
Designing Deterministic Polynomial-Space

Algorithms by Color-Coding Multivariate

Polynomials∗

Gregory Gutin1, Felix Reidl1, Magnus Wahlström1, and Meirav
Zehavi2

1Royal Holloway, University of London, TW20 0EX, UK
2University of Bergen, Norway

Abstract

In recent years, several powerful techniques have been developed to
design randomized polynomial-space parameterized algorithms. In this
paper, we introduce an enhancement of color coding to design determin-
istic polynomial-space parameterized algorithms. Our approach aims at
reducing the number of random choices by exploiting the special structure
of a solution. Using our approach, we derive polynomial-space O∗(3.86k)-
time (exponential-space O∗(3.41k)-time) deterministic algorithm for k-
Internal Out-Branching, improving upon the previously fastest expo-
nential-space O∗(5.14k)-time algorithm for this problem. (The notation
O∗ hides factors polynomial in the input size.) We also design polynomial-
space O∗((2e)k+o(k))-time (exponential-space O∗(4.32k)-time) determin-
istic algorithm for k-Colorful Out-Branching on arc-colored digraphs
and k-Colorful Perfect Matching on planar edge-colored graphs. In
k-Colorful Out-Branching, given an arc-colored digraph D, decide
whether D has an out-branching with arcs of at least k colors. In k-
Colorful Perfect Matching, given an undirected graph G, decide
whether G has a perfect matching with edges of at least k colors. To
obtain our polynomial space algorithms, we show that (n, k, αk)-splitters
(α > 1) and in particular (n, k)-perfect hash families can be enumerated
one by one with polynomial delay using polynomial space.

1 Introduction

In this paper, we modify color coding to treat multivariate polynomials, and thus
design an improved deterministic polynomial-space algorithm for k-Internal

∗Gutin was partially supported by Royal Society Wolfson Research Merit Award, Reidl and
Wahlström by EPSRC grant EP/P007228/1, and Zehavi by ERC Grant Agreement no. 306992.

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Royal Holloway - Pure

https://core.ac.uk/display/146492861?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Out-Branching (k-IOB). Before we elaborate on this problem and our con-
tribution, let us first review related previous works that motivate our study. In
recent years, several powerful algebraic techniques have been developed to design
randomized polynomial-space parameterized algorithms. The first approach was
introduced by Koutis [1], strengthened by Williams [2], and is nowadays known
as the multilinearity detection technique [3]. Roughly speaking, an application
of this technique consists of reducing the problem at hand to one where the
objective is to decide whether a given polynomial has a multilinear monomial,
and then employing an algorithm for the latter problem as a black box.

One of the huge breakthroughs brought about by this line of research was
Björklund’s [4] proof that Hamiltonian Path is solvable in time O∗(1.66n)
by a randomized algorithm, improving upon the 50 year old O∗(2n)-time1 al-
gorithm [5]. The existence of a deterministic O∗((2−ε)n)-time algorithm for
Hamiltonian Path, for a fixed ε > 0, is still a major open problem. Further,
Björklund’s result is on undirected graphs, and the existence of an O∗((2−ε)n)-
time algorithm for Hamiltonian Path on digraphs, for a fixed ε > 0, is another
interesting open problem.

Shortly afterwards, Björklund et al. [6] have transformed the ideas in [4]
into a powerful technique to design randomized polynomial-space algorithms,
referred to as narrow sieves. This technique is also based on the analysis of
polynomials, but it is applied quite differently. Here one associates a monomial
with each “potential solution” in such a way that actual solutions correspond
to unique monomials while incorrect solutions appear in pairs. Thus, the poly-
nomial summing these monomials, when evaluated over a field of characteristic
2, is not identically 0 if and only if the input instance of the problem at hand is
a yes-instance. In this context, the relevance of the Matrix Tree Theorem was
already noted by Gabizon et al. [7].

The narrow sieves technique, proven to be of wide applicability on its own,
later branched into several new methods. The one most relevant to our study
was developed by Björklund et al. [8] and was translated into the language of
determinants by Wahlström [9]. Here, the studied problem was S-Cycle (or S-
Path), where the goal is to determine whether an input graph contains a cycle
that passes through all the vertices of an input set S of size k. Wahlström [9]
considered a determinant-based polynomial (computed over a field of character-
istic 2), and analyzed whether there exists a monomial where the variable-set
representing S is present. Very recently, Björklund et al. [10] utilized the Ma-
trix Tree Theorem to improve an FPT algorithm for k-IOB, where we are asked
to decide whether a given digraph has a k-internal out-branching. Recall that
an out-tree T is an orientation of a tree with only one vertex of in-degree zero
(called the root). A vertex of T is a leaf if its out-degree in T is zero; non-leaves
are called internal vertices. An out-branching of a digraph D is a spanning sub-
graph of D, which is an out-tree, and an out-branching is k-internal if it hasat
least k internal vertices.

Björklund et al. [10] cleverly transformed k-IOB into a new problem, where

1We use the common notation O∗ to hide factors polynomial in the input size.

2

the goal is to decide whether a given polynomial (computed over a field of
characteristic 2 to avoid subtractions) has a monomial with at least k distinct
variables.

In this paper, we present an easy-to-use2 modification of color coding for
designing deterministic polynomial-space parameterized algorithms, inspired by
the principles underlying the above mentioned techniques. (A slight modifica-
tion of our approach can be used to design faster, exponential-space algorithms,
but we believe that the main value of the approach is for polynomial-space
algorithms.) We will show that our approach brings significant speed-ups to al-
gorithms for k-IOB. Roughly speaking, our approach can be applied as follows.

• Identify a polynomial such that it has a monomial with at least k distinct
variables (called a witnessing monomial) if and only if the input instance
of the problem at hand is a yes-instance. It should be possible to efficiently
evaluate the polynomial (black box-access is sufficient here).

• Color the variables of the polynomial with k colors using a polynomial-
delay perfect hash-family. To improve the running time of this step, we
apply a problem-specific coloring guide to reduce the number of ‘random’
colors. Given a k-coloring, we obtain a smaller polynomial by identifying
all variables of the same color.

• Use inclusion-exclusion to extract the coefficient of a colorful monomial
from the reduced polynomial. By the usual color-coding arguments, if the
coefficient is not equal to zero then the original polynomial contained a
witnessing monomial.

While we were unable to obtain non-trivial coloring guides to the following prob-
lems, even limited application of our approach is useful for designing polynomial-
space algorithms for these problems. It would be interesting to obtain non-trivial
coloring guides for the problems.

Colorful Out-Branchings and Matchings Every subgraph-search problem
can be extended quite naturally by imposing additional constraints on the solu-
tion, for example by letting the input graph have labels or weights. One class of
such constraints states that a required subgraph of an edge-colored graph has
to be k-colorful, i.e. to contain edges of at least k colors.

One prominent problem is Rainbow Matching3(also known as Multi-
ple Choice Matching), defined in the classical book by Garey and Johnson
[11]. Itai et al. [12] showed, already in 1978, that Rainbow Matching is
NP-complete on bipartite graphs. Three decades later, Le and Pfender [13] re-
visited this problem and showed that it is NP-hard on several restricted graph
classes, which include (among others) paths, complete graph and P4-free bi-
partite graphs in which every color is used at most twice. Further examples of

2In particular, no dynamic programming/recursive algorithms are required.
3In the problem, given an edge-colored graph G and an integer k, the aim is to decide

whether G has a k-colorful matching of size k.

3

subgraph problems with color constraints can be found in a survey by Mikio and
Xueliang [14]. In this paper, we focus on two color-constrained problems: given
an edge-colored graph and an integer k, we ask for either a k-colorful spanning
tree/outbranching or a k-colorful perfect matching.

We first rely on the Matrix Tree Theorem to present a deterministic poly-
nomial-spaceO∗((2e)k+o(k))-time (exponential-spaceO∗(4.32k)-time) algorithm
for k-Colorful Out-Branching, defined as follows:

Input: A arc-colored digraph D and an integer k
Problem: Does D have a k-colorful out-branching?

Colorful Out-Branching parametrised by k

We argue in Section 5 that k-Colorful Out-Branching is NP-hard on vari-
ous restricted graph classes such as cubic graphs.

Next, we rely on a Pfaffian computation to present a deterministic polynomial-
space O∗((2e)k+o(k))-time (exponential-space O∗(4.32k)-time) algorithm for k-
Colorful Perfect Matching on planar graphs, defined as follows:

Input: A planar edge-colored graph G and an integer k
Problem: Does G have a k-colorful perfect matching?

Planar Colorful Perfect Matching parametrised by k

We will show in Section 6 by a simple reduction that Planar k-Colorful
Perfect Matching is NP-hard even on planar graphs of pathwidth 2. It is
worthwhile to note that while Rainbow Matching can be viewed as a special
case of the well-known 3-Set k-Packing problem, and in particular, a solution
for Rainbow Matching is small (containing only 2k vertices and k colors),
the case of k-Colorful Perfect Matching is different in the sense that a
solution is necessarily large since not every k-colorful matching can be extended
to a perfect matching.

k-Internal Out-Branching By utilizing the method of bounded search trees
on top of the above machinery, in Section 4, we present a deterministic polynomial-
spaceO∗(3.86k)-time (exponential-spaceO∗(3.41k)-time) algorithm for the prob-
lem k-Internal Out-Branching (k-IOB), defined as follows:

Input: A digraph D and an integer k
Problem: Does D have a k-internal out-branching?

Internal Out-Branching (IOB) parametrised by k

The undirected version of k-IOB, called k-Internal Spanning Tree (k-IST),
is defined similarly.

4

Input: A graph G and an integer k
Problem: Does G have a k-internal spanning tree?

Internal Spanning Tree (IST) parametrised by k

Note that k-IOB is a generalization of k-IST since the latter can easily be
reduced to k-IOB on symmetric digraphs, i.e. digraphs in which every arc is
on a directed cycle of length 2. Since k-IST is NP-hard (Hamiltonian Path
appears as a special case for k = n − 2) it follows that so is k-IOB. The latter
is, however, polynomial time solvable on acyclic digraphs [15]. While acyclic
digraphs are precisely digraphs of directed treewidth 0, it turns out that k-IOB
is NP-hard already for digraphs of directed treewidth 1 [16]. By constrast, the
Directed Hamilton Path problems is polynomial-time solvable on digraphs
of directed treewidth t [17] if t is a constant. The k-IOB problem a priori seems
more difficult than the well-known k-Path problem (decide whether a given
digraph has a path on k vertices) since a witness of a yes-instance of k-path
is a subgraph of size k, that is, a path on k vertices. However, it is easy to
see that a witness of a yes-instance of k-IOB (which has an out-branching) can
be a subgraph of size 2k − 1, that is, an out-tree with k internal vertices and
k − 1 leaves. This simple but crucial observation lies at the heart of previous
algorithms for k-IOB.

Reference Det./Rand. Space Graph Time O∗(·)

Prieto et al. [18] det poly undirected 2O(k log k)

Gutin et al. [15] det exp directed 2O(k log k)

Cohen et al. [19] det exp directed 55.8k

rand poly directed 49.4k

Fomin et al. [20] det exp directed 16k+o(k)

rand poly directed 16k+o(k)

Fomin et al. [21] det poly undirected 8k

Shachnai et al. [22] det exp directed 6.855k

Daligault [23] rand poly directed 4k

Li et al. [24] det poly undirected 4k

Zehavi [25] det exp directed 5.139k

rand exp directed 3.617k

Björklund et al. [26] rand poly undirected 3.455k

Björklund et al. [10] rand poly undirected 2k

Our work det poly directed 3.86k

det exp directed 3.41k

Table 1: Previously known FPT algorithms for k-IOB and k-IST.

Parameterized algorithms for k-IST and k-IOB were first studied by Prieto and
Sloper [18] and Gutin et al. [15], who proved that both problems are fixed-

5

parameter tractable (FPT), i.e. admit deterministic algorithms of running time
O∗(f(k)), where f(k) is an arbitrary recursive function depending on the pa-
rameter k only. Moreover, both papers showed that f(k) = 2O(k log k). Since
then several papers improved complexities of deterministic and randomized al-
gorithms for both problems; we list these algorithms in Table 1. We also remark
that approximation algorithms, exact exponential-time algorithms and kernel-
ization algorithms for both k-IOB and k-IST were extensively studied, but the
survey of such results is beyond the scope of this paper.

Our polynomial-space algorithm for k-IOB is faster, in terms of f(k), than
not only the previously fastest exponential-space O∗(5.139k)-time deterministic
algorithm for k-IOB by Zehavi [25], but also the previously fastest polynomial-
space O∗(4k)-time deterministic algorithm for k-IST of Li et al. [24]. In contrast,
it is not known how to design a deterministic polynomial-space O∗((4−ε)k)-time
algorithm for the k-Path problem. Indeed, a deterministic polynomial-space
O∗(4k+o(k))-time algorithm for k-Path has been known since 2006 [27],4 yet so
far no improvements without the help of exponential space [28, 25] have been
made.

The rest of the paper is organized as follows. In the next section, we in-
troduce necessary preliminary material. Section 3 describes our approach in
detail. The main contents of the next three sections were discussed above. In
Section 7, we prove a derandomization theorem forming part of our approach.
In Section 8, we show a proposition, which assists us in upper-bounding run-
ning times of exponential-space algorithms. We conclude the paper in Section 9
discussing some open problems.

2 Preliminaries

We assume the reader is familiar with basic concepts and notations in Graph
Theory and Linear Algebra, and refer readers to textbooks in Graph Theory
[29, 30] and Linear Algebra [31] if additional details are required.

We will make use of the tighter version of Stirling’s approximation due to
Robbins [32], which states that

√
2πk

(k
e

)k
e1/(12k+1) 6 k! 6

√
2πk

(k
e

)k
e1/12k.

For α > 1 we will frequently use the function

τ(α) =
(

1− 1

α

)α−1

e,

with the convention that τ(1) = e. We will sometimes use the symbol • in the
following to denote a variable whose value is arbitrary.

4Although Chen et al. [27] do not explicitly prove that the space complexity of their
deterministic algorithm can be made polynomial as well, this knowledge has become folklore.

6

Operations on polynomials For a polynomial P and a monomial M , we
let coefP (M) denote the coefficient of M in P. For a polynomial P (x1, . . . , xn)
and subset of the variables C ⊆ {x1, . . . , xn}, let P/C denote the polynomial
obtained from P by replacing all variables in C by a new variable yC . We
extend this notation to partitions C := C1] . . .] Cp and let P/C denote the
polynomial (. . . ((P/C1)/C2) . . .)/Cp.

Structural Observation It is not hard to decide whether a digraph D has
an out-branching in linear time: D contains an out-branching if and only if D
has only one strongly connected component without incoming arcs (see, e.g.,
[29]). Thus, in what follows, whenever we discuss problems where a solution
is in particular an out-branching, we will assume that the digraph D under
consideration contains an out-branching.

Matrix Tree Theorem In 1948 Tutte [33] proved the (Directed) Matrix Tree
Theorem, which shows that the number of out-branchings rooted at the same
vertex r in a digraph D can be found efficiently by calculating the determinant
of a certain matrix derived from D. Here, we require a generalization of this
theorem, whose derivation from the original theorem is folklore (a proof can be
found, e.g., in [10]).

The (symbolic) Kirchoff matrix K = K(D) of a directed multigraph D on n
vertices is defined as follows, where we assume that the vertices are numbered
from 1 to n:

Kij =

∑

`i∈A(D)

x`i if i = j,

−xij if ij ∈ A(D),
0 otherwise,

(1)

where A(D) is the arc set of D.
In what follows, [n] := {1, 2, . . . , n}. For i ∈ [n] we denote by Kī(D) the ma-

trix obtained from K(D) by deleting the ith row and the ith column. Moreover,
let Bi denote the set of out-branchings rooted at i. The following version of the
(Directed) Matrix Tree Theorem implies a natural one-to-one correspondence
between the monomials of det (Kī(D)) and the out-branchings in Bi.

Theorem 1. For every directed multigraph D with symbolic Kirchoff matrix

K(D) and i ∈ V (D), det (Kī(D)) =
∑
B∈Bi

∏
ij∈A(B)

xij.

Planar Graphs, Perfect Matchings and Pfaffians The Pfaffian is an im-
portant tool for polynomial-time counting algorithms, closely related to perfect
matchings of a graph. A square matrix M ∈ Rn×n is skew-symmetric if for
every i, j ∈ [n] it holds that M(i, j) = −M(j, i). Let M be skew-symmetric and
of even dimension 2n. For every partition of [2n] into pairs {{ia, ja} | a ∈ [n]},
define a corresponding permutation (i1, j1, . . . , in, jn) of [2n] where ia < ja for
every a ∈ [n] and ia < ia+1 for every a ∈ [n − 1]. Note that this is unique for

7

every partition into pairs, and let Πn denote the set of permutation of partitions
of [2n]. Then the Pfaffian of M can be defined as

pf(M) =
∑
π∈Πn

σ(π)

n∏
t=1

M(π(2t− 1), π(2t)),

where σ(π) = ±1 is a sign term referred to as the signature of the permutation.
The Pfaffian can be efficiently computed; in particular, pf(M) = (det(M))2.
Among other applications, the Pfaffian can be used to count the number of
perfect matchings of a planar graph by computing an orientation of the graph
where every signature in the above sum is +1; see Section 6.

Hash Families and Splitters The notion of perfect hash family was em-
ployed by Alon et al. [34] when they introduced the framework of color coding.
Splitters are generalizations of perfect hash families; both are defined below.

Let x̄ = (x1, . . . , xn) ∈ [t]n be a vector and I = {p1, . . . , p|I|} ⊆ [n], where
p1 < · · · < p|I|. Then x̄[I] := (xp1 . . . , xp|I|). We say that x̄[I] partitions I
almost equally if the cardinalities of the sets {i ∈ I : xi = q}, q ∈ [t] differ from
each other by at most 1.

Definition 2 (Splitter). An (n, k, t)-splitter is a family of vectors S ⊆ [t]n

such that for every index set I ∈
(

[n]
k

)
there exists at least one vector x̄ ∈ S such

that x̄[I] partitions I almost equally. The size of the splitter is |S|.

Definition 3 (Perfect hash family). An (n, k, k)-splitter S ⊆ [k]n is called

an (n, k)-perfect hash family. In other words, for every index set I ∈
(

[n]
k

)
there

exists a vector x̄ ∈ S such that x̄[I] is a permutation of [k].

Note that the members of an (n, k, t)-splitter can equivalently be interpreted as
vectors from [t]n, as functions that map [n] into [t], or as partitions of [n] into t
blocks.

3 Our Approach

Let us now elaborate on the four main steps that constitute our approach.

1 Polynomial Identification
Associate variables X = {x1, x2, . . . , xn} with some elements (e.g., vertices
or edges) of the input instance and identify a polynomial P (x1, . . . , xn)
over the reals that satisfies the following properties.

– P (x1, . . . , xn) has a monomial with at least k distinct variables, called
a witnessing monomial W , if and only if the input instance is a yes-
instance;

– All witnessing monomials of P (x1, . . . , xn) (in standard form) have
non-negative coefficients;

8

– For any partition C of X into k blocks and any assignment of the vari-
ables y1, . . . , yk (yi corresponds to block i), the polynomial (P/C)(y1, . . . , yk)
can be evaluated efficiently using polynomial space.5

2 Derivation of Coloring Guides
Define a partition S = S1] S2 . . . Sp] S⊥ of the variables X with the
following property: if there exists a witnessing monomial W , then in
particular there exists such a monomial with |W ∩ Si| = 1 for i ∈ [p]
and |W ∩ S⊥| = k − p. We say that such a partition S is a coloring
guide. Note that we might consider more than one guide, e.g. by a suit-
able branching procedure. In this case, we apply the following steps to
all the generated guides and the above property needs to hold for at least
one of the generated guides.

3 Color Coding & Derandomization
Color the variables S⊥ with k−p colors uniformly at random and let the re-
sulting color partition be C := C1]C2] . . .]Ck (where Ci = Si for i 6 p
and

⋃
i>p Ci = S⊥). To derandomize this step, use an (n, k−p)-perfect

hash family F that is enumerable with polynomial space (cf. Theorem 4
stated shortly) to color S⊥. Proceed with the next step for every color-
ing C.

4 Coefficient Extraction
Test whether P/C contains a monomial W in which all variables y1, . . . , yk
appear with a standard inclusion-exclusion algorithm. For example, we
can apply Lemma 6 stated shortly for P/C by evaluating the corresponding
Q(y1, . . . , yk) 6= 0 at yi = 1 for all i ∈ [k]. Clearly, such a W exists if and
only if Q(1, 1, . . . , 1) 6= 0. If so, conclude that P contains a witnessing
monomial and return that the instance is a yes-instance.

We remark that Naor et al. [35] proved that an (n, k)-perfect hash family of
size O∗(ek+o(k)) can be computed in time O∗(ek+o(k)). They claimed that their
construction can be modified so that it is not required to compute the family
“at once”, but the vectors in the family can be enumerated with polynomial
delay. However, a proof of the latter claim has not been published (the proof
was deferred to a full version of that paper which never appeared).

In Section 7 we prove a more general theorem from which this claim can be
derived as a corollary. Importantly, our construction requires only polynomial
space, a feature that the construction by Naor et al. does not achieve.

Theorem 4. There exists an (n, k, αk)-splitter of size kO(1)τ(α)k+o(k) log n for
every α > 1. Moreover, the members of the family can be enumerated determin-
istically with polynomial delay using polynomial space.

In case we are interested in polynomial space, we compute F simply as an
(n, k−p)-perfect hash family. Otherwise, we compute F as an (n, k−p, α?(k−p))-
splitter with a suitable constant α? ≈ 4

3 . In the latter scenario, we can run

5The evaluation may use operations such as subtraction and division.

9

Steps 3 and 4 of our approach in time O∗(τ(α?)k−p+o(k)2α
?(k−p)+p). This

requires exponential space, as there are
(
α?(k−p)+p

k

)
monomials for which we

need to check divisibility (see Lemma 6), but for every I ⊆ [α?(k − p) + p], we
would evaluate P−I only once rather than once per such monomial. Then, we
can rely on the following result proved in Section 8.

Proposition 5. There exists a constant α? ≈ 4
3 such that using an (n, k −

p, α?(k− p))-splitter and exponential space, we can run Steps 3 and 4 of our
approach in time O∗(4.312k−p2p).

In the context of randomized algorithms, a slightly weaker result (O∗(4.314k))
was obtained by Hüffner et al. [36].

The following Lemma 6 provides a way to extract from P only monomials
divided by a certain term, the crucial operation in step 4 . The lemma is
a modification of a lemma by Wahlströhm [9] for polynomials over a field of
characteristic two.

Lemma 6 (Monomial sieving). Let P (x1, . . . , xn) be a polynomial over re-
als, and J ⊆ [n] a set of indices. For a set I ⊆ [n], define P−I(x1, . . . , xn) =
P (y1, . . . , yn), where yi = 0 for i ∈ I and yi = xi otherwise. Define

Q(x1, . . . , xn) =
∑
I⊆J

(−1)|I|P−I(x1, . . . , xn). (2)

Then, for any monomial M divisible by Πi∈Jxi, we have coefQ(M) = coefP (M),
and for every other monomial M we have coefQ(M) = 0.

Proof. Consider a monomial M with non-zero coefficient in P. Observe first that
for every I ⊆ [n], we have coefP−I (M) = coefP (M) if no variable xi with i ∈ I
occurs in M , and coefP−I (M) = 0, otherwise. Now, if Πi∈Jxi divides M , then

out of the 2|J| evaluations for I ⊆ J , the monomial M occurs in exactly one
(namely, I = ∅). Thus, coefQ(M) = coefP (M).

If Πi∈Jxi does not divide M , note that J ′ = {i ∈ J : xi does not divide M},
is nonempty and observe that coefP−I (M) = coefP (M) for every I ⊆ J ′. Thus,
sum (2) for M only is∑

I⊆J

(−1)|I|M =
∑
I⊆J′

(−1)|I|M = M
∑
I⊆J′

(−1)|I| = M(1− 1)|J
′| = 0.

Applying the above results individually to every monomial in P accounts for all
occurrences of monomials in the sum defining Q; the result follows.

4 k-Internal Out-Branching

In a digraph D, a matching is a collection of arcs without common vertices.
The following lemma establishes useful connections between matchings and out-
trees/out-branchings, which is the key to our computation of a coloring guide.

10

Lemma 7. The following statements hold.

(i) Let T be an out-tree with k > 0 internal vertices. Then T has a matching
of size at least k/2.

(ii) Let D = (V,A) be a digraph containing an out-branching, and M a match-
ing in D. Then, in polynomial time, we can find an out-branching of D
for which no arc of M has both end-vertices as leaves.

Proof. (1) We prove it by induction on k > 0. The claim obviously holds for
k = 0, so assume that k > 1. The height of a vertex v in T is the length of a
longest path from v to a leaf of T reachable from v. Let ki be the number of
vertices of T of height i. Observe that k1 > k2 and that T has a matching M1

with k1 edges whose vertices are some leaves and all vertices of height 1. Let
T ′ be an out-tree obtained from T by deleting all leaves and vertices of height
1. Observe that T ′ has k − k1 − k2 internal vertices and thus by induction
hypothesis T ′ has a matching M2 of size at least (k − k1 − k2)/2 > k/2 − k1.
Thus, the matching M1 ∪M2 of T is of size at least k/2.

(2) Let B be an out-branching of D and suppose that both end-vertices of
some arc xy of M are leaves in B. Then add xy to B and delete zy from B,
where z is the in-neighbor of y in B. In the resulting out-branching B′, x is an
internal vertex. Notice that zy does not belong to M . Hence, B′ contains one
more arc of M than B. Starting with an arbitrary out-branching and repeating
the above exchange operation at most |M | times, we will get an out-branching
in which no arc of M has both end-vertices as leaves. This process can be
completed in polynomial time.

We now prove the main theorem of this section.

Theorem 8. There exists a deterministic polynomial-space O∗(3.86k)-time al-
gorithm for k-Internal Out-Branching.

Proof. Let D be a digraph, V (D) = [n], and M a maximum matching in D of
size t. By Lemma 7, we may assume that k/2 6 t 6 k as otherwise we can
solve k-IOB on D in polynomial time: For t < k/2, no out-tree with k internal
vertices exists and for t > k, we can construct a solution in polynomial time.
Now we will follow our approach.

1 : We associate one variable xv with every vertex v ∈ [n]. Replace every
variable xij in (1) by xi and observe that now by Theorem 1 we have that if the
polynomial det(Kr̄(D)) over variables x1, . . . , xn contains a monomial with at
least k different variables, then there exists an out-branching rooted at r with
at least k internal vertices. Note that for a k-coloring C of the variables we can
evaluate the polynomial det(Kr̄(D))/C over variables y1, . . . , yk in polynomial
time. We guess the root vertex r and fix it for the following steps.

2 : For every c ∈ [k]∪{0}, we consider all sets M ′ of c edges of M in which both
vertices are supposed to be internal vertices of some k-internal out-branching

11

(the edges of M \M ′ contain at least one internal vertex in some k-internal
out-branchings by Lemma 7 (ii)).

For the current choice ofM ′, our coloring guide S looks as follows.6 For every
arc uv ∈M ′, we add the sets {u} and {v} to S. For every arc xy ∈M \M ′, we
add the set {x, y}. Finally, S⊥ := V (D) \ V (M) contains all vertices outside of
the matching.

3 : With t+c internal vertices of the out-tree in V (M) there are k−t−c vertices
left to be located in V (D)\V (M). Using an (n, k−t−c)-perfect hash family, we
color the vertices of S⊥ and obtain a k-coloring C := C1]C2] . . .]Ct+c]C⊥
of the variables X by combining the coloring from the hash family with the
coloring guide S.

4 : We apply Lemma 6 to the polynomial det(Kr̄(D))/C over y1, . . . , yk to
search for a monomial that contains all k variables. If such a monomial exists,
then det(Kr̄(D)) contains a monomial with k distinct variables and we conclude
that D contains an out-branching rooted at r with k or more internal vertices.
Otherwise, if we have not yet exhausted all colorings in the hash family, we
return to Step 3 , and if we have not yet exhausted all guesses for M ′, we

return to Step 2 . If neither of these conditions is true, we conclude that there
is no k-internal out-branching rooted at r.

Let us analyse the exponential part f(k) of the running time for the above steps.
Step 2 to 4 take time at most

k−t∑
c=0

(
t

c

)
τ(1)(k−t−c)(1+o(1))2k =

k−t∑
c=0

(
t

c

)
e(k−t−c)(1+o(1))2k,

using the (n, k − t − c)-perfect hash family from Theorem 4 (with α = 1).
Consider the term

(
t
c

)
e−(t+c) and set c = βt, where β ∈ (0, 1). Using the well-

known bound
(
t
βt

)
6 2tH(β), where H(β) = − log(ββ(1 − β)1−β), we arrive

at (
t

βt

)
e−t(1+β) 6 (ββ(1− β)1−βe1+β)−t 6

(
e+ 1

e2

)t
.

The second inequality above follows from the fact that min0<β<1 g(β) = e
e+1 ,

where g(β) = ββ(1 − β)1−βeβ , which can be verified by differentiating g(β).
It is easy to verify that

(
t
βt

)
e−t(1+β) 6 (e+1

e2)t for β = 0 and β = 1 as well.
Therefore,

k−t∑
c=0

(
t

c

)
e(k−t−c)(1+o(1))2k 6 k

(
e+ 1

e2

)t
(2e)k(1+o(1)).

Observe that e+1
e2 < 1 and thus (e+1

e2)t decreases monotonically as t grows.

Therefore, (e+1
e2)t 6 (e+1

e2)k/2 as t > k/2. Thus, f(k) is bounded from above by

k(4(e+ 1))k(1+o(1))/2 < k3.857k for k large enough. Since all of the above steps
require polynomial space, the algorithms requires polynomial space as well.

6Formally, we somewhat abuse terminology and notation for coloring guide here, but since
the notions are very close, we think it will not lead to a confusion.

12

If (D, k) is a positive instance of k-IOB, then we can find a k-internal out-
branching of D also in polynomial space and time O∗(3.857k) by the usual
self-reducibility argument: Consider every arc a of D at a time and remove it
from D if (D−a, k) is a positive instance of k-IOB until no arc can be removed.
The non-empty remaining graph spans an out-branching with k internal leaves.

Let us now see how our approach yields a faster algorithm if we use expo-
nential space.

Theorem 9. There exists an exponential-space O∗(3.41k)-time algorithm for
k-Internal Out-Branching.

The exponential-space strategy will use the exponential-space version of the
color-coding and sieving result, but we will in addition use truncated fast subset
convolution to further speed up the algorithm, by rolling up the

(
t
c

)
guesses in

Step 2 and the applications of Lemma 6 into a single exponential-space com-
putation. This was presented in Björklund et al. [37] (called trimmed Moebius
inversion).

Proof. We will present the proof as close to the structure of the proof of Theo-
rem 8 as possible. However, since the truncated fast subset convolution does not
strictly speaking follow the coloring guide method, some discrepancies between
the proofs are unavoidadble. Let D be a digraph with vertex set V = [n].
1 : As before, let M a maximum matching in D of size t with k/2 6 t 6 k. Also

guess a root vertex r and keep it fixed through the following steps. Number the
edges of M as M = {e1, . . . , et}. With every edge ei ∈ M we associate three
variables xi, x

′
i, x
′′
i , and with every vertex v ∈ V \V (M) we associate a variable

xv. Further, for every edge ei = uv ∈ M define x(u) = xix
′
i and x(v) = xix

′′
i ,

and for every other vertex v ∈ V \ V (M) define x(v) = xv. Replace every
variable xij in (1) by x(i). We will sieve the polynomial det(Kr̄(D)) according
to two modes for every edge ei ∈M : Either only one endpoint of ei is internal
in the out-branching, in which case we sieve for the variable xi, or both are, in
which case we sieve for both x′i and x′′i . Using truncated fast subset convolution,
we will sieve for these options in parallel.

2 + 3 : Guess the number c ∈ [k − t] ∪ {0} of edges of M for which both
endpoints are internal in the solution, but do not guess an explicit subset M ′.
Let k′ := k− t− c be the number of internal vertices of the sought solution that
lie outside V (M), and recall the constant α? from Proposition 5. Further fix a
coloring f of the vertices of V \ V (M) into α? · k′ colors, and assume that the
k′ internal vertices not present in M all receive distinct colors by f . Repeat the
following steps for every choice of f from an (n, k′, α?k′)-splitter.

4 : We now describe the improved parallel sieving strategy. Define X =
{xi, x′i, x′′i | i ∈ [t]}, and let P (X,Y) be the result of replacing every vari-
able xj , j ∈ V \ V (M), in det(Kr̄(D)) by yf(j). Consider one particular choice
M ′ ⊆ M , |M ′| = c, of edges where both endpoints are assumed to be inter-
nal vertices in the solution. We would then be seeking a monomial of P (X,Y)
which contains both variables x′i, x

′′
i for every edge ei ∈M ′, the variable xi for

13

every edge ei ∈ (M \M ′), and additionally variables of k′ further colors y` ∈ Y .
Combining this across all choices of M ′ with |M ′| = c, we will thus want to run
the sieving algorithm for the family of sets

Fc :=
{
{x′i}i∈I ∪ {x′′i }i∈I ∪ {xi}i∈[t]\I

∣∣∣ I ∈ ([t]

c

)}
×
(

[α?k′]

k′

)
.

For each F ∈ Fc, let QF (X,Y) be polynomial defined in Lemma 6. Up to the
choice of c and f , the instance is positive if and only if there is some F such
that QF (X,Y) 6= 0, and we can use X = 1, Y = 1 for the evaluation, where 1
denotes a vector with all components equal 1.

Using the truncated fast subset convolution, we can compute all evaluations
QF (1,1) as above in time proportional to the number of subsets of sets F ∈ Fc,
up to a polynomial factor [37]. Concretely, let Ic = {I ⊆ F | F ∈ Fc}. Then
the truncated fast subset convolution runs in time O∗(|Ic|), and we repeat this
procedure for every choice c and for every member f of the (n, p, α?k′)-splitter,

Running time. To simplify the analysis of the running time, we write Jc =
{I ∩ X | I ∈ Ic}. Then |Ic| 6 |Jc| · 2α

?k′ , and the product of the size of the
splitter and 2α

?k′ can be bounded as O∗(4.312k
′
) as in Proposition 5. It remains

to bound |Jc|. We further split Jc into c+1 levels, where a set I ∈ Jc belongs to
level i, 0 6 i 6 c, if there are exactly i edges ej ∈M such that I ∩{x′j , x′′j } 6= ∅.
Thus, the number of sets at level i of Jc equals(

t

i

)
3i

t−c∑
j=0

(
t− i
j

)
6

(
t

i

)
3i2t−i,

where the factor of 3 comes from the three options {x′j}, {x′′j }, {x′j , x′′j } and the
expression in the summation corresponds to whether xj ∈ I for the remaining
edges. Note that the upper bound is essentially tight assuming t− c > (t− i)/2.
Therefore, if we split out the total work per level, we get

max
i∈[c]∪{0}

(
t

i

)
3i2t−i4.312k−t−c = 2t4.312k−t−c max

i∈[c]∪{0}

(
t

i

)
1.5i. (3)

To obtain an upper bound for (3), we will use the following observation.

Claim. Let b be a real, t an integer, and x an integral variable. The function

g(x) =
(
t
x

)
bx monotonically increases if and only if x 6 b(t+1)

b+1 .

Proof. It suffices to observe that g(x)/g(x− 1) > 1 if and only if x 6 b(t+1)
b+1 .

Furthermore, since g(x+ 1), g(x− 1) 6 g(x) · bt for the function g(x) defined in
the claim, up to lower-order terms we need not be concerned with the precise
value of x. We now consider two cases. First, assume that c > 0.6t. Then by
the claim above, we have(

t

i

)
1.5i 6 tO(1)

(
t

d0.6te

)
1.50.6t 6 tO(1)2H(0.6)t1.50.6t,

14

where we used the well-known bound
(
t
αt

)
6 2H(α)t for the binary entropy

function H(α) = −α logα − (1 − α) log(1 − α). Inserting the exponential part
into (3), we get a bound of

2t4.312k−t−0.6t2H(0.6)t1.50.6t < 4.312k0.482484t < 3k

as t > k/2. Thus, we next consider c < 0.6t. Then by the claim, we have

max
i∈[c]∪{0}

(
t

i

)
1.5i =

(
t

c

)
1.5c.

Inserting it into (3) and rearranging, we get a bound of

2t4.312k−t
(
t

c

)
(1.5/4.312)c.

Let a = 1.5/4.312 and α = a/(a + 1). By the claim, the latter half of the
product above is maximized around c = αt giving the following upper bound to
the product:

tO(1)2t4.312k−t2H(α)taαt < tO(1)4.312k0.625172t = O∗(3.41k),

as t > k/2. Finally, since α < 0.6, an integer around αt is a valid value of c.

We remark that while the running time bound is essentially tight for the al-
gorithm we describe, we cannot exclude that there is a more efficient way of
implementing the sieving, e.g., using less than three variables per edge in M .

5 k-Colorful Out-Branching

First, let us argue that k-Colorful Out-Branching is NP-hard. To this end,
we have a simple reduction from Hamilton Path: in a digraph D define the
color of every arc outgoing from v ∈ V (D) to be cv. Clearly, D has a Hamilton
Path if and only if it has a k-colorful out-branching with k = |V (D)|−1. Thus,
on any graph class where Hamilton Path is NP-hard, k-Colorful Out-
Branching is NP-hard as well. In fact, we can have the same simple reduction
from k-IOB to k-Colorful Out-Branching, which shows that the latter
generalizes the former.

We follow the structure of the proof of Theorem 8 to show the following
result for the colorful variant.

Theorem 10. There exists a deterministic polynomial-space O∗((2e)k+o(k))-
time (and exponential-space O∗(4.312k)-time) algorithm for k-Colorful Out-
Branching.

Proof. Let D = (V,A) be a directed multigraph, and let c(a) be the color of a for
every arc a ∈ A. We guess the root vertex r and fix it for the following steps. Let
C be the full set of colors used, and without loss of generality let C = [t], t > k,

15

andA = {a1, . . . , am}. Create a set Z = {z1, . . . , zm} of corresponding variables,
and define the polynomial P ′(z1, . . . , zm) = det(Kr̄(D)). By Theorem 1, our
problem has now been reduced to determining whether there is a monomial
M in P ′ such that the corresponding out-branching contains arcs of at least k
different colors. We solve this problem according to our approach as follows.
Here, we first describe the polynomial-space algorithm, and later explain how
it can be sped-up at the cost of exponential space.

1 : Create a set X = {x1, . . . , xt} of variables corresponding to colors. We de-
fine the polynomial P by P (x1, . . . , xt) = P ′(xcol(1), . . . , xcol(m)), where col(i) =
c(ei) for all i ∈ [m]. Then, as we argued above, D has a k-colorful out-branching
rooted at r if and only if P has a witnessing monomial. Moreover, note that
for a k-coloring C of the variables, we can evaluate the polynomial P/C over
variables y1, . . . , yk in polynomial time, as this can be done by evaluating P ′.

2 : In this application, our coloring guide is empty (S⊥ = V (D)). Thus, it can
be ignored in the following steps.

3 : Using a (t, k)-perfect hash family, we recolor the colors of C and obtain a
k-coloring C := C1] C2] . . .] Ck of the variables X.

4 : We apply Lemma 6 to the polynomial P/C over y1, . . . , yk to search for
a monomial that contains all k variables. If such a monomial exists, then P
contains a monomial with k or more distinct variables and we conclude that D
contains an out-branching rooted at r with k or more colors. Otherwise, if we
have not yet exhausted all colorings in the hash family, we return to Step 3 , and
otherwise we conclude that the there is no k-colorful out-branching rooted at r.

Let us now analyse the exponential part f(k) of the running time for the above
steps. By Theorem 4 there are O∗(ek+o(k)) colorings in our (t, k)-perfect hash
family, and by Lemma 6 the sieving can be performed in time O∗(2k) for every
individual coloring. Hence, the total time is O∗((2e)k+o(k)) as claimed.

Finally, we consider the case where we may use exponential space. Then,
we use a (t, k, α?k)-splitter rather than a (t, k)-perfect hash family. Thus, by
Proposition 5, the total running time is O∗(4.312k), as claimed.

We can improve the above result if the input graph is colored with exactly k
colors: In Step 2 of the above proof we do not use an empty coloring guide,
but instead a partition of A such that two arcs are in the same block of the
partition if and only if they have the same color. Notice that in this case, in
Step 3 we construct a (t, 0)-perfect hash family, which means that every color
simply retains its original color. Thus, we derive the following corollary.

Corollary 11. There exists a deterministic polynomial-space O∗(2k)-time al-
gorithm for k-Colorful Out-Branching on directed multigraph with exactly
k colors.

6 k-Colorful Perfect Matching on Planar Graphs

Let us first show the NP-hardness of k-Colorful Perfect Matching.

16

Lemma 12. k-Colorful Perfect Matching is NP-hard on planar graphs
of pathwidth 2.

Proof. We present a reduction from Rainbow Matching on paths, which is
known to be NP-hard [13]. To this end, let (P, k) be an instance of Rainbow
Matching on paths. Denote P = v1 − v2 − · · · − vn. Now, we construct an
instance (G, k + 1) of k-Colorful Perfect Matching as follows. Let c? be
a new color, and define P ′ = v′1 − v′2 − · · · − v′n as a copy of P where the color
of each edge is c?. Then, G is defined as the graph obtained from P and P ′ by
adding the edge vi − v′i of color c? for all i ∈ [n]. Clearly, G is a planar graph
of pathwidth 2.

On the one hand, suppose that (P, k) has a k-colorful matching M of size
k. Denote I = {i ∈ [n − 1] : vivi+1 ∈ M} and I+ = {i + 1 : i ∈ I}. Then,
M ′ = M ∪ {v′iv′i+1 : i ∈ I} ∪ {viv′i : i /∈ I ∪ I+} is a (k + 1)-colorful perfect
matching in G. On the other hand, suppose that (G, k+1) has a (k+1)-colorful
perfect matching M . Since the color of all edges outside P is c?, the set of edges
of M that belong to P is k-colorful. In particular, this set contains a k-colorful
matching of size k.

For our algorithm, we will need the following famous result which implies that
planar perfect matchings can be counted in polynomial time. We will need the
following more detailed version of the original result:

Theorem 13 ([38]). Let G = (V,E) be a planar graph, and let X = {xe | e ∈
E} be a collection of real-valued variables. There is a polynomial-time algorithm
that produces a matrix A over X such that

pf(A) =
∑
M∈M

∏
e∈M

xe,

where M ranges over all perfect matchings of G.

Using our approach, we can now easily derive the following theorem in a manner
very similar to the one used to prove Theorem 10. For the sake of completeness,
we present the required details.

Theorem 14. k-Colorful Perfect Matching on planar graphs can be
solved by a deterministic algorithm in time O∗((2e)k+o(k)) with polynomial space,
and in time O∗(4.32k) with exponential space.

Proof. Let G = (V,E) be a planar graph, and let c(e) be the color of e for every
edge e ∈ E. Let C be the full set of colors used, and without loss of generality
let C = [t], t > k, and E = {e1, . . . , em}. Create a set Z = {z1, . . . , zm} of
corresponding variables, and let A be the matrix computed by Theorem 13.
Define the polynomial P ′(z1, . . . , zm) = pf(A). Recall that P can be evaluated
in polynomial time. Our problem has now been reduced to determining whether
there is a monomial M in P ′ such that the corresponding perfect matching
contains edges of at least k different colors. We solve this problem according to

17

our approach as follows. Here, we first describe the polynomial-space algorithm,
and later explain how it can be sped-up at the cost of exponential space.

1 : Create a set X = {x1, . . . , xt} of variables corresponding to colors. We de-
fine the polynomial P by P (x1, . . . , xt) = P ′(xcol(1), . . . , xcol(m)), where col(i) =
c(ei) for all i ∈ [m]. Then, as we argued above, the input instance is a yes-
instance if and only if P has a witnessing monomial. Moreover, note that for
a k-coloring C of the variables, we can evaluate the polynomial P/C over vari-
ables y1, . . . , yk in polynomial time, as this can be done by evaluating P ′.

2 : In this application, our coloring guide is empty (S⊥ = V (D)). Thus, it can
be ignored in the following steps.

3 : Using a (t, k)-perfect hash family, we recolor the colors of C and obtain a
k-coloring C := C1] C2] . . .] Ck of the variables X.

4 : We apply Lemma 6 to the polynomial P/C over y1, . . . , yk to search for
a monomial that contains all k variables. If such a monomial exists, then P
contains a monomial with k or more distinct variables and we conclude that G
contains a perfect matching with k or more colors. Otherwise, if we have not yet
exhausted all colorings in the hash family, we return to Step 3 , and otherwise
we conclude that the input instance is a no-instance.

Let us now analyse the exponential part f(k) of the running time for the above
steps. By Theorem 4 there are O∗(ek+o(k)) colorings in our (t, k)-perfect hash
family, and by Lemma 6 the sieving can be performed in time O∗(2k) for every
individual coloring. Hence, the total time is O∗((2e)k+o(k)) as claimed.

Finally, we consider the case where we may use exponential space. Then,
we use a (t, k, α?k)-splitter rather than a (t, k)-perfect hash family. Thus, by
Proposition 5, the total running time is O∗(4.312k) as claimed.

We conclude by observing that there is little hope to apply our approach to
Rainbow Matching. In particular, counting not necessarily perfect matchings
in a planar graph is #P-hard, so there is no plug-in replacement for Theorem 13
for general matchings.

7 Enumerating Splitters with Polynomial Delay

In this section, we prove Theorem 4. We essentially follow the construction by
Naor et al. [35] while taking care to keep the space consumption polynomial.
In particular, the idea by Fomin et al. [28] (used in the context of construction
representative sets) to frame the construction in a way that makes a repeated
application possible, turns out to be a crucial component. To this end, we will
need the following definition of an indexed splitter which treats splitter families
as data structures that enumerate vectors instead of fixed collections of vectors.

Definition 15 (Indexed splitter). An indexed (n, k, t)-splitter of size m is
a data structure S that for i ∈ [m] returns a vector x̄i ∈ [t]n such that {x̄i}i∈[m]

is an (n, k, t)-splitter. The query time tqr(n, k, t) and query space sqr(n, k, t)
are the resources needed by S to compute any such x̄i, where we exclude the

18

space needed by x̄i from sqr. The initialization time tin(n, k, t) and initialization
space sin(n, k, t) are the resources needed to compute S given n, k and t.

We will call the tuple (m, tin, sin, tqr, sqr) the profile of an indexed splitter. Note
that every splitter of size f(n, k, t) is an indexed splitter with query-time propor-
tional to log f(n, k, t): we simply store the whole splitter in memory according
to some (arbitrary) order.

One of the main ingredients will be the following two splitters constructed
by Naor, Schulman, and Srinivasan:

Proposition 16 (cf. [35]). There exists an (n, k, k2)-splitter A(n, k) of size
kO(1) log n that can be efficiently constructed using kO(1)n log n space.

Proposition 17 (cf. [35]). For all k, t 6 n there exists an indexed (n, k, t)-
splitter B(n, k, t) of size

(
n
t−1

)
with tin(n, k, t), sin(n, k, t) = O(t log n), tqr(n, k, t) =

O(nt log n), and sqr(n, k, t) = O(t log n).

Proof. The underlying splitter corresponds to the set of all ordered tuples ī ∈
[n]t−1. Given such a tuple ī, we assign all elements in the range

[
0, ī[0]− 1

]
the

value 0, all elements in the range
[̄
i[0], ī[1]− 1

]
the values 1, and so on. Clearly,

every index set of size k is partitioned almost equally by at least one of these
vectors. This construction is easily transformed into an indexed splitter with
the claimed profile by choosing an appropriate indexing of the ordered tuples
from [n]t−1.

One further core component needed here is a k-wise independent sampling space,
whose properties we can use to generate a small (n, k)-perfect hash family. Let
us recall the very elegant construction by Joffe [39] for such a space:

Definition 18. A probability space Ω with n random variables {Xi}i∈[n] is k-
wise independent if for every index set I ⊆ [n] of size k the random vari-
ables {Xi}i∈I are mutually independent.

Theorem 19 (Joffe [39]). Let p be prime and k < p. If {Xi}i∈[k] are random
variables uniformly distributed on {0, . . . , p − 1}, then the variables {Yi}i∈[p]

defined via
Yi := (X1 + iX2 + . . .+ ik−1Xk) (mod p)

are uniformly distributed over {0, . . . , p− 1} and k-independent.

Note that the variables {Yi}i∈[p] range over {0, . . . , p − 1} and not over [k].
However, because they are uniformly distributed, we can easily ‘downsample’
them without much loss.

Lemma 20. Let p be prime and k 6 t < p. There exists a k-wise independent
sampling space H?

p,k,t for random variables {Ŷi}i∈[p] over [t] where the Ŷi are

identically distributed and almost uniform in the sense that
∣∣P[Ŷi = r] − 1

t

∣∣ 6
1
p for r ∈ [t]. Moreover, the members of H?

p,k,t can be listed sequentially in

time O(ptk2 log p) by an algorithm using O(t log p) bits.

19

Proof. Let the variables {Xi}i∈[k] and {Yj}j∈[p] be defined as above. We further

define Ŷj := Yj (mod t). Since the variables Yj are k-wise independent, so are

the variables Ŷj . The distribution of each Ŷj follows immediately from the fact
that

bp/tc
p

6 P
[
Ŷj = r

]
6
dp/te
p

for each r ∈ [t]. To list all members of H?
p,k,t, we enumerate all pt possible as-

signments of {Xi}i∈[k] and compute the values for {Ŷi}j∈[p]. We need O(t log p)
bits to store a counter for the first enumeration as well as O(k log p) bits to enu-
merate the polynomials defining the Ŷi. Since each polynomial can be evaluated
using O(k2) arithmetic operations, the claimed running time follows.

The following construction of a basic splitter follows the one by Noar et al.
closely, however, our rephrasing and analysis is more suitable for the final con-
struction of the indexed splitter.

Lemma 21. For every k <
√
n and α > 1 there is an (n, k, αk)-splitter Cα(n, k)

of size O
(
τ(α)k k log n

)
that can be constructed in |Cα(n, k)|k2

(
n
k

)
(2n)αk logO(1)n

time using O(|Cα(n, k)| log n) space.

Proof. Let n 6 p 6 2n be the smallest prime at least as large as n. We can
identify p using the AKS test or any of its recent improvements in n logO(1)p
time. For ease of presentation, we will assume that αk is an integer. Let H? =
H?
p,k,αk be the k-wise independent probability space defined in Lemma 20. For a

vector ŷ ∈ H?, let C(ŷ) contain all index sets I ∈
(

[n]
k

)
for which ŷ[I] contains k

distinct values. Let us extend this notation to sets H ′ ⊆ H? via C(H ′) :=⋃
ŷ∈H′ C(ŷ). Our goal is to find a set H ′ ⊆ H? of small size such that C(H ′) =(

[n]
k

)
.

Claim. Let F ⊆
(

[n]
k

)
and n > 1.256αk. There exists a vector ŷ ∈ H? such

that C(ŷ) contains a fraction of at least e−2αk2/n
(
αk
k

)
k!

(αk)k
sets from F .

Proof. Fix any index set I ∈ F . Since |I| 6 k the random variables {Ŷi}i∈I are
independent, the probability that a vector ŷ ∈ H? chosen uniformly at random
hits I is

P[I ∈ C(ŷ)] >

(
αk

|I|

)
k!
(1

αk
− 1

p

)|I|
> (1− αk/p)k

(
αk

k

)
k!

(αk)k
.

Accordingly, the expected number of sets in F hit by at least one member of H?

is at least (1 − αk/p)k
(
αk
k

)
k!

(αk)k
· |F| and we conclude that at least one vector

of H? must hit that many members of F . Since (1−c/x)x/c > e−2 for x > 1.256c
we can bound the first term of this expression by(

1− αk

p
)k > e−2αk2/p > e−2αk2/n

and arrive at the claimed bound.

20

The above claim now gives us a method of constructing H ′ greedily: initial-
ize H ′ = ∅ and list the members ŷ1, ŷ2, . . . of H?. For each vector ŷi, com-
pute |C(ŷi)\C(H ′)|, that is, the number of index sets hit by ŷi that are not yet
hit by any member of H ′. If

|C(ŷi) \ C(H ′)| > e−2αk2/n

(
αk

k

)
k!

(αk)k

((n
k

)
− |C(H ′)|

)
,

then add ŷi to H ′, otherwise drop ŷi. In either case, proceed with ŷi+1 until H?

has been completely traversed. Note that in every step, we can compute the
numbers |C(ŷi)\C(H ′)| and |C(H ′)| in time O

((
n
k

)
|H ′|k

)
by simply enumerating

all index sets and testing the vectors H ′ ∪ {ŷi}.
Finally, let us bound the number of steps the above algorithm takes and

therefore the size of H ′. Since every member added to H ′ covers at least a
fraction of e−2αk2/n

(
αk
k

)
k!/(αk)k uncovered index sets, the number of steps t

taken by the algorithm can be bounded by solving

|C|
(

1− e−2αk2/n

(
αk

k

)
k!

(αk))k

)t
=

(
n

k

)(
1− e−2αk2/n

(
αk

k

)
k!

(αk))k

)t
< 1

for the variable t.

Claim. For t > e2αk2/n (αk)k

(αkk)k!
k ln 2n the above expression is smaller than one.

Proof. Let us substitute x = e2αk2/n (αk)k

(αkk)k!
. In particular, we assume t >

xk ln 2n. Then the above expression becomes(
n

k

)(
1− 1

x

)t
6

(
n

k

)(
1− 1

x

)xk ln 2n

6

(
n

k

)
e−k ln 2n 6

(e
2k

)k
where we used that (1− 1

x)x 6 e−1. Clearly, the right hand side is smaller than
one for k > 2 > e/2 and the claim follows.

A more manageable expression for the bound on t (ignoring the small factor

e2αk2/nk ln 2n) can be derived using Stirling’s approximation:

(αk)k(
αk
k

)
k!

= (αk)k
(
(α− 1)k

)
!

(αk)!
∼ (αk)k

√
1− 1/α

((α− 1)α−1

αα
e

k

)k
=
√

1− 1/α
(

(1− 1/α)α−1e
)k

= Θ(τ(α)k).

We conclude that |H ′| = O(τ(α)kk log n). The bounds on time and space follow
immediately from C(n, k) = H ′.

Definition 22 (Rounded splitter). Let S be an indexed splitter. For ra-
tional numbers ñ, k̃, t̃ we denote by [S(ñ, k̃, t̃)] the collection of indexed split-
ters {S(n, k, t) | n ∈ {bñc, dñe}, k ∈ {bk̃c, dk̃e}, t ∈ {bt̃c, dt̃e}, }.

21

We will treat the collection [S(ñ, k̃, t̃)] like an indexed splitter with the under-
standing that a query to [S] carries, besides the index i, also the appropriate
values for n, k and t. Since the additional overhead of constructing and query-
ing S differs only by a constant factor, we will not further analyse this overhead
in the following.

The following lemma closely follows the construction presented in Theorem 3
in [35], but adapted to construct a hash family with a flexible amount of colors.
We will in the following make use of the Iverson bracket notation JφK which
evaluate to 1 if φ is true and 0 otherwise. Also recall that we use the symbol •
for variables whose value is arbitrary or unimportant in the current context.

Lemma 23. For α > 1, let S(n, k, t) be an indexed (n, k, t)-splitter with pro-
file (f, tin, sin, tqr, sqr). Then for every ` 6 k we can construct an indexed (n, k, t)-

splitter Ŝ(n, k, t) with profile (f̂, t̂in, ŝin, t̂qr, ŝqr) where

f̂(n, k, t) = kO(1)

(
k2

`

)
f(k2, dk/`e, dt/`e)` log n,

t̂in(n, k, t) = kO(1)n log n+O(tin(k
2, k/`, t/`)),

ŝin(n, k, t) = kO(1)n log n+O(sin(k
2, k/`, t/`)),

t̂qr(n, k, t) = O(` tqr(k
2, dk/`e, dt/`e) + n),

and ŝqr(n, k, t) = O(` sqr(k
2, dk/`e, dt/`e) + log n).

Proof. In order to initialize Ŝ, we construct the family A := A(n, k) from Propo-
sition 16, the family B := B(k2, k, `) as well as the indexed splitter [S] :=
[S(k2, k/`, t/`)] in time

t̂in(n, k, t) = kO(1)n log n+O(tin(k
2, k/`, t/`))

using space
ŝin(n, k, t) = kO(1)n log n+O(sin(k

2, k/`, t/`)),

as claimed.
In order to answer a query i for Ŝ, we decompose the query into i =

(ia, ib, i1, . . . , i`) according to some indexing scheme (e.g. choosing appropriate
substrings of the bitwise representation of i). We then choose ā ∈ A according
to ia, a partition B1∪. . .∪B` of [k2] into ` blocks according to ib from B(k2, k, `)
and vectors s̄i1 , . . . , s̄i` ∈ [S]. We assume that the indexing scheme is such
that s̄i1 , . . . , s̄ij are taken from (k2, bk/`c, •)-splitters and s̄ij+1

, . . . , si` from
from (k2, dk/`e, •)-splitters where j is chosen such that

bk/`cj + dk/`e(`− j) = k,

and further that s̄i1 , . . . , s̄ih are taken from (k2, •, bt/`c)-splitters and s̄ih+1
, . . . , s̄i`

from (k2, •, dt/`e)-splitters where h is similarly chosen such that

bt/`ch+ dt/`e(`− h) = t.

22

The result ȳ of the query is now constructed as follows. For c ∈ [n], let Bp be
the block of the chosen partition B1 ∪ . . . ∪ B` where ā[c] ∈ Bp. Then ȳ[c] =
s̄ip [ā[c]] + offset(p), where

offset(p) = bt/`cp+ Jh > pK(h− p)

shifts the colors taken from the vectors s̄• in order to combine them without
collisions.

Let us at this point convince ourselves that the vectors ȳi constructed this
way indeed form a (n, k, t)-splitter. Clearly, ȳi ∈ [t]n so it is left to consider

the splitting property. To that end, fix an arbitrary index set I ∈
(

[n]
k

)
. First,

there exists a ∈ A such that ā[I] receives indeed k distinct values C ∈
(

[k2]
k

)
.

For this subset C, there exists a vector from B(k2, k, `) that splits C evenly
into parts of size bk/`c and dk/`e. For each such part Ci, there now exists a
vector s̄i ∈ [S] such that s̄i[Ci] contains |Ci| distinct values. Since the values
contained in the s̄• are offset to avoid collisions, we conclude that the specific
choices of ā, B, and s̄1 . . . s̄` result in a vector ȳ such that ȳ[I] indeed contains k
distinct values.

In total, the time taken to answer a query is

t̂qr(n, k, t) = O(` tqr(k
2, dk/`e, dt/`e)).

and it uses space

ŝqr(n, k, t) = O(` sqr(k
2, dk/`e, dt/`e) + log n).

The size of Ŝ is computed easily by considering the size of A, B and the number
of partitions of [k2] into ` parts:

f̂(n, k, t) = kO(1)

(
k2

`

)
f(k2, dk/`e, dt/`e)` log n.

We finally arrive at the main theorem of this section.

Theorem 24. There exists a (n, k, αk)-splitter ˆ̂S with

ˆ̂f(n, k, αk) = kO(1)τ(α)k+o(k) log n,

ˆ̂tin(n, k, αk) = kO(1)τ(α)o(k)n log n, ˆ̂sin(n, k, αk) = kO(1)n log n,

ˆ̂tqr(n, k, αk) = kO(1) +O(n), ˆ̂sqr(n, k, αk) = kO(1) +O(log n).

Proof. We apply the construction of Lemma 23 twice, first with ` = k/ log2 k
and then with ` = log k, to the splitter S from Lemma 21. The resulting family
has a size of

ˆ̂f(n, k, αk) = kO(1)

(
k2

log k

)
f̂
(
k2, k/ log k, αk/ log k

)log k
log n

= kO(1)eo(k) log n

23

·
[((k/ log k)2

k/ log2 k

)
f
(
(k/ log k)2, log k, α log k

)k/ log2 k
2 log k

]log k

= kO(1)eo(k)f
(
(k/ log k)2, log k, α log k

)k/ log k
log n

= kO(1)eo(k)
(
τ(α)log k 2 log

k

log k

)k/ log k

log n

= kO(1)τ(α)k+o(k) log n.

The remaining profile of ˆ̂S can be bounded as follows:

ˆ̂tin(n, k, αk) = kO(1)n log n+O(t̂in(k
2, k/ log k, αk/ log k))

= kO(1)n log n+O(tin((k/ log k)2, log k, α log k))

= kO(1)n log n+ τ(α)log k

(
(k/ log k)2

log k

)(
2(k log k)2

)α log k
logO(1)k

= kO(1)τ(α)o(k)n log n.

ˆ̂sin(n, k, αk) = O(ŝin(k
2, k/ log2 k, αk/ log2 k)) + kO(1)n log n

= O(sin((k/ log k)2, log k, α log k)) + kO(1)n log n

= O(τ(α)log k log2(k/ log k)) + kO(1)n log n = kO(1)n log n.

ˆ̂tqr(n, k, αk) = O(k t̂qr(k
2, k/ log k, α/ log k) + n)

= O
(
k2 tqr((k/ log k)2, log k, α log k) + n

)
= kO(1) +O(n)

ˆ̂sqr(n, k, αk) = O(k ŝqr(k
2, k/ log k, αk/ log k) + log n)

= O
(
k2 sqr((k/ log k)2, k/ log k, α log k) + k log k + log n

)
= kO(1) +O(log n).

Since the an indexed splitter with polynomial query time tqr in particular means
that we can enumerate its members with polynomial delay, Theorem 4 follows
directly from Theorem 24.

8 Proof of Proposition 5

As Hüffner et al. noted [36], the running time of color coding algorithms can
usually be improved by using more than k colors, balancing the success prob-
ability of the coloring with the running time of the algorithm that uses the

coloring. In particular, they showed that a typical running time of tk

(tk)·k!
· 2t

(were the first term is the reciprocal of the success probability and the second
term corresponds to an algorithm that needs time 2t for an instance colored
with t colors) can be bounded by

(αk)k(
αk
k

)
· k!
· 2αk = O∗(4.314k)

24

for α = 1.3, a value that was derived numerically. Using the function τ(α), we
can shed some light on how this value comes about. Consider a running time

(αk)k(
αk
k

)
· k!
· 2αk 6 τ(α)k2αk = (h(α) · e)k,

where h(α) =
(
1− 1/α

)α−1
2α. Let us minimize h(α) over α > 1. Since

dh(α)

dα
= (α− 1)α−1

(2

α

)α(
α ln

(2(α− 1)

α

)
+ 1
)

and the first two terms of this expression have no roots for α > 1, we are left
with solving

α ln
(2(α− 1)

α

)
= −1 ⇐⇒

(
1− 1/α

)α
2α =

1

e
(4)

for α. The only solution is α? = 1.302017 . . . and note that dh(α)
dα is negative for

α = 1.2 and positive for α = 1.4. Thus, h(α) (α > 1) is minimized for α = α?.
By (4),

h(α?)
(

1− 1

α?

)
=

1

e

and hence the optimal running time is bounded from above by

(h(α?)e)k =
(α?

α? − 1

)k
6
(1.302018

0.302017

)k
= O∗(4.312k).

This proves Proposition 5 for p = 0 and thus for arbitrary p.

9 Discussion

In this paper, we presented an enhancement of color coding to design polynomial-
space parameterized algorithms. We provided three applications centered around
out-branchings, spanning trees, and perfect matchings. In particular, we ob-
tained a deterministic polynomial-space algorithm for k-IOB that runs in time
O∗(3.86k). Along the way, we showed how to enumerate (n, k, αk)-splitters one
by one with polynomial delay. In addition, we demonstrated that our approach
can be adapted to enable the development of faster parameterized algorithms
in case the use of exponential space is permitted.

Let us conclude our paper with an interesting open question. Let α1(D) be
the maximum size of a matching in a digraph D. By Lemma 7 (ii), D has an
α1(D)-internal out-branching. The following problem is natural: what is the
parameterized complexity of deciding whether D has an (α1(D) + k)-internal
out-branching, where k is the parameter?

Acknowledgment. We thank Saket Saurabh for helpful information concern-
ing splitters.

25

References

[1] I. Koutis, Faster algebraic algorithms for path and packing problems, in:
Automata, Languages and Programming, 35th International Colloquium,
ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part I: Tack
A: Algorithms, Automata, Complexity, and Games, 2008, pp. 575–586.

[2] R. Williams, Finding paths of length k in O∗(2k) time, Inf. Process. Lett.
109 (2009) 315–318.

[3] I. Koutis, R. Williams, Limits and applications of group algebras for pa-
rameterized problems, ACM Trans. Algorithms 12 (2016) 31:1–31:18.

[4] A. Björklund, Determinant sums for undirected hamiltonicity, SIAM J.
Comput. 43 (2014) 280–299.

[5] R. Bellman, Dynamic programming treatment of the travelling salesman
problem, J. ACM 9 (1962) 61–63.

[6] A. Björklund, T. Husfeldt, P. Kaski, M. Koivisto, Narrow sieves for pa-
rameterized paths and packings, J. Comput. Syst. Sci. 87 (2017) 119–139.

[7] A. Gabizon, D. Lokshtanov, M. Pilipczuk, Fast algorithms for param-
eterized problems with relaxed disjointness constraints, in: Algorithms -
ESA 2015 - 23rd Annual European Symposium, Patras, Greece, September
14-16, 2015, Proceedings, 2015, pp. 545–556.

[8] A. Björklund, T. Husfeldt, N. Taslaman, Shortest cycle through specified
elements, in: Proceedings of the Twenty-Third Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19,
2012, 2012, pp. 1747–1753.

[9] M. Wahlström, Abusing the Tutte matrix: An algebraic instance compres-
sion for the k-set-cycle problem, in: N. Portier, T. Wilke (Eds.), 30th Inter-
national Symposium on Theoretical Aspects of Computer Science, STACS
2013, volume 20 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik, 2013, pp. 341–352.

[10] A. Björklund, P. Kaski, I. Koutis, Directed hamiltonicity and out-
branchings via generalized Laplacians (arxiv.org/abs/1607.04002), in:
Automata, Languages and Programming, 44th International Colloquium,
ICALP 2017, Warsaw, Poland, July 10-14, 2017, Proceedings, Part I: Tack
A: Algorithms, Automata, Complexity, and Games, 2017, p. TBA.

[11] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freeman, 1979.

[12] A. Itai, M. Rodeh, S. L. Tanimoto, Some matching problems for bipartite
graphs, J. ACM 25 (1978) 517–525.

26

[13] V. B. Le, F. Pfender, Complexity results for rainbow matchings, Theor.
Comput. Sci. 524 (2014) 27–33.

[14] M. Kano, X. Li, Monochromatic and heterochromatic subgraphs in edge-
colored graphs-a survey, Graphs and Combinatorics 24 (2008) 237–263.

[15] G. Gutin, I. Razgon, E. J. Kim, Minimum leaf out-branching and related
problems, Theor. Comput. Sci. 410 (2009) 4571–4579.

[16] P. Dankelmann, G. Gutin, E. J. Kim, On complexity of minimum leaf out-
branching problem, Discrete Applied Mathematics 157 (2009) 3000–3004.

[17] T. Johnson, N. Robertson, P. D. Seymour, R. Thomas, Directed tree-width,
J. Comb. Theory, Ser. B 82 (2001) 138–154.

[18] E. Prieto, C. Sloper, Reducing to independent set structure – the case of
k-internal spanning tree, Nord. J. Comput. 12 (2005) 308–318.

[19] N. Cohen, F. V. Fomin, G. Gutin, E. J. Kim, S. Saurabh, A. Yeo, Algorithm
for finding k-vertex out-trees and its application to k-internal out-branching
problem, J. Comput. Syst. Sci. 76 (2010) 650–662.

[20] F. V. Fomin, F. Grandoni, D. Lokshtanov, S. Saurabh, Sharp separation
and applications to exact and parameterized algorithms, Algorithmica 63
(2012) 692–706.

[21] F. V. Fomin, S. Gaspers, S. Saurabh, S. Thomassé, A linear vertex kernel
for maximum internal spanning tree, J. Comput. Syst. Sci. 79 (2013) 1–6.

[22] H. Shachnai, M. Zehavi, Representative families: A unified tradeoff-based
approach, J. Comput. Syst. Sci. 82 (2016) 488–502.

[23] J. Daligault, Combinatorial techniques for parameterized algorithms and
kernels, with applicationsto multicut, PhD thesis, Universite Montpellier
II, Montpellier, Herault, France (2011).

[24] W. Li, Y. Cao, J. Chen, J. Wang, Deeper local search for parameterized
and approximation algorithms for maximum internal spanning tree, Inf.
Comput. 252 (2017) 187–200.

[25] M. Zehavi, Mixing color coding-related techniques, in: N. Bansal, I. Finoc-
chi (Eds.), Algorithms - ESA 2015 - 23rd Annual European Symposium,
volume 9294 of Lecture Notes in Computer Science, Springer, 2015, pp.
1037–1049.

[26] A. Björklund, V. Kamat, L. Kowalik, M. Zehavi, Spotting trees with few
leaves, in: Automata, Languages, and Programming - 42nd International
Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings,
Part I, 2015, pp. 243–255.

27

[27] J. Chen, J. Kneis, S. Lu, D. Molle, S. Richter, P. Rossmanith, S. H. Sze,
F. Zhang, Randomized divide-and-conquer: Improved path, matching, and
packing algorithms, SIAM J. on Computing 38 (2009) 2526–2547.

[28] F. V. Fomin, D. Lokshtanov, F. Panolan, S. Saurabh, Efficient computa-
tion of representative families with applications in parameterized and exact
algorithms, J. ACM 63 (2016) 29:1–29:60.

[29] J. Bang-Jensen, G. Z. Gutin, Digraphs - theory, algorithms and applica-
tions, 2 ed., Springer, 2009.

[30] R. Diestel, Graph Theory, 4th Edition, volume 173 of Graduate texts in
mathematics, Springer, 2012.

[31] D. C. Lay, Linear Algebra and Its Applications, Addison-Wesley, 2012.

[32] H. Robbins, A remark on stirling’s formula, The American Mathematical
Monthly 62 (1955) 26–29.

[33] W. Tutte, The dissection of equilateral triangles into equilateral triangles,
Proc. Cambridge Philos. Soc. 44 (1948) 463–482.

[34] N. Alon, R. Yuster, U. Zwick, Color-coding, J. ACM 42 (1995) 844–856.

[35] M. Naor, L. J. Schulman, A. Srinivasan, Splitters and near-optimal de-
randomization, in: Foundations of Computer Science, 1995. Proceedings.,
36th Annual Symposium on, IEEE, 1995, pp. 182–191.

[36] F. Hüffner, S. Wernicke, T. Zichner, Algorithm engineering for color-coding
with applications to signaling pathway detection, Algorithmica 52 (2008)
114–132.

[37] A. Björklund, T. Husfeldt, P. Kaski, M. Koivisto, Trimmed moebius in-
version and graphs of bounded degree, Theory Comput. Syst. 47 (2010)
637–654.

[38] P. W. Kasteleyn, Graph theory and crystal physics, in: F. Harary (Ed.),
Graph Theory and Theoretical Physics, Academic Press, 1967, pp. 43–110.

[39] A. Joffe, On a set of almost deterministic k-independent random variables,
Annals of Probability 2 (1974) 161–162.

28

