a point set pi ∈ R3, i ∈ {1, ..., N} be the point cloud produced from the ORB–SLAM
system. the continuous and smooth MLS surface S can be computed by a two-step proce-
dure: (i) a local reference plane is defined as H = {x ∈ R3|x · n−D = 0}, which can be
computed by minimizing the weighted sum of squared distances:

n∑
i=1

(pi · n−D)2Φ(‖pi − q‖)

where q is the projection of p onto H, and Φ is the MLS kernel, usually a Gaussian; (ii)
after the points are projected onto the initial local reference plane, a second least squares
optimization is used to find a bi–variate polynomial function g(u, v) (where u, v is the local
coordinate of q in H) that approximates to the local surface. The projection of p onto S
can then be defined by the polynomial value at the origin, i.e. q + g(0, 0) · n.

Poisson surface reconstruction

We represent the points after the MLS filter stage by a vector field
−→
V . Poisson surface

reconstruction [29] approaches the surface reconstruction problem through a framework of
implicit functions that compute a 3D indicator function χ (which is equal to 1 inside the
model and 0 at the outside points). Therefore, the problem becomes that of finding the χ

whose gradient is the best approximation of the vector filed
−→
V :

minχ

∥∥∥5χ −
−→
V
∥∥∥

Applying the divergence operator, we can transform this into a Poisson problem:

5× (5χ) = 5×
−→
V ⇔4χ = 5×

−→
V

After solving the Poisson problem and obtaining the 3D indicator function χ, the 3D surface
can be directly obtained by extracting an isosurface [17]. The Poisson reconstruction process
acts as a global solution that treats all of the data points simultaneously without relying
on a heuristic partitioning or blending, so that it can robustly approximate noisy data and
create very smooth surfaces.
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(a) (b) (c)

Figure 4: Simulated MIS scenes with a realistic human digestive system model. (a) The size of the model
is scaled to the real world size of an adult liver. (b) The only light is attached to the camera and the
camera trajectory is designed to hover around the 3D model. (c) The frame that ORB–SLAM succeeded in
initializing.

4. Results

We designed a two-part quantitative and qualitative evaluation process: (i) using a real-
istic simulation of a MIS scene video for the ground truth study to assess the performance of
the SLAM tracking error and the accuracy of the proposed surface reconstruction framework;
(ii) using a real in vivo video acquired from the Hamlyn Centre Laparoscopic/Endoscopic
Video Datasets [26] [34] to assess the quality of our proposed framework.

4.1. System setup

Our system is implemented in an Ubuntu 14.04 environment using C/C++ (without
any GPU acceleration). All experiments are conducted on a workstation equipped with
Intel Xeon(R) 2.8 GHz quad core CPU, 32G Memory, and one NVIDIA GeForce GTX 970
graphics card. The size of the simulation image sequences is 1024 X 768 pixels and the
size of in vivo endoscope video is 840 X 640 pixels. ORB–SLAM with our proposed AR
framework runs in real-time at 40 FPS at max and the 3D surface reconstruction process
takes around 600ms to traverse the whole pipeline.

4.2. Ground truth study using simulation data

For the evaluation of the accuracy of tracking performance, all camera trajectories esti-
mated by ORB–SLAM were aligned with trajectories of the ground truth camera used to
render the MIS scene video. Similarly, the accuracy of our proposed 3D surface reconstruc-
tion framework is evaluated by comparing the reconstructed surface with the 3D model used
to render the simulation video.

To quantitatively evaluate the performance of ORB–SLAM, we used Blender [3] – an open
source 3D creation software to render realistic image sequences of a simulated abdominal
cavity scene using pre-defined endoscopic camera movements. The digestive system contains
3D models with textures to make the scene as realistic as possible. The model was scaled
to be the real life size according to an average measured liver diameter of 14.0 cm [21] as
shown in Figure 4(a), the material property was set with a strong specular component to
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Figure 5: The camera trajectory comparison of the ground truth (red dots) with the estimated results under
different white noise levels: no white noise (green dots), white noise SD=1 (dark blue dots), and white noise
SD=3(light blue dots) in four different views, (a) 3D view, (b) view of X-axis, (c) view of Y-axis, (d) view
of Z-axis

simulate the smooth and reflective liver surface tissue. The luminance is intentionally set
high with a spot light attached to the main camera to simulate an endoscope camera as
shown in Figure 4(a) to render a realistic endoscopic lighting condition. We designed a
camera trajectory that hovers around the 3D model (Figure 4(b)) to capture as much of
the area as possible so as to build a point cloud that could cover the whole front surface of
the models. Nine hundred frames of image sequences were captured at a frame-rate of 30
fps, which is equivalent to a 30 second video. In order to investigate the robustness of our
framework, we intentionally add white noise with different standard deviation (SD) to the
synthetic video. We now have three version of the synthetic videos (with no white noise,
white noise SD=1, and white noise SD=3, respectively), which will together be used for the
further evaluation.
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Camera trajectory evaluation

Fig 4(c) shows one of the rendered images from the sequences used as the input to
ORB–SLAM. The camera trajectory started with a close shot location of the liver surface.
ORB–SLAM was successfully initialized around frame 200 to 300 when the camera was in a
place and where many feature points were identified. After the initialization step, the SLAM
system ran stably and the camera trajectory was estimated with the origin of the coordinate
system at the initialized position. The estimated camera trajectory was then extracted and
normalized into the same coordinate system as that of the simulated ground truth model to
assess the SLAM tracking performance.

Figure 5 shows the performance evaluation results; Figure 5(a) displays the camera
trajectories in 3D space, in which green, dark blue and light blue dots represent the camera
trajectory estimated by ORB–SLAM under no white noise, white noise SD=1 and white
noise SD=3. Red dots are the trajectory of the simulated ground truth. Figs. 5(b), (c),
and (d) shows the camera trajectories in X-axis, Y-axis, and Z-axis views, respectively. As
can be seen, the SLAM camera trajectory starts at frame 212, 254 and 316 for the video
with no white noise, white noise SD=1 and white noise SD=3, respectively, as there is no
estimated data before initialization. Once the camera tracking is initialized, the trajectory
of the camera matches closely with the ground truth camera trajectory represented by red
dots. RMSE between the two camera trajectory data sets was also calculated with results
of 1.24mm, 2.33mm and 4.39mm.

3D surface reconstruction evaluation

When the ORB–SLAM system gained enough feature points, we build a 3D surface based
on the sparse point cloud. The whole reconstruction pipeline takes only 600 ms to generate
the surface, which was then exported into the 3D model space to be compared with the
ground truth surface data set. A simple iterative closest point (ICP) algorithm was used to
align the reconstructed surface with the 3D model that was used to render the video. Root
Mean Square Distance (RMSD) is used to evaluate the overall distance between the two
surfaces. They are aligned in the real world coordinate system and we apply a grid sample
to get a series of x,y coordinate points based on the surface area, and then compare the
distance of the z value of the two surfaces.

RMSD =

√√√√ 1

mn

m∑
x=1

n∑
y=1

(Zx,y − zx,y)2

The RMSD to the ground truth surface is 2.54mm, 2.81mm and 3.66mm for the surface
reconstructed by our proposed framework with different white noise levels. As shown in
Table. 2, our proposed method is much more accurate than the Shape-from-Shading (SFS)
[39][48] method as SFS was based on the strong assumption of a single point illumination
source and can be affected by different tissue colours. Also, the reconstruction error of our
method is better than that of the sparse cloud points reported as 4.10mm [28][35]. Also,
our method can reconstruct a dense surface compared to that of the less clinical applicable
sparse method. To further evaluate our reconstruction result, we have also rendered our
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Table 2: Surface reconstruction results

Type Method RMSD(wn=0) RMSD(wn=1) RMSD(wn=3)
Mono/Dense SFS[39][48] 7.21mm 8.38mm 11.60mm
Mono/Dense Proposed 2.54mm 2.81mm 3.66mm
Stereo/Dense BM [9] 2.04mm 2.09mm 2.17mm
Stereo/Dense Chang et al [6] 2.57mm 2.21mm 2.28mm

video in stereo mode and tested it with popular stereo reconstruction approaches such as
Block Matching (BM) and the state-of-the-art cost volume stereo reconstruction method by
Chang et al. Our method is slightly better than the cost volume when there is no white
noise, but overall is less accurate than stereo reconstruction, as the depth can be directly
calculated from the disparities of stereo image pairs.

Figure 6 (a) shows that the reconstructed 3D surface aligns with the 3D model closely;
Figure 6 (b) shows the top down view of the alignment. Figure 6 (c) shows the distance map
between the reconstructed surface with the 3D ground truth model, where warm colours show
penetrations between the two surfaces, the green colour represents a perfect match between
the two surfaces, and the blue colour shows the largest distance between the two surfaces.

4.3. Real endoscopic video evaluation

To qualitatively evaluate the performance of our proposed surface reconstruction frame-
work, we applied the proposed approach with the real in vivo videos from the Hamlyn Centre
Laparoscopic / Endoscopic Video Datasets. Figure 7 (a) (e) and (f) shows the reconstruction
results from our 3D reconstruction framework. Figure 7 (b) shows the depth augmentation
by fusing the camera pose from the SLAM system and the 3D surface reconstructed from
our proposed framework. The real-time alignment of the 3D transparent mesh and the video
are a good match, suggesting that our method can provide the correct depth information
intra-operatively and so help improve surgical performance by displaying 3D mesh struc-
tures when performing monocular endoscope procedures. However, when large deformation
occurs or the surgical instruments occupy the large proportion of the view, our framework
may fail as shown in Figure 7 (f).

With our new 3D surface reconstruction approach, we have developed a geometry-aware
AR framework for depth correct AR argumentation within the intra-operative endoscope
scene in real-time. Our AR framework is an important step towards high quality AR in MIS,
since incorrect depth placement will cause virtual objects to appear to drift away when the
viewing angle changes. Furthermore, accurate global geometric information plays a crucial
role in augmenting the real surgical scenes with annotations, labels, tumour measurements,
inguinal measurements to estimate optimal mesh size for inguinal herniorrhaph [20] or even
a 3D reconstruction of anatomy structures at the target surgical location. We demonstrate
two example applications to show the clinical relevance.

In Figure7 (a), AR augmentations of 3D arrows labels are placed onto the video frames to
generate artificial depth cues and Figure7 (b) shows that virtual 3D arrows exist at different
depths within this geometry-aware environment. In the second example, we recover the scale
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(a) (b)

(c)

Figure 6: (a) and (b): the surface nicely represents the model surface. (c) Surface reconstruction error map.
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(a) (b)

(c) (d)

(e) (f)

Figure 7: The surface reconstruction results applied to an in vivo video sequence. (a) Interactively adding ar-
rows as annotations intra-operatively.(b) The view of mesh to show the annotations are in different depth.(c)
Intra-operative measurement example. (d)The side-view of the intra-operative measurement example. Note
that the measurement line follows the surface curvature closely. (e) The augmented mesh on a liver. (f)
Our framework may fail when large deformation occurs or the surgical instruments occupy large proportion
of the view
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to the real-world size [37] to enable accurate intra-operative measurement as demonstrated
in Figure7 (c) and (d). Note that measurement (the red line) follows the surface curvature
closely, providing accurate results with correct depth information. More details can be
appreciated in our demonstration video [7].

5. Discussion

Intra-operative MIS scene reconstruction is a challenging task especially for monocular
MIS scene that the only input source is the monocular video stream. Acquiring the depth
and geometric information in MIS is crucial for not only AR tasks such as intra-operative
measurement, but also enables the potential applications of skill evaluation [16], autonomous
tasks such as autonomous ultrasound scanning [53], debridement and cutting [36]. We are
able to achieve a promising reconstruction result by our proposed SLAM-based monocular
reconstruction approach (RMSD = 2.54mm), which is much accurate than other monocular
MIS scene reconstruction method (RMSD = 7.21mm) and even comparable to the state-
of-the-art stereo reconstruction method (RMSD = 2.04/2.57mm) that the depth can be
directly derived from the disparity of stereo vision.

The limitation of our proposed method is that the SLAM theory is developed based on
static world assumption; the deformations of objects (such as tissues and organs) directly
challenge this basic condition for SLAM to estimate camera poses for 3D reconstruction.
Therefore, soft tissue deformation is a great challenge to support in the SLAM based recon-
struction framework as proposed here. Particularly with monocular endoscopic videos, it is
extremely hard to recovery the soft deformation correctly while simultaneously estimating
the camera poses. For small deformations like those in the in-vivo video that we use, how-
ever, the RANSAC algorithm in SLAM system will filter the outliers and recover the correct
movement. For large deformation in very small FOVs, it is still unclear how to solve the
tissue deformation issue without using extra external sensors within the monocular scene.

Using stereoscopic views is a possibility and we will investigate this in future work. One
possible solution to accurately simulate and track the deformation is to to use real-time
deformation model[54] and feature-based tracking [22] to recovery the movement of tissue.
Although the accuracy and speed of our framework are acceptable, we will continue de-
veloping a dense SLAM system to be used in MIS reconstruction and extend the current
reconstruction framework. This will enable us to develop a prototype system that can be
tested in the operating theatre with our clinical collaborators, further investigating the ben-
efit and efficacy of our approach and providing evidence for our hypothesis that visual SLAM
can enhance the tools available to surgeons performing monocular endoscopic procedures.

6. Conclusions

In this paper, we presented an efficient and effective 3D surface reconstruction framework
for an intra-operative monocular laparoscopic scene based on SLAM. This new approach has
shown promising results when tested on both simulated laparoscopic scene image sequences
and clinical data. The proposed framework also reveals several potential clinical applications
such as additional depth cues augmentation and geometry-aware augmented reality in MIS.
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