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Abstract 

 Infants and adults learn new phonological varieties better when exposed to 

multiple rather than a single speaker. This paper tests whether having a larger social 

network similarly facilitates phonological performance. Experiment 1 shows that 

people with larger social networks are better at vowel perception in noise, indicating 

that the benefit of lab exposure to multiple speakers extends to real life experience and 

to adults tested in their native language. Furthermore, the Experiment shows that this 

association is not due to differences in amount of input or to cognitive differences 

between people with different social network sizes. Follow up computational 

simulations reveal that the benefit of larger social networks is mostly due to increased 

input variability. Additionally, the simulations show that the boost that larger social 

networks provide is independent of amount of input received but is larger the more 

heterogeneous the population is. Lastly, a comparison of “adult” and “child” simulations 

reconciles previous conflicting findings by suggesting that input variability along the 

relevant dimension might be less useful at the earliest stages of learning. Together, this 

paper shows when and how the size of our social network influences our speech 

perception. It thus shows how aspects of our life-style can influence our linguistic 

performance. 
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The speech signal is inherently variable, and lacks one-to-one mapping. That is, 

one person’s /ɒ/ (as in hot) can be someone else’s /ɔ/ (as in caught). In general, 

phonemes’ articulation varies according to their phonological context, the speech style, 

the identity of the speaker and so forth. While, for the most part we seem to process 

speech flawlessly despite this lack of invariance, individual differences exist.. So what 

makes us better or worse at interpreting speech? As any person who tried to learn a 

second language knows, experience matters. But experience is not only the amount of 

input one receives but also its nature. This paper will show how differences in our social 

networks influence our speech perception by influencing the nature of the input we 

receive. 

People differ in their social networks. For example, Hill and Dunbar (2003) found 

that some people send Christmas cards to fewer than 25 people while others send 

Christmas cards to more than 350 people. This paper takes a statistical perspective and 

tests how interacting with more people influences the nature of the linguistic input one 

receives, and consequently, one’s success in speech perception. In previous work, I have 

found that having a larger social network improves global comprehension of novel 

speakers, , as reflected in better comprehension of restaurant and product reviews, and 

that this effect is causal (Lev-Ari, 2016). In general, people learn language from their 

environment. Furthermore, an integral part of language learning is achieved via 

statistical learning. For example, infants are sensitive to phonological transitional 

probabilities, and use them for speech segmentation (e.g., Saffran, Aslin & Newport, 

1996). Similarly, transitional probabilities between words are argued to be used in 

grammatical acquisition (Thompson & Newport, 2007). The distributional nature of the 

input can also influence not only rate of acquisition (e.g., Huttenlocher, Haight, Bryk, 
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Seltzer & Lyons, 1991; Vosoughi, Roy,  Frank & Roy, 2010) but also the number of 

categories one develops and their boundaries. Thus, Maye and colleagues (2002) 

showed that infants develop two phonological categories, /d/ and /t/, if they are 

exposed to bi-modal distribution of phones along the Voice Onset Time (VOT) 

continuum1, but they develop a single category collapsed over both phonemes if they 

are exposed to a uniform distribution of these phones.     

A key aspect of the input that has been argued to facilitate phonological 

acquisition is its variability. For example, Lively, Logan and Pisoni (1993) have shown 

that Japanese speakers, whose native language does not have two distinct categories for 

/l/ and /ɹ/, are more successful at learning to identify these two English phonemes if 

they are trained by listening to productions from five speakers rather than a single one, 

despite not receiving more input from the multiple speakers. This finding has 

consequently led L2 training on perception and production to habitually use a High 

Variability Phonetic Training paradigm, in which phonetic contrasts are presented by 

multiple speakers and in multiple phonetic contexts. Similarly, adaptation to foreign-

accented speech improves more with exposure to more speakers. For instance, listening 

to English speech from four Chinese-accented speakers rather than only one improves 

one’s ability to understand novel Chinese-accented speakers, even when the amount of 

input is held constant (Bradlow & Bent, 2008). First language acquisition is also better 

with exposure to multiple rather than a single speaker. Thus, 14-months old infants 

have been shown to struggle at perceiving /buk/ and /puk/ as two different words, 

suggesting they do not perceive /b/ and /p/ to be two different phonemes (e.g., Rost & 

                                                        
1 Voice Onset Time is the time distance between the the release of the consonant (the burst) and the 
beginning of voicing. It is a feature that contrasts voiced and voiceless stops, such as /d/ and /t/ in 
English. 
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McMurray, 2009; Stager & Werker, 1997). Yet when exposure consists of productions of 

/buk/ or /puk/ from 18 speakers and not only a single speaker, they succeed at 

differentiating the two words, even though the amount of exposure is identical across 

conditions (Rost & McMurray, 2009). The benefit that listening to multiple speakers 

confers is argued to be due to the greater variability in input from multiple speakers 

than a single speaker. In line with this argument, Sumner (2011) has shown that 

exposure to multiple tokens from a single speaker also leads to greater adaptation to 

that speaker than listening to a single token of that speaker for the same number of 

times. Interestingly, acoustic variability seems to boost not only acquisition at the 

phonological level, but also vocabulary learning. For example, Barcroft and Sommers 

(2005) found that English speakers were better at acquiring new Spanish words the 

more speakers they heard produce these words, even when the total amount of 

exposure was held constant. Similarly, learning was better when the words were 

produced in multiple rather than a few or a single speech style (e.g., neutral, excited, 

whispered). Even in the visual domain, learning of categories has been shown to be 

better when the input in exposure is noisier, and therefore more variable (Posner & 

Keele, 1968). Taken together, the literature suggests that first language acquisition, 

second language acquisition, and even acquisition of visual categories, despite differing 

in many components of their underlying mechanism, are all influenced by the same 

statistical principle. 

But how does variability in input improve learning? Rost and McMurray (2010) 

have investigated this by, in one study, systematically varying only the critical feature 

relevant for categorization, VOT, while holding the rest constant, and, in another study, 

varying all other irrelevant aspects of the speech (e.g., prosody) but keeping the VOT 
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constant. They found that it was variation along the irrelevant aspects that facilitated 

learning. According to their findings, variability along the irrelevant aspects allows 

learners to understand which aspects of the input are relevant for categorization and 

which ones are not (but see Iverson, Hazan & Bannister, 2005 for evidence that in 

second language acquisition the distributional patterns in the input might be harder to 

extract or apply). The same argument has been put forward in the visual domain, where 

the noise in the input has been argued to facilitate learning by enabling learners realize 

which aspects of the input are constant within the category and which aspects are 

allowed to vary within the category (Posner & Keele, 1968). Another possibility that has 

been raised is that greater variability in the input ensures that more of the sound space 

is sampled, increasing the odds that upon hearing a new token, the listener has an 

existing representation to match it to (Sumner, 2011). In Sumner’s study, stimuli varied 

along the critical feature, VOT, and variability influenced learning. One difference 

between the two proposals is that the former mostly regards the acquisition of new 

categories, whereas the latter tries to explain tuning of existing categories. It might 

therefore be the case that different types of variability are useful at different stages of 

learning. Other mechanisms that have been proposed, but will not be discussed here at 

length, include the proposal that variability encourages the learner to generalize 

because it renders it impossible to learn all tokens (Gómez, 2002), and the suggestion 

that variability boosts learning by increasing the number of connections each type has 

(Barcroft & sommers, 2005). 

It might be worth mentioning that while input variability has been shown to 

have a facilitatory effect on learning, it makes processing and identification more 

challenging. That is, processing input from multiple talkers with unpredictable talker 
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switches leads to poorer identification than processing the same words from a single 

talker (e.g., Pisoni, 1993). The reason for this detrimental effect is similar to the reason 

that exposure to multiple talkers is beneficial in the long run – the greater variability. 

Because speakers differ from one another in the way they produce speech, listeners 

need to adjust to every new talker, and use the neighboring linguistic context and 

knowledge about the identity of the speaker to disambiguate and identify the 

phonemes. Such talker differences, however, as mentioned beforehand, are important 

for the formation of robust representations. Therefore, input variability might exert 

additional challenges during processing, but this challenge will improve learning in the 

long-run. 

The goal of this paper is, first, to examine whether having a larger social network, 

defined here as regularly interacting with more people, leads to better speech 

perception, in the same way that exposure to multiple speakers facilitates phonological 

acquisition. This is achieved by testing speech perception skills of people with different 

social network sizes. At a second stage, this paper uses computational simulations to 

explore the mechanism by which such an effect can come about, as well as its 

interactions with other network properties, and its dependence on the stage of learning. 

These simulations show how network size influences the distributional nature of the 

input that we receive, and how those changes influence phonological categorization. 

The simulations additionally show that the same distributional properties can improve 

performance when the phonological categories are already known, but not at the earlier 

stage of learning, when the learner still needs to figure out how many categories there 

are. 

Experiment 1 



8 
 

 The goal of Experiment 1 is to test whether individuals who regularly interact 

with more people are better at speech perception, and in particular, at understanding 

vowels in noise. Success at identifying vowels in noise is one measure that reflects the 

robustness of one’s vowel categories representations. The decision to focus on vowel 

perception was due to the fact that even though variation exists at all levels, research 

shows that variation is much greater across vowels than it is across consonants 

(Kleinschmidt, 2016), and even more importantly, that variation for vowels is 

structured by indexical factors, whereas other types of variation, such as for VOTs in 

stops, is not (Allen, Miller & DeSteno, 2003; Kleinschmidt, 2016). Correspondingly, 

while past research on vowel production showed its dependence on indexical 

properties, past research on variability in consonant production has mostly shown its 

dependence on phonetic context and speech style. For example, vowel production has 

been shown to be influenced by sex, vocal tract size and shape, and dialect (e.g., 

Bachorowski & Owren, 1999; Peterson & Barney, 1952). In contrast, Allen et al. (2003) 

discovered that sex differences in VOTs are eliminated once speech rate is controlled 

for, and Kleinschmidt (2016) similarly found that indexical properties did not predict 

VOT production yet did account for variation in vowel production. Exposure to multiple 

speakers might therefore increase input variability for vowels more than for 

consonants, and importantly, it will allow listeners to learn the conditioning of this 

variability, and thus assist in perception of vowels by new speakers. Vowels were 

embedded in noise, since all participants were adult native speakers, and are therefore 

expected to perform at ceiling in ideal conditions. Embedding speech in noise is a 

common practice to test more fine grained differences between participants (e.g. 

Sidaras, Alexander & Nygaard, 2009). 



9 
 

One potential problem is that people who differ in their social network size 

might also differ in their cognitive skills, and these cognitive differences might influence 

speech perception skills. Therefore, all participants were also tested on a host of 

cognitive measures to ensure that any difference in speech perception performance 

cannot be explained by cognitive differences. 

Method 

Participants. Sixty native Dutch speakers participated for pay. Participants’ age ranged 

from 20 to 57 (M=34; SD=10.6). All reported to have normal hearing. 

Stimuli. The experiment included a language experience questionnaire from which the 

main predictors were extracted, a perception of speech in noise task, and four cognitive 

measures to control for individual differences that might correlate with network size 

and could influence speech perception (Operation-Span, Auditory Short-Term Memory, 

Flanker task, Trail making task). Originally, the experiment was designed to test the 

effect of social network size on two types of skills, the robustness of phonological 

categorization, as measured by the perception of speech in noise task, and the ability to 

identify and normalize talkers, as measured by the Coordinate Response Measure, and a 

multiple talker effect in a phoneme monitoring task. Whereas the test of the robustness 

of phonological categorization was based on previous literature that shows that 

exposure to multiple speakers boosts learning of new phonological categories, the tests 

of talker normalization were more exploratory in nature. Only the results from the 

speech perception in noise task are described here. The results of the talker 

normalization tasks did not reveal any effect of social network properties. As it is hard 

to infer from null results, especially when the test was exploratory, these results are 

neither discussed in here nor followed up on in the later simulations. 
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Language experience questionnaire. Before coming to the lab, all participants completed 

a linguistic experience questionnaire for one week. For seven consecutive typical days 

(i.e., no holidays, sick days etc.), participants logged in all oral interactions with native 

speakers that lasted 5 minutes or longer. Participants were instructed to include one-to-

one and multi-party face-to-face interactions, as well as phone, Skype and other types of 

conversations in which interlocutors hear each other. For each interaction, participants 

listed the identity of the interlocutor, the duration of the interaction, as well as 

additional qualitative details about the interlocutor (e.g., education, occupation) that 

were collected for future purposes. Network Size was calculated as the total number of 

different people with whom participants interacted. Hours of Talk was the sum of all 

reported hours of interaction. Each interlocutor was counted once regardless of the 

number and duration of conversations the participant had with them. Participants’ 

social network size ranged from 11 to 74 (M=27; SD=11.7). 

Transcription of nonwords on noise. To test the robustness of participants’ phonological 

representations, participants transcribed 120 monosyllabic nonwords in noise. Twenty-

three nonwords had a CVC structure, 40 had a CCVC structure, 57 CVCC . Participants 

were informed that the recordings were of non-words. Nonwords were used to 

minimize any influence of vocabulary or grammatical knowledge. All nonwords were 

legal words in Dutch and were taken from Janse and Newman (2013). Nonwords were 

recorded by a native female Dutch speaker. The amplitude envelope of each recorded 

nonword was extracted with Praat, and white noise was generated to fit this envelope. 

Then the original recording was combined with the generated white noise using 

Audacity, creating a file with a Signal to Noise Ratio of 0. The nonwords were presented 

in a random order, and participants responded at their own pace. Participants’ vowel 
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recognition was scored. Dutch has transparent orthography, such that each vowel and 

vowel combination can only refer to one vowel or diphthong. The diphthong /ɛi/ can be 

written in two different manners, ‘ij’ and ‘ei’. Both were scored as correct. On average, 

participants transcribed 66% of the vowels correctly (SD=5.7). 

Working Memory. Unsworth and colleagues’ (2005) Operation Span was used with 

Dutch instructions. Participants evaluated whether equations were correct. Following 

each equation, participants received a letter to memorize. Following a stretch of 

between 3 and 7 equation-letter pairs, participants recalled the memorized letters in 

the correct order. The time provided for solving each equation was adjusted to 

participants’ pace of solving equations during an initial baseline stage to prevent 

participants from rehearsing the letters during the task.  

Auditory Short Term Memory. To measure participants’ auditory Short Term Memory 

(STM), participants heard 30 sequences of 4 non-musical tones. The first three tones in 

each sequences appeared at an inter-stimulus onset interval of 750ms, followed by a 

pause of 1000ms, and then the fourth tone. Participants’ task was to determine whether 

the last tone appeared among the first 3 tones. Twelve different tones were used in 

total. Participants’ auditory STM was scored as the proportion of trials they answered 

correctly. 

Selective Attention. Participants’ selective attention was measured with the Flanker task 

(Eriksen, 1995). Participants saw a string of 5 symbols on the screen. The middle 

symbol was always a chevron (<,>), and participants’ task was to indicate in which 

direction the chevron pointed. On congruent trials, the chevron was flanked by 4 other 

chevrons pointing in the same direction. On incongruent trials, the flanking chevrons 

pointed in the opposite direction. On neutral trials, the chevron was flanked by four 
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hyphens instead of chevrons. The symbols remained on the screen until participants 

responded or until 1000ms have elapsed. There were a total of 144 trials. The selective 

attention score was calculated as the ratio between the Response Times (RTs) on the 

incongruent trials and the RTs on the neutral trials. Higher scores indicate worse 

selective attention. 

Task Switching. Participants’ task switching abilities was measured with Reitan’s 

(1958) Trail making task. On this task participants draw a line to connect 25 circles in a 

set order. In the baseline condition, participants connect circles labeled with increasing 

numbers. In the critical condition, participants link circles labeled with increasing 

numbers and letter in alternating order (i.e., “1”, “A”, “2” etc.). Task switching score is 

calculated as the ratio between the completion time for the critical trial and completion 

time for the baseline trial. Higher score indicates worse task switching ability. 

Procedure. Participants first completed the language experience questionnaire. They 

were then invited for a lab session that took about one and a half hours. Participants 

performed the tasks in the following order: Operation Span, Trail making task, 

transcription of nonwords in noise, Auditory STM, Coordinate Response Measure, 

Flanker task, and Phoneme monitoring. 

Results 

First, the relation between participants’  cognitive abilities and network size was 

examined. Three participants were missing one task each, so some of the reported 

correlations were conducted on 59 or 58 participants, and the general analysis was 

conducted on 57 participants.  None of the cognitive measures correlated with social 

network size (all rs<|0.1|; See Table 1). Therefore, people with different network sizes 
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do not seem to differ in their general cognitive abilities. Additionally, social network 

size did not significantly correlate with the number of hours of talk (r=0.13, n.s.).  

 

Figure 1. The effect of Social Network Size on vowel perception in Experiment 1. The 

gray band indicates Standard Error. 

Cognitive 
measure 

Correlation with 
number of 
interlocutors 

Range Mean (SD) 

O-SPAN (Working 
Memory) 

0.01 4-75 51.2 (16.37) 

Auditory STM 0.07 0.43-0.97 0.75 (0.12) 
Flanker task 
(Selective 
Attention) 

-0.05 0.37-1.52 1.24 (0.16) 

Trail making task 
(Task Switching) 

-0.03 1.29-4.41 2.15 (0.63) 

Table 1. Correlations between the cognitive measures and social network size 

 To test whether participants’ social network size predicted their success at 

understanding speech in noise, a logistic mixed model analysis with Participants and 

Items as random variables and Network Size as a fixed factor was run. Despite the lack 

of correlations between the cognitive measures and Social Network Size, to be 
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conservative, WM, Auditory STM, Selective Attention, and Task Switching were 

simultaneously entered into the model as fixed factors. Similarly, to further ensure that 

any effect of Network Size is not due to greater amount of input, Hours of Talk was also 

simultaneously entered into the model as a fixed factor. The random structure included 

intercepts for both random variables as well as slopes for WM, Auditory STM, Selective 

Attention, Task Switching, and Network Size for the Items variable2. Results revealed a 

significant effect of Network Size (β=0.02, SE=0.01, z=2.01, p<.05; See Appendix A for 

the full table of results), such that participants with larger social networks transcribed 

more vowels correctly3. No other effect reached significance4.  

To conclude, the results of Experiment 1 indicate that participants with larger 

social networks are better at understanding speech in noise, at least in terms of vowel 

recognition. Importantly, the experiment’s results show that this advantage is not due to 

differences in cognitive abilities between participants who have social networks of 

different sizes. While it cannot be completely ruled out that there is another factor that 

was not measured here, that correlates with Social Network Size and is responsible for 

the effect, such a candidate does not immediately present itself. Similarly, nonwords 

were used to minimize the influence of any potential differences in linguistic 

knowledge, but such effects cannot be completely ruled out. Additionally, as with any 

                                                        
2 A slope for Hours of Talk was not included, because when included, the model failed to converge. 
Considering that slopes are included to prevent spurious effects, and Hours of Talk did not have a 
significant effect, its omission does not influence the results. 
3 An identical model using log-transformed Network Size instead of raw Network Size was run to examine 
whether the effect of network size is logarithmic rather than linear. The effect of Log Network Size was 
smaller and did not reach significance (β=0.8, SE=0.51, z=1.60, p=0.11) indicating that the effect of 
Network Size on performance is linear in nature. 
4 One of the reasons that none of the cognitive measures showed a significant effect is due to the high 
correlation between the Working Memory measure (O-Span) and Auditory STM (r=0.52, p<0.0001). 
When each cognitive measure was tested in the absence of others, Auditory STM predicted better 
transcription of speech in noise (β=1.7, SE=0.7, z=2.43, p<.02). Social Network Size remained significant 
in this analysis (β=0.02, SE=0.01, z=2.24, p<.03). 
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individual differences study, it cannot be ruled out that the direction of the effect goes in 

the opposite effect, such that those who are better at understanding speech in noise 

have larger social networks. Nevertheless, there is no known evidence to suggest such 

an effect. It seems most likely, then, that, in line with previous work about the 

facilitatory effect of exposure to multiple speakers on phonological acquisition, having a 

larger social network improves one’s perception in noise. Next, computational 

simulations were performed to further explore this account.   

Simulation 1 

 Simulation 1 explores the mechanism underlying the effect of social network size 

on speech perception. Computational simulations allow an understanding of how social 

network size changes the nature of the input we receive, and how such changes 

influence speech perception. Furthermore, the use of computational simulations allows 

the isolation and crossing of different aspects of the social network that are difficult to 

isolate and measure in real life. Thus, the computational simulations reported here  

reveal both how and when social network size, as well as other properties of the 

network, improve performance. The simulations were run on recognition of Dutch 

vowels, rendering them maximally similar to the task in Experiment 1. Noise was not 

modeled in the simulations, as it was only included in Experiment 1 to prevent ceiling 

effects and allow examination of fine grained differences. As it played no theoretical 

role, whereas adding it to the simulations would require making different assumptions 

about how listeners deal with noise, the simulations were of vowel categorization in 

silence. 

General method 
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 The computational simulations used an agent-based model and were run on 

recognition of Dutch vowels. Each simulation generated a population of 1000 speakers. 

The linguistic productions in the simulations were sets of 2 formant frequencies, 

simulating vowel production. The formant values for the population were set according 

to the averages and standard deviations of Dutch vowels from Adank, van Hout & Smits 

(2004). Average formant values for each speaker were randomly sampled from this 

distribution. Networks were then generated by randomly selecting individuals from the 

population. 

 Following network generation, meetings between the agent and members of her 

network were simulated. The agent started out without any tokens of any of the vowels. 

In each meeting with a member of the network, the agent’s interlocutor produced one 

vowel of each type, by sampling from a distribution centered around the interlocutor’s 

formant means and with a standard deviation of 0.02 of the formant’s mean. The agent 

stored each of these vowels with their appropriate labels5. This continued for a pre-

defined number of meetings.  In the main set of simulations, the number of meetings for 

agents in both small and large network size conditions was 500. Importantly, in all 

simulations, the number of meetings was identical across agents in the small and large 

social network conditions. 

Following the meetings, the agent was tested on recognition of vowels produced 

by speakers outside of her network. In each test trial, one member of the population 

that is not in the agent’s network was randomly selected. That speaker then randomly 

                                                        
5 The choice of setting variability to 0.02 of the formants’ mean was somewhat arbitrary, due to the lack of 
large enough corpora that provide information about  intra-speaker variability with the same phoneme 
within the same phonetic context (the simulation ignores variability due to phonetic context and ability to 
use that information to disambiguate the sound, even though social network size might also improve this 
ability). Importantly, as reported on p. 19-20, simulations that varied intra-speaker variability showed 
that the benefit of having a larger social network also extends to both lower and higher levels of intra-
speaker variability.   
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produced one vowel. The agent classified the incoming vowel by calculating the 

Mahalanobis distance between the vowel’s formants and each of the vowel categories in 

her stored inventory, and labeling it with the label of the vowel category to which it is 

closest. If correct, the trial was scored as 1, and otherwise, it received a score of 0. In 

each simulation, the agent was tested on 100 vowels.   

How does network size influence the nature of the input and agent’s performance? 

To test whether having a larger social network improves vowel recognition, 100 

simulations with a network of 20, and 100 simulations with a network of 100 were run. 

These network sizes were selected, as they reflect realistic common network sizes 

located towards the extremes6. Replicating the results of Experiment 1, an effect of 

social network size was found (t(198)=2.34, p<.03, Cohen’s D=0.33) such that accuracy 

was higher in simulations with networks of 100 individuals (M=79.4%) than with 

simulation with networks of 20 individuals (M=78.0%). 

 

                                                        
6 The network size of participants in Experiment 1 tended to be smaller, 11-74, but this is due to the fact 
that most participants who volunteer for such a time-intensive study  do not work full time and engage in 
relatively few social activities. Earlier pilot studies suggest that 20-100 is a more common range. 
Furthermore, figures 2-3 show the effects along a range of network sizes. 
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Figure 2. Illustration of typical input that agents with a network size of 20 (left) and a 

network size of 100 (right) receive. Axes represent the first and second formant 

frequencies. Each color represent a different vowel category. 

 As the effect of social network size was replicated, it is possible to explore its 

underlying mechanism by examining in what way the input in the two types of 

networks differs. Previous research suggested that the benefit that exposure to multiple 

speakers confers is due to the greater variability in the input. Figure 2 illustrates the 

differences between the typical input that agents with a network of 20 received and the 

typical input that agents with networks of 100 received. Visual examination suggests 

that the input that the agent with a network of 100 received is indeed spread out more 

widely. One way to measure variability is to examine the Standard Deviation (SD) of the 

vowel categories. Indeed, a comparison of the SDs in the two types of networks shows 

that the two types of networks differed in the average SD of the vowels’ formants for all 

formants (f1: t(198)=3.70, p<.001; f2: t(198)=5.23, p<.001), such that the SD was 

always higher in networks of 100 speakers.  To test whether having greater input 

variability improves performance, the standard deviations of the formant frequencies 

were z-scored by vowel category separately for f1 and f2, and then the two scores were 

averaged to form one Input Variability score, such that, for every simulation, there was 

one standard measure of variability per vowel category. Additionally, accuracy per 

vowel category at test was extracted for each simulation. These accuracy scores were 

then z-scored by vowel category as well, as it is not recommended to use proportions as 

a dependent measure. A mixed model regression analysis with Simulation and Vowel as 

random variables, Input Variability as a fixed factor was then run to test whether 

variability in vowel category predicts accuracy at test for that category. The random 
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structure included intercepts as well as slopes for Input Variability for both the 

Simulation and Vowel random variables. Results confirmed that having greater input 

variability improves accuracy (β=0.33, SE=0.03, t=10.117). To examine whether input 

variability is the underlying reason that leads larger social networks to improve 

performance, a mediation test was run using the mediation package in R (Tingley, 

Yamamoto, Keele & Imai, 2014). This analysis calculates what proportion of the effect of 

a factor (Network Size) on the dependent measure (Accuracy) is due to a mediator 

(Input Variability) rather than being a direct effect. It additionally tests whether the 

factor also has a direct effect on the dependent measure after the mediator has been 

taken into account. Results indicate that the vowel categories’ variability mediates the 

effect of network size, rendering the direct effect of Network Size nonsignificant. 

Specifically, 55% of the effect of network size on accuracy is due to input variability. 

Correspondingly, when both Network Size and Input Variability were entered into the 

same model, results showed a significant positive effect of Input Variability (β=0.32, 

SE=0.03, t=9.86), but Network Size was no longer a significant predictor (β=7e-4, SE=5e-

4, t=1.22).   

To conclude, the simulations revealed that having a larger social network 

improves speech perception by increasing input variability.  

The interactive effects of network properties on performance 

Next, different parameters of the simulations were modified to examine if and 

how they influence performance and modulate the effect of social network size. All 

analyses in the following section compare networks of 20 speakers with networks of 

                                                        
7 Here and later, significance is determined using the common criterion of t>=2. 
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100 speakers, as in the previous section. For illustration purposes, the figures also plot 

results from networks of 10 and 50 speakers.  

Most of the literature on the importance of input variability focused on its 

contribution to learning. As stated earlier, language learning continues throughout our 

lives. Nonetheless, one may wonder whether input variability plays a larger role when 

input is scarce, and the more exposure one has, the less of a boost input variability 

provides. The results of Experiment 1 did not find such an effect, as the total number of 

hours of talk did not predict performance there. Still, to examine whether that is the 

case, identical simulations were run in which only the number of meetings the agent 

had varied between 100, 500, and 5000. Results show that agents that received more 

input did not perform any better. In contrast, the effect of network size was significant 

at all input levels (100 meetings: 77.5% vs. 78.9%, t(198)=2.28, p<.03; 500 meetings: 

78% vs. 79.4%, t(198)=2.34, p<.03; 5000 meetings: 76.9% vs. 78.6%, t(198)=2.74, 

p<.01). 

Another factor that could potentially modulate the effect of network size is the 

heterogeneity of the population. Therefore, another set of simulations was run in which 

the heterogeneity of the population, defined as the standard deviation of the vowel 

formant frequencies across the population, was either doubled (heterogeneous 

condition) or cut in half (homogeneous condition)8. As Figure 3 illustrates, performance 

is better the more homogeneous the population is (network size 20: baseline vs. 

homogeneous: 78% vs. 97%, t(198)=40.17, p<.001, baseline vs. heterogeneous: 78% vs. 

47.25%, t(198)=43.73, p<.001; network size 100: baseline vs. homogeneous: 79.4% vs. 

                                                        
8 Thr original means and Standard Deviations of the vowels were taken from Adank, Van Hout & Smits 
(2004), and are: oe:273 (35),872 (136), ie: 286 (26), 2343 (276), o: 410 (57), 869 (135), a: 668 (139), 
1226 (151), aa: 791 (157), 1499 (128), e: 505 (62), 1865 (180), i: 380 (37), 2098 (241), uu: 282 (42), 
1826 (187), u: 391 (48), 1713 (171).  
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97.5%, t(198)=41.78, p<.001, baseline vs. heterogeneous: 79.4% vs. 50.2%, 

t(198)=46.91, p<.001). The effect of Network Size, however, is significant at all levels of 

population heterogeneity (homogeneous: t(198)=2.55, p<.02, Cohen’s D: 0.36; 

heterogeneous: t(198)=4.02, p<.001, Cohen’s D: 0.57), though the effect size is 

numerically larger when the population is more heterogeneous. In other words, 

predictably, it is more difficult to understand novel speakers if the population is very 

heterogeneous. When speakers are very similar to each other, there is less ambiguity in 

the signal and it is easy to generalize from one to the other. The more speakers there 

are, the more likely there is to be ambiguity in the signal due to category overlap across 

speakers, and the less representative each speaker is. Thus, it precisely when such 

variability exists that having a larger social network is most helpful. When speakers 

differ from one another, there is need to encounter more of them in order to understand 

the speech patterns in the population and the structure of the speech categories. 

 

Figure 3. The effect of population variability on accuracy at different network sizes 

Similarly, one may wonder how the effect of network size depends on 

individuals’ consistency within themselves. Results show that increasing the standard 
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deviation of the productions of each speaker led to a drop in accuracy (network size 20: 

baseline vs. inconsistent: 78% vs. 74.4%, t(198)=5.79, p<.001, inconsistent vs. highly 

inconsistent: 74.4% vs. 66.9%, t(198)= 11.84, p<.001; network size 100: baseline vs. 

inconsistent: 79.4% vs. 76%, t(198)=5.66, p<.001, inconsistent vs. highly inconsistent: 

76% vs. 68.7%, t(198)=11.36, p<.001;). This result is also predictable as lower intra-

speaker consistency, similarly to greater inter-speaker heterogeneity, increases the 

ambiguity in the input. Even when individual consistency was lower, however, having a 

larger network led to better performance (inconsistent: t(198)=2.59, p<.02, Cohen’s D: 

0.37; highly inconsistent: 68.71% vs. 66.9%, t(198)=2.71, p<.01, Cohen’s D: 0.38). 

To conclude, the simulations reveal that having a larger social network can 

indeed causally improve speech perception, and that it achieves this by its increased 

variability. The simulations further show that the positive effect of network size holds 

across different levels of amount of input, and holds even if speakers are less consistent 

within themselves. At the same time, its beneficial effect seems to depend on the 

community’s heterogeneity. Having a larger social network seems to be particularly 

helpful when the population is variable.  

The results of these simulations are in line with Sumner’s (2011) results, which 

show that input variability along the relevant dimension boosts learning. They are at 

odds though with the results of Rost & McMurray (2010), who found that the facilitatory 

effect of multiple speakers is due to the variability they provide along the irrelevant, 

rather than relevant, dimension. As mentioned earlier, one potential reason for the 

difference between the studies is that Rost & McMurray(2010)  studied infants, who are 

yet to establish categorical distinction along the VOT continuum, whereas Sumner 
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(2011) tested adults who already use VOT to categorize phonemes, but needed to adjust 

their category boundary.  

The situation in Simulation 1 is more similar to the adult than the infant case, as 

the learners knew how many categories there are, and to which category each token 

that they received belonged. In this case, learners benefit from having a wide spread in 

each category, as it assists in correctly categorizing atypical tokens. In contrast, if the 

learner’s task is still to figure out how many categories there are and where in the space 

they are located, then category spread might hinder performance. In this case, input that 

is characterized by scattered clusters, as is the case when the social network is small, 

might be more useful for separating categories. Simulation 2 takes a first stab at this 

hypothesis by simulating learners who are unaware of the number of categories and the 

identity of each incoming token. Instead, these learners try to figure out the number of 

categories that there are from the distribution of the input they receive from either 

small or large networks.   

Simulation 2 

 Simulation 2 examines whether having greater input variability along the 

dimension that is critical for categorization is less helpful at the earliest stages of 

learning, when the categories are not known yet and still need to be learned. 

 General method 

 To test the effect of input variability at the earliest stage of learning, the 

simulations from Simulation 1 were repeated with the following change: the input that 

the agent received was not labeled. As in Simulation 1, social networks included either 

20 or 100 interlocutors, and the agent met with people from her network a predefined 
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number of times, each time receiving one token of each vowel. This time, those tokens 

were not labeled and the agent stored all of them together. After all meetings have 

concluded, a cluster analysis was run on the input that each agent received using Mclust 

package in R, which uses Gaussian mixture models (Fraley, Raftery, Murphy & Scrucca, 

2012). Separate simulations were run for different number of meetings to examine 

whether the results differ depending on amount of input. Therefore, for each network 

size, 5 simulations were run for each of the following number of meetings: 100, 300, 

500, and 1000. The number of simulations per condition was kept low as the results 

were highly consistent within each combination of network size and meetings. 

Results 

 To examine whether clusters are harder to perceive when input variability is 

high, and whether this difference depends on amount of input, a t-test was run 

comparing the number of estimated clusters in the small and large social network 

conditions for each number of meetings. Results show that, as predicted, for each 

number of meetings, the number of estimated clusters was significantly higher in the 

small network condition than in the high network condition (100 meetings: M=18.4, 

SD=0.89 vs. M=4, SD=0, t(8)=36, p<.0001; 300 meetings: M=26, SD=2.45 vs. M=10.4, 

SD=1.14 , t(8)=12.91, p<.0001; 500 meetings: M=29.6, SD=0.89 vs. M=12, SD=2, 

t(8)=17.96, p<.0001; 1000 meetings: M=29.2, SD=1.79 vs. M=21, SD=4.58, t(8)=3.73, 

p<.01).  
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Figure 4. Illustration of estimated number of clusters after 100 meetings. The left panel 

demonstrates the case with a network of 20, and the right panel demonstrates the case 

of a network of 100.  

 

 Figure 4 illustrates what the clusters in each type of network look like after 100 

meetings. As can be seen, when the input comes from a small network, often a single 

real category is divided into several categories, and outliers often form separate 

categories as well. Interestingly, the estimated number of categories was always larger 

than the real number of vowels when the social network was small. In contrast, when 

the input is provided by a large network, there are large categories, each comprised of 

several real categories.  

 Research on second language acquisition indicates that it is hardest to acquire a 

new distinction if it requires you to divide one category you have into two (e.g., Best, 

McRoberts & Goodell, 2001). This suggests that in the process of learning it might also 

be easier to merge distinct categories into one category than to split existing categories 

into several smaller ones. Therefore, at the earliest stages of learning, input variability 

along the relevant dimension might indeed not be useful but instead, it might even 

hinder the acquisition of the categories. At the same time, input from more speakers 
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often increases variability along both the relevant and irrelevant dimensions. Therefore, 

receiving input from multiple speakers might still be useful also at the earliest stages of 

learning, as Rost & McMurray (2009) found, but for a different reason. Having a larger 

social network then might boost performance via different mechanisms at different 

stages of learning.    

General discussion 

 The goal of this paper was to understand how individual differences in social 

networks can influence speech perception. Previous research suggested that 

phonological acquisition is influenced by the distributional nature of the linguistic input 

(Maye et al., 2002). In particular, it has been proposed that learning is better when the 

input is more variable, and input variability was often manipulated by increasing the 

number of speakers one is exposed to (Bradlow & Bent, 2008; Lively et al., 1993; Rost & 

McMurray, 2009, 2010). As people differ in the number of people they regularly interact 

with (Hill & Dunbar, 2003), this paper examined whether individual differences in 

people’s social network size influences speech perception abilities.  

Experiment 1 tested this hypothesis exploiting the natural variation in social 

network size. Results indicated that individuals with larger social networks are better at 

understanding vowels embedded in noise. Importantly, participants were tested on 

several cognitive abilities, and the beneficial effect of social network size on vowel 

perception was not driven by differences in any of the tested cognitive abilities among 

participants with different social network sizes, suggesting that the effect of social 

network size might be causal. 

Simulations 1 systematically explored the mechanism underlying the beneficial 

effect of social network size as well as its interaction with other network properties. 

The results indicated that having a larger social network increases the variability in the 
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input, and this greater input variability leads to better phoneme categorization.  

Simulation 2 showed that this positive effect of input variability might not apply at the 

earliest stages of learning, as it renders the categories harder to distinguish. 

These results reconcile Sumner’s (2011) results with those of Rost and 

McMurray (2010). They suggest that different types of variability are useful at different 

stages of learning. During the initial stage, when the learner still needs to learn which 

properties to attend to and how to categorize them, variation in the irrelevant aspects of 

the input is more useful, but once the learner has learned what she should attend to and 

what the categories in the language are, it is the distributional properties of the relevant 

aspect of the input that are crucial for improving ability to classify input from new 

speakers. Thus, in Rost and McMurray’s study (2010) infants did not benefit from 

variation along the relevant dimension. Simulation 2 suggests that at that stage, input 

variability at the relevant dimension makes it harder to distinguish between categories. 

In contrast, once the categories are already known and the tokens can be identified 

when processed, as is the case of adult native speakers, input variability increases 

learning and category robustness. Therefore, having larger social networks had a 

beneficial effect in both Experiment 1 and Simulation 1, and increased input variability 

had a positive effect in Sumer’s (2011) study.  

The effect of social network size in both Experiment 1 and Simulation 1 was 

significant but small. This is partly due to the fact that the participants, as well as the 

simulated agents, were adult native speakers who are proficient in the language. It is 

therefore impressive but its contribution at this point is more theoretical than practical. 

Future research should extend the study of the effect of social network size to 

populations with poorer linguistic performance, such as children with a language gap, 

second language learners etc., where social network size might account for a greater 
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part of performance. Similarly, future research should examine which other 

phonological aspects the effect extends to, and how this relates to their role in providing 

indexical information about the speakers. 

Simulation 1 also examined the role of other properties of the network, as well as 

investigated their moderating role on the effect of social network size. Thus, it was 

discovered that, in line with the experimental results of Experiment 1, receiving more 

input can only be of limited help, if any, and having a larger social network improves 

performance independently of amount of input received. In contrast, the heterogeneity 

of the population plays an important role, and moderates the effect of social network 

size. Having a larger social network is more useful the more heterogeneous the 

population is.  

These results also raise new questions. First, one may wonder whether social 

network size causally influences speech perception. After all, Experiment 1 did not 

manipulate social network size but exploited the natural variation in it. As is the case 

with any individual differences study, non-causal explanations cannot be ruled out 

completely. Several factors, however, make such alternative explanations unlikely. First, 

participants were tested on a host of cognitive measures, and these did not correlate 

with social network size, as well as were controlled for. Even more importantly, 

Simulation 1 replicated the positive effect of social network size. While computational 

simulations only show what’s possible rather than necessarily the processes that take 

place, they show that having a larger social network should influence the distribution of 

the linguistic input one receives in a manner that facilitates later phoneme 

categorization. Lastly, these studies were inspired by experimental results that showed 

that exposure to multiple speakers leads to better phonological acquisition. Therefore, a 

causal explanation for the role of social network size seems the most plausible one. 
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Another potential caveat is that the actual variability in the input that 

participants in Experiment 1 received was never measured. Therefore, while the results 

of Simulation 1 suggest that input variability accounts at least partially for this effect, it 

is theoretically possible that the benefit of exposure to multiple speakers is due to 

another aspect of the input rather than its variability. That said, Experiment 1 was 

inspired by studies that varied the number of speakers with the goal of manipulating 

variability (e.g., Bradlow & Bent, 2008; Rost & McMurray, 2009). These studies assumed 

that increasing the number of speakers increases the variability of the input, but did not 

measure it. The results of the simulations reported here support that assumption, as 

they show that larger networks provide more variable information even when all 

speakers speak the same dialect. 

The simulations examined the influence of several different network properties. 

At the same time, there are additional network properties whose role has not been 

simulated. For example, network density, that is, the interconnectivity of network 

members, might play a role as well. Future research should therefore measure 

individuals’ network density, and include simulations that allow network members to 

interact with each other, and thus, influence each other. Additionally, future research 

should examine not only how many members people have in their social network but 

how the interaction with them is distributed. For example, social network size might 

play a different role if individuals interact a similar amount of time with most members 

of their network, than if the interactional pattern is skewed, such that they interact with 

a few for the large majority of the time, and very little with everyone else. 

 To conclude, this paper shows that the nature of our social network can influence 

the nature of the input we receive, and consequently, our speech perception. It thus 
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opens the door for research on how aspects of our life-style can influence our linguistic 

performance. 
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Appendix A – Full table of results for transcription of nonwords in noise task 

 β SE Z p-value 

(intercept) 1.1 0.33 3.36 <0.001 

Social Network 

Size 

0.02 0.01 2.01 <0.05 

Hours of Talk 0.001 0.005 0.21 0.83 

WM 0.001 0.007 0.2 0.84 

Auditory STM 1.37 0.87 1.58 0.11 

Selective 

Attention 

-0.42 0.62 -0.69 0.49 

Task Switching -0.03 0.16 -0.2 0.84 

 

 

 

 

 


