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Abstract—Although people use critical, redundant and ordi-
nary categories to concisely distinguish the importance of edges
in maintaining the controllability of networks in linear time-
invariant (LTI) model, a specific network analysis is still uncer-
tain to confirm edges of each category and guide further edge
protection. Given a large, sparse, Erdős-Rényi random digraph
that is in LTI model and has a known maximum matching,
as an input network. We address the problem of efficiently
classifying its all edges into those categories. By the minimal
input theorem, classifying an edge into one of those categories
is modeled into analysing the number of maximum matchings
having it, and is solved by finding maximally-matchable edges
via a bipartite graph mapped by the input network. In the worst
case, entire edge classification is executed in linear time except
for precomputing a maximum matching of the input network.

I. INTRODUCTION

Controllability of complex networks [1] is one of network
properties, it guarantees the networks in LTI model to be
controllable via external inputs, and it can be measured by the
minimum number of inputs. Besides, network controllability
is vulnerable to malicious attack or random failure on edges
[2] [3], which increases the minimum number of inputs to
fully control the residaul network. To clarify the importance
of an edge in maintaining network controllability, Liu et al.
[1] raised critical, redundant, and ordinary categories: a critical
edge exists in all control configurations, its removal gains the
minimum number of inputs to control resulting network; a
redundant edge is out of any control configuration, and its
removal never affects current inputs; removing an ordinary
link changes the control configuration, while its removal does
not change the minimum number of inputs. Exactly knowing
edges of each category is forward-looking to defend network
controllability against a single edge removal. Yet, a specific
network analysis to confirm all edges for those categories in
a general LTI-model network is still uncertain.

Given a large, sparse, Erdős-Rényi random digraph that is
in LTI model and has a known maximum matching as an
input network. We thus address the problem of efficiently
classifying edges of an input network into critical, redundant
and ordinary categories respectively. Since the minimum input
theorem [1] proved that the maximum matching not only
determines the minimal inputs to fully control a network in
LTI model but also constructs a control configuration, given

an edge of the input network, classifying it into one of
three categories can be modeled into analysing the number
of maximum matchings involving it. Specifically, if an edge
out of any maximum matching, it is a redundant edge; if
it constructs some maximum matchings, it is an ordinary
edge; if it constructs all maximum matchings, it is a critical
edge. However, the number of maximum matchings of a
general digraph increases exponentially with network size [4],
and the best-known maximum matching algorithms [5] [6]
are also computationally massive to use for several times,
finding the maximum matchings involving this edge can not
solve the problem efficiently. Instead, finding the maximally-
matchable edges [7] of an input network, which is out of the
konwn maximum matching but involved into others, solves the
problem of confirming the category of an edge. Because we
can efficiently find all maximally matchable edges and we also
conclude that all maximally-matchable edges and edges of the
known maximum matching and adjacent to them are ordinary
edges; edges involves into the known maximum matching
without adjacent to any maximally-matchable edge are critical
edges; non-maximally matchable edges and out of the known
maximum matching are redundant edges.

For our contribution, we efficiently classify all edges of an
input network into critical, redundant and ordinary categories
respectively by finding all maximally-matchable edges, in
linear time except for precomputing the known maximum
matching of an input network.

Following paper is structured: section II introduces the net-
work controllability; section III reviews previous related work
about edge classification and maximally-matchable edges;
section IV models an edge classification and shows all kinds
of maximally-matchable links; section V executes entire edge
classification. Section VI concludes this paper.

II. NETWORK CONTROLLABILITY

A controllable system can be driven from any initial state
to any final state by properly using external inputs within
limited time [8] [9] [10]. A linear-time invariant system can
be described by a state equation [11]:

ẋ(t) = Ax(t) + Bu(t) (1)
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where system vector x(t) = (x1(t), x2(t), . . . , xN (t))T cap-
tures state of each system vertex of V at time t; A is a system
matrix, and A ∈ RN×N , for each non-zero entry aij ∈ A (1 ≤
i, j ≤ N), it represents the impact strength of vertex vi on vj ;
B is the input matrix, and B ∈ RN×M . Each bij ∈ B and bij 6=
0 represents the impact strength of any input uj on a system
vertex of vi; input vector u(t) = (u1(t), u2(t), . . . , uM (t))T

holds M external inputs at time t. A system of equation
1 is controllable via M inputs, if and only if the matrix
C ∈ RN×NM and C = [B,AB,A2B, . . . ,AN−1B], has full
rank, noted by rank(C) = N [11] [8], which is called the
controllability rank condition.

However, value of entries of A and B of equation 1 may
be just known by approximation except for zero-entries [12],
which prevents against using the rank condition to verify
whether a system described by equation 1 is controllable or
not. Besides, calculating the rank of the matrix C takes O(2N )
time [1], which is computationally prohibitive, especially for
large-scale systems. Virtually, it is also said that effectively
using the rank condition is limited to a few dozen system
nodes at most [13] [14]. To more effectively indicate whether
a system described by equation 1 is controllable or not,
structural controllability [12] [15] was raised, in which the
structural controllability is defined:

Definition 1 ( Structural Controllability [12]). A system
of equation 1 is structurally controllable iff there exists a
completely controllable system with the same structure as it.

According to the rank condition [8] and this definition,
structural controllability is the necessary but not sufficient
condition of complete controllability. Additionally, Lin [12]
assessed structurally controllable LTI systems through sys-
tem’s graphic interpretation. A diraph noted by G(A,B) =
(V1 ∪ V2, E1 ∪ E2) is mapped from a system described by
equation 1. With a bijection α, for aij ∈ A, α : aij →

−−−−→
〈vj , vi〉,

where vi, vj ∈ V1,
−−−−→
〈vj , vi〉 ∈ E1. For bij ∈ B, α : bij →−−−−→

〈uj , vi〉, where
−−−−→
〈uj , vi〉 ∈ E2, uj ∈ V2 and vi ∈ V1. Then,

Lin [12] defined following items to conclud conditions of
structural controllability:

Definition 2 (Inaccessibility [12]). Any vi ∈ V1 is inaccessi-
ble if it can not be approached through a directed path starting
from any uj ∈ V2 in G(A,B).

Definition 3 (Dilation of Digraphs [12]). In G(A,B), T1 ⊆
V1, T2 ⊆ V1 ∪ V2 pointing nodes of T1. G(A,B) contains a
dilation iff |T1| > |T2|, where |T1| and |T2| are the cardinality
of T1 and T2.

Definition 4 (Stem and Bud [12]). In G(A,B), a stem is a
directed path. A bud is a directed cycle pluse an arc such as
{{
−−−−→
〈v1, v2〉,

−−−−→
〈v2, v3〉, . . . ,

−−−−→
〈vj , v1〉},

−−−−−−→
〈vj+1, vj〉}, and

−−−−−−→
〈vj+1, vj〉

is called a distinguished edge.

Definition 5 (Cactus [12]). Any stem of definition 4 is a
cactus. Besides, a stem S0 and buds B1, B2, . . . , Bl, then,
S0∪B1∪B2∪ . . . Bl is a cactus if the tail of the distinguished

edge of any Bi (1 ≤ i ≤ l) is not the top vertex of S0 but is
the only common vertex of S0 ∪B1 ∪B2 ∪ . . . Bi−1. A set of
vertex-disjoint cacti is called a cactus.

Based on those items above, conditions of a structurally
controllable system are given:

Theorem 1 (Lin’s Structural Controllability Theorem [12]).
The following three statements are equivalent:

1) A system of equation 1 is structurally controllable.
2) The digraph G(A,B) contains neither inaccessible

nodes nor dilation.
3) G(A,B) is spanned by a cactus.

Strictly based on the rank condition [8], a structural
controllable system can be completely controllable for al-
most all values of entries of A and B of equation 1 ex-
cept for some pathological cases with certain constrains
[12], [15]. For example, a system’s graphic interpreta-
tion includs nodes {n1, n2, n3, n4}, input b1, and edges
{
−−−−→
〈b1, n1〉,

−−−−−→
〈n1, n2〉,

−−−−−→
〈n2, n3〉,

−−−−−→
〈n3, n2〉,

−−−−−→
〈n3, n4〉}, then, this sys-

tem is structurally controllable because its digraph excludes
inaccessible nodes and dilation by theorem 1. But this system
is not controllable if edge weight is one, because the rank of
matrix C [11], [8] is less than four. In contrast, some struc-
turally controllable systems are always completely controllable
such as the system above, whose digraph excludes

−−−−−→
〈n3, n2〉,

because rank of C is independent with the value of each non-
zero entries. Therefore, Liu et al. [1] generalized the minimal
input theorem [1]:

Theorem 2 (Minimal Input Theorem [1]). The minimum
number of inputs to fully control a network G(A) = (V1, E1)
is one if there is a perfect matching. Otherwise, inputs directly
drive the unmatched nodes related to maximum matching.

A maximum matching of any graph is a set of maximum
number of edges without sharing common nodes. In digraphs,
a head of an arc of a maximum matching is called a matched
node, otherwise, it is unmatched related to a maximum match-
ing. When all vertices are matched, the digraph is said to have
a perfect matching. After this, our input digraph is defined:

Definition 6 (Input Digraph). A large, sparse Erdős-Rényi
random digraph in the LTI model is determined as an input
network D = (V , E), where V = {vi|1 ≤ i ≤ N}, E
= {
−−−−→
〈vi, vj〉|1 ≤ i, j ≤ N, i 6= j}. Particularly, it excludes

parallel arcs, selfloops, and isolated nodes, while includes
a maximum matching noted by M0 and precomputed by
algorithm [6] or [5].

By theorem 2, our input digraph D = (V,E) of definition
6 is controllable by the minimum number of inputs due
to the precomputed maximum matching M0. Besides, since
the minimal inputs directly force the unmatched nodes, the
maximum matching constructs a control configuration. We
thus model the problem of classifying an edge of D into those
categories by analysing the number of maximum matchings
of D involving each edge. Nevertheless, we do not find



any maximum matcing of D for the purpose of efficiently
executing entire classification. Rather, we find maximally-
matchable edges with respect M0 in D as a solution.

III. RELATED WORK

The problem of edge classification [16] always attracts
the attention of various research areas, especially in artificial
intelligence and data mining over years. Yet, it is very seldom
to see that there exists the secure-aware edge classification, let
along to protect the network controllability against attack or
failure on edges. Generally, given a graph G = (V,E) (a social
network mostly), where V and E are vertex and edge sets, a
subset E0 ⊆ E has been labeled or classified in advance,
then, edge classification problem is raised to determine the
labels on or categories of edges of {E−E0}. Chronologically,
this problem was initially formalized by Liben-Nowell et al.
[17], called the link-predition problem at the very beginning.
Given a social network, people proposed to accurately predict
new interaction among existing nodes by analysing proximity
among nodes. At the same time, the link-prediction problem
was developed by Kunter and Golbeck [18], to further infer
the amount of trust value of an edge between two vertices
according to edges with known trust values in a given social
network. Later, Leskovec et al. [19] defined the sign or lable
of edges of online social networks as either negative or positive
in accordance of the attitude from the generator to the recipient
of an edge, which is thus called the edge sign prediction
problem and people seeked to reliably predict the sign of
a single edge, where lables of remaining edges have been
completely known according to social psychology. By then,
Chiang et al. [20] reviewed some existing algorithms and
methods used for the link prediction problem at that time.
And Yang et al. [21] illustrated that a sign of an edge of
social networks can be accurately inferred by user’s behavior
of decision making. In recent years, researchers of [22] used
matrix factorization to predict lables of either positive or
negative of multiple edges of social networks compared with
single edge prediction of [19]. Up to date, since these previous
methods of edge classification problems are based on specific
characteristics of networks, Aggarwal et al. [16] argued that
they can not be well applied into an arbitrary network with
various settings and without specific assumptions of a given
general network. In this case, they correspondingly raised a
general way acccording to the weighted Jaccard coefficient as
the foundmental proximity metric to accurately predict sign
of each edge of general graphs. By contrast, in our work,
we already have three lables: critical, redundant and ordinary,
defined by Liu et al. [1], while there is no previously labeled
edges, and we do not predict the lable of each edge. Rather,
we accurately confirm edges of each category by searching all
maximally-matchable edges in an input network.

Searching all maximally-matchable edges of a general graph
has been pervasively studied over recent decades. Gener-
ally speaking, any edge is said to be maximally-matchable
with respect to a maximum matching if and only if it
can construct a different maximum matching by the edge

replacement together with other edges or solely. Initially,
people found maximally-matchable edges with respect to a
perfect matching, where all nodes are incident to a maxi-
mum matching. Rabin and Vazirani [23] created an algorithm
randomized to find all maximally-matchable edges in general
graphs containing a perfect matching with time complexity of
O(n2.376), where n is the nummber of graph nodes. Then,
in [24], with general graphs, a distinct randomized algorithm
finding the Gallai–Edmonds decomposition was given, as
a way to find maximally-matchable edges in polynominal
time of O(n2.38). For deterministic algorithm of finding
all maximally-matchable edges, Carvalho and Cheriyan [25]
found edges that occurs in at least one perfect matching, called
ear decomposition of a matching-covered graph. Their deter-
ministic algorithm runs in O(nm), in which m represents the
number of edges. Besides, finding maximally-matchable edges
in a bipartite graph, Costa et al. [26] decomposed a bipartite
graph into three partitions: E1 whose edges belonging to all
maximum matchings; E0 whose edges out of any maximum
matching; edges involved into Ew is neither in E1 nor E0. By
finding E1 and Ew, they obtained all maximally-matchable
edges in the bipartite graph, and the time complexity of their
solution is O(nm). In comparison of the worst-case execution
time, Tassa [7] claimed that finding all maximally-matchable
edges in a bipartite graph with a known maximum matching
is reduced to O(n + m) time. She classified all maximally-
matchable edges into few categories. Reviewing her method,
we found a problem. Specifically, Tassa applied the breath-
first search(BFS) [27] to find some arcs in a digraph that is
mapped from the input bipartite graph, as a way to identify
some kinds of maximally-matchable edges. However, the BFS
algorithm can not traverse all arcs of a digraph except for
tree digraphs, it means that some arcs that are incident to any
two traversed nodes and are corresponding to valid maximally-
matchable edges of the input bipartite graph may be missed.
As a result, Tassa’s method can not virtually always find
all maximally-matchable edges in a bipartite graph with a
known maximum matching. By contrast, our input network
is a random digraph, our algorithms are all deterministic and
we only concern the worst case, which accurately find all
maximally-matchable edges of an input network in linear time
except for precomputing the known maximum matching of the
input network.

IV. PRELIMINARIES

A. Modelling an Edge Classification

To model an edge classification, we firstly show the impact
of removing an edge, noted by e ∈ E, on the maximum
matching of D − e.

Theorem 3. In D = (V,E) of definition 6, e ∈ E is removed.
Then, the maximum matching of D− e is M0 if e 6∈M0; or it
is different from M0 with the same cardinality if e ∈M0 and
out of other maximum matchings; or it is smaller than M0 by
one in cardinality if e is in all maximum matchings of D.



Proof. When e 6∈ M0, removing e does not influence M0.
Thus, M0 is still a maximum matching of D − e. When e ∈
M0, and e is excluded by another maximum matching of D.
After removing it, the maximum matching excluding e would
not be influenced, and it is still maximum matching of D− e.
When e is in all maximum matchings of D, matching M0−e is
obtained in D− e. Assume this matching is not maximal, and
a matching with the same cardinality as M0 exists, it means
there is a maximum matching of D can not be influenced by
removing e. However, it contradicts with the condition that e
is in all maximum matchings of D. Therefore, M0 − e is a
maximum matching of D − e.

Corollary 1. In D = (V,E) of definition 6, according to
theorem 3, theorem 2, any e ∈ E is classified into critical
category if e is involved into all maximum matchings of D;
or e is classified into ordinary category if e ∈M0 and out of
other maximum matchings; or e is classified into redundant
category if it is out of any maximum mathcing of D.

Proof. If e ∈ E is in all maximum mathcings of D, by
theorem 3, its removal results in M0 − e as the maximum
matching of D − e. By theorem 2, the minimum number of
inputs of D − e is thus increased by one. So e is a critical
edge. If e ∈M0 and e is out of another maximum matching, by
theorem 2, 3, removal of e does not influence another control
configuration, which would still exist in D− e with the same
minimum number of inputs as before. Thus, e is an ordinary
edge. If e ∈ E is out of any maximum matching of D, by
theorem 2, 3, removal of e can not influence any existing
control configuration of D. Thus, e is a redundant edge.

By corollary 1, we thus model an edge classification of
D = (V,E) of definition 6 into checking how many maximum
matchings involve it. However, as mentioned before, finding
all maximum matchings of a large digraph such as D is
computationally prohibitively. Therefore, finding all maximum
matchings of D can not solve the problem of classifying all
arcs of D into critical, redundant and ordinary categories,
respectively.

Instead, because any two maximum matchings must share
one or more common nodes, we can obtain different max-
imum matchings from M0 by edge replacement rather than
recomputation. Edges out of M0 and replacing edges of M0

to construct a different maximum matching are called the
maximally-matchable edges with respect to M0 [7]. Obviously,
maximally-matchable edges are also involved into other max-
imum matchings of D, while are excluded by M0. Therefore,
we conclude:

Lemma 1. In D = (V,E) of definition 6, given any e ∈M0,
if e is not adjacent to any maximally-matchable edges with
respect to M0, e is in all maximum matchings; if e is adjacent
to any maximally-matchable edge at its head or tail, e is out
of one or more maximum matchings.

Proof. In D = (V,E) of definition 6, because the maximally-
matchable edges with respect to M0 are the arcs in another

maximum matchings but excluded by M0, if e is adjacent
to a maximally-matchable edge, e is excluded by a different
maximum matching from M0 at least. If e is not adjacent
to any maximally-matchable edge, it means that e can not be
excluded by any maximum matching in D. Thus, e is involved
into all maximum matchings of D.

Corollary 2. According to corollary 1 and lemma 1, in n
D = (V,E) of definition 6, with respect to M0, any maximally-
matchable edge is an ordinary link. Given any e ∈ M0, if e
is adjacent to a maximally-matchable edge, e is an ordinary
link. Otherwise, e is a critical link.

By corollary 2, arcs neither in M0 nor the maximally-
matchable are redundant links. Finally, our problem of of
classifying all arcs of D into critical, redundant and ordinary
categories, respectively is solved by finding all maximally-
matchable edges with respect to M0.

B. Maximally-matchable Edges

To find all maximally-matchable edges of D = (V,E) of
definition 6 with respect to M0, we map D into a bipartite
graph, noted by B = (VB , EB):

Definition 7 (B = (VB , EB)). Given a bijection β and
D = (V,E) of definition 6, a bipartite graph B = (VB , EB),
|EB | = |E|, VB = V +

B ∪ V
−
B is obtained. For each arc of D,

there is β :
−−−−→
〈vi, vj〉 → (v+i , v

−
j ), (v+i , v

−
j ) ∈ EB , v+i ∈ V

+
B ,

v−j ∈ V −
B . MB notes the maximum matching mapped from

M0 of D in B.

By definiton 7, any maximally-matchable edges of D with
respect to M0 is mapped into a maximally-matchable link of
B with respect to MB . Thus, we find all maximally-matchable
edges of B with respect to MB . With respect to MB , we define
all kinds of maximally-matchable edges of B:

Definition 8 (Alternating Link). In B = (VB , EB) of
definition 7, with respect to MB , any edge (v+i , v

−
j ) ∈ EB

is an alternating link if either v+i ∈ MB , v
−
j 6∈ MB or

v+i 6∈MB , v
−
j ∈MB .

Theorem 4. B = (VB , EB) of definition 7 holds at least one
different maximum matching from MB , iff any single edge
(v+i , v

−
j ) 6∈MB is an alternating link with respect to MB .

Proof. When (v+i , v
−
j ) is an alternating link with respect

to MB , if v+i ∈ MB , v−j 6∈ MB , and there must be
(v+i , v

−
k ) ∈ MB , by replacing (v+i , v

−
k ) with (v+i , v

−
j ), a

maximum matching is obtained: {MB − (v+i , v
−
k ), (v+i , v

−
j )}.

Similarly, if v−j ∈MB , v+i 6∈MB , and a maximum matching
by replacing an edge of MB and incident to v−j would be
obtained.

When a maximum matching of B is obtained by replacing
an edge noted by (v+i , v

−
k ) ∈ MB with an edge (v+i , v

−
j ) 6∈

MB , and it can be expressed by {MB − (v+i , v
−
k ), (v+i , v

−
j )}.

Therefore, v−j 6∈ MB , and by definition 8, (v+i , v
−
j ) is an

alternating link with respect to MB .



Additionally, maximally-matchable edge sets are defined in
the following:

Definition 9 (Alternating Cycle). With respect to MB of B =
(VB , EB) of definition 7, with {m1,m2, . . . ,mt} ⊆ MB , a
matching set {e1, e2, . . . , et} * MB (1 < t ≤ |MB |) is an
alternating cycle, if either ei ∩mi ∈ V +

B (1 ≤ i ≤ t), ej ∩
mj+1 ∈ V −

B (1 ≤ j < t) and et∩m1 ∈ V −
B ; OR, ei∩mi ∈ V −

B

(1 ≤ i ≤ t), ej ∩mj+1 ∈ V +
B (1 ≤ j < t) and et ∩m1 ∈ V +

B .

Definition 10 (Crossed Alternating Path). With re-
spect to MB of B = (VB , EB) of definition 7, with
{m1,m2, . . . ,mt} ⊆ MB , a matching set {e1, e2, . . . , et} *
MB (1 < t ≤ |MB |) is a crossed alternating path if either
ei ∩ mi ∈ V +

B (1 ≤ i < t), ej ∩ mj+1 ∈ V −
B (1 ≤ j < t)

and et ∩ V +
B 6∈ MB , et ∩ m1 ∈ V −

B ; OR, ei ∩ mi ∈ V −
B

(1 ≤ i < t), ej ∩mj+1 ∈ V +
B (1 ≤ j < t) and et ∩m1 ∈ V +

B ,
et ∩ V −

B 6∈MB .

Definition 11 (Uncrossed Alternating Path). With re-
spect to MB of B = (VB , EB) of definition 7, with
{m1,m2, . . . ,mt} ⊆ MB , a matching set {e1, e2, . . . , et} *
MB (1 < t ≤ |MB |) is an uncrossed alternating path if either
ei ∩ mi ∈ V +

B (1 ≤ i ≤ t), ej ∩ mj+1 ∈ V −
B (1 ≤ j < t)

and et ∩ V −
B 6∈ MB; OR, ei ∩ mi ∈ V −

B (1 ≤ i ≤ t),
ej ∩mj+1 ∈ V +

B (1 ≤ j < t) and et ∩ V +
B 6∈MB .

Lemma 2. With respect to MB of B = (VB , EB) of defi-
nition 7, the alternating cycle, crossed alternating path, and
uncrossed alternating path are all able to construct different
maximum matchings from MB by edge replacement.

Proof. We prove that in B, each existing alternating cy-
cle, crossed alternating path and uncrossed alternating
path with respect to MB can respectively construct a
different maximum matching. An alternating cycle like
{e1, e2, . . . , et} * MB (1 < t ≤ |MB |, replaces its adjacent
{m1,m2, . . . ,mt} ⊆ MB can obtain a maximum matching:
{MB − {m1,m2, . . . ,mt}, {e1, e2, . . . , et}}. With respect to
MB , the crossed alternating path and the uncrossed alternating
path in B can also respectively construct a different maximum
matching from MB by replacing matching links of MB that
are separately adjacent to them.

According to lemma 2, multiple disjoint alternating links,
corssed and uncrossed alternating paths can also construct a
different maximum matching from MB by edge replacement.
By contrast, in B = (VB , EB) of definition 7, we call a
matching set the minimal maximally-matchable edge set if
its cardinality is bigger than one, and a removal of its any
edge would cause either the removed edge or the remaining
matching to no longer able to oconstruct a different maximum
matching from MB by edge replacement.

Theorem 5. In B = (VB , EB) of definition 7, any minimal
maximally-matchable edge set with respect to MB can be
only classified into one of those matching sets defined from
definition 9-11.

Proof. Based on lemma 2, alternating cycle, crossed alter-
nating path, and uncrossed alternating path are all able to
construct different maximum matchings from MB by edge
replacement. Also, these matching sets of definition 9-11 are
the minimal maximally-matchable edge sets, because any ei
for 1 ≤ i < t, 1 ≤ t ≤ |MB |, of any those sets is adjacent to
two edges of MB . Then, either ei or {e1, e2, . . . , et−1} can
not construct different maximum matching from MB by edge
replacement when ei or et is removed.

Assume there is another kind of minimal maximally-
matchable edge set except for them defined from definition
9-11. On the one hand, if its edges are all among nodes of MB ,
and adjacent to the same number of edges of MB . Because
any edge out of MB and incident to nodes of MB is adjacent
to two edges of MB , such egde set can be only the alternating
cycle of definition 9. On the other hand, if there exists the
edge incident to nodes out of MB , and this matching set is still
minimal, there can be only one alternating link of definition
8, while remaining edges are among nodes of MB , and they
can not construct a alternating cycle. As a result, such edge
set can be either crossed or uncrossed alternating path.

Additionally, we also conclude the distribution for crossed
and uncrossed alternating paths via follwoing statement:

Theorem 6. In B = (VB , EB) of definition 7, any two crossed
or uncrossed alternating paths incident to v+i 6∈MB and v−j 6∈
MB , respectively. Then, they must be vertex-disjoint.

Proof. Assume there exists one shared node by two crossed
or uncrossed alternating paths incident to v+i 6∈ MB and
v−j 6∈MB , respectively. Then, starting from this shared node,
a path alternatively involving edges of and out of MB would
exist, and it contains more edges out of MB than edges of
MB . In this case, we can obtain a matching bigger than MB

in cardinality. However, it contradicts with the maximality of
MB . Therefore, any two crossed or uncrossed alternating paths
incident to v+i 6∈ MB and v−j 6∈ MB respectively, must be
disjoint.

Besides, according to the theorem 6, we deduce the re-
lationship among the alternating cycle, crossed or uncrossed
alternating path:

Corollary 3. In B = (VB , EB) of definition 7, by theorem 6,
given any two crossed or uncrossed alternating paths incident
to v+i 6∈ MB and v−j 6∈ MB , respectively. Then, they can not
be adjacent to a same alternating cycle.

Proof. By definition 9-11, any alternating cycle shares com-
mon edges with the crossed or uncrossed alternating path that
is adjacent to it at one or more nodes. Assume this alternating
cycle is adjacent to two crossed or uncrossed alternaitng paths
incident to v+i 6∈ MB and v−j 6∈ MB respectively. From the
shared edges between crossed or uncrossed alternating path
and this alternating cycle, a path alternatively involving edges
of and out of MB would exist. As mentioned before, existence
of a such alternating path contradicts with the maximality of
MB . Therefore, any alternating cycle can not be adjacent to



any two crossed or uncrossed alternating paths incident to
v+i 6∈MB and v−j 6∈MB at the same time.

V. ENTIRE EDGE CLASSIFICATION

We firstly identify all maximally-matchable links of B =
(VB , EB) of definition 7, where a digraph mapped from B is
used:

Definition 12. Digraph D
′

= (V
′
, E

′
) with |E′ | = |EB −

MB | is mapped from B = (VB , EB) of definition 7. Firstly,
any edge of EB is directed from V +

B to V −
B . Then, given a

bijection ω, for each edge mi ∈MB with 1 ≤ i ≤ |MB |, there
is ω : mi → ui and ui 6= VB . Finally, all remaining nodes
and arcs belong to V

′
and E

′
. Also, V

′
= {v′

i|1 ≤ i ≤ |V
′},

and E
′

= {e′j |1 ≤ j ≤ |E
′ |}.

By definition 9-11, and definition 12, each crossed and
uncrossed alternating path of B = (VB , EB) of definition 7,
with respect to MB mapps into a directed path of D

′
, while

any alternating cycle of B with respect to MB mapps into a
directed cycle of D

′
. Then, Our entire classifiaction process

is shown as follow:

Algorithm 1 Entire Egde Classification Outline
Input: D = (V,E), M0

Output: A category for each edge of E
1: Map D with M0 into B = (VB , EB) with MB by

definition 7.
2: Map B into D

′
= (V

′
, E

′
) by definition 12.

3: Find arcs of D
′

related to maximally-matchable edges of
B by using algorithms of V-A, V-B and V-C.

4: Classify edges of D into critical, redundant and ordinary
categories by algorithm of V-D.

A. Find arcs related to alternating links

This algorithm finds arcs related to alternating links. Sa,
Sb denote two sets of returned arcs, while Sc ⊆ V

′
notes a

node set mapped from an edge of MB , and v
′

i ∈ Sc. Adj(v
′

i)
denotes nodes adjacent to v

′

i, and any node of Adj(v
′

i) is noted
by v

′

k ∈ Adj(v
′

i).

Algorithm 2 Identify arcs mapped by alternating links

Input: D
′

= (V
′
, E

′
), Sc

Output: Arcs of D
′

mapped by alternating links of B
1: Label nodes of Sc

2: Sa = ∅ and Sb = ∅
3: while Sc 6= ∅ and v

′

i ∈ Sc do
4: for ∃v′

k ∈ Adj(v
′

i) do
5: Adj(v

′

i) = Adj(v
′

i)− v
′

k

6: if v
′

k out of Sc then
7: Sa = Sa +

−−−−→
〈v′

k, v
′

i〉 or Sb = Sb +
−−−−→
〈v′

i, v
′

k〉
8: Sc = Sc − v

′

i

9: return Sa and Sb

Proof. Initially, since Sc involves the nodes that are mapped
from MB , by definition 12, Sc can be derived in O(|V ′ |)
time. Then, all nodes of Sc are labelled in O(|V ′ |) time to
distinguish if a node is in or out of Sc rather than searching it
in Sc. Firstly, a node v

′

i ∈ Sb is chosen. for loop considers each
adjacent node of v

′

i by definition 8 and 12. If an adjacent node
of v

′

i is out of Sb, this arc is mapped from an alternating link
of B and added into either Sa or Sb. Once @v′

i ∈ Adj(v
′

i), all
nodes adjacent to v

′

i are checked and removed from Adj(v
′

i)
and this procedure removes v

′

i from Sc. After this, each
adjacent node of a newly-chosen node of remaining Sc would
still be considered as before. Finally, Sc = ∅ terminates this
procedure due to node removal of Sc. At that time, Sa and
Sb containing arcs corresponding to alternating links of B are
returned. For time complexity, operation of choosing all nodes
of Sc takes O(|V ′ |) time. Due to line 5, 8, examing adjacent
nodes of every node of Sc is executed in O(|E′ |) time. Thus,
total running time of this procedure is O(|V ′ |+|E′ |) excluding
obtaining D

′
.

The following algorithms find arcs of D
′

related to edges
of alternating paths and alternating cycles of B, according to
arcs of Sa and Sb by the definition 9, 10, 11, and 12.

B. Find Arcs related to edges of Alternating Paths and Cycles

If Sa 6= ∅, following algorithm traverses directed paths of
D

′
to find arcs mapped from all edges of crossed, uncrossed

alternating paths, and alternating cycles of B.
We denote an arc of Sa by e

′

i, e
′

i ∈ Sa. We use P0 to
present an arc set and P (P0) represents a set of arcs out of
P0 and pointed by arcs of P0. Any arc of P (P0) is noted by
e
′

j ∈ P (P0).

Algorithm 3 Find edges of alternating paths and cycle via D
′

Input: D
′

= (V
′
, E

′
), Sa 6= ∅, P0, n

Output: Arcs mapped from alternating paths or cycles of B
1: while ∃e′i ∈ Sa do
2: P0 = ∅
3: E

′
= E

′ − e′i and P0 = P0 + e
′

i

4: for ∃e′j ∈ P (P0) do
5: P0 = P0 + e

′

j and E
′

= E
′ − e′j

6: return P0

7: return E
′

Proof. By definition 10, 11 and 12, any edge of a crossed or
an uncrossed alternating path in B = (VB , EB) of definition
7 mapps into an arc of D

′
= (V

′
, E

′
) within a directed path

starting from an arc of Sa, while any edge of an alternating
cycle mapps into an arc of a cycle among nodes of Sc.

Accordingly, this procedure finds edges approached by each
arc of Sa, because they are in either a directed paths or directed
cycles. Firstly, any e

′

i ∈ Sa is chosen, added into P0. Then,
the for loop finds all arcs approached by e

′

i through a directed
path starting from e

′

i. If P (P0) 6= ∅, e′i currently must point
an arc noted by e

′

j , then, e
′

j is added into P0 to following



search. Since e
′

j is approached by e
′

i within a path, e
′

j currently
corresponds to an edge of a crossed or uncrossed alternating
path of B. If P (P0) = ∅, all arcs approached from e

′

i have
been traversed. In particular, once an arc of P (P0) also points
a node of an arc of P0 in a same path, a cycle is produced
by it, while this arc is approached by ei through a path.
Therefore, P0 contains the arcs of D

′
correspond to edges

of alternating cycle or crossed or uncrossed alternating paths.
Then P0 is returned. After this, another arc of Sa is chosen
from remaining E

′
, and P0 is emptied to collect directed

paths and cycles approached from an arc of Sa as before.
When Sa = ∅, due to edge removal from E

′
, this procedure

terminates. For the running time of this procedure, except
for precomputing Sa by algorithm of V-B and obtaining
D

′
= (V

′
, E

′
) of definition 12, since each traversed arc of

E
′

is removed from E
′

and added into P0, each arc of E
′

is
thus traversed once at most. As a result, total running time is
thus O(|E′ |).

According to theorem 6 and corollary 3, searching arcs from
Sa does not influence searching arcs by Sb in D

′
= (V

′
, E

′
).

Thus, when Sb 6= ∅, algorithm V-B can be slightly modified
to finding arcs of D

′
corresponding to edges of crossed or

uncrossed alternating paths or alternating paths with respect
to MB in O(|E′ |) time. In detail, returned E

′
by algorithm

V-B is used as an input, P (P0) represents the arc set invoving
arcs out of and pointing arcs of P0, because an arc of D

′

corresponding to an edge of crossed or uncrossed alternating
paths or alternating cycles of B now approaches an arc of Sb

along with a directed path.

C. Search Arcs Mapped by Alternating Cycles

By definition 9 and definition 12, as mentioned before, any
alternating cycle with respect to MB of B is mapped into a
directed cycle in D

′
= (V

′
, E

′
), we thus find arcs of cycles

of D
′

mapped from the alternating cycles disjoint with any
crossed or uncrossed alternating paths with respect to MB

of B = (VB , EB). To do this, we search strongly connected
components according to following theorem:

Theorem 7. In D
′

= (V
′
, E

′
), any arc of a strongly

connected component must be involved into a directed cycle.

Proof. A strongly connectedd component is a component
of a digraph whose every vertex can approach any others
through a directed path [28] [29]. Assume that an arc noted by−−−−→
〈v′

i, v
′

j〉 ∈ E
′

is involved into a strongly connected component,
but it is out of any cycle. Then, any distinct node v

′

k of a
same component can be approached by v

′

j through a directed
path, while v

′

k can not approach v
′

i via a directed path because−−−−→
〈v′

i, v
′

j〉 ∈ E
′

is excluded by any directed cycle. However, in
this case, v

′

i and v
′

k are in a same component is contradicted.

Therefore, any arc
−−−−→
〈v′

i, v
′

j〉 ∈ E
′

in a strongly connected
component is involved into a directed cycle.

The strongly connected components can be effectively iden-
tified by using the algorithms of [29]. In the following algo-

rithm, the strongly components among nodes of the returned
E

′
after finding arcs via Sb will be identified and each of arc of

the components will be returned, where such arc set returned
by previous algorithm is represented by Sd and V (Sd) notes
the nodes of Sd.

Algorithm 4 Find arcs mapped by alternating cycles
Input: Sd

Output: Arcs of D
′

mapped by alternating cycles of B
1: Sd ⊆ D

′
and Sd 6= ∅

2: Find strongly connected components among Sd by the
algorithm of [29].

3: Label arcs of each identified strongly connected compo-
nents.

4: return Labelled arcs

Proof. By using the algorithm of [29], among the arc set Sd,
the total running time can be represented by O(|Sd|+|V (Sd)|).
Because |Sd| < |E

′ | and |V (Sd)| < |V ′ |, except for obtaining
Sd, running time of this procedure is O(|V ′ |+ |E′ |) with the
digraph D

′
= (V

′
, E

′
) of definition 12.

D. Arc classification of an Input Digraph

After obtaining some arcs of D
′

= (V
′
, E

′
) of definition

12, by which, we classify all arcs of D = (V,E) of definition
6. In notation, we denote all returned arcs by algorithms of
V-A, V-B and V-C by E

′

0, and E
′

0 ⊆ E
′
. Besides, ei notes arc

of M0 and ej represents a maximally-matchable edge.

Algorithm 5 Classify all arcs of D

Input: D = (V,E), M0, B = (VB , EB), MB , E
′

0

Output: Classified arcs of D
1: if E

′

0 = ∅ then
2: D has no ordinary links
3: return Arcs of M0 are critical links and Arcs out of

M0 are redundant links.
4: else if E

′

0 6= ∅ then
5: Identify edges of EB via E

′

0

6: Identify arcs of E via identified edges of EB

7: Label each identified arc of E with maximally-
matchable

8: return Maximally-matchable arcs of E are ordinaly
link.

9: for ∃ej ∈ E do
10: E = E − ej
11: while ej adjacent to ei ∈M0 do
12: return ei is ordinary link.
13: M0 = M0 − ei
14: return Arcs of M0 are critical links and Arcs of E

are redundant links.

Proof. If E
′

0 = ∅, there is no any maximally-matchable
edges in B with respect to MB , which further means that D
excludes any maximally-matchable edge with respect to M0.
By corollary 2, all arcs of M0 are critical links, and others



are redundant links. If E
′

0 6= ∅, by definition 12, edges of
B mapping into them would be identified in O(|EB |) time
and those identified edges of B is also used to identify arcs
of D by definition 7 in O(|EB |) time, which are labelled in
O(|EB |) time to know if an arc of E is maximally-matchable
or not. Then, by corollary 2, following procedure checks if
a maximally-matchable edge is adjacent to e ∈ M0 or not
to confirm ordinary links of M0. In detail, each maximally-
matchabe edge ej is chosen and removed from E. If ∃ei ∈M0

is adjacent to ej , it is an ordinary link and removed from M0.
When all maximally-matchable edges are examed, all ordinary
links of D are returned, while those remaining arcs of M0 and
E are critical and redundant links respectively. Since each
maximally-matchable edge and each edge of M0 are consid-
ered once at most, the total running time of this procedure is
O(|EB |+ |E|), except for obtaining B = (VB , EB), MB and
E

′
.

E. Time complexity analysis

Reviewing algorithm 1, except for precomputing M0 of
D = (V,E) of defintion 6, total running time to classify entire
arcs of D is the sum of the running time of each steps. By
definition 7 and 12, there are: |EB | = |E|, |EB | > |E

′ |,
and |V ′ | < |VB |, 2|V | ≥ |VB | then, mapping D into B
of definition 7 thus costs Θ(|E|) time, and then mapping B
into D

′
of defintion 12 takes also Θ(|E|) time. Also, running

time of algorithms of V-A, V-B, V-C and V-D, can be also
represented by O(|V |+|E|), O(|E|), O(|V |+|E|) and O(|E|)
respectively. Eventually, classifying all arcs of D = (V,E)
into critical, redundant and ordianry categories, is executed in
O(|V |+ |E|) time.

VI. CONCLUSION

Edges of minimal-input controllable networks in LTI model
are identified by critical, redundant and ordinary categories to
show the importance of each involved edge in maintaining
network controllability or the minimum number of inputs.
Nevertheless, an efficient classification method seems still in
lack. To solve this problem, we use a one-to-one mapped
bipartite graph by the given input network to find all kinds
of maximally-matchable edges in linear time, which plays a
critical role in determinging what arcs should be classified into
which categories. According to the adjacency between each arc
of the known maximum matching and maximally-matchable
edges, we can easily classify all arc of an input network in
linear time except for precomputation of a maximum matching
of the input network. For our future work, we would like
to define few categories to show the importance of vertices
in maintaining network controllability, and then classify all
vertices of an input network into them efficiently.
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[4] L. Zdeborová and M. Mézard, “The number of matchings in random
graphs,” Journal of Statistical Mechanics: Theory and Experiment, vol.
2006, no. 05, p. P05003, 2006.

[5] S. Micali and V. V. Vazirani, “An o (v— v— c— e—) algoithm
for finding maximum matching in general graphs,” in Foundations of
Computer Science, 1980., 21st Annual Symposium on. IEEE, 1980, pp.
17–27.

[6] J. E. Hopcroft and R. M. Karp, “An nˆ5/2 algorithm for maximum
matchings in bipartite graphs,” SIAM Journal on computing, vol. 2, no. 4,
pp. 225–231, 1973.

[7] T. Tassa, “Finding all maximally-matchable edges in a bipartite graph,”
Theoretical Computer Science, vol. 423, pp. 50–58, 2012.

[8] R. Kalman, “On the general theory of control systems,” Automatic
Control, IRE Transactions on, vol. 4, no. 3, pp. 110–110, 1959.

[9] D. Luenberger, “Introduction to dynamic systems: theory, models, and
applications,” 1979.

[10] J.-J. E. Slotine, W. Li et al., Applied nonlinear control. prentice-Hall
Englewood Cliffs, NJ, 1991, vol. 199, no. 1.

[11] R. E. Kalman, “Mathematical description of linear dynamical systems,”
Journal of the Society for Industrial and Applied Mathematics, Series
A: Control, vol. 1, no. 2, pp. 152–192, 1963.

[12] C. T. Lin, “Structural controllability,” Automatic Control, IEEE Trans-
actions on, vol. 19, no. 3, pp. 201–208, 1974.

[13] B. Liu, T. Chu, L. Wang, and G. Xie, “Controllability of a leader–
follower dynamic network with switching topology,” IEEE Transactions
on Automatic Control, vol. 53, no. 4, pp. 1009–1013, 2008.

[14] A. Rahmani, M. Ji, M. Mesbahi, and M. Egerstedt, “Controllability of
multi-agent systems from a graph-theoretic perspective,” SIAM Journal
on Control and Optimization, vol. 48, no. 1, pp. 162–186, 2009.

[15] R. Shields and J. Pearson, “Structural controllability of multiinput linear
systems,” IEEE Transactions on Automatic control, vol. 21, no. 2, pp.
203–212, 1976.

[16] C. Aggarwal, G. He, and P. Zhao, “Edge classification in networks,” in
Data Engineering (ICDE), 2016 IEEE 32nd International Conference
on. IEEE, 2016, pp. 1038–1049.

[17] D. Liben-Nowell and J. Kleinberg, “The link-prediction problem for
social networks,” journal of the Association for Information Science and
Technology, vol. 58, no. 7, pp. 1019–1031, 2007.

[18] U. Kuter and J. Golbeck, “Sunny: A new algorithm for trust inference in
social networks using probabilistic confidence models,” in AAAI, vol. 7,
2007, pp. 1377–1382.

[19] J. Leskovec, D. Huttenlocher, and J. Kleinberg, “Predicting positive and
negative links in online social networks,” in Proceedings of the 19th
international conference on World wide web. ACM, 2010, pp. 641–
650.

[20] K.-Y. Chiang, N. Natarajan, A. Tewari, and I. S. Dhillon, “Exploiting
longer cycles for link prediction in signed networks,” in Proceedings of
the 20th ACM international conference on Information and knowledge
management. ACM, 2011, pp. 1157–1162.

[21] S.-H. Yang, A. J. Smola, B. Long, H. Zha, and Y. Chang, “Friend or
frenemy?: predicting signed ties in social networks,” in Proceedings
of the 35th international ACM SIGIR conference on Research and
development in information retrieval. ACM, 2012, pp. 555–564.

[22] P. Agrawal, V. K. Garg, and R. Narayanam, “Link label prediction in
signed social networks.” in IJCAI, 2013.

[23] M. O. Rabin and V. V. Vazirani, “Maximum matchings in general graphs
through randomization,” Journal of Algorithms, vol. 10, no. 4, pp. 557–
567, 1989.

[24] J. Cheriyan, “Randomized o(m(—v—)) algorithms for problems in
matching theory,” SIAM Journal on Computing, vol. 26, no. 6, pp. 1635–
1655, 1997.

[25] M. H. D. Carvalho et al., “An o (ve) algorithm for ear decompositions
of matching-covered graphs,” ACM Transactions on Algorithms (TALG),
vol. 1, no. 2, pp. 324–337, 2005.

[26] M.-C. Costa, “Persistency in maximum cardinality bipartite matchings,”
Operations Research Letters, vol. 15, no. 3, pp. 143–149, 1994.

[27] T. H. Cormen, Introduction to algorithms. MIT press, 2009.
[28] J. Bang-Jensen and G. Z. Gutin, Digraphs: theory, algorithms and

applications. Springer Science & Business Media, 2008.



[29] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM
journal on computing, vol. 1, no. 2, pp. 146–160, 1972.


