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Abstract

We construct models of exactly solvable two-particle quantum graphs with certain
non-local two-particle interactions, establishing appropriate boundary conditions via
suitable self-adjoint realisations of the two-particle Laplacian. Showing compatibility
with the Bethe ansatz method, we calculate quantisation conditions in the form of
secular equations from which the spectra can be deduced. We compare spectral
statistics of some examples to well known results in random matrix theory, analysing
the chaotic properties of their classical counterparts.

1 Introduction

In this paper we investigate the properties of two-particle quantum graphs with particular
focus on the acquisition and analysis of their spectra. A quantum graph is a collection of
vertices and edges of finite or infinite length equipped with a differential operator. The first
theoretical model of a quantum graph was devised by Pauling [Pau36]. His motivation was
to study the dynamics of free electrons in hydrocarbons by modelling carbon molecules as
vertices and carbon-carbon bonds as edges. This idea was later adopted by Ruedenberg
and Scherr [RS53] who used quantum graphs to describe free electrons donated by covalent
bonds confined to entire quasi-one-dimensional molecules. Since then there have been
multiple applications of quantum graphs in a variety of fields including quantum waveguides
[FJK87], quantum chaos [KS97], quantum computation [Lov10] and mesoscopic systems
[TM05]. For a review of quantum graphs, see [EKK+08, BK13a, ASV+16].

An important aspect of quantum graphs is that they may serve as models for quantum
systems with corresponding complex classical dynamics. Kottos and Smilansky [KS97]
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demonstrated that eigenvalue correlations in quantum graphs can be described with ran-
dom matrix models, therefore providing an example for the celebrated Bohigas-Giannoni-
Schmit conjecture [BGS84] which is a central topic in quantum chaos. While the ma-
jority of quantum graphs literature is focussed on one-particle models, there have been
a number of studies of many-particle quantum graphs. The first of these, by Melnikov
and Pavlov [MP95], investigated the dynamics of two interacting particles on a connected
graph with three infinite edges. Under certain restrictions of the system, they were able to
find self-adjoint realisations of the two-body Laplacian corresponding to particle-particle
and particle-vertex interactions. The resulting two-body wave function allowed the cal-
culation of the conductivity of the system. More recently, Bolte and Kerner constructed
two-particle quantum graphs with interactions localised at the vertices [BK13b] and later
with singular contact interactions [BK13c]. Boundary conditions via suitable self-adjoint
extensions of the two-particle Laplacian were ascertained using quadratic forms. These
results were then used to study Bose-Einstein condensation [BK14].

To some extent, the success of one-particle quantum graph models relies upon the fact
that their spectra are determined by a secular equation [KS97], i.e., quantum eigenvalues
are given as zeros of a finite-dimensional determinant. This fact leads to very efficient
methods to calculate eigenvalues, and also allows one to prove exact trace formulae for
spectral densities [Rot83, KS97, BE09]. The reason behind this is the fact that, locally,
the classical configuration space of a one-particle graph is one dimensional. For the quan-
tum model this means that every eigenfunction must be a linear combination of left- and
right-moving, one dimensional plane waves. Many-particle quantum graphs have higher
dimensional classical configuration spaces, in general prohibiting a finite dimensional secu-
lar equation that determines the eigenvalues. This obstacle can be overcome under specific
circumstances when symmetries lead to an exactly solvable model.

The first model of an exactly solvable many-body quantum system confined to a single
dimension is due to Lieb and Liniger [LL63]. They determined the exact spectra of a
repulsively δ-interacting Bose gas on a circle, a result which was later generalised to distin-
guishable particles by Yang [Yan67]. Gaudin [Gau71] later employed the Bethe ansatz to
describe similar systems confined to an interval. These methods were formalised by the use
of the Bethe ansatz, a sum of two-particle plane waves over possible particle configurations.
Implicit in the use of the Bethe ansatz is the requirement for certain symmetries brought
about by the interactions in the model. The consequence of increasing the complexity
to systems of particles on two-edge graphs is that these symmetries are destroyed. By
imposing certain non-local particle interactions, however, Caudrelier and Crampé [CC07]
showed that compatibility with the Bethe ansatz is recovered. They were then able to
calculate the exact spectra of these two-edge many-particle quantum graphs. Extending
this method to general two-particle quantum graphs is the main aim of this paper.

In the next section we review the construction of general one-particle quantum graphs
establishing appropriate boundary conditions by self-adjoint realisation of the one-particle
Laplacian −∆1. The boundary conditions lead to a quantisation condition from which the
spectra can be calculated. In Section 3, we review the construction of two-particle quantum
graphs introducing the notion of δ-interactions in terms of boundary conditions which char-
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acterise a self-adjoint Laplacian −∆2. We introduce the Bethe ansatz method for systems
of two particles on a single edge, recovering historical results mentioned above. Systems of
δ-interacting particles on graphs with more than a single edge are, in general, incompat-
ible with the Bethe ansatz method. In Section 4, we construct exactly solvable systems
of two particles on equilateral stars introducing the notion of δ̃-type interactions. These
will be generalisations of the interactions imposed in [CC07] to ensure exact solvability
in the two-edge setting. Establishing appropriate boundary conditions of the two-particle
Laplacian, we prove exact solvability and calculate the spectra using the Bethe ansatz. In
Section 5 we extend our argument from equilateral stars to general graphs. In Section 6
we analyse the spectral statistics of a number of examples of two-particle quantum graphs
and comment on the nature of the corresponding classical dynamics.

2 One-particle quantum graphs

In this section we review well known properties of one-particle quantum graphs and their
spectra, see [EKK+08, BK13a, ASV+16]. A combinatorial, oriented graph Γ(V , I, E , f)
is a collection of vertices V = {v1, . . . , v|V|}, connected by a set of internal edges I =
{i1, . . . , i|I|} and external edges E = {e1, . . . , e|E|}. The map f assigns to each external edge
ej a single vertex f(ej) = vη, and to each internal edge ij an ordered pair of vertices f(ij) =
(vγ, vλ) where vγ =: f0(ij) and vλ =: fl(ij) are initial and terminal vertices respectively.
A pair of edges will be called distant if they have no common vertex and neighbouring if
they have at least one common vertex. The set of distant and neighbouring edge couples
will be denoted D and N , respectively. The degree dη of a vertex vη ∈ V is the number of
edges connected to it. The combinatorial graph is turned into a metric graph by assigning
a finite interval [0, lj] to each internal edge ij ∈ I in such a way that f0(ij) is identified
with x = 0 and fl(ij) with x = lj. To each external edge ej ∈ E , a half-line [0,∞) is
assigned such that f(ej) is identified with x = 0. A metric graph is called compact if there
are no external edges, E = ∅.

Let us consider the metric graph associated with Γ = Γ(V , I, E , f). The appropriate
Hilbert space

H1 =

 |I|⊕
j=1

L2(0, lj)

⊕
 |I|+|E|⊕
j=|I|+1

L2(0,∞)

 (2.1)

is the direct sum of the constituent Hilbert spaces on each edge. Vectors Ψ = (ψj)
|I|+|E|
j=1 ∈

H1 are lists of square-integrable functions ψj : (0, lj) → C, j ∈ {1, . . . , |I|} and ψi :
(0,∞) → C, j ∈ {|I| + 1, . . . , |I| + |E|}. A quantum graph is a metric graph Γ with an
associated Laplacian −∆1 which acts according to

−∆1Ψ =
(
−ψ′′j (x)

)|I|+|E|
j=1

, (2.2)

where dashes denote ordinary, possibly weak, derivatives. In order for the Laplacian to be
a one-particle quantum Hamiltonian it needs to be realised as a self-adjoint operator.
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2.1 Self-adjoint realisation

One-particle observables on Γ are self-adjoint operators onH1. We thus look for self-adjoint
realisations of −∆1 with domains characterised by boundary conditions at the vertices. To
this end we define boundary vectors Ψbv,Ψ

′
bv ∈ C2|I|+|E| according to

Ψbv =

 (ψj(0))|I|j=1

(ψj(lj))
|I|
j=1

(ψj(0))
|I|+|E|
j=|I|+1

 and Ψ′bv =


(
ψ′j(0)

)|I|
j=1(

−ψ′j(lj)
)|I|
j=1(

ψ′j(0)
)|I|+|E|
j=|I|+1

.

 (2.3)

Letting H2(Γ) be the set of all Ψ ∈ H1 such that ψj ∈ H2(0, lj) for all j ∈ {1, . . . , |I|}
and ψj ∈ H2(0,∞) for all j ∈ {|I| + 1, . . . , |I| + |E|}, we can state the following theorem
[KS99].

Theorem 2.1. The Laplacian −∆1 is self-adjoint on the set of all Ψ ∈ H2(Γ) which satisfy
the boundary condition

AΨbv +BΨ′bv = 0 (2.4)

with (2|I|+|E|)×(2|I|+|E|) matrices A,B subject to the conditions rank(A,B) = 2|I|+|E|
and AB† = BA†.

2.2 Spectra of one-particle quantum graphs

The task is then to calculate the spectra of these quantum graphs by considering the
eigenvalue equation

−∆1Ψ = EΨ (2.5)

alongside boundary conditions prescribed by Theorem 2.1. We shall focus on compact
graphs where the spectra are discrete.

The starting point is the observation that the components ψj of eigenfunctions Ψ ∈ H1

with real Laplace eigenvalues E = k2 are necessarily of the form

ψj(x) = αje
ikx + βje

−ikx, (2.6)

where αj and βj are complex constants. Imposing boundary conditions (2.4) on functions
Ψ ∈ H2(Γ), one defines the scattering matrices

Sv(k) = −(A+ ikB)−1(A− ikB) (2.7)

and

T (k, l) =

(
0 eikl

eikl 0

)
(2.8)

with

eikl = diag(eiklj)
|I|
j=1. (2.9)

With the scattering matrices one can state the following theorem.
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Theorem 2.2. [KS06] The non-zero eigenvalues of a self-adjoint Laplacian −∆1 defined
on Γ and with boundary conditions in the vertices specified through the matrices A,B are
the values E = k2 with multiplicity m, where k 6= 0 are solutions to the secular equation

det
[
I2|I| − Sv(k)T (k, l)

]
= 0 (2.10)

with multiplicity m.

2.3 Star representation

We have seen that the spectrum of a compact quantum graph is given by the secular equa-
tion (2.10) which is a function of matrices T (k, l) and Sv(k). The former clearly contains
the metric information. The latter contains information about the interactions at the ver-
tices prescribed by A and B. In what follows we restrict our attention to local boundary
conditions where boundary values of functions at different vertices are not related. The
significance of this is that we can consider scattering at each vertex independently. We for-
malise this interpretation by dissecting the compact graph into a collection of star graphs
with finitely many, infinite edges.

Definition 2.3. Consider a compact graph Γ(V , I, f). Let the map g associate to each
internal edge ij an ordered pair of external edges g(ij) := (ej, ej+|I|). Here ej =: g0(ij)
and ej+|I| =: gl(ij) are external edges associated with initial and terminal vertices of ij
respectively so that f(ej) = f0(ij) and f(ej+|I|) = fl(ij). The star representation of the
compact graph Γ is the collection Γ(s)(V , E , f) of star graphs Γη(vη, Eη, f) where Eη is the
set of edges ej such that f(ej) = vη. Clearly we have that 2|I| = |E|. The star graphs are
turned into metric graphs by assigning half-lines [0,∞) to its edges.

Consider the star representation Γ(s) of a compact graph Γ. The Hilbert space associ-
ated with Γ(s) is

H(s)
1 =

|E|⊕
j=1

L2(0,∞), (2.11)

and boundary values of vectors Ψ = (ψ
(s)
j )
|E|
j=1 ∈ H

(s)
1 are

Ψ
(s)
bv =

(
ψ

(s)
j (0)

)|E|
j=1

and Ψ
(s)
bv

′
=
(
ψ

(s)
j

′
(0)
)|E|
j=1

, (2.12)

so that analogues of boundary conditions (2.4) are given by

AΨ
(s)
bv +BΨ

(s)
bv

′
= 0. (2.13)

Let P be an |E|-dimensional permutation matrix which reorders vectors Ψ according to

PΨ = (Ψη)
|V|
η=1, (2.14)
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where each Ψη lists functions ψ
(s)
j with f(ej) = vη. Local boundary conditions then imply

the decomposition

A = P−1

⊕
vη∈V

Aη

P and B = P−1

⊕
vη∈V

Bη

P, (2.15)

where the matrices Aη, Bη characterise the boundary conditions in the vertices vη of con-
stituent star graphs Γη. The total scattering matrix can then be reconstructed according
to

Sv(k) = P−1

 |V|⊕
η=1

S(η)
v (k)

P (2.16)

with

S(η)
v (k) = −(Aη + ikBη)

−1(Aη − ikBη). (2.17)

Let us retrieve the secular equation (2.10) by reconstructing the original compact graph

from its star representation (see [KS97, KN05]). Consider the functions ψ
(s)
j and ψ

(s)
j+|I|

related to the external edges ej and ej+|I| respectively. Joining up the external edges to
form a single internal edge of length lj is imposing the relation

ψ
(s)
j (x) = ψ

(s)
j+|I|(lj − x). (2.18)

Choosing the form (2.6) and defining vectors

α = (αj)
|E|
j=1 and β = (βj)

|E|
j=1 (2.19)

we have the relation

β = T (k, l)α. (2.20)

The total scattering matrix in this context acts according to

α = Sv(k)β. (2.21)

Applying (2.20) and (2.21) successively we recover the secular equation (2.10) as required.

3 Two-particle quantum graphs with δ-type interac-

tions

The Hilbert space of a many-particle quantum system is given by the tensor product of
one-particle Hilbert spaces. The appropriate two-particle Hilbert space for a compact
two-particle quantum graph is

H2 =

 |I|⊕
j=1

L2(0, lj)

⊗
 |I|⊕

j=1

L2(0, lj)

 =
⊕

(im,in)∈I×I

L2(Dmn), (3.1)
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where

Dmn = (0, lm)× (0, ln). (3.2)

The total classical configuration space for two particles on Γ is the union

DΓ =

|I|⋃
m,n=1

Dmn (3.3)

of rectangles. The two-particle Hilbert space can then be written H2 = L2(DΓ). Vectors

Ψ = (ψmn)
|I|
m,n=1 consist of functions ψmn : Dmn → C.

At this point let us introduce the two-particle Laplacian −∆2 which acts according to

−∆2Ψ =

(
−∂

2ψmn
∂x2

1

− ∂2ψmn
∂x2

2

)|I|
m,n=1

. (3.4)

We wish to consider the two-particle eigenvalue equation

−∆2Ψ = EΨ (3.5)

alongside boundary conditions which prescribe single-particle interactions with vertices as
well as singular contact interactions between particles. The latter interactions take place
along the diagonals x1 = x2 of squares Dmm and are rigorous versions of δ-type interactions
of the form

αδ (x1 − x2) . (3.6)

They naturally define the dissected configuration space

D∗Γ =

 |I|⋃
m,n=1|m6=n

Dmn

⋃ |I|⋃
m=1

(
D+
mm ∪D−mm

) (3.7)

with subdomains of squares Dmm defined

D+
mm = {(x1, x2) ∈ Dmm;x1 > x2} (3.8)

and

D−mm = {(x1, x2) ∈ Dmm;x1 < x2}. (3.9)

The total dissected two-particle Hilbert space is then H∗2 = L2(D∗Γ). Thus two-particle
wave functions Ψ ∈ H∗2 are lists

Ψ =

(ψmn)
|I|
m,n=1|m6=n

(ψ+
mm)

|I|
m=1

(ψ−mm)
|I|
m=1

 (3.10)
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of functions ψmn : Dmn → C, m 6= n, and ψ±mm : D±mm → C. The space H2(D∗Γ) is defined
in an analogous way.

The boundary conditions that one needs to impose on vectors Ψ ∈ H2(D∗Γ) in order to
generate single-particle interactions with the vertices as well as singular contact interactions
(3.6) were established in [BK13c] and consist of two parts. The first set of boundary
conditions is as described in Theorem 2.1 for each of the two variables separately. The
boundary values of Ψ ∈ H2(D∗Γ) at the vertices are

Ψ
(v)
bv (y) =


(ψmn(0, lny))|I|m,n=1

(ψmn(lm, lny))|I|m,n=1

(ψmn(lmy, 0))|I|n,m=1

(ψmn(lmy, ln))|I|n,m=1

 and Ψ
(v)
bv

′
(y) =


(ψmn,1(0, lny))|I|m,n=1

(ψmn,1(lm, lny))|I|m,n=1

(ψmn,2(lmy, 0))|I|n,m=1

(ψmn,2(lmy, ln))|I|n,m=1

 (3.11)

for all y ∈ (0, 1) where, for compactness the labels ± are dropped. Boundary conditions
at the vertices are then(

I2 ⊗ A⊗ I|I|
)

Ψ
(v)
bv +

(
I2 ⊗B ⊗ I|I|

)
Ψ

(v)
bv

′
= 0. (3.12)

The δ-type interactions are characterised by the conditions

ψ+
mm(x1, x2)x1=x+2

= ψ−mm(x1, x2)x1=x−2
; (3.13)(

∂

∂x1

− ∂

∂x2

− 2α

)
ψ+
mm(x1, x2)|x1=x+2

=

(
∂

∂x1

− ∂

∂x2

)
ψ−mm(x1, x2)|x1=x−2

(3.14)

for every x ∈ (0, lm). Here, and in the remainder of this paper, we use the notation
x± = limδ→0(x ± δ). In [BK13c] it was proven that the two-particle Laplacian with these
boundary conditions is self-adjoint.

In Section 2, we calculated the spectra of one particle quantum graphs by specifying
the form (2.6) of eigenfunctions of −∆1 and applying boundary conditions (2.4). We would
like to extend this approach to the two-particle quantum graph setting. As we are dealing
with a two dimensional configuration space, the difficulty is that in general there does not
exist a suitable analogue of the general form of an eigenfunction (2.6). It is well known,
however, that in particular cases a Bethe ansatz can be used in this way.

Let us begin by considering systems of δ-interacting particles on the simplest metric
graph, an interval [0, l]. Such systems were exactly solved in [Gau71, Yan67, LL63, Bet31]
using the Bethe ansatz; a superposition of possible many-particle plane wave states as
explicit eigenfunctions of the two-particle Laplacian. In this way exact spectra of many-
particle systems can be calculated. To see how this works in the present setting we choose
Dirichlet boundary conditions at the interval ends, A = I2 and B = 0. The Bethe ansatz
method in this context is the assumption that the two components of eigenfunctions Ψ of
−∆2 take the form

ψ±(x1, x2) =
∑
P∈W2

A(P,±)ei(kP1x1+kP2x2). (3.15)
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The amplitudes A(P,±) are labelled by elements P of the Weyl group

W2 = (Z/2Z)2 o S2 (3.16)

of order 8, which is a semidirect product of its normal subgroup (Z/2Z)2 of order 4 with
the symmetric group S2 of order 2. This group is generated by the two elements R and T
which act according to

1. T (1, 2) = (2, 1);

2. R(1, 2) = (−1, 2),

and satisfy the conditions

1. TT = I;

2. RR = I;

3. TRTR = RTRT .

The Bethe ansatz (3.15) can be seen to satisfy the eigenvalue equation (3.5) with Laplace
eigenvalues k2

1 + k2
2.

We would first like to verify that the system is indeed exactly solvable, that is, boundary
conditions (3.12)–(3.14) imposed on the ansatz (3.15) are compatible with these conditions.
To this end let us define the 2-dimensional vector

AP =

(
A(P,−)

A(PT,+)

)
. (3.17)

The vertex boundary conditions (3.12) then imply

APR = −AP and APTRT = −e2ikP2lAP (3.18)

for all P ∈ W2. The δ-type interaction conditions (3.13) and (3.14) imply

APT = Sp(kP1 − kP2)AP (3.19)

with

Sp(k) =
1

k + iα

(
−iα k
k −iα

)
. (3.20)

To prove exact solvability we need only show that relations (3.18) and (3.19) are consistent
with the properties of W2. This amounts to the requirements

1. Sp(u)Sp(−u) = I2,

2. Sp(u)Sp(v) = Sp(v)Sp(u),
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which are easily verified by the explicit form of Sp(k). Now we have established that the
system is exactly solvable, we would like to deduce the spectrum. Applying (3.18) and
(3.19) successively, we arrive at the quantisation condition that

Zinterval(kP1, kP2) = 0 (3.21)

with

Zinterval(k1, k2) = det
[
I2 − e2ik1lSp(k1 − k2)Sp(k1 + k2)

]
(3.22)

is satisfied for all P ∈ W2. We note here that the form of Sp(k) is such that if (3.21) is
satisfied for some P ∈ W2, then it is necessarily satisfied for elements PR, PTRT ∈ W2.
This leads to the following result.

Theorem 3.1. [Gau71] Non-zero eigenvalues of a self-adjoint two-particle Laplacian −∆2

defined on an interval [0, l] with Dirichlet interactions at the endpoints and δ-type particle
interactions are the values E = k2

1 + k2
2 6= 0 with multiplicity m, where (k1, k2), such that

0 ≤ k1 ≤ k2, are solutions to the secular equations

Zinterval(ki, kj) = 0 (3.23)

for j, i 6= j ∈ {1, 2} with multiplicity m.

We note that, by instead choosing boundary conditions

A =

(
1 −1
0 0

)
and B =

(
0 0
1 1

)
, (3.24)

we recover the quantisation condition for two particles on a circle deduced in [Yan67].
Furthermore, imposing bosonic symmetry

ψ±(x1, x2) = ψ∓(x1, x2) (3.25)

we recover the result in [LL63].
The aim of this paper is to calculate spectra for general two-particle graphs. It turns

out that systems of δ-interacting particles on graphs with more than a single edge, in
general, are not exactly solvable. The task is then to establish boundary conditions on
general quantum graphs which are compatible with the Bethe ansatz method. In [CC07],
systems of particles on two-edge stars, interacting via certain non-local δ-type interactions,
were shown to be exactly solvable. In what follows, we extend this approach to systems of
two particles on general graphs in order to calculate their spectra. Furthermore, we show
that the corresponding boundary conditions are compatible with a self-adjoint Laplacian.
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4 Exactly solvable two-particle equilateral stars

Before discussing general graphs it is convenient to consider a subset of graphs called
equilateral stars. These graphs exhibit most of the essential features of the general case
and thus act as a convenient way to introduce some key concepts. Let us define the
equilateral star Γe as the graph Γ(V , I, f) with the restrictions lj = l, f0(ij) = v1 and
fl(ij) = vj+1 for all ij ∈ I. The degree d of the central vertex v1 is then the same as the
number of edges.

We would like to impose boundary conditions on vectors Ψ ∈ H2 which ensure exact
solvability. We note here that the total configuration space DΓe in the equilateral star
setting is the union of square subdomains

Dmn = (0, l)× (0, l). (4.1)

Boundary conditions at the vertices are chosen in the same way as in Section 3. Interactions
between particles will be analogues of the non-local δ-type interactions imposed in [CC07]
and take place when particles are situated on neighbouring edges, the same distance from
the common vertex of the edges. In what follows we refer to these as δ̃-type interactions.
We reiterate that the setN of neighbouring edges includes pairs (im, im). On the equilateral
star, such interactions are implemented by dissecting all squares Dmn along the lines x1 =
x2 and thus define the dissected configuration space

D∗Γe =

|I|⋃
m,n=1

(D+
mn ∪D−mn) (4.2)

with D±mn defined in an analogous way to (3.8)-(3.9). Two-particle wave functions Ψ ∈
L2(D∗Γe) are then lists

Ψ =

(
(ψ+

mn)
|I|
m=1

(ψ−mn)
|I|
m=1

)
. (4.3)

The δ̃-type interactions are characterised by the conditions

ψ+
mn(x1, x2)|x1=x+2

= ψ−nm(x1, x2)|x1=x−2
; (4.4)(

∂

∂x1

− ∂

∂x2

− 2α

)
ψ+
mn(x1, x2)|x1=x+2

=

(
∂

∂x1

− ∂

∂x2

)
ψ−nm(x1, x2)|x1=x−2

(4.5)

for almost every xi ∈ (0, l).
Using the method devised in [BK13c] one can introduce vectors of boundary values that

reproduce the boundary conditions (4.4)–(4.5) and prove that they provide a self-adjoint
realisation of the two-particle Laplacian.

We stress here that δ̃-type interactions can take place when particles are located on
different edges and therefore represent rather less physical interactions than δ-type in-
teractions. We choose these models as they permit exact solutions via the Bethe ansatz
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form

ψ±mn(x1, x2) =
∑
P∈W2

A(P,±)
mn ei(kP1x1+kP2x2) (4.6)

of the components in (4.3). This form obviously leads to eigenfunctions of (3.5) with
eigenvalues E = k2

1 + k2
2.

To show that the boundary conditions imposed on the ansatz (4.6) are compatible with
the properties of W2, let us first define the d2 × d2 permutation matrix

Td2 =

Id ⊗M1
...

Id ⊗Md

 (4.7)

with row vectors

Mj =

(
0 . . . 0︸ ︷︷ ︸
j−1

1 0 . . . 0︸ ︷︷ ︸
d−j

)
. (4.8)

It is convenient to note the properties

Td2(APmn)dm,n=1 = (APmn)dn,m=1 (4.9)

and

Td2(M ⊗N)Td2 = N ⊗M (4.10)

for any d× d matrices M and N . Then, defining the 2d2-dimensional vector

AP =

(
(A(P,−)

mn )dm,n=1

Td2(A(PT,+)
mn )dm,n=1

)
, (4.11)

the boundary conditions (3.12) imply

(I2 ⊗ A⊗ Id)Q
(

AP +APR
APT eikP1l +APRT e−ikP1l

)
+ikP1 (I2 ⊗B ⊗ Id)Q

(
AP −APR

−APT eikP1l +APRT e−ikP1l

)
= 0

(4.12)

for all P ∈ W2 where

Q =


Id2 0 0 0
0 0 0 Td2
0 Id2 0 0
0 0 Td2 0

 . (4.13)
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Equilateral stars have Dirichlet conditions at external vertices vj, j ≥ 2. We thus have the
decomposition

A =

(
A1 0
0 A2

)
and B =

(
B1 0
0 B2

)
, (4.14)

where A1, B1 refer to the boundary conditions at the central vertex, and

A2 = Id and B2 = 0 (4.15)

provide the Dirichlet conditions at the external vertices. By using the properties of Td2 ,
we then have that

Q−1 (I2 ⊗ Sv(k)⊗ Id)Q =

(
I2 ⊗ S(1)

v (k)⊗ Id 0
0 −I2d2

)
. (4.16)

Rearranging (4.12), we can then extract the relation

APR =
(
I2 ⊗ S(1)

v (−kP1)⊗ Id
)
AP . (4.17)

The δ̃-conditions (4.4)–(4.5) imply

APT = (Sp(kP1 − kP2)⊗ Id2)AP (4.18)

with Sp(k) defined in (3.20). To prove exact solvability we need only show that relations
(4.17)–(4.18) are consistent with the properties of W2. This amounts to the requirements

1. S
(1)
v (u)S

(1)
v (−u) = Id;

2. Sp(u)Sp(−u) = I2;

3.
(
I2 ⊗ S(1)

v (u)⊗ Id
)

(Sp(u+ v)⊗ Id2)
(
I2 ⊗ S(1)

v (v)⊗ Id
)

(Sp(v − u)⊗ Id2)

= (Sp(v − u)⊗ Id2)
(
I2 ⊗ S(1)

v (v)⊗ Id
)

(Sp(u+ v)⊗ Id2)
(
I2 ⊗ S(1)

v (u)⊗ Id
)

.

The first two conditions are easily verified by the explicit forms of S
(1)
v (u) and Sp(u). The

third follows from the result in [KS06] that, for any A,B and u, v, we have the commutation
relation

[Sv(u), Sv(v)] = 0. (4.19)

Now we have established that the system is exactly solvable, we would like to deduce the
spectrum. This can be done in a number of ways. The method we choose here generalises
that used for the one-particle case in [KS06] which we presented in Section 2.2. Substituting
(4.18) into (4.12) we have that

((I2 ⊗ A⊗ Id)QX(kP1, kP2, l) + ikP1 (I2 ⊗B ⊗ Id)QY (kP1, kP2, l))

(
AP
APR

)
= 0 (4.20)

13



with

X(k1, k2, l) =

(
I2 I2

Sp(k1 − k2)eik1l Sp(−k1 − k2)e−ik1l

)
⊗ Id2 (4.21)

and

Y (k1, k2, l) =

(
I2 −I2

−Sp(k1 − k2)eik1l Sp(−k1 − k2)e−ik1l

)
⊗ Id2 . (4.22)

Then by the properties of determinants, and since det(A + ikB) 6= 0, we arrive at the
condition that

Ze(kP1, kP2) = 0 (4.23)

with

Ze(k1, k2) = det
[
I2d + e2ik1l

(
Sp(k1 − k2)Sp(k1 + k2)⊗ S(1)

v (k1)
)]

= 0 (4.24)

is satisfied for all P ∈ W2. By using properties of determinants and the explicit forms of
Sp(k) and Sv(k), it is easy to see that the form (4.24) is such that if (4.23) is satisfied for
some P ∈ W2, then it is necessarily satisfied for elements PR, PTRT ∈ W2. With this in
mind, we can state the main result of this section.

Theorem 4.1. Non-zero eigenvalues of a self-adjoint two-particle Laplacian −∆2 defined
on an equilateral star Γe with interactions at the central vertex specified through A1, B1

and δ̃-type particle interactions are the values E = k2
1 + k2

2 6= 0 with multiplicity m, where
(k1, k2) such that 0 ≤ k1 ≤ k2, are solutions to the secular equations

Ze(ki, kj) = 0 (4.25)

for j, i 6= j ∈ {1, 2} with multiplicity m.

Before we move on to general graphs, let us establish agreement with some results
discussed earlier in the paper.

Firstly, choosing d = 2, we recover the spectrum of a system of two particles on an
interval with a central impurity as solved in [CC07]. Furthermore, rather than choosing
Dirichlet vertex conditions (4.15), which specified the connectivity of an equilateral star,
and instead choosing Kirchhoff boundary conditions

A2 =

(
1 −1
0 0

)
and B2 =

(
0 0
1 1

)
(4.26)

to establish continuity at the outer vertices, we recover the spectra of systems of two
particles on a circle with an impurity also in [CC07].

Throughout this section we have used α to parameterise the strength of particle interac-
tions. It is reasonable to expect then that by setting α = 0, one should arrive at separable
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quantisation conditions given by (2.10) for one-particle quantum graphs. Indeed, by sub-
stituting α = 0 into the form (4.24), we recover

det
[
Id + e2iklS(1)

v (k)
]

= 0 (4.27)

which is exactly the corresponding one-particle condition. It is important to point out
however, that δ̃-type interactions with α = 0 result in coupling between domains Dmn and
Dnm and are thus clearly distinct from the truly non-interacting situation. For this reason
we refer to such systems as pseudo-non-interacting. The fact the one-particle condition
(4.27) is recovered in this case is a result of the specific geometry of the equilateral star.
We will see in the subsequent section that this agreement does not hold for general graphs.
We revisit this point in the final section of the chapter when discussing spectral statistics.

5 Exactly solvable two-particle quantum graphs

We have seen, in the previous section, how to construct exactly solvable models of two
interacting particles on equilateral stars. The majority of quantum graphs literature, how-
ever, is concerned with the dynamics of single particles on graphs with, in general, different
edge lengths. Indeed, in [KS97], rationally independent edge lengths are required to avoid
degenerate energy levels and ensure spectral statistics following random matrix predictions.
This section is concerned with extending the scope of our discussion to two particles on
general compact graphs.

Again we would like to impose boundary conditions on vectors Ψ ∈ H2 which ensure
exact solvability. As imposing δ̃-type interactions between particles on equilateral stars
leads to exact solutions, it seems reasonable to assume that a suitable variant of such in-
teractions in the general setting will also lead to exact solutions. However, general graphs
bring added complications associated with edges of different length and distant vertices.
The problem is then to choose an appropriate way to impose δ̃-type interactions in the gen-
eral setting which preserves compatibility with the Bethe ansatz method. In what follows
we impose that δ̃-type interactions become effective when two particles on neighbouring
edges are located the same distance from their common vertex. This section is concerned
with characterising these interactions in terms of self-adjoint realisations of the Laplacian
and then, viewing the graph in its star representation, calculating the two-particle spectra.
Let us begin by considering a pair of particles on a neighbouring edge couple (im, in) ∈ N
with coordinates x1 ∈ [0, lm] and x2 ∈ [0, ln] respectively. The orientations of the edges
could be such that f0(im) = f0(in), f0(im) = fl(in), fl(im) = f0(in) or fl(im) = fl(in).
The δ̃-type interactions prescribed above in the star representation become effective when
either x1 = x2, x1 = ln−x2, lm−x1 = x2 or lm−x1 = ln−x2, respectively. The interaction
will then be cut off at the smaller of the two edge lengths involved. The four cases can be
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mapped to the first one by changing coordinates according to

(x̃1, x̃2) =


(x1, x2) if f0(im) = f0(in),

(x1, ln − x2) if f0(im) = fl(in),

(lm − x1, x2) if fl(im) = f0(in),

(lm − x1, ln − x2) if fl(im) = fl(in).

(5.1)

In these coordinates interactions take place when x̃1 = x̃2. The total dissected configuration
space can be written

D∗Γ =

 ⋃
(im,in)∈D

Dmn

⋃ ⋃
(im,in)∈N′

(D̃+
mn ∪ D̃−mn)

 (5.2)

with subdomains defined as

D̃+
mn = {(x̃1, x̃2) ∈ (0, lm)× (0, ln); x̃1 > x̃2} (5.3)

and

D̃−mn = {(x̃1, x̃2) ∈ (0, lm)× (0, ln); x̃1 < x̃2}. (5.4)

In order to define the quantum model, very much in analogy to (3.10)–(3.14), we
need the Hilbert space L2(D∗Γ) and a domain that is specified as a subspace of H2(D∗Γ)
in terms of boundary conditions. We denote the components of vectors Ψ ∈ H2(D∗Γ) as
ψmn : Dmn → C, when (im, in) ∈ D and ψ±mn : D±mn → C, when (im, in) ∈ N . First defining
vertex boundary vectors as in (3.11) we again have vertex conditions (3.12). With the
definition l−mn = min(lm, ln) we have δ̃-type boundary conditions

ψ+
mn(x̃1, x̃2)|x̃1=x̃+2

= ψ−nm(x̃1, x̃2)|x̃1=x̃−2
; (5.5)(

∂

∂x̃1

− ∂

∂x̃2

− 2α

)
ψ+
mn(x̃1, x̃2)|x̃1=x̃+2

=

(
∂

∂x̃1

− ∂

∂x̃2

)
ψ−nm(x̃1, x̃2)|x̃1=x̃−2

(5.6)

for all x̃1, x̃2,∈ (0, l−mn) when (im, in) ∈ N .
As in the equilateral star case, using the method devised in [BK13c] one can introduce

vectors of boundary values that reproduce the boundary conditions (5.5)–(5.6) and prove
that they provide a self-adjoint realisation of the two-particle Laplacian.

5.1 Spectra

We have seen how to establish boundary conditions which correspond to two-particle quan-
tum graphs with δ̃-type interactions. We would now like to show that such systems are
exactly solvable and calculate their spectra.

For the equilateral star graphs considered in Section 4, exact solvability was shown
by substituting the ansatz (4.6) directly into boundary conditions (3.12) and (4.4)–(4.5)
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defined on D∗Γe . The spectra then followed by generalising the approach in [KS06] to two
particles. While, in principle, we can use the same method in the general graph case, the
extra complexity brought about by different edge lengths makes the presentation rather
convoluted. To this end we will use the method presented in Section 2.3 which utilises the
star representation Γ(s) of a compact graph Γ. In the compact setting, δ̃-type interactions
require us to define dissections (5.3)-(5.4) of domains Dmn which relate to neighbouring
pairs (im, in) of edges on Γ. On Γ(s), this corresponds to defining dissections of

D(s)
mn = (0,∞)× (0,∞), (5.7)

with f(em) = f(en), according to

D(s,+)
mn = {(x1, x2) ∈ D(s)

mn;x1 > x2}, (5.8)

and

D(s,−)
mn = {(x1, x2) ∈ D(s)

mn;x1 < x2}. (5.9)

In order to simplify the formalism which follows, it is convenient to artificially extend the
dissections (5.8)–(5.9) to all edge pairs so that the total dissected configuration space is
given by

D∗Γ(s) =

|E|⋃
m,n=1

(
D(s,+)
mn ∪D(s,−)

mn

)
. (5.10)

The appropriate Hilbert space is thenH(s,∗)
2 = L2(D∗

Γ(s)) so that two-particle wave functions

Ψ(s) ∈ H(s,∗)
2 are lists

Ψ(s) =

(
(ψ

(s,+)
mn )

|E|
m,n=1

(ψ
(s,−)
mn )

|E|
m,n=1

)
(5.11)

of functions ψ
(s,±)
mn : D

(s,±)
mn → C. We note that later in the formalism we correct for these

extra dissections by imposing appropriate conditions of continuity (see Figure 1).
The task is now to specify the boundary conditions we would like to impose. Interac-

tions at the vertices in this setting will be described by simple two-particle lifts of (2.13)
and are exact analogues of (3.11)–(3.12). The δ̃-type interactions are implemented through
the conditions

ψ(s,+)
mn (x1, x2)|x1=x+2

= ψ(s,−)
nm (x1, x2)|x1=x−2

; (5.12)(
∂

∂x1

− ∂

∂x2

− 2α

)
ψ(s,+)
mn (x1, x2)|x1=x+2

=

(
∂

∂x1

− ∂

∂x2

)
ψ(s,−)
nm (x1, x2)|x1=x−2

. (5.13)
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D
(s,−)
m(n+∣I∣)

D
(s,+)
m(n+∣I∣) D

(s,+)(m+∣I∣)(n+∣I∣)

D
(s,−)(m+∣I∣)(n+∣I∣)

D
(s,−)
mn

D
(s,+)
mn D

(s,+)(m+∣I∣)n

D
(s,−)(m+∣I∣)n

Figure 1: Appropriate dissections in the star representation of an internal edge couple
(im, in) with f0(im) = f0(in). δ̃-type interactions are imposed along the solid diagonal.
Continuity is imposed across dashed diagonals.

on edge pairs (em, en) where f(em) = f(en). Continuity is reestablished in domains D
(s)
mn,

with f(em) 6= f(en), by setting

ψ(s,+)
mn (x1, x2)|x1=x+2

= ψ(s,−)
mn (x1, x2)|x1=x−2

; (5.14)(
∂

∂x1

− ∂

∂x2

)
ψ(s,+)
mn (x1, x2)|x1=x+2

=

(
∂

∂x1

− ∂

∂x2

)
ψ(s,−)
mn (x1, x2)|x1=x−2

, (5.15)

that is, for these edge pairs we require the functions and their derivatives to be continuous
across diagonals.

Using the Bethe ansatz method, an eigenvector Ψ(s) in the star representation will be
described by the collection of functions

ψ(s,±)
mn (x1, x2) =

∑
P∈W2

A(P,±)
mn ei(kP1x1+kP2x2) (5.16)

on D
(s,±)
mn (for all edge pairs). Let us define the 2|E|2-dimensional vector

AP =

(
(A(P,−)

mn )
|E|
m,n=1

T|E|2(A(PT,+)
mn )

|E|
m,n=1

)
, (5.17)

with T as defined in (4.7). The vertex-boundary conditions then imply

APR =
(
I2 ⊗ Sv(−kP1)⊗ I|E|

)
AP (5.18)
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for all P ∈ W2. At this point, it is convenient to define the matrix c = diag(cmn)
|E|
m,n=1

where

cmn =

{
1 if f(em) = f(en);

0 else,
(5.19)

which distinguishes domains with δ̃-type interactions from those where derivatives are
continuous across dissections. The δ̃-conditions then imply

APT = Y (kP1 − kP2)AP (5.20)

with

Y (k) = Sp(k)⊗ c+ ( 0 1
1 0 )⊗ (I|E|2 − c)T|E|2 . (5.21)

To prove exact solvability we need only show that relations (5.18) and (5.20) are con-
sistent with the properties of W2. This amounts to the requirements

1. Sv(u)Sv(−u) = I|E|;

2. Y (k)Y (−k) = I2|E|;

3.
(
I2 ⊗ Sv(u)⊗ I|E|

)
Y (u+ v)

(
I2 ⊗ Sv(v)⊗ I|E|

)
Y (v − u)

= Y (v − u)
(
I2 ⊗ Sv(v)⊗ I|E|

)
Y (u+ v)

(
I2 ⊗ Sv(u)⊗ I|E|

)
.

The first two conditions are easily verified by the explicit forms of Sv(u) and Y (u), noting
that, since cmn = cnm, the properties of T|E|2 are such that

[c,T|E|2 ] = 0. (5.22)

Noting then the relation

[Sv(u)⊗ I|E|, c] = 0 (5.23)

holds if vertex boundary conditions are local, that is Sv(u) obeys the condition (2.15), and
also the relation (4.19), the third condition is easily verified.

Let us bring our attention back to the original compact graph Γ. In order to turn the
eigenfunctions in the star representation into eigenfunctions on the compact graph, it is
sufficient to impose the relations

ψ(s,+)
mn (x1, x2) = ψ

(s,+)
(m+|I|)n(lm − x1, x2) and ψ(s,−)

mn (x1, x2) = ψ
(s,−)
m(n+|I|)(x1, ln − x2)

(5.24)

for all m,n ∈ {1, .., |I|} which imply

A(P,+)
mn = A(PR,+)

(m+|I|)ne
−ikP1lm and A(P,−)

mn = A(PTRT,−)
m(n+|I|) e

−ikP2ln . (5.25)
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These conditions then yield the relation

AP = E(−kP2)APTRT (5.26)

where

E(k) = I4|I| ⊗
(

0 1
1 0

)
⊗ eikl (5.27)

with eikl defined as in (2.9). Applying (5.18), (5.20) and (5.26) successively we have the
condition that

Z(kP1, kP2) = 0 (5.28)

with

Z(k1, k2) = det
[
I8|I|2 − E(k2)Y (k2 − k1)

(
I2 ⊗ Sv(k2)⊗ I2|I|

)
Y (k1 + k2)

]
(5.29)

is satisfied for all P ∈ W2. By using properties of determinants, the commutation relations
established above and the explicit forms of Y (k), Sv(k) and E(k), it is easy to see that
the form (5.29) is such that if (5.28) is satisfied for some P ∈ W2, then it is necessarily
satisfied for elements PR, PTRT ∈ W2. With this in mind we can state the main result
of this section.

Theorem 5.1. Non-zero eigenvalues of a self-adjoint two-particle Laplacian −∆2 defined
on Γ with local vertex interactions specified through A,B and δ̃-type interactions between
particles when they are located on neighbouring edges are the values E = k2

1 +k2
2 6= 0 with

multiplicity m, where (k1, k2), such that 0 ≤ k1 ≤ k2, are solutions to the secular equations

Z(ki, kj) = 0 (5.30)

for j, i 6= j ∈ {1, 2} with multiplicity m.

5.2 Recovering specific results

To finish the section, we establish agreement between the spectra of general two-particle
quantum graphs presented in Theorem 5.1 and results derived and discussed earlier in the
paper.

The above result matches our previous result for equilateral stars given by Theorem
4.1 by choosing the same boundary conditions at the vertices and setting all edge lengths
to lm = l. As, on star graphs, δ̃-type interactions are defined between all pairs of edges,
one has to put

cmn =

{
1 if f(em) = f(en) = v1 or f(em), f(en) ∈ {v2, . . . , v|V|};
0 else.

(5.31)
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Substituting these parameters into Z(ki, kj) and using the properties of determinants we
recover the form Ze(ki, kj) as required.

In Section 4, we introduced the notion of pseudo-non-interacting particles and showed
that in the equilateral star setting, the appropriate quantisation condition is indeed that
of the truly non-interacting case. However, in the general setting, this agreement does not
hold. The spectra of such systems is calculated first by identifying the matrix

lim
α→0

Y (k) = ( 0 1
1 0 )⊗ (c+ (I|E|2 − c)T|E|2). (5.32)

Substitution into (5.29) then yields the quantisation condition

Z(k) = det
[
I4|I|2−

(
Sv(k)⊗ ( 0 1

1 0 )⊗ eikl
)
c

−
(
I2|I| ⊗ (( 0 1

1 0 )⊗ eikl)Sv(k)
) (

I4|I|2 − c
) ] (5.33)

which we notice is dependent on the single momentum k.
Truly non-interacting systems are recovered by turning off all coupling between domains

Dmn and Dnm. This is achieved by setting c = 0. We then have that

Y (k)|c=0 = ( 0 1
1 0 )⊗ T|E|2 (5.34)

By substituting into (5.29) we recover the secular equation (2.10) for the one-particle
quantum graph.

In the subsequent section we would like to analyse examples of bosons on graphs.
Computationally speaking, such examples are useful as the dimension of the matrix inside
the determinant Z(k1, k2) is halved. Imposing bosonic symmetry we have

ψ(s,±)
mn (x1, x2) = ψ(s,∓)

nm (x2, x1) (5.35)

for all (x1, x2) ∈ D(s)
mn which implies the relations

A(P,−) = A(PT,+) (5.36)

for all P ∈ W2. The matrix (5.21) then reduces to the form

Yb(k) = I2 ⊗
(
k − iα
k + iα

c+ (I|E|2 − c)T|E|2
)
. (5.37)

so that from (5.29), we recover

Zb(k1, k2) = det
[
I4|I|2 − Eb(k2)Yb(k2 − k1)

(
Sv(k2)⊗ I2|I|

)
Yb(k1 + k2)

]
(5.38)

with E(k) = I2 ⊗ Eb(k).
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6 Spectral Statistics

In this section we calculate the spectra of certain examples of two-particle quantum graphs
and analyse their statistics.

Let us first introduce the eigenvalue counting function

N(E) = #{n; En ≤ E}. (6.1)

It was shown in [BK13c] that for two-particle quantum graphs with δ-type interactions,
the asymptotic behaviour follows the Weyl law

N(E) ∼ L
2

4π
E, E →∞, (6.2)

where L =
∑|I|

j=1 lj denotes the total length of the graph. Of course, the majority of this

paper is not concerned with δ-type interactions, but with δ̃-type interactions. Nonetheless,
it is still revealing to compare the eigenvalue count with (6.2). To this end, we will assign
a line of best fit

N(E) = aE + b
√
E + c (6.3)

to the counting function and compare the leading term to (6.2).
One of the main motivations for the study of quantum graphs is to analyse their spectral

correlations. A particularly useful statistical measure is the nearest neighbour level spacings
distribution ∫ b

a

p(s)ds = lim
N→∞

1

N
#{n ≤ N ; a ≤ εn+1 − εn ≤ b}. (6.4)

of the unfolded versions, ε1 < ε2 < ε3 < . . . , of the energy eigenvalues; that is the energies
are rescaled such that the average spacing is equal to unity. Generic quantum systems
with integrable classical limits are conjectured to have spectra with Poissonian statistics
[BT77],

p(s) = e−s, (6.5)

while chaotic classical systems have quantum counterparts with correlations described by
random matrix models. For systems with integer spin and time-reversal symmetry Gaus-
sian orthogonal ensemble (GOE) statistics are conjectured to apply [BGS84], where the
level spacings distribution can be approximated by

p(s) =
π

2
s e−

π
4
s2 , (6.6)

see [Haa91]. In this section we analyse the spectral statistics of certain examples by using
the integrated measure (6.4).
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In [KS97], nearest neighbour energy level distributions of one-particle quantum tetra-
hedra were shown to exhibit GOE spectral statistics and thus imply chaotic classical coun-
terparts. In this section we analyse the spectra of two-particle quantum graphs calculated
in the previous sections, looking for a potential dependence of spectral correlations on the
interaction strength. We refer to the result by Srivastava et al. [STL+16] who analysed
the spectral properties of interacting kicked rotors which individually show GOE statis-
tics. They found a transition from Poissonian to GOE statistics as the strength of the
interaction was increased.

6.1 Tetrahedron

Let us take, as an example, a system of two δ̃-interacting bosons on a tetrahedron. The
appropriate spectra are calculated according to Theorem 5.1 using the secular equation
(5.38). Vertex boundary conditions are determined by choosing Discrete Fourier Transform

(DFT) scattering matrices S
(η,DFT )
v with elements

(S(η,DFT )
v )γλ =

1√
dη
e

2πi
n(γ)n(λ)

dη , (6.7)

where n(·) is a bijection of the dη neighbouring vertices of vη onto the numbers {0, . . . , dη−
1}. For the tetrahedron, appropriate DFT scattering matrices at each vertex vη are then

S(DFT )
η =

1√
3

1 1 1

1 e
2iπ
3 e

4iπ
3

1 e
4iπ
3 e

8iπ
3

 , (6.8)

with distinct eigenvalues {−1, 1, i}. With this choice, the spectrum of the two-particle
tetrahedron with δ̃-type interactions and rationally independent edge lengths is non-degenerate.

Before analysing two-particle spectra, let us consider the spectra of non-interacting
systems. Figure 2 plots the nearest neighbour distributions for the single-particle spectra
associated with truly non-interacting (c = 0) and pseudo-non-interacting (α = 0) particles
on the tetrahedron with DFT scattering matrices. As is well-known [KS97] and confirmed
in Figure 2, the one-particle spectrum follows GOE statistics. The pseudo-non-interacting
system, however, shows Poissonian statistics. The crucial point here is that two-particle
systems prescribed in Theorem 5.1 in fact couple systems of pseudo-non-interacting par-
ticles which individually possess spectra with Poissonian statistics, not systems of truly
non-interacting particles which individually follow GOE statistics. Thus we cannot expect
a transition to GOE statistics as in [STL+16]. Figure 3 plots the α-dependency of the
lowest energy levels of a system of δ̃-interacting bosons on a tetrahedron with DFT vertex
scattering matrices. There is no obvious transition to a regime of energy level repulsion as
we increase α. Indeed, plots of nearest neighbour distributions reveal Poissonian statistics
for all interaction strengths. Figure 4 shows these plots for interaction strengths α = 1
and α = 10. Figure 5 plots counting functions N(E) for strengths α ∈ {0, 1, 10} together
with quadratic lines of best fit (6.3). In each case, the leading term does not agree with
the Weyl law (6.2) predicted for contact interactions.
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Figure 2: Integrated level spacings distributions for systems of non-interacting and pseudo-
non-interacting particles on a tetrahedron. First 50,000 eigenvalues.
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Figure 5: Counting functions N(E) (solid line) with lines of best fit N(E) (dashed line)
for systems of two bosons on a tetrahedron.

6.2 Equilateral star

To examine the spectral statistics of coupled chaotic systems we must look for two-particle
quantum graphs for which the one-particle spectra recovered when setting α = 0 are
chaotic. We have seen that the two-particle tetrahedron does not fulfil this requirement.
Let us then focus our attention on equilateral stars which we discussed in Section 4, where
we showed that we recover true one-particle spectra when setting α = 0. Thus we can dis-
cuss coupled chaotic systems in the spirit of [STL+16] if we can find one-particle equilateral
stars which exhibit GOE statistics. Such systems are characterised by the quantisation
condition (4.27) which can be written

e−2ikl = −µ(k), (6.9)

where µ(k) is an eigenvalue of S
(1)
v (k). Clearly, the multiplicity of solutions k are equal

to the multiplicity these eigenvalues. For example, equilateral stars with boundary condi-
tions characterised by the DFT scattering matrix (6.7) at the central vertex yield solutions
corresponding to µ = {1,−1, i,−i} with degenerate values arising for d > 3. Clearly de-
generate energy levels would obscure conclusions made in the context of spectral statistics.
To navigate this issue, we must choose a scattering matrix with non-degenerate eigenval-
ues. In what follows, we choose a d|I| × d|I| random unitary matrix. Figure 6 plots the
nearest neighbour distribution for a single particle on such an equilateral star with 9 edges.
The degenerate energy level spacings arise from the imposition of equal lengths. Indeed in
studies of one-particle quantum graph spectra, rationally independent lengths are chosen
to avoid degenerate level spacings. We do however see approximate agreement with GOE
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Figure 10: Integrated level spacings distri-
butions for systems of two bosons on a 9-
edge equilateral star with α = 10.

statistics. In this setting we can thus investigate the coupling of two chaotic spectra by
increasing α from 0.

Figure 7 plots the α-dependency of the lowest energy levels of a system of two bosons on
a 9-edge equilateral star with a random unitary central scattering matrix. We clearly see a
transition to level repulsion as α is increased. Figure 8 plots nearest neighbour distributions
for the first 100 energy levels. There is a clear shift from Poissonian, for α = 1, to GOE
statistics, for α = 10. We note, however, that this level repulsion becomes less apparent
as we include larger energy levels; Figure 9 shows level crossing at higher energies and
Figure 10 shows how the spectral statistics for the α = 10 case tend to Poissonian as we
include higher energies. Figure 11 plots counting functions for α ∈ {0, 1, 10} together with
quadratic lines of best fit (6.3). For the non-interacting (α = 0) case, the leading term
agrees exactly with the Weyl law (6.2). As the interaction strength increases, the counting
function diverges from this prediction.
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