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Abstract

Supermassive stars (SMSs) born from pristine gas in atomically cooled halos are thought to be the progenitors of
supermassive black holes at high redshifts. However, the way they accrete their mass is still an unsolved problem.
In particular, for accretion to proceed, a large amount of angular momentum has to be extracted from the collapsing
gas. Here, we investigate the constraints stellar evolution imposes on this angular momentum problem. We present
an evolution model of a supermassive Population III star simultaneously including accretion and rotation. We find
that, for SMSs to form by accretion, the accreted angular momentum has to be about 1% of the Keplerian angular
momentum. This tight constraint comes from the WG limit, at which the combination of radiation pressure and
centrifugal force cancels gravity. It implies that SMSs are slow rotators, with a surface velocity less than 10%–20%
of their first critical velocity, at which the centrifugal force alone cancels gravity. At such low velocities, the
deformation of the star due to rotation is negligible.
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1. Introduction

Supermassive stars (SMSs), with masses >M 104
M , are

candidates for the progenitors of supermassive black holes at
high redshifts (e.g., Bromm & Loeb 2003; Begelman et al. 2006;
Regan & Haehnelt 2009; Agarwal et al. 2012, 2017; Latif
et al. 2013a, 2013b; Dijkstra et al. 2014; Inayoshi et al. 2014;
Regan et al. 2014). In this scenario, a primordial halo is devoid
of H2 molecules due to a strong external Lyman–Werner
radiation field from nearby star-forming regions. Without this
cooling agent, the temperature rises above ∼104 K, preventing
star formation before the halo’s mass reaches~ –10 107 8

M . At
this point, the collapse is triggered at rates of ∼1 M yr -1,
toward a central stellar object (Latif et al. 2013b; Becerra
et al. 2015; Smidt et al. 2017). Stellar evolution models of
PopulationIII (Pop III) SMSs show that protostars accreting at
these high rates evolve as red supergiants along the Hayashi
limit, with an inflated envelope and a low surface temperature,
thus keeping a weak ionizing feedback on the accretion flow
(Hosokawa et al. 2012, 2013; Haemmerlé et al. 2018). This
allows us to maintain accretion onto the protostar toward stellar
masses in the supermassive range (Hirano et al. 2017). The star
is thought to accrete until M;3×105 M , before collapsing
into a black hole (Umeda et al. 2016; Woods et al. 2017;
Haemmerlé et al. 2018) due to the general relativistic (GR)
instability (Chandrasekhar 1964). Classical pulsational instabil-
ities have been shown not to prevent the star from growing by
accretion until this stage (Hosokawa et al. 2013; Inayoshi
et al. 2013a, 2013b).

Star formation requires processes that remove angular
momentum from the inner regions of collapsing prestellar
clouds, otherwise the centrifugal force would overcome gravity
and prevent further collapse (Spitzer 1978; Bodenheimer 1995;
Maeder 2009). Numerical studies of PopIII star formation
indicate that primordial protostellar seeds rotate near their
critical limit (Stacy et al. 2011, 2013), at which the centrifugal
force exceeds the gravitational attraction. Above this limit,

hydrostatic equilibrium cannot be achieved and the star breaks
up. The critical limit is given by
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where Req,crit is the equatorial radius at the critical limit. The
critical velocity vcrit,1, which corresponds to the Keplerian
velocity at the stellar surface, is the maximum rotational
velocity a star can reach in hydrostatic equilibrium. For
massive PopulationI (Pop I) stars, the critical limit constrains
the accreted angular momentum to be less than one-third of the
Keplerian angular momentum (Haemmerlé et al. 2017). If it
exceeds this value, internal angular momentum redistribution
by convection leads the stellar surface to rotate above the
critical limit.
In the present work, we examine similar constraints from

stellar evolution on the accretion of angular momentum in the
case of PopIII SMSs. These stars evolve at nearly their
Eddington limit, at which radiation pressure alone cancels
gravity. However, this limit is not actually reached by SMSs,
but is approached asymptotically as their masses grow.
Departures from this limit are expressed by the Eddington
factor,

rG -≔ ( )dP
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GM

R
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where dP drrad and ρ are the radiation pressure gradient and
the mass density at the photosphere, G is the gravitational
constant, and M and R are the stellar mass and radius,
respectively. For a star close to the Eddington limit
( G 0.6Edd ), the critical velocity in Equation (1) must be
replaced by

p r= - G· ¯ · ( ) ( )R Gv 2 1 , 3crit,2
2
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where again Req is the equatorial radius and r̄ the mean mass
density of the star (Maeder & Meynet 2000). This second
critical velocity reflects the contribution from both the
centrifugal force and the radiation pressure to counteract
gravity. Similarly, in the presence of rotation, the Eddington
factor defined in Equation (2) has to be replaced by
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where ac is the centrifugal acceleration, P the total pressure,
and Ω the angular velocity. This is called the WG limit (Maeder
& Meynet 2000). Equation (3) shows that as G  1Edd ,

v 0crit,2 . Previous works investigated the impact of the WG
limit on PopIII stars (Yoon et al. 2015; Lee & Yoon 2016), but
SMSs were not considered.

Here, we present a model of an accreting PopIII SMS,
following self-consistently its internal differential rotation, with
the aim of constraining the angular momentum accreted by
such objects and establishing their rotational properties.
The stellar evolution code is described in Section 2 and the
model in Section 3. We discuss our results in Section 4 and
conclude in Section 5.

2. Stellar Evolution Code

The GENEVA code is a one-dimensional hydrostatic stellar
evolution code that numerically solves the four structure
equations (Eggenberger et al. 2008). Differential rotation is
included, with the assumption of shellular rotation, according
to which each isobar rotates as a solid body (Meynet &
Maeder 1997). Angular momentum transport between the
various isobars includes three processes: convection, shear
diffusion, and meridional circulation. Convective transport is
treated by assuming solid-body rotation in each convective
zone. In radiative regions, the equation of angular momentum
transport by shear diffusion and meridional currents reads:
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where Ω is the angular velocity, U(r) is the amplitude of the
radial component of the meridional velocity, and D(r) is the
diffusion coefficient for shear instability (using the prescription
of Maeder 1997). Accretion is included, at a rate Ṁ fixed
externally, as a free parameter. The thermal properties of the
accreted material are those of cold disk accretion (Palla &
Stahler 1992), and its rotational properties are fixed externally
through the angular momentum we attribute to the new layers.
In the presence of strong outward angular momentum transport
in the external layers (e.g., a convective envelope), numerical
instabilities prevent full control of the accreted angular
momentum. The code also includes a GR correction to the
equation of hydrostatic equilibrium, the first-order post-New-
tonian Tolman–Oppenheimer–Volkoff correction (Fuller
et al. 1986). A general description of the code with rotation,
without accretion, can be found in Eggenberger et al. (2008).
The treatment of accretion is detailed in Haemmerlé et al.
(2016, 2017).

3. Models

3.1. Inputs to the Models

We consider the fiducial accretion rate

= -
˙ ( )M M1 yr , 61

typical of SMS formation (e.g., Latif et al. 2013b; Smidt
et al. 2017). We give the accreted material a fixed fraction of
the Keplerian angular momentum,

= =≔ · ( )j
dJ

dM
f j j GMRwith , 7accr K K

where J is the angular momentum of the star. We consider
f=0.01, i.e., the angular momentum accreted is 1%of the
Keplerian angular momentum.
For numerical stability, we start the run at a stellar mass of

10 M . The initial model is fully convective (polytrope with
n 3 2, flat entropy profile), with a radius and central

temperature of R=171 R and = ´T 4 10c
5 K, respectively.

Because of convection, the initial model rotates as a solid body,
whose rotation profile is fully determined by one parameter.
We choose a surface velocity that corresponds to a fraction
f=0.01 of the critical velocity (Equation (1)). The chemical
compositions of the initial model and accreted material are

Figure 1. Internal structure, Eddington factor, accreted angular momentum,
and surface velocity of the model with = -

Ṁ M1 yr 1 and j j0.01accr K, as a
function of the current stellar mass. In the top panel, the upper envelope is the
photospheric radius, the colored regions are convective zones, the gray regions
are radiative, and the black lines indicate the contracting Lagrangian layers of

=( )M Mlog 1r , 2, 3, and 4. The Eddington factor shown in the second panel
is the corrected Eddington factor in the case with rotation (Equation (4)). In the
third panel, the theoretical jaccr for =f 1% and 0.33% is indicated by the gray
lines, while the colored one is the actual angular momentum accreted by the
model. In the bottom panel, the surface velocity is plotted as a ratio of the
critical velocities vcrit,1 and vcrit,2 of Equations (1) and (3).
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identical (X=0.7516, Y=0.2484, and Z= 0). We stop the
run at a stellar mass of 105 M because of numerical instability.

3.2. Rotational Properties of the Model

Figure 1 shows the evolution of the internal structure, the
Eddington factor, the accreted angular momentum, and the
surface velocity (ratio to the critical velocities vcrit,1 and vcrit,2)
of the model with the inputs of Section 3.1. The internal
structure shown here is identical to that described in
Haemmerlé et al. (2018). The impact of rotation on the internal
structure (as well as on the evolutionary track) is negligible. In
the beginning of the evolution, a radiative core forms and
grows in mass, enhancing the internal flux and producing a
swelling of the radius by one order of magnitude (luminosity
wave; Larson 1972). At such high accretion rates, the stellar
surface cannot contract to the ZAMS, and the radius remains
large (∼104 R ), growing as µR M1 2 as the evolution
proceeds, despite the contraction of each Lagrangian layer. The
star evolves along the Hayashi line, with a convective envelope
due to the low temperature (~ –10 104 5 K) in the inflated
regions. In the center, after the layers corresponding to the
initial model ( <M 10r M ) have significantly contracted (at
M 3000 M ), the temperature exceeds 108 K and H-burning

becomes efficient, triggering convection. This convective core
grows in mass as the evolution proceeds.

Once the luminosity wave reaches the surface, the Eddington
factor exceeds 50% and eventually evolves as

- G -W 


( ) ( )M

M
log 1 1

2

3
log . 8

It reaches 90% at = M M103 and 99% at = ´ M M6.3 104 .
Until several hundred M , the rotation velocity remains

small (<20% vcrit,1). But when the star approaches 1000 M ,
the rapid contraction of the Lagrangian layers and the
instantaneous J-transport outward in the convective envelope
cause vsurf to increase. When >v v 50%surf crit,2 , numerical
convergence becomes difficult to achieve and we have to
decrease jaccr by a factor of 3. Several oscillations occur
between = –j j1% 0.33%accr K, leading to oscillations in
v vsurf crit,2 (10%–80%). The run stops at =M 105

M with
v v 10%surf crit,1 and v v 40%surf crit,2 . Notice that the

Eddington factor exceeds 0.6 at M 100 M , so that
>v v v vsurf crit,2 surf crit,1 in later stages by a factor of a few.

We emphasize that the oscillations in jaccr are numerical (see
Section 2). However, the actual angular momentum accretion
history of an SMS is not expected to strictly follow

= ·j f jaccr K with a constant f, so that the presence of these
oscillations does not affect the physical consistency of the
model.

In order to see the effect of differential rotation in the model,
we plot in Figure 2 the evolution of the angular velocity Ω in
the center and at the surface as a function of the stellar mass.
We also plot the evolution of v vsurf crit,2 of our model,
compared to the value obtained with the assumption of solid-
body rotation. In the beginning of the evolution, the Ω gradient
in the growing radiative core is slightly positive outward. But
differential rotation remains small, and Ω increases in all the
contracting layers, because of local angular momentum
conservation. Once the swelling occurs, the internal contraction
departs strongly from homology, and differential rotation
develops in the large radiative region. Indeed, with local
angular momentum conservation, one has W W = -˙ ṙ r2 , so

that non-homology (i.e., ṙ r depends on r) enhances differ-
ential rotation (W W˙ and thus W( )t depend on r). The angular
velocity of the external layers decreases by more than one order
of magnitude while that of the center stops growing temporarily
due to the instantaneous J-transport in the transient convective
core. This results in an Ω gradient that is strongly negative
outward, in particular in the external layers that experience the
swelling, where departures from homology are more pro-
nounced. When the transient convective core stops growing in
mass and contracts in radius with the Lagrangian layers, Ω
increases again in the center. At the same time, the surface has
converged to the Hayashi limit, and its angular velocity stays
nearly constant (;10−8 s−1). Thus, differential rotation is
enhanced by the central contraction and Ω soon differs by 3–4
orders of magnitude between the center and the surface. The
spinning-up of the center stops only when H-burning becomes
efficient enough to halt contraction in the convective core at
20,000–30,000 M . Then the ratio of Ω in the core and at the
surface stabilizes at a level of 4–5 orders of magnitude,
depending on the variations in jaccr.
Angular momentum transport by shear diffusion remains

negligible during the whole evolution because of the short
evolutionary timescale. This is also true for meridional
circulation, except in a small region under the convective
envelope. During the entire evolution, the internal angular

Figure 2. Differential rotation in the star, for the same model as Figure 1. The
top panel shows again the stellar structure as a point of reference, and is the
same as in Figure 1. The second panel shows the evolution of the angular
velocity in the center and at the surface. The bottom panel indicates v vsurf crit,2

of the model, with differential rotation (same as in Figure 1) and the v vsurf crit,2

obtained if we assume solid-body rotation with the same jaccr (W ≔ J Isol ,
where I is the total moment of inertia of the star).
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momentum distribution is dominated by convective transport
and local angular momentum conservation. Since large regions
of the star are radiative and contraction is far from homology,
differential rotation is extremely strong.

The impact of differential rotation on the evolution of the
surface velocity is shown in the bottom panel of Figure 2.
While for differential rotation v vsurf crit,2 remains in the range
10%–80%, the value of v vsurf crit,2 computed by assuming rigid
rotation reaches the critical limit before the star becomes
supermassive. After a short peak at 70% during the swelling,
this ratio falls to 10% and then grows rapidly due to the
increase in GEdd (through the decrease in vcrit,2; Equation (3)).
The WG limit is reached at 1500 M , which is long before the
star enters the supermassive regime.

4. Discussion

4.1. Semi-analytical Interpretation

If we neglect the deformation of the star ( =R Req ), which is
justified for v v 50%surf crit,1 , the corrected critical velocity
from Equation (3) can be written as

= - G ( )v v
3

2
1 , 9crit,2 crit,1 Edd

since r p=¯ M Rr
4

3
3. The model described in Section 3.2

shows that the GEdd–M relation can be fitted by a power law
(Equation (8)). Using this fit in Equation (9), one obtains

´
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which gives =v v 22%crit,2 crit,1 for =M 104
M and

=v v 10%crit,2 crit,1 for =M 105
M . Thus, an SMS has to

rotate at less than 10%–20% of its classical critical velocity
vcrit,1, otherwise it would exceed vcrit,2 and would reach the WG
limit. This is in agreement with the model in Figure 1. We
illustrate this semi-analytical interpretation in Figure 3.

4.2. Constraints on the Accretion of Angular Momentum

The model described above shows that for accreting SMSs to
avoid the WG limittheir accreted angular momentum must be of
the order of 1% of the Keplerian angular momentum. It indicates
that SMS formation by accretion requires strong mechanisms for
extracting angular momentum from the accretion disk-like
magnetic fields (Schober et al. 2012; Latif & Schleicher 2016),
viscosity (Popham & Narayan 1991; Takahashi & Omukai 2017),
or gravitational torques (Wise et al. 2008). This is a particular
case of the classical angular momentum problem (Spitzer 1978;
Bodenheimer 1995; Maeder 2009). The constraint obtained here
is much stronger than in the case of massive PopI stars
( j 1 3accr jK; Haemmerlé et al. 2017). Notice that the
constraint from the disk itself, i.e., sub-Keplerian rotation,
already implies a loss of angular momentum in the accretion
disk. The constraint from the star obtained here corresponds to an
additional angular momentum loss of 99% of the Keplerian
angular momentum at the stellar surface. The rate of this
additional angular momentum loss can be estimated by

= -WG ˙ ˙ ( ) ˙J Mj f M GMR1K . In the supermassive regime,
this gives WG

-˙ –J 10 10 g cm s48 49 2 2. In the timescale of the

evolution ( –10 104 5 years), the star–disk system has to lose
~ -10 g cm s60 2 1 in addition to the losses required to maintain
sub-Keplerian rotation in the disk.
On the other hand, the effect of differential rotation softens

the constraint on jaccr. Assuming solid-body rotation, Lee &
Yoon (2016) computed the rotational properties of Pop III stars
accreting at ~ -Ṁ 10 3

M yr -1. They found that, even for
=j j0.01accr K, the WG limit is reached at = –M 20 40 M ,

preventing more massive stars from forming by accretion. Due
to the differences in the initial conditions and the accretion
rates, a direct comparison of the early evolution is not possible.
However, our model shows that solid-body rotation requires

j j0.01accr K for the star to become supermassive by
accretion, while with differential rotation =j j0.01accr K is
low enough. This suggests that the constraint on jaccr obtained
by Lee & Yoon (2016) is artificially strong due to their
assumption of solid-body rotation.
What happens once the star reaches the WG limit? According

to the stationary disk models of Takahashi & Omukai (2017),
viscosity is able to maintain the advection of angular
momentum arbitrarily low. Their models show that stationary
solutions exist for any M and Ṁ with a jaccr as close to 0 as
required, provided that the surface density in the inner disk is
high enough. Thus, if at a given point the accretion process is
stopped by the WG limit, the mass that rotates too fast will
accumulate in the disk until viscosity is efficient enough to
extract the excess of angular momentum. If this picture is
correct, the star–disk system will adjust to a configuration
corresponding to the highest jaccr compatible with the WG limit.
Our model can then be seen as a lower limit for jaccr and vsurf

because v vsurf crit,2 always remains lower than 80%.

Figure 3. Semi-analytical interpretation of the constraint from the WG limit.
The top panel shows the fit of Equation (8). The bottom panel shows the
resulting vcrit,2/vcrit,1 vs. M relation (Equation (10)) that delimits the allowed
and forbidden surface rotation velocities.
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5. Conclusion

We have described the first stellar evolution model of PopIII
SMS that simultaneously include accretion and rotation. We
obtained the following results:

1. SMSs have to be slow rotators. Since SMSs evolve at
close to the Eddington limit, the WG limit imposes tight
constraints on their rotation velocity. For >M 104

M ,
the rotation velocity cannot exceed ~20% of the first
critical velocity (Equation (1)). For >M 105

M , the
limit is ~10%. For such slow rotators, the impact of
rotation on the stellar structure is negligible.

2. SMS formation by accretion requires mechanisms efficient
enough to remove most (~99%) of the angular momentum
from the accretion disk. Indeed, the constraint on the
rotation velocity translates into a constraint on the accreted
angular momentum, which must not exceed 1% of the
Keplerian value. The main mechanisms expected to play
this role are viscosity, magnetic fields, and gravitational
torques from spiral arms in the accretion disk. If the angular
momentum accreted remains slightly lower than 1% of the
Keplerian angular momentum, then accretion can proceed
toward >M 105

M without facing the WG limit.
3. SMSs forming by accretion rotate highly differentially,

with a frequency in the core 4 or 5 orders of magnitude
higher than in the envelope. This is due to the highly non-
homologous nature of internal stellar contraction. In
radiative regions, the rotation profile is dominated by
local angular momentum conservation, so that departures
from homology result in departures from solid-body
rotation. Differential rotation softens the constraint on the
accreted angular momentum because it allows more
angular momentum to be contained in the central regions
while keeping a slow rotation velocity at the surface.
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