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Abstract 

Translational neuroimaging requires approaches and techniques that can bridge between 

multiple different species and disease states. One candidate method, which offers insights into 

the brain’s functional connectivity (FC), is resting state fMRI (rs-fMRI). In both humans and 

non-human primates, patterns of functional connectivity (often referred to as the functional 

connectome) have been related to the underlying structural connectivity (structural 

connectome). Given the recent rise in pre-clinical neuroimaging of mouse models it is an 

important question whether the mouse functional connectome conforms to the underlying 

structural connectivity. Here, we compared FC derived from rs-fMRI in mouse to the underlying 

monosynaptic structural connectome as provided by the Allen Brain Connectivity Atlas. We 

show that FC between inter-hemispheric homotopic cortical and hippocampal areas, as well 

as in cortical-striatal pathways, emerge primarily via monosynaptic structural connections. In 

particular, we demonstrate that the striatum can be segregated according to differential rs-

fMRI connectivity patterns that mirror monosynaptic connectivity with isocortex. By contrast, 

for certain subcortical networks, FC emerges along polysynaptic pathways as shown for left 

and right striatum, which do not share direct anatomical connections, but high FC is putatively 

driven by a top-down cortical control. Finally, we show that FC involving cortico-thalamic 

pathways is limited, possibly confounded by the effect of anesthesia, small regional size and 

tracer injection volume. These findings provide a critical foundation for using rs-fMRI 

connectivity as a translational tool to study complex brain circuitry interactions and their 

pathology due to neurological or psychiatric diseases across species.  

Significance statement  

A comprehensive understanding of how the anatomical architecture of the brain, often referred 

to as the “connectome”, corresponds to its function is arguably one of the biggest challenges 

for understanding the brain and its pathologies. Here we use the mouse as a model for 

comparing functional connectivity derived from resting-state fMRI with gold standard structural 

connectivity measures based on tracer injections. In particular, we demonstrate high 

correspondence between functional connectivity measurements of cortico-cortico and cortico-

striatal and their anatomical underpinnings. This work provides a critical foundation for studying 

the pathology of these circuits across mouse models and human patients. 

Keywords: Functional connectome, structural connectivity, mouse, viral tracer, resting-state 

fMRI



Introduction  

The brain relies on finely tuned and adaptable neuronal networks for the control of perception, 

cognition, and behaviour. The organization of these networks at micro-, meso-, and macro-

scale levels are considered essential to for the segregation and integration of information 

throughout the brain (Bullmore and Sporns, 2009; Park and Friston, 2013). Neuronal networks 

can be identified either at the structural level, i.e. represented by the physical presence of 

neuron cell bodies, dendrites, projecting axons, and synapses connecting two neuronal 

entities, or at the functional level, i.e. by dependencies of spiking and synaptic activities across 

neurons (Park and Friston, 2013). Such structural and functional measurements of the brain 

can then be conceptualised by describing regions-of-interest as nodes and interactions 

between nodes as edges, a framework that has become important for defining the intrinsic 

architecture of the brain - also referred to as “the connectome” - as well as it’s alterations due 

to disorders (Bullmore and Sporns, 2009). Information on the functional connectome can be 

resolved using resting-state functional magnetic resonance imaging (rs-fMRI). Rs-fMRI 

estimates the statistical interdependence of two brain areas from temporal correlations of 

fluctuating blood oxygen levels (Biswal et al., 1995; Damoiseaux et al., 2006; De Luca et al., 

2006; Biswal et al., 2010). It has been proposed that high functional connectivity (FC) between 

remote brain areas results from information exchange via anatomical connections suggesting 

that emerging functional networks indirectly reflects the architecture of the structural 

connectome (Honey et al., 2009; van den Heuvel et al., 2009; Zhang et al., 2010). Several 

approaches are available to assess anatomical connectivity, such as in-vivo diffusion-weighted 

MRI (Basser et al., 1994) and tractography, as well as ex-vivo histological cyto-architectonic 

mapping (Kasthuri and Lichtman, 2007; Lichtman et al., 2008). For human studies, diffusion-

weighted MRI-based connectome reconstruction has become the method of choice, being 

non-invasive and available in many research centers. However, tractography methods have 

difficulty resolving crossing-fibers (Jbabdi et al., 2015), they lose their sensitivity in gray matter 

and do not provide reliable information on track terminations. Anterograde/retrograde neuronal 

viral tracer studies in animal models are not hindered by crossing fibres, and are currently 



considered the gold standard for determining monosynaptic axonal pathways (Swanson, 1982; 

Oh et al., 2014; Zingg et al., 2014; Hintiryan et al., 2016). Recently, viral tracers have been 

used to extensively map the mouse brain’s monosynaptic structural connectome at the 

mesoscale level (Oh et al., 2014; Zingg et al., 2014; Hintiryan et al., 2016). This offers new 

opportunities to validate non-invasive imaging methods against the anatomical ground truth 

using a mammalian model, which shares several key principles of network architecture with 

the human brain (Stafford et al., 2014; van den Heuvel et al., 2016). However, in the past, 

detailed structure-function comparisons in the mouse brain have been limited by the 

achievable rs-fMRI quality. Here we used advanced MRI technology and protocols (Grandjean 

et al., 2014; Zerbi et al., 2015) for deriving the brain-wide functional connectome of mouse 

from high-resolution rs-fMRI acquisitions, which we then compared through a systematic 

approach with the monosynaptic structural connectome derived from viral tracings (Allen Brain 

Institute, http://connectivity.brain-map.org/).  

 

Our results confirm that high FC emerges predominantly between monosynaptically connected 

regions. In addition to strong functional connectivity between homotopic areas of left and right 

isocortex, we show now for the mouse brain that the striatum can be segregated according to 

differential rs-fMRI connectivity patterns, which mirror monosynaptic structural connectivity 

with isocortex. Interestingly, we also found that high FC between subcortical structures of the 

left and right hemisphere emerges via polysynaptic pathways suggesting that isocortex might 

be an important relay area for mediating FC that extends beyond the monosynaptic structural 

connectome. By contrast, FC along cortico-thalamic pathways was limited, possibly 

confounded by the effect of anesthesia, region-of-interest (ROI) size and tracer injection 

volume. These results provide a critical foundation for future work that aims to test connectivity 

changes in mouse models of human diseases to reveal how brain connectivity is altered in 

pathological phenotypes. 

 

Materials and Methods 



Structural connectivity:  

The structural connectivity matrix based on viral tracer injections was adapted from Oh el al. 

(Oh et al., 2014). Briefly, adeno-associated viral anterograde tracers containing genes 

encoding for enhanced green fluorescent protein were sterotactically injected at different sites 

in mice. Following the injection, 2 weeks were allowed for the protein expression before the 

animals were scarified, the brain extracted, sectioned, imaged with 2-photon microscope, 

reconstructed into 3D fluorescence maps, and transformed into a common reference space. 

The connectivity was determined from the injection site to the projections by quantifying the 

fluorescence locally for each region-of-interest, and normalizing it with the volume of injection, 

see for details (Oh et al., 2014).  

Viral-tracer maps resampled at 100 µm³ were obtained using the query form from the Allen 

Institute database (Allen Institute for Brain Science, http://connectivity.brain-map.org/). 

Individual experiments were selected as follows: carried in wild-type C57BL/6 and with 

injection volume ranging 0.0001 to 0.5 ul. The anatomical reference template was coregistered 

into the AMBMC MRI template resampled at 100 µm³ (Australian Mouse Brain Mapping 

Consortium, http://www.imaging.org.au/AMBMC), using ANTS with greedy SyN transformation 

(Advanced Normalization Tools v2.1, http://picsl.upenn.edu/software/ants/). The viral-tracer 

maps, as well as the anatomical atlas were then converted into MRI space using the 

transformations estimated earlier, using radiological convention, which represents inverted left 

and right orientations.   

We limited the scope of our analysis to the ontological ROI groups of the Allen atlas which 

were fully covered by the fMRI volume acquisition: the isocortex (isocortex), cortical sub-plate 

(CTXsp), hippocampal formation (HFP), striatum (STR), palladium (PAL) and thalamus (TH). 

fMRI data acquisition and preprocessing: 



Mouse multi-echo fMRI data are available online (central.xnat.org, project_ID: 

ME_fMRI_MOUSE). The rs-fMRI functional connectome maps are freely available for 

consultation (http://doi.org/10.5905/ethz-1007-59).  

The C57BL/6 female mice (n=14) were used in this study. The experiment was performed 

following the Swiss federal guidelines for animal experimentation, and under a license from 

the Zürich cantonal veterinary office. Animals were caged in standard housing with food and 

water ad libitum, and kept in a 12h light and night cycle. In preparation for the measurements, 

anesthesia was induced with isoflurane 3.5% for 4 min in a 1:4 oxygen to air mix. The animals 

were endotracheally intubated, and positioned on a MR-compatible support. The animals were 

fixed with ear bars, and mechanically ventilated with a ventilator (CWE, Ardmore, USA), with 

2% isoflurane. A cannula was placed in the tail vein for medetomidine, 0.05 mg/kg bolus 

followed 5 min later by 0.1 mg/kg/h infusion, and pancuronium, 0.2 mg/kg bolus followed by 

0.4 mg/kg/h infusion. Following medetomidine bolus injection, isoflurane was reduced to 1.5%, 

and further reduced to 0.5% during infusion. Animal preparation and measurement took 45 

min, all animals recovered fully following the measurements.  

The dataset were acquired on a 9.4T Bruker scanner, equipped with a BGA-S gradient system, 

a volume coil for excitation and a 2x2 phased-array receiver-only cryogenic coil. Multi-echo 

gradient-echo EPI (ME-EPI) were acquired with the following parameters: repetition time 1500 

ms, echo time [11, 17, 23] ms, flip angle 60°, matrix size 60x30, field of view 18.2x9 mm², 

number of slices 20, slice thickness 0.3 mm, slice gap 0.05 mm, 600 volumes, acceleration 

factor 1.4, horizontal field of view saturation slice to mask the lower portion of the mouse head, 

250000 Hz bandwidth. Images presented minimal distortions, even at higher echo time.  

ME-EPI were converted to NIFTI format and processed with meica.py script 

(AFNI_2011_12_21_1014, http://afni.nimh.nih.gov) (Kundu et al., 2012). Briefly, the script 

performs motion correction, despiking, skull stripping, and an ICA decomposition of the 3 echo-

separated 4D images. Echo-time dependency is measured in each component and used to 

discriminate BOLD-related from non-BOLD related components. Components that did not 

https://webmail.bmsi.a-star.edu.sg/owa/redir.aspx?REF=0L8tlN2exXvCKNrKPLzIzCiL1SbIVt_LaMRz8f08jI8xA-xyL7HTCAFodHRwOi8vZG9pLm9yZy8xMC41OTA1L2V0aHotMTAwNy01OQ..


present echo-time signal dependency, i.e. non-BOLD, were labeled as noise are then 

regressed to obtain a final denoised 4D image. The denoised fMRI images were then co-

registered to the MRI template using linear affine and non-linear greedy SyN transformation. 

We identified large scale FC networks using an independent component analysis (group-ICA 

MELODIC, FMRIB Software Library v5.0, http://fsl.fmrib.ox.ac.uk) as a tool to evaluate the 

quality of the cleaned data. Of the 30 predetermined components, 17 were representing known 

cortical and subcortical networks with plausible anatomical locations (Figure 1), based on 

definitions outlined in (Zerbi et al., 2015). Other components displayed spatial maps with 

irregular clusters not related to anatomical gray matter structures. None of the components 

related to motion or to vascular structures have been found. This is in line with previous 

observations using similar acquisition protocols, but different artifact cleaning methods (Zerbi 

et al., 2015). Seed-based maps were computed in FSL with the Glm function, using the viral 

injection site and injection volume to define the 238 rs-fMRI seeds. FC between each seed and 

the 254 target regions taken from the Allen reference atlas with the same ontology as used in 

Oh et al.(Oh et al., 2014) was calculated using Pearson’s correlation and Fisher-Z transformed. 

Individual z-statistic seed-to-target matrices were pre-masked using a t-test to consider only 

connections significantly different than 0 (p=0.05, FDR corrected) and group averaged. The 

correlation between the SC and FC in each individual tracer experiment (i.e. each row in the 

connectome matrices) was defined by partial Spearman’s correlations that include region 

volume as a covariate in order to compensate the common dependency between both tracer-

based connectivity and resting-state fMRI with regional target volumes (Sethi et al., 2017). The 

results yield values of no/weak [0-0.2], weak-to-moderate [0.2-0.4] and moderate-to-strong 

effect [0.4-0.6](Cohen, 1988). Nonparametric Spearman’s correlation was used since we could 

not readily assume a linear relationship between tracer projection intensity and functional 

connectivity. In complement to the previous analysis with partial Spearman’s correlation 

analysis using region volume as covariate, , receiver operatic characteristic (ROC) curves were 

computed as in (Calabrese et al., 2015), in order to define the gross agreement between 

anatomical macro-scale FC and SC. Briefly, SC and FC sub-matrices were selected from their 



anatomical parent structures, log-transformed, normalized between zero and one and 

binarized using a series of 1000 thresholds to keep the 0–100% of connections. The resulting 

binary connectivity matrices were compared using receiver operatic characteristic (ROC) 

analysis with tracer-based connectivity as ground truth. The True Positive Rate and False 

Positive Rate vectors were plotted against each other and the resulting area under the curve 

(AUC) is used as measure of connectivity similarity between the two metrics. The AUC results 

were then compared against a null distribution of the same datasets using permutation testing. 

Permutation testing (1000 iterations) consisted of shuffling the labels of the FC sub-matrices. 

In each permutation, the total volume of brain covered by the labels was therefore identical 

between SC and FC, which excludes volume-based biases in the resulting values. 

For every voxel within each mask (right hemisphere isocortex, left hemisphere striatum, and 

left thalamus) we extracted the transformed connectivity values for each injection site. This 

gave each voxel a connectivity profile indicating how strong or weak connectivity was at that 

voxel for each injection site, both for resting state fMRI and tracer connectivity. In order to 

determine whether resting state connectivity patterns matched those seen with tracer 

injections, we performed a winner-takes-all analysis labeling each voxel as belonging to the 

network with the largest connectivity value for a set of 20 injection sites distributed on the right 

isocortical hemisphere, as carried in Oh el al. (2014). In order to determine whether voxels 

showed the same connectivity fingerprint using resting state fMRI and tracers (i.e. voxels 

showed connectivity profile for injection sites in both modalities) we used Spearman’s rho to 

correlate connectivity profiles at each voxel. False discovery rate (FDR, p<0.05) was used to 

correct for multiple comparisons.          

Mono- and polysynaptic dependency connections were derived from a graph-theory approach. 

To this end, we used the symmetrical SC matrix (81×81, for ROI list see Table S1) adapted 

from Oh et al. (Oh et al., 2014). Symmetrical FC matrix was obtained by estimating the 

Pearson’s correlation coefficient between the time series extracted from rs-fMRI scans using 

the same ROI set as for SC. Individual FC matrices were groups averaged without applying 



any pre-masking to maintain its original distribution. Both symmetrical matrices were 

normalized to range 0 to 100. Connectivity matrices were binarized using varying threshold 0 

to 100 by 1 increment, at each threshold level the minimal distance separating every ROI pair 

was estimated using igraph in R (The R Foundation for Statistical Computing, Vienna, Austria). 

For every threshold level, the interaction between each ROI pair were classified into three 

categories based on both SC and FC distance matrix: (i) monosynaptic FC (distanceSC=1 edge 

and distanceFC=1 edge); (ii) polysynaptic FC (distanceSC>1 edge and distanceFC=1 edge); and 

(iii) mismatch (distanceSC=1 edge and distanceFC>1 edge).  The connectivity likelihood for each 

category was established as the incidence for each threshold level. 

 

Results 

Overlapping structural and functional connectivity in the mouse brain. 

SC and FC represent different metrics that depict large-scale neuronal architecture. Viral-

tracer distributions obtained from the Allen Brain Institute database and rs-fMRI seed-maps 

corresponding to the injection sites were normalized into common spatial coordinates. Voxel-

wise representation of the viral-tracer distribution and seed-based FC for four selected injection 

sites/seeds provide a qualitative representation of the similarities and differences between SC 

and FC (Figure 2). For instance, tracer injected into the primary somatosensory area of the 

barrel field (SSp-bfd) highlighted projections to both ipsi- and contralateral barrel field and to 

motor cortex areas, as well as projections to ipislateral dorsal striatum and thalamus. Seed-

based FC revealed a similar pattern, but included marked FC between both ipsi- and 

contralateral hemispheres of the dorsal striatum, and an absence of detectable FC to the 

thalamus. For injection sites in the motor (MOs) or anterior cingulate area (ACAv), striking 

overlaps between SC and FC were found. In both instances, the regions displaying high FC 

extending beyond those being monosynaptically connected, and included larger areas of the 

primary somatosensory cortex in the case of the MO seed, and of the retrosplenial area in the 

case of the ACAv seed. Finally, an injection site/seed in the dentate gyrus (DG) revealed SC 



confined to the hippocampus, while the corresponding FC area extended across hippocampus, 

cingulate, retrosplenial, ecto-, endo-, and perirhinal cortical areas, elements of the putative 

rodent default-mode network (DMN) (Lu et al., 2012; Sforazzini et al., 2014a). This indicates 

that FC between some areas, in particular homologous cortical regions of the left and right 

hemisphere, emerges due to direct monosynaptic connections, whereas FC in spatially 

extended networks (e.g. DMN) indexes indirect polysynaptic connections.  

In order to perform a comparison at a whole brain level, we used total monosynaptic 

connectivity matrices reconstructed using 238 viral tracer maps (Oh et al., 2014), and matched 

them to seed-based FC. Injection sites were located in the isocortex (n=98), hippocampal 

formation (HPF, n=39), cortical subplate (CTXsp, n=6), striatum (STR, n=33), pallidum (PAL, 

n=8) and thalamus (TH, n=54) (for ROI list, see Table S1). Ipsilateral and contralateral target 

regions (n=254) were selected from the Allen Institute mouse brain parcellation atlas 

(http://atlas.brain-map.org). Connectivity patterns found in the tracer injection-based SC matrix 

and in the seed-based FC matrices (Figure 3a,b) confirmed the observations made using 

voxel-wise maps; they exhibit marked similarities for cortical injection sites, showing high SC 

and FC with ipsi- and contralateral isocortex, as well as with ipsilateral sub-cortical structures 

(striatum, pallidum, cortical sub-plate). However, for other specific connections, as between 

isocortex and thalamus, FC is mostly absent despite dense monosynaptic connections. 

Regarding the hippocampal formation, strong SC is observed between injection sites located 

in the entorhinal cortical area toward the isocortical and sub-cortical structures except for the 

thalamus on both the ipsi- and contralateral side. This pattern was however not observed in 

the FC matrix. Partial Spearman’s rank tests confirmed the general good agreement between 

FC and SC for most of the selected seeds (figure 3c). In the isocortex, intermediate-to-strong 

correlations (rho = 0.4-0.6) were found with the exception of prefrontal areas (anterior 

cingulate, prelimbic, infralimbic and orbitofrontal areas). Conversely, most of the seed-

experiments of the thalamus showed null or weak effects (rho = 0-0.2) apart from of the ventral 

posteromedial nuclei (see supplementary figure 1). Interestingly, the degree of correlation 



between the SC and FC metrics were strongly significantly correlated with the amount of viral 

tracer injected in the structural experiments (p<0.001). 

The degree of similarities between SC and FC in the two metrics was further assessed within- 

and between-ontological structures by receiver operating characteristic (ROC) analysis (Fig 

3d,e,f, Table S2). Area under the curve (AUC) estimated from the ROC analysis recapitulates 

the observation described above. In particular, significant correspondence exists between the 

isocortex injection sites/seeds and contralateral isocortex (Fig 3d, AUC=0.702), as well as 

between isocortex and striatum (Fig 3e, AUC=0.709). For connections between thalamus and 

isocortex, correspondence between FC and SC was low albeit significantly different from the 

null (i.e. chance level) distribution (Fig 2f, AUC=0.587) for both directionalities.  

These three relevant large-scale connections were further analyzed at a voxel-level, for 

mapping the most strongly connected subareas of contralateral isocortex, striatum and 

thalamus. The hippocampal formation was not included in the detailed analysis as most of the 

structural projections from the hippocampus were found to be confined to this brain region 

(Figure 3a,b).  

 

Similar modular organization of the structural and functional connectome in the Mouse 

cortex   

Mammalian brains are organized into distinct large-scale structures also referred as sub-

networks or modules (Bullmore and Sporns, 2009; Oh et al., 2014; Zingg et al., 2014; Liska et 

al., 2015). The combination of structural and functional connectivity information in the same 

analysis space provides two independent metrics for comparing the modular organization of 

the brain. A winner-takes-all approach from 20 selected cortical injection seeds (Figure 4a) 

revealed a remarkable correspondence between structural (Figure 4b, left panel) and 

functional modular architecture (Figure 4b, middle panel) in both the ipsi- and contralateral 

isocortex. In both metrics, the somatosensory motor cortex is divided into three distinct 



modules, encompassing motor (red), sensory (green) and medial orbital (yellow) areas. A 

temporal associative module (light/dark blue) was found to encompass auditory and visual 

cortices as well as retrohippocampal regions such as the entorhinal cortex. Regions analogous 

to the DMN were highlighted, in particular the cingulate, prefrontal, and retrosplenial cortices 

(violet). This modular organization is consistent with sub-networks presented in previous viral 

tracer studies (Oh et al., 2014; Zingg et al., 2014). This data extend previous rs-fMRI work, in 

which the parcellation of the mouse brain produced only two cortical modules, lateral cortical 

network encompassing limb and barrel field modules, and DMN which included the temporal 

associative module found in this study (Liska et al., 2015).  

Although the isocortex has a modular organization, it is likely that voxels (particularly voxels 

on the borders between modules) are not exclusively interconnected with only one module. In 

order to compare structural and functional connectivity fingerprints we created a connectivity 

profile for each voxel within a mask (strength of connectivity for each injection site/seed 

(n=98)). We then used Spearman’s rho to correlate the structural and functional connectivity 

profile at each voxel, using the data from all the isocortical seed-experiments (n=98) and 

correcting for multiple comparisons using false discovery rate (FDR, p<0.05). This analysis 

highlights whether a target voxel has the same pattern of high and low connectivity for each 

tracer injection site, and whether these connectivity patterns are the same between SC and 

FC metrics. This analysis revealed that 86.9% of all voxels within contralateral isocortex 

survived FDR correction, demonstrating the high degree of overlap in connectivity fingerprints 

between SC and FC. Specifically, the structure-function relationship was strongest in the motor 

and medial orbital modules and in the DMN, while correlations were weaker in the area in 

between the sensory and the temporal associative module (Figure 4b, right panel).  

Matching structural and functional topographies of the cortico-striatal pathways  

Cortico-striatal projections are essential components of forebrain circuits widely involved in 

goal-directed behavior and motivation (Ferguson et al., 2011; Kozorovitskiy et al., 2012; Farrell 

et al., 2013). Hypo- or hyperactivity in these connections is associated with several 



neuropsychiatric disorders, including autism and schizophrenia (Shepherd, 2013; Ferenczi et 

al., 2016). From an anatomical and functional perspective the striatum is clustered into distinct 

domains according to input and output regions (Choi et al., 2012; Jung et al., 2014). Winner-

takes-all topographical maps confirmed such a modular organization in both structural and 

functional datasets, which appears divided into five macro-areas densely connected with 

cingulate areas (violet), motor (red), sensory (green), medial orbital (yellow) and temporal 

associative (blue) cortices (Figure 4c). The partition of the ipsilateral striatum presented 

remarkable similarities with modular divisions found with viral tracers (Oh et al., 2014; Hintiryan 

et al., 2016). Remarkably, 87.8% of striatal voxels showed a significant Spearman’s correlation 

between anatomical and functional architecture, with the highest degree of correlation found 

in the motor cortex to dorsal striatum pathway.  

Lack of FC for networks involving the thalamus  

The thalamus is a highly heterogeneous structure, subdivided into distinct nuclei that are 

connected to the cerebral cortex through multiple anatomical loops and that process sensory, 

limbic, and heteromodal information (Behrens et al., 2003). Detailed maps of human and 

rodent cortico-thalamic cytoarchitecture are available (Jones, 2007; Oh et al., 2014). In 

humans, imaging data suggests an overall correspondence between structural diffusion data 

and functional imaging, albeit this has been only demonstrated at the macroscale level (Zhang 

et al., 2010). Our results revealed minimal correspondence of FC and SC between isocortex 

and ipsilateral thalamus. Statistically, only 8.8% of all voxels within the ipsilateral thalamus 

showed a significant overlap of connectivity profiles (Figure 4d). Specifically, these areas of 

good correspondence reflect the connections between the anteroventral nuclei of the thalamus 

with retrosplenial cortex (purple), and between the ventral posteromedial nuclei with 

somatosensory-barrel field cortex (green). For all the other nuclei, the overall structural 

monosynaptic connections derived from viral tracing were not reflected by the functional data 

as measured with rs-fMRI. 

Mono- and polysynaptic dependency of resting-state networks 



Our comparison of the SC and FC matrices revealed areas of similarities and divergences 

between the two connectivity measures. In a final set of analyses, we determined the minimum 

number of edges, or connections, separating two nodes (regions-of-interest). This analysis 

was run for both structural and functional connectivity matrices. The number of edges 

necessary to connect two nodes was used to divide structural-functional connectivity 

relationships into three categories: (i) monosynaptic FC; (ii) polysynaptic FC; and (iii) low FC 

despite monosynaptic SC, which were labelled ‘mismatched’.  

The two distance metrics showed a similar distribution. For low threshold values, most of the 

ROIs were found separated by 1 or 2 edges (Figure 5a,b). As expected, the distance between 

node pairs increased with higher threshold values, consistent with increasing sparsity of the 

matrices. High monosynaptic FC likelihood values were obtained between isocortex to the 

ipsilateral hippocampal formation and striatum (Figure 5c). Notably, high interhemispheric 

monosynaptic connectivity likelihood was also found between bilateral homotopic isocortices 

and, to a lesser extent, between hippocampal formations, as indicated by the plot restricted to 

contralateral homotopic ROIs (Figure 5c, left panel). Polysynaptic connectivity likelihood was 

found to be more diverse in terms of interactions between the ontological structures and 

hemispheres (Figure 5d). For instance, there were notable interhemispheric projections from 

the striatum towards the isocortex and the contralateral striatum, as well as between homotopic 

subcortical regions in both hemispheres (Figure 5d, left panel). In summary, we found that 

functional networks in the isocortex were predominantly monosynaptic. Sub-cortical networks, 

on the other hand, present more diverse projections, and rely in several instances on 

polysynaptic projections. Mismatched FC is mostly present in edges between thalamic and 

ROIs in the cortex, hippocampal formation, and striatum, consistent with the notions of weak 

thalamic FC observed above (Figure S2).  

 

Discussion 

Here we report the brain-wide functional connectome of mouse and analyze how circuits of 

enhanced long-range FC map onto monosynaptic structural pathways. We confirm that FC 



emerges preferably along monosynaptic connections, for example between homotopic 

isocortical areas across hemispheres. We further show that rs-fMRI is an excellent tool for 

studying cortico-striatal subcircuits, which match monosynaptic anatomical connectivity. 

Lastly, we identified specific networks (for example high FC between left and right striatum and 

thalamus) where rs-fMRI oscillations synchronize via polysynaptic pathways.   

Understanding the organizational principles underlying the structure-function relationship of 

the brain has been a central question in neuroscience. Converging evidence across species 

has confirmed fMRI measurements reflect neuronal activity, both for stimulus-evoked and 

resting-state fMRI (Logothetis et al., 2001; Mantini et al., 2007; Scholvinck et al., 2010). 

Moreover, the topology of human FC networks corresponds well to major structural tracts 

forming cortico-cortical (Hagmann et al., 2008; Honey et al., 2009; van den Heuvel et al., 2009), 

cortico-striatal (Jarbo and Verstynen, 2015) or cortico-thalamic (Zhang et al., 2010) circuits. 

However, many of these studies have been using information derived from diffusion weighted 

imaging to reconstruct SC networks. Unfortunately, there are still a number of limitations with 

diffusion imaging, including the limited spatial resolution, low sensitivity in gray matter, and 

difficulties with identifying of fiber crossings and terminations. Tracer information in the mouse, 

by contrast, allows one to reconstruct SC networks with greater spatial resolution, and without 

ambiguity with respect to fiber crossing or mono- and polysynaptic projections. Previous work 

comparing viral tracer to functional connectivity  have, similarly to our work, reported 

systematically good correspondence between SC and FC, albeit these studies limited their 

scope to specific networks, either cortical networks (and specifically the default-mode network) 

(Stafford et al., 2014), or the hippocampus (Bergmann et al., 2016). We have been able to 

demonstrate structure-function correspondence using the proven hardwired connections 

between the nodes involved in a wide range of resting-state networks, many of which find 

correspondence with human networks (Sforazzini et al., 2014a).   

Resting-state FC networks in humans and other species have shown a preponderant bilateral 

organization (Damoiseaux et al., 2006), with the exception of right and left fronto-parietal 



networks in the human brain (van den Heuvel et al., 2009). Previous studies investigating 

resting-state networks in the rodent brain have also demonstrated this bilateral organization 

(Grandjean et al., 2014; Sforazzini et al., 2014a; Zerbi et al., 2015). A property lost or greatly 

reduced in mice presenting with agenesis of the corpus callosum, supporting the notion that 

axonal projections are causally involved in supporting distal FC (Sforazzini et al., 2014b; 

Schroeter et al., 2016).  Many of these networks have been proposed to be analogous to 

human resting-state networks, such as the DMN and the salience network (Upadhyay et al., 

2011; Lu et al., 2012; Sforazzini et al., 2014a). An interesting feature of rodent FC is the 

presence of robust striatal functional networks, which we have repeatedly found to be divided 

into three entities, the dorsal and lateral striatum mostly overlapping with the caudate and 

putamen, and ventral striatum overlapping with nucleus accumbens (Grandjean et al., 2014; 

Zerbi et al., 2015). This segregation into specific circuits is interesting because they are 

differentially affected in murine models of brain disorders related to substance abuse (Hyman 

et al., 2006), movement disorders (Poston and Eidelberg, 2012), major depression (Kerestes 

et al., 2015), Parkinson disease (Rolinski et al., 2015), and schizophrenia (Sorg et al., 2013) 

(for review, see (Shepherd, 2013)). One specific property of these networks is that in 

comparison to cortical networks, which rely strongly on direct projections, their bilateral 

organization relies on polysynaptic relays, either via the cortico-striatal or 

nigrostriatal/mesolimbic pathways (Ferenczi et al., 2016). Thus, the preponderant position of 

striatal networks among the rodent resting-state functional networks, and the availability of 

mouse models of brain disorders and substance abuse, offers new opportunities to study the 

large-scale functional implications of disease on these specific networks.  

As well as highlighting the significant overlap between structural and functional connectivity, 

we also identified some networks where structural and functional connectivity did not match, 

specifically the cortico-thalamic projections. This might be attributed to effects of anesthesia. 

While controlled anesthesia and mechanical ventilation is expected to increase the robustness 

and reproducibility of the functional read-out by limiting drastically physiological noise through 

reduced motion and constant breathing cycle, anesthesia agents will also affect neuronal 



networks. However, albeit kept to a minimal level, medetomidine has been reported to interfere 

with cortico-thalamic FC (Fukuda et al., 2013) particularly in connection to rs-fMRI studies 

(Grandjean et al., 2014; Nasrallah et al., 2014), specifically affecting regions expressing high 

levels of alpha-2 adrenergic receptors, the target of medetomidine, in a dose-dependent 

fashion (Nasrallah et al., 2014). Another possible confounding factor is the relatively small 

injection volume used to target the thalamic nuclei, an effect further exacerbated by the relative 

small ROI size of these corresponding nuclei. In fact, 22 out of 54 thalamic areas (41%) were 

injected with less than 0.1 μl of viral tracer. In comparison, only 28% of isocortical and 24% of 

striatal injections received less than 0.1μl of volume. The higher anatomically specificity 

obtained with small injections is desired for small nuclei such as in the thalamus. However, this 

is usually achieved at the cost of a reduced transcriptional efficiency of the virus and therefore 

a lower sensitivity of the measure; this may have introduced a systematic noise in the 

connectivity derived to macroscale ontological targets. Moreover, this effect is exacerbated by 

the relatively low resolution of fMRI, ~300µm³, which does not permit to resolve smaller 

thalamic nucleus separately. Notably, our results showed a robust correlation between the SC 

- FC Spearman’s rho and the injection volume, which corroborate these findings. Altogether 

this suggests that thalamic resting state networks in anesthetized rodents should be 

interpreted with caution, as their interpretation in terms of structural connectivity may be 

confounded by intrinsic shortcomings in the measurements. 

The comparison between the two metrics remains limited in some aspects. First, in mouse 

studies anesthesia was shown to interfere with brain function and therefore to affect FC 

readouts as discussed for cortico-thalamic connectivity. Recent work has compared awake rs-

fMRI to viral tracer, however, distal FC estimated in this latter work was relatively low with 

respect to the selected seeds (Bergmann et al., 2016) in comparison to results reported with 

the optimized anesthesia protocol used in this study (Grandjean et al., 2014). This corroborates 

previous reports indicating difficulties in adapting rat awake protocols to mice (Jonckers et al., 

2014). In addition to displaying strong and robust distal FC, the anesthesia protocol was shown 

to recapitulate advantages of both isoflurane and medetomidine protocols, i.e. strong cortical 



and sub-cortical FC respectively, while displaying minimal undesirable effects. Second, a study 

in monkey has shown that mild and deep anesthesia was associated with greater 

correspondence between FC and SC, while the awake state captured rich FC patterns beyond 

that predicted with anatomical projections, including patterns of dynamic FC (Barttfeld et al., 

2015). While it remains difficult to compare anesthesia depth across studies and more so 

across species, the present study uses a light anesthesia/sedation protocol, which retains anti-

correlation (Grandjean et al., 2014), and rich patterns of dynamic FC (Grandjean et al., 2017), 

comparable to results described in awake monkey. This may explain the presence of rich 

polysynaptic dependent FC observed in the present study. Third, tracer-based SC from the 

Allen Institute contains directional information between any two ROIs, whereas FC captured 

only the shared information between the time series, irrespective of the directionality. This may 

have biased the estimation of the correspondence between the two metrics, although recent 

studies showed a general good correspondence between anterograde and retrograde 

pathways in the mouse (Zingg et al., 2014). Indeed most anatomical projections are coupled 

with reciprocal projections which might offset directionality effect in the SC matrices. The 

hippocampus is a notable exception to this rule, as most projections are unidirectional and 

inputs to the hippocampus come exclusively from the parahippocampal formation, thus distal 

FC with respect to the hippocampus, such as with the other elements of the rodent DMN, is 

mostly exclusively polysynaptic dependent. Applying causal models such as Granger causality 

or dynamic causal modeling (Li et al., 2011) to resting-state networks may provide information 

regarding directionality and as such provide further information regarding the correspondence 

between structure and function.  

Whole-brain comparison of SC estimated from tracer-based reconstruction and FC from rs-

fMRI obtained in the mouse revealed substantial agreement between the two metrics across 

several levels from individual connectivity maps derived from injection sites/seeds, to whole-

brain interactions, and to modular organization of FC/SC. This close correspondence between 

FC and SC forms the basis for linking resting-state fMRI in the mouse to its anatomical 

underpinnings, providing a strong foundation to investigate the structure/function relationship 



as well as its alteration due to disease within networks. Our findings also form the basis for 

rodent fMRI in combination with pharmaco-/opto-genetically controlled manipulation to dissect 

the role of selected cellular populations in sub-networks (Lee et al., 2010), thus allowing to 

resolve cell-specific mechanism taking place in large-scale networks in the healthy and 

diseased brain. These approaches may shine new light onto the organization of the healthy 

brain, and onto specific neuronal alterations underlying brain disorders.  
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Captions to figures: 

 

Figure 1 | Independent component analysis revealed the presence of robust resting-state 

networks in the mouse brain. Optimized MR acquisition, anaesthesia and handling, and image 

processing protocols lead to readily defined isocortical, striatal, thalamic and hippocampal rs-

fMRI networks. 

  



 

 

 

Figure 2 | Qualitative comparison between tracer distribution indicating structural connectivity 

(green; upper rows) and FC pattern derived from rs-fMRI (red; lower rows) for four selected 

injection sites/seeds. The results illustrate a high degree of similarity between the 

measurements, particularly in ipsilateral cortico-striatal connectivity. High overlaps were seen 

also in contralateral cortico-cortical and hippocampalo-hippocampal connections, while 

cortico-thalamic anatomical projections were not detected by rs-fMRI.  

  



 

Figure 3 | Comparison of (a) the viral tracer connectivity matrix and (b) the corresponding 

functional connectivity matrix from 238 seed-injection sites by 254 target ROIs reveals striking 

similarities, in particular regarding the interactions within the isocortex. Partial Spearman’s rho 

(corrected for target ROI volume) between structural and functional connections originating 

from each seed/injection experiment is displayed in (c) and show weak-to-intermediate (rho: 

0.2-0.4) and average-to-strong (rho: 0.4-0.6) correlations for most of the cortical, hippocampal 

and striatal seeds. Conversely, we were able to detect injection areas in which the SC-FC 

correlation dropped to non-significant levels (rho: 0-0.2); this is notable for injections in 

prefrontal areas (ACAd, PL, ILA, ORBI), CA1, Striatum, Amygdala, and some thalamic nuclei 

and may be driven by the relatively low injected volume and by the absence of reciprocal 

projections between these and other brain regions. Receiver operating characteristic (ROC) 

curves for (d) isocortex → isocortex (dashed square boxes), (e) isocortex ↔ striatum (black 

square boxes), (f) isocortex ↔ thalamus (dotted square boxes). The area under the curve 

indicates the degree of similarity between the structural and functional metrics, ranging from 

0.5 (chance level) to 1 (full similarity). Permutation testing confirmed the significant (>chance 

level distribution) agreement between SC and FC in all the macro-scale connections, with 

medium-to-high (>0.7) AUC levels for isocortex to its contralateral counterpart and for isocortex 

to striatum, and low (<0.6) for isocortical to thalamic connections.   



 

Figure 4 | Winner-takes-all analysis for 20 injection sites/seeds located in the isocortex. (a) 

Location of injection sites/seeds used for the winner-takes-all analysis mapped on a surface 

representation of the mouse isocortex. The labels are: (1) MOs, (2) ORBm, (3) PL, (4) MOs, 

(5) MOp, (6) SSp-bfd, (7) MOp, (8) ACAd, (9) SSs, (10) SSp-bfd, (11) SSp-ll, (12) AUDd, (13) 

PTLp, (14) AUDd, (15) RSPagl, (16) AUDd, (17) VISp, (18) VISp, (19) VISp, (20) VISp. Two 

spheres of different diameters and transparency are drawn in each voxel, indicating the first 

and second strongest connected injection sites/seeds originating from the isocortex toward (b) 

contralateral isocortex, (c) ipsilateral striatum, and (d) ipsilateral thalamus.  Voxel-based 

Spearman’s R correlation indicates significant correlation between tracer’s injection and rs-

fMRI data. Voxels from both isocortical and striatal maps present significant correlation (86.9 

and 87.8% of total voxels respectively) between structural and functional connectivity.  In 

contrast, thalamic map presents significant correlation between the two modalities in 8.8% of 

the voxels only, specifically in the anteroventral and ventral posteromedial nuclei of the 

thalamus. 



 

Figure 5 | Distance separating node pairs from structural and functional connectivity at varying 

matrix threshold revealed a similar distribution (a-b). Structural and functionally connectivity 

matrices were normalized to a range 0-100. Distance was computed for both matrices with 

incremental threshold with step size =1. At lower threshold, the number of edges separating 

any node pairs remains between 1 and 2 edges. The distance increases as threshold is 

increased. (c,d) Distance analysis reveals mono- or polysynaptic connectivity likelihood (CL) 

of functional connectivity. Large circular plots show transparency-coded links that represent 

CL for intra- (blue) and interhemispheric (red) connections across the brain. For sake of clarity, 

intrahemispheric connections within brain structures are plotted outside and inside of the circle 

labelling the major brain regions (left side of graphs). Smaller circular plots indicate links 

between bilateral homotopic region pairs only. (c) The isocortex presents balanced intra- and 

interhemispheric monosynaptic CL, towards hippocampal formation (HPF), cortical sub-plate 

(CTXsp), and striatum (STR) (intra-) and towards contralateral homotopic ROI (inter-). (d) 

Polysynaptic CL present more diverse links between ROIs from different ontological structures 

and hemispheres, e.g. STR to contralateral isocortex and STR. Polysynaptic homotopic 

interactions are found in the CTXsp, STR, PAL, and thalamus.  Likelihood values are given in 

%. 


