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γSyn  Gamma synuclein 

λmax  Wavelength of maximum intensity 
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A   Ala   alanine 

C   Cys   cysteine 

D   Asp   aspartate 

E   Glu   glutamate 

F   Phe   phenylalanine 

G   Gly   glycine 

H   His   histidine 

I   Ile   isoleucine 

K   Lys   lysine 

L   Leu   leucine 

M   Met   methionine 

N   Asn   asparagine 

P   Pro   proline 

Q   Gln   glutamine 

R   Arg   arginine 

S   Ser   serine 

T   Thr   threonine 

V   Val   valine 

W   Trp   tryptophan 

Y   Tyr   tyrosine 
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Abstract 

Amyloidoses are a group of protein misfolding diseases that are characterised by the abnormal 

accumulation of highly ordered filamentous assemblies known as amyloid. This phenomenon is 

associated with more than 50 human diseases, some of which are the most debilitating 

disorders that threaten human health today. Many of these disorders have age as the main 

contributing risk factor and, therefore, pose an ever-increasing risk in the developed world 

with aging societies. Despite intense research, much remains unknown about the fundamental 

processes driving protein aggregation in these diseases and there are few disease modifying 

treatments available.  

A protein that undergoes amyloid formation and causes disease is the intrinsically disordered 

neuronal protein α-synuclein (αSyn), the aggregation of which leads to several diseases 

including Parkinson’s disease (PD) which is the second-most common neurodegenerative 

disorder that affects 2–3% of the population ≥65 years of age. Importantly, the toxic species on 

the aggregation pathway are difficult to identify and determine in molecular detail. This thesis 

was motivated by this fact and aimed to study the initial intermolecular events in αSyn self-

assembly (dimerisation) on a single molecule scale. Single molecule force spectroscopy (SMFS) 

methodologies were therefore utilised in order to study these early protein-protein interaction 

events.  

A display system was firstly designed and validated in which small regions of highly 

aggregation-prone sequences can be presented in a protein scaffold in a robust and 

reproducible manner for SMFS studies. It was demonstrated that intermolecular interactions 

of these sequences could be analysed by implementing this system. A novel heterodimeric 

interaction between the central aggregation-prone regions of αSyn (residues 71-82) and the 

same region of its human homologue γSynuclein (γSyn), were revealed by using this system. 

Further study led to the finding that this interaction played a role in the inhibiting the 

aggregation of αSyn. 

The dimerisation interaction of full length αSyn has also been analysed in this thesis and 

several important findings have been demonstrated. The SMFS experiments show that force-

resistant structure forms in the dimeric species of αSyn and that this structure is dependent on 

the environmental conditions. SMFS utilising different immobilisation regimes of αSyn have 

also allowed the location of a novel interaction interface involving the N-terminal region of the 

protein. Further SMFS experiments investigating the effects of salt and hydrophobicity have on 

dimerisation, alongside bioinformatics analyses of the protein sequence led to the hypotheses 
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that the dimeric interaction is driven by hydrophobic stretches in the N-terminal region, but 

modulated by local electrostatics. In vitro aggregation assays and SMFS on non-aggregation-

prone synuclein homologues (β- and γSyn) indicated that that this interaction is protective 

against aggregation, considering these finding with existing literature prompted speculation 

that the interactions observed in SMFS may indeed be physiologically relevant. This may 

therefore be an important finding in regards to targeting the aggregation process with disease 

modifying agents. 
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1 Introduction 

1.1 Introduction to protein folding 

Proteins are the second most abundant molecules in biology after water1. They act as the 

“workhorse” of life, performing a plethora of functions which make the existence of all life on 

Earth possible. The functions that proteins perform are dictated by their native tertiary and 

often quaternary structure. In the early 1960’s, Anfinsen and colleagues’ classic work on the 

renaturation of Ribonuclease A, led to the hypothesis that all the information required for a 

protein to fold into its native conformation is encoded in the primary amino acid sequence2. 

This mechanism depends on searching for states with the lowest free energy and therefore 

highest stability. However, this leads to the protein folding paradox in which it becomes 

impossible for a protein to perform an exhaustive search of all conformations and achieve a 

global free energy minimum on a biologically relevant timescale3,4. In fact, if a protein of 

average length (300 amino acids) was to undergo this mechanism of folding, it would have 

explored more conformations than the total number of atoms in the universe before it would 

arrive at its native conformation1. This paradox was first considered by Levinthal3, who 

proposed that folding is directed down specific, kinetically controlled pathways, guided by the 

rapid formation of local interactions5. These interactions determine the further folding of the 

polypeptide chain which, by the formation of local native-like structures with enhanced 

stability, results in fewer conformations being sampled en route to the native conformation, 

allowing protein folding on a biologically relevant timescale. 

The nucleation-growth model was the first proposed mechanism of protein folding6. This 

theory postulated that tertiary structure is propagated rapidly from a nucleus of secondary 

structure in a hierarchical manner.  However, proteins were observed to fold via folding 

intermediates7,8 which this model can not account for. This led to the emergence of the 

framework model9,10 and the analogous diffusion-collision model of folding11,12 to better 

account for folding intermediates (Figure 1-1). These models proposed the packing together of 

secondary structural elements and their collision and coalescence into tertiary structures. The 

hydrophobic collapse model13,14 was subsequently proposed. This model proposed the initial 

collapse of a polypeptide chain followed by secondary structure formation, in contrast to the 

hierarchical progression of structure in the previous models. This process occurs via the initial 

sequestration of hydrophobic sidechains from the surrounding aqueous environment to 

produce a molten globule intermediate, constraining the volume in which the conformational 

search for the native state can occur, guiding native state topology. This process occurs before 
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secondary structure formation. However, studies on the folding of chymotrypsin inhibitor-2 

did not reveal the presence of intermediates, but showed a 2-state transition15. φ-value 

analysis carried out on the same protein revealed that secondary and tertiary structures form 

in parallel16. These findings, along with the discovery of two-state folding kinetics for many 

other proteins17,18, resulted in the postulation of the nucleation-condensation model as an 

amalgamation of features from the above models19. In this model, a small nucleus of weak 

structure forms, which is stabilised by long range tertiary interactions. The nucleus represents 

the transition state from which the remainder of the secondary and tertiary structures are 

formed. In reality, a continuum of models probably exists, with the extremes of the framework 

and hydrophobic collapse models. The formation of structural elements in sequence or in 

parallel depends on the relative strengths of secondary and tertiary interactions20,21.  

 

Figure 1-1. Schematic of some of the proposed folding mechanisms. Illustrations of the 
framework9,10, hydrophobic collapse13,14 and nucleation-condensation hierarchical assembly 
models19 are shown. Anfinsen’s original protein folding hypothesis is depicted as spontaneous 
folding from unstructured ensemble to the native state2. The conformational entropy 
decreases from the unstructured ensemble on the left to the native state on the right as the 
structural complexity increases. Figure redrawn and adapted from Morris and Searle 201222. 
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The process of protein folding is often conceptualised as a “downhill” pathway from an 

unstructured high energy conformation to a more stable, lower energy native state. The 

energy landscape of this process describes the intermediate ensemble of conformations 

sampled en route during folding and is expressed as the internal free energy of the protein as 

it explores conformational space. This process can be illustrated by a folding funnel23,24. An 

idealised folding funnel is depicted in Figure 1-2 in which the intrinsic free energy decreases 

concurrently with the conformational entropy until an energy minimum is reached 

corresponding to the native state23. This idealistic scenario is likely to differ drastically in 

reality. Indeed proteins that fold via a two state transition will have a relatively smooth energy 

landscape. However, the majority of proteins tend to proceed to their native states via a 

population of folding intermediates. These “on pathway” intermediates give rise to a 

roughness of the energy landscape with high kinetic barriers and low kinetic traps as shown in 

Figure 1-3. 

 

Figure 1-2. An Idealised energy landscape of protein folding. The vertical axis represents the 
internal free energy of the system. The horizontal axis represents the conformational entropy 
explored by the polypeptide chain. Folding starts at the rim of the funnel depicted by 
schematic polypeptide chains that do not contain structural elements. As the number of 
intramolecular contacts increases, the free energy lowers and the conformational freedom is 
reduced until the native state is formed at the base of the funnel.  
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Figure 1-3. A rough protein folding landscape with folding intermediates. The unfolded protein 
depicted by chains lacking structural components funnel down to a low energy native state at 
the base of the funnel. The surface of the funnel is rough and contains low energy troughs in 
which folding intermediates can be populated. 

  

Protein folding pathways are further complicated by “off pathway” structures which are not 

directly formed in the normal folding pathway of a protein progressing to the native state. 

These off pathway misfolded species may be kinetically trapped and require substantial 

reorganisation before the native state can be reached14. 

1.2 Intrinsically disordered proteins 

Protein stabilities have been traditionally reported in the range of -10 to -50 kJ mol-1, a fraction 

of the strength of a covalent bond. Thus folded proteins are only marginally stable and still 

contain some degree of conformational dynamics or disorder25. They exhibit motions that span 

a range of timescales (from ns to ms or slower)26,27. The dynamic properties of proteins have 

been shown to be key to various aspects of protein function, such as enzymatic catalysis28, 

regulation of protein synthesis29, and many others30. Some proteins may have an energy 

landscape that is drastically different from those shown in both Figure 1-2 and Figure 1-3. The 

energy landscape for these proteins may be much flatter and lack an obvious folded native 

state as shown in Figure 1-4. Some proteins are so unstable that they lack structure in 

extended regions or in the entirety of the protein. Proteins that possess at least one region 
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that does not have a fixed secondary or tertiary structure are termed intrinsically disordered 

proteins (IDPs) and these lie at the extreme of the spectrum for molecular dynamism as they 

can sample a very large space of heterogeneous conformations31,32. Regular secondary 

structures only occupy a small fraction of φ and ψ angles. Proteins occupying regions of 

conformational space that are not in these narrow distributions, defined by Ramachandran33, 

can therefore be described as intrinsically disordered. However, IDPs are not completely 

random; they contain some conformational preferences that are sequence specific34,35. 

 

Figure 1-4. Energy landscape of an IDP and its folding upon binding.  The energy landscape of 
an IDP is shown in blue as a relatively flat but rough landscape. The folding funnel lacks any 
obvious troughs populated by more structured polypeptides. A lower energy state exists that 
forms under IDP binding to partners is shown in green with a chain with some structure shown 
at lower free energy.  

IDPs play key roles in the cell31, the prevalence of these proteins in the proteome is testament 

of this: around 50% of human proteins contain stretches of at least 30 disordered residues and 

around 25% of human proteins are disordered32. They are utilised in the cell as transcription 

factors, in protein signalling pathways and in regulatory pathways31. IDPs involved in some of 

these pathways are often referred to as ‘hub’ proteins due to their ability to bind many 

different partners, playing a major role in protein-protein interaction networks32,36. IDPs are 

weak but specific binders, and even when bound to a protein partner may still possess some 

disorder or ‘fuzziness’37. They represent good examples of conformational selection theory38, 

as in many cases, IDPs undergo coupled folding and binding due to the stability that binding 
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confers on one of the many conformations of an IDP39. This property of simultaneous folding 

and binding has been proposed to be the origin of the transient and weak interactions IDPs 

often undertake, as there is an entropic penalty for folding a disordered region that results in a 

higher Kd
36,39. This is because for an IDP, the binding energy is the sum of the favourable 

binding interaction and the unfavourable folding energy of a disordered protein or region, 

increasing off rates and therefore dictating a weaker interaction. In this manner, the affinity 

and the off rates can be adjusted to almost any desired value by varying the free energy of 

folding, hence some IDPs appear “almost” folded whereas others maintain greater disorder.  

IDPs therefore, are advantageous in systems where they need to act as a ‘volume switch’, 

rather than a binary on/ off control, a property ideal for the modulation of signalling as fast 

off-rates are required. The fact that IDP’s are prevalent in eukaryotes but rare in prokaryotes 

suggests that IDPs are evolutionary recent molecules and therefore play a role in more 

complex eukaryotic signalling and modulation. Such functions only arise as modifications to a 

pathway after the main function has evolved40. 

The transient nature of their intramolecular interactions may have roots in the primary 

sequence of IDPs which often are of low complexity31. Weak binding is often carried out by 

small repeated regions of a poor version of a consensus binding sequence, an evolved property 

that enables rapid binding and easy displacement41. These sequences are easily lost or gained 

in the course of evolution by random mutations. An example of this is in the presynaptic IDP α-

synuclein (αSyn), which will be the protein of focus in this thesis. αSyn contains at least six but 

as many as nine imperfect repeats with the consensus sequence KTKEGV present in a region of 

the protein shown to bind lipid membranes42-44. The amino acid composition of these repeats 

varies considerably in the protein as highlighted in Figure 1-5. Additionally, evolutionary closely 

related homologue proteins: β-synuclein (βSyn) and γ-synuclein (γSyn), show different 

numbers of these repeat regions demonstrating how evolution can easily tune the number of 

these types of regions and thereby modulate the protein’s function over a short period of 

evolutionary time. On the other hand, due to the degenerate nature of these proteins, they 

are unlikely to lose binding capacity or functionality upon mutation36,45.  
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Figure 1-5. Sequence of human synucleins aligned by their KTKEGV repeats. Amino acids that 
match the KTKEGV repeat motive are shaded in blue. The repeats are imperfect in the manner 
in they align and their sequence identity. Adapted and redrawn from Dettmer et al. 201546. 

 

IDPs also have other advantages in regards to their folded counterparts. Their flexibility is a key 

property in that an IDP has a large solvent-accessible surface area, that can be used to ‘grab 

on’ or bind to their more rigid partners, a property that has been termed ‘sticky arm’31. This is 

especially the case in IDPs which contain a high proportion of Pro residues. These residues 

impart rigidity and confer conformations close to a polyproline II helix, such conformations 

thus provide a ‘sticky arm’ but pay a lower entropic penalty upon binding47.  IDPs can also 

utilise their intrinsic flexibility to adopt conformations that are sterically hindered for 

structured proteins, such wrapping around a protein partner in order to maximise the buried 

surface area36,48. Flexibility also imparts promiscuity, IDPs are able to bind partners in different 

ways. For example p21 binds to different cyclin dependent kinase proteins in different 

conformations49.  

1.3 Protein misfolding and aggregation 

Under physiological conditions, the native state of a protein is believed to be the locally most 

stable, lowest energy structure1. However, as discussed in the previous section, proteins are 

only marginally stable and in a system of constant structural flux. Native proteins experience 

fluctuations in their minimal energy states and a protein may undergo multiple localised 

unfolding events throughout the protein’s structure24. These partially unfolded forms of 

proteins may represent a functional, on-pathway version of the protein, but may also 



INTRODUCTION 

8 

represent off-pathway states. Intermediate states are particularly vulnerable to misfolding and 

aggregation (Figure 1-6). Rare or unfavourable conformations of proteins may be produced by 

a change in the thermodynamic stability or interconversion kinetics of native or non-native 

states of a protein. This can occur by destabilising factors such as a change in pH, temperature, 

absence of a ligand, or mutations in the protein50. The misfolded state of a protein may in 

reality be more stable than that of the native state, as the native state may only be the free 

energy minimum under physiological conditions as depicted in Figure 1-651-53. It is important to 

note that intermolecular aggregation as depicted in Figure 1-6 is concentration dependent as it 

is governed by the thermodynamics of the process.  

 

Figure 1-6. Energy landscape of folding and aggregation. An intramolecular folding energy 
landscape is shown in blue. The surface of the funnel is rough and contains various troughs 
populated by folding intermediates. An energy landscape of intermolecular aggregation is 
shown in red. Aggregated species extend to lower energy states than that of the folding 
landscape with cross-β amyloid fibrils as a lowest energy state52. The overlap of the landscapes 
illustrates the relationship between folding and aggregation where non-native states may be 
able to traverse from folding to aggregation under certain conditions. Adapted and redrawn 
from Karamanos et al. 201654.  
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Protein species that undergo transient unfolding often have hydrophobic and other residues 

exposed to solvent that would otherwise be buried in the protein structure. In vivo, this can 

result in undesirable interactions with other molecules, especially given that proteins function 

under conditions where there is a 300-400 mg/ml concentration of cytosolic proteins and 

other macromolecules55.  

Much research has been directed towards determining the propensity of proteins to 

aggregate1,50,51,56,57. Folding of a protein into its native state sequesters hydrophobic residues 

from solution and decreases aggregation propensity56. Interestingly, however, IDPs (see 

Section 1.2) tend to have a reduced aggregation propensity58 which is probably an evolved 

characteristic. The higher net charge and lower hydrophobicity of IDPs in relation to globular 

proteins make aggregation thermodynamically less favourable59. The charge patterning in 

these proteins may also be important, as charged “gatekeeper” residues flanking hydrophobic 

stretches control against aggregation. Moreover, partially folded intermediates can be more 

likely to aggregate than fully unfolded proteins1, as partially folded proteins can expose a high 

local concentration of hydrophobic residues that would otherwise be sequestered from 

solution in the core of a protein. This creates an aggregation prone, hydrophobic interface.  

There are many other factors that destabilise proteins and make aggregation more probable. 

Mutations in a protein sequence, either engineered or those that occur spontaneously in 

nature, have been shown to increase the aggregation propensity of proteins by acting in a 

variety of ways. They can increase hydrophobicity, increase β-sheet propensity, or even reduce 

the net charge of the polypeptide.  For example, variants of transthyretin (TTR) which are 

significantly less stable than the wild-type (WT) protein are involved in familial amyloidogenic 

neuropathy60. Similarly, mutated lysozyme variants are associated with aggregation and cause 

hereditary amyloidosis61. Changes in the environment or protein concentration can also play a 

key role in the aggregation of WT proteins. For example, the accumulation of the protein β2-

microglobulin (β2m) in patients undergoing long term haemodialysis can raise serum 

concentrations of the protein to 60-times normal levels62. This causes an increase in the total 

concentration of a transiently populated, partially folded intermediate, which has a high 

propensity to aggregate63, a situation illustrated in Figure 1-6. This subsequently causes the 

protein to deposit in amyloid plaques24. A high concentration of misfolded intermediates also 

risks the exhaustion of the cellular chaperone machinery, increasing aggregation propensity 

further64,65. Impairment of any part of the protein processing machinery can also have 
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detrimental impacts on the proteostasis networks in a cell, increasing the risks of 

aggregation65. 

1.4 Amyloid  

A common generic misfolded conformation of proteins is amyloid: an aggregated, low energy 

structure proteins can adopt that is high in β-sheet conformation forming a generic cross-β 

structure1,50,51,56,57. The conversion of soluble proteins and peptides into insoluble aggregates, 

specifically amyloid aggregates, has emerged as a subject of intense research. This reflects the 

fact that amyloid deposition is associated with some of the most debilitating disorders that 

threaten human health in the world at present. The recognition that many disorders 

associated with amyloid formation are no longer rare has led to a surge of interest in the area. 

Many of these conditions were discovered only a generation or two ago, but have rapidly 

become some of the most common diseases in the developed world. It has been estimated 

that the number of people suffering from dementia (an umbrella term for diseases associated 

with amyloid deposition in the brain) worldwide in 2016 was 46.8 million, and by 2050 this 

figure could reach 131.5 million66. It is important to note that these figures are not extensive 

for all amyloid-associated diseases, but just those relating to dementia. The numbers 

associated with all amyloid-associated diseases is much higher.  

The process of amyloid formation is not only relevant in the sense of disease, but it also 

challenges our understanding of the nature, structure and evolution of functional states of 

proteins67-71. The amyloid state may indeed be a structure that many, if not all proteins may be 

able to access, and that it reflects a well-defined structural form which is an alternative to the 

native state due to the intrinsic and generic properties of the polypeptide chain itself50,56,57,67,72. 

The fact that amyloid as an exquisitely organised, self-assembled structure is generically 

accessible to relatively small, noncomplex polypeptides, and that functional amyloids are 

present throughout domains of life also raises interesting questions on life’s origins68-71. 

1.4.1 Historical perspective 

Despite the relatively recent explosion of interest in the amyloid field, the amyloid state was 

first observed more than 160 years ago73. The term amyloid is in fact a misnomer, derived from 

the Latin “amylum” for starch. It was coined by Rudolph Virchow in 185473 as reviewed by Sipe 

and Cohen74, based on the observation that the application of iodine to abnormal macroscopic 

structures in brains stained them blue, indicative of the presence of starch. Amyloid was thus 

considered to be carbohydrate based. However, it was first recognised in 1859 by Friedrich 
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and Kekule75 that amyloid deposits were in fact proteinaceous. Attention therefore shifted to 

the study of amyloid as a protein, and later, as a class of proteins with generic properties but 

which are unrelated in amino acid sequence.  

In the years since these discoveries, much has been revealed about the structure of the 

amyloid state. In 1922, it was observed by Bennhold76 that Congo red, a common industrial 

dye, is able to bind to amyloid deposits revealing the tinctorial properties of amyloid. It was 

subsequently shown that the characteristic red-green birefringence of Congo red under 

polarised light in the presence of amyloidogenic material is enhanced, suggesting the presence 

of an ordered microscopic structure77. Electron microscopy (EM) studies were carried out, 

which revealed a general common fibrillary ultrastructure to amyloid material78-81. X-ray 

diffraction experiments showed that amyloid fibrils are made up of a characteristic cross-β 

architecture, and that β-strands are lined up perpendicular to the fibrillar axis82-84, a property 

considered to be a defining characteristic of amyloid51,57.   

Long believed to derive from a single origin, it was not until the 1970’s that the heterogeneity 

of amyloid started to be appreciated85-89. Over the following decade, around 20 normally 

soluble proteins were found to form amyloid associated with disease, with deposits localised in 

organs or distributed systemically. These diseases are collectively termed as amyloidoses. 

Amyloidoses are now known to be a clinically and biochemically heterogeneous group of 

disorders of protein folding. There are currently 40 discovered human proteins90 (including 

both extracellular and intracellular aggregates) which give rise to diseases with diverse clinical 

pathologies and are associated with the aberrant folding and aggregation of normally soluble, 

functional proteins into an aggregated amyloid state. The vast majority of these diseases are 

associated with increasing age such as Alzheimer’s disease (AD) and Parkinson’s disease (PD), 

hence amyloidosis accounts for some of the most prevalent diseases in the modern world and 

represents one of the greatest socio-economic burdens of our time66.  

1.4.2 The structure of amyloid 

As mentioned previously, amyloid structures are defined by a cross-β pattern in X-ray fibre 

diffraction studies that is indicative of component β-strands orientated perpendicular to the 

long axis of a fibril91-93 as shown in Figure 1-7 A and B. The fibre diffraction patterns contain 

two main reflections: one equatorial at ~10 Å, thought to originate from the packing of β-

sheets perpendicular to the fibril axis; and one meridional at 4.7 Å which arises from the 

packing of adjacent β-strands along the fibril axis51. Similar to natively folded proteins, amyloid 
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structures are closely packed and highly ordered. However, amyloid structures have 

fundamentally different features than that of their constituent native proteins, conferring a 

very high level of kinetic and thermodynamic stability. This is illustrated in Figure 1-6 in which 

the aggregation landscape contains deep, low energy troughs separated by steep kinetic 

barriers in comparison with the folding energy landscape. Amyloid states are generically rich in 

β-sheet structure and have relatively simple secondary and tertiary structures, in contrast to 

the folds of globular proteins which are highly diverse and can range from all α-helical to all β-

sheet generated by evolution to obtain a vast variety of different functions.  

At the nanometer length scale, amyloid fibrils from different proteins are similar. Visualised 

using negative stain transmission electron microscopy (TEM) or atomic force microscopy 

(AFM), amyloid fibrils appear as unbranched filamentous structures that can extend to 

micrometers in length but only a few nanometers in diameter94,95.  They display a hierarchical 

organisation as shown in Figure 1-8, typically involving multiple protofilaments that twist 

around each other to form mature fibrils. Advances in cryo-electron microscopy (cryo-

EM)93,96,97 and solid state NMR (ssNMR)93,96,98-100 of amyloid fibrils have led to an increasingly 

detailed knowledge of their structure. These studies have confirmed the generic nature of 

amyloid fibrils, attributed to the properties of a polypeptide backbone to support a continuous 

hydrogen bonding pattern in the fibril core. They have also revealed that structural origin of 

the heterogeneity of fibrils is driven by the side chain packing that are incorporated into the 

fibril architecture72.  
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Figure 1-7. Structural characteristics of amyloid fibrils and different biophysical techniques to 
study them. (A) X-ray diffraction pattern of fibrils formed from islet amyloid polypeptide (IAPP) 
with characteristic reflections of 4.7 Å and 10 Å94.  (B) Schematic representation of the cross-β 
structure common to amyloid fibrils, the spacing between polypeptide chains along the fibril 
axis is constant at around 4.7 Å due to inter-main chain hydrogen bonding. Also shown is the 
variable distance between the β-sheets in a perpendicular direction to the axis of the fibril, 
dependent on the nature of the side chains51. (C) Correlation of the main chain spacing (orange 
crosses and line) and the side chain spacing (green circles and line). Filled circles show fibrils 
made from homopolymers72, open circles show fibrils derived from heterogeneous sequences. 
(D and E) Cryo–EM reconstructions of fibrils of TTR fragment 105-115 determined at atomic 
level resolution in combination with ssNMR data showing cross-sections through the long fibril 
axis93. Secondary structures of the protofilaments determined by ssNMR are shown in a cyan 
ribbon representation superimposed on fibril cross-sections. Orange yellow and purple 
electron densities and envelopes show doublet, triplet and quadruplet fibril assemblies of 
protofilaments depicting the variation in protofilament assembly leading to polymorphisms of 
amyloid fibrils. (F) High resolution triplet fibril structure from the same study showing 
hierarchical assembly of amyloid fibrils visualised by TEM (left), cryo-EM fibrillar structure 
(middle) with atomic level resolution from ssNMR data. Images adapted from references as 
indicated.  
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Figure 1-8. Hierarchical assembly of mature amyloid fibrils. (A) and (B) the cross-β core of a 
protofilament with characteristic spacings of main chains and side chains. (C) Protofilament 
structure that self-associates with other protofilaments to form mature fibrils (D). Redrawn 
and adapted from Serpell, 2014.101. 

A recent study utilised cryo-EM and ssNMR to interrogate the fibrillar structure of amyloid 

fibrils of TTR 105-115 at an atomic level (Figure 1-7 E-F)93. This study confirmed the general 

structure of the amyloid fibrils which are indeed attributed to cross-β hydrogen bonding 

pattern of the fibril core. This study demonstrated how the packing interactions facilitate the 

hierarchical assembly of mature amyloid fibrils. It also confirmed a basis of structural 

polymorphism between the fibrils, which partially results from the manner in which 

protofilaments assemble into mature fibrils. 

Several recent studies have utilised various techniques as discussed above to elucidate fibril 

structures in atomic detail of full length amyloidogenic proteins. αSyn, Aβ42 and tau are 

examples of these structures and are highlighted in Figure 1-9.  
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Figure 1-9. Examples of recent fibril structures of full length proteins solved in atomic detail. A) 
Fibrillar core structure of tau protein from AD patient brains102. The structures of two different 
polymorphs are shown, termed paired helical fibril (PHF, left in purple) and straight fibril (SF, 
right in green). These polymorphs have identical protofilaments but differ in the inter-
protofilament packing. Cryo-EM density maps are shown in grey with high-resolution maps 
shown in blue (PHFs) and green (SFs). Orange density in the PHF structure corresponds to the 
“fuzzy coat” of disordered Tau. B) ssNMR-solved structure of fibrils of Aβ42 showing a “double-
horseshoe” structure103. The backbone of the two point symmetric molecules are shown as 
yellow and orange spines (left). The 3D structure of the N-terminal residues 1–14 is indicated 
by dotted lines. The side chains of the positively charged residues are shown in red, the 
negatively charged in blue, the hydrophobic residues in white, and polar residues in green. 
Every second residue is labelled. 10 conformers with the lowest energy 3D structures are 
shown (right). C) ssNMR-solved fibril structure of αSyn revealing a “Greek-key” structure100. A 
view of a central monomer from residues 44 to 97 is shown on the left, as viewed down the 
fibril axis, showing the Greek-key motif of the fibril core. A view of the stacked monomers is 
shown on the right, showing the side chain alignment between each monomer down the fibril 
axis. Images adapted from references as indicated.  
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1.4.3 Mechanisms of amyloid formation 

The mechanism of amyloid formation is a complex process, involving the interplay between a 

plethora of intermediate species of varied morphology, together with different elementary 

processes51. Soluble protein monomers are converted into fibrillar structures via a transiently 

populated aggregated nucleus, around which further deposition of monomers occurs24 (Figure 

1-1).  This mechanism is an example of a nucleated growth reaction in which the formation of 

an aggregation-competent nucleus is kinetically disfavoured and is the rate-limiting phase of 

amyloid formation termed the lag phase. This is followed by a rapid elongation phase in which 

fibrils form. Protein-protein interactions play a key role in the lag phase of the growth 

mechanism, interacting in a transient manner to form species that may have, or lack, the 

propensity to elongate, thus creating a heterogeneous pool of on- and off-pathway 

intermediates. A variety of other species are formed during amyloid formation such as 

amorphous aggregates and other prefibrillar species104-108. They are often formed faster than 

fibrils via nucleation independent processes104.  

The nucleated-growth mechanism is supported by the fact that the addition of pre-formed, 

aggregation-competent seeds greatly increases the rate of aggregation and decreases the rate-

limiting lag phase in vitro (Figure 1-10)109. The interactions of monomers with existing 

aggregates is favoured by the thermodynamic stability of the aggregate, causing the 

elongation phase to proceed rapidly110. The nucleation-dependent mechanism of amyloid 

growth can be followed experimentally by the amyloid-specific, aromatic dye thioflavin T (ThT) 

which binds predominantly to cross-β structures leading to enhanced fluorescence and 

resulting in a characteristic sigmoidal curve (Figure 1-10). At the molecular level, the 

connections between nucleation events and the lag time or elongation rates111 have proved to 

be complicated112,113. This complexity arises as there are other contributing factors to the 

aggregation process other than just a simple primary nucleated growth mechanism. The 

nucleation process can also involve various secondary processes (Figure 1-11) which are 

governed by the behaviour of the aggregates formed in the polymerisation reaction113,114. Fibril 

fragmentation and surface-catalysed processes are important examples of secondary events 

(Figure 1-11). Fragmentation of pre-formed aggregates multiplies the number of 

polymerisation-competent fibril ends and so exponentially increases the proliferation of 

aggregates113,114. A similar process takes place during surface-catalysed processes which are 

dependent on the concentration of pre-existing fibrillar aggregates which facilitate nucleation 

and aggregation114.  
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Figure 1-10. Schematic of the nucleated growth mechanism of amyloid formation. The growth 
of fibrils proceeds via two distinct stages: the lag phase or nucleation stage, and the elongation 
phase. The lag phase corresponds to the thermodynamically unfavourable formation of 
aggregation-competent nuclei from monomers that may occur via various metastable states of 
oligomers. This is the rate limiting step in the aggregation reaction. The elongation phase 
corresponds to the thermodynamically favourable step in which monomers are added to 
nuclei until the eventual formation of large fibrillar structures. Addition of preformed, 
aggregation-competent seeds to the start of the reaction decreases the lag time by 
overcoming the rate limiting step. Schematic species are examples of the dynamic structures 
that may form in the pathway. Adapted and redrawn form Eichner and Radford 2011115. 

 

 

Figure 1-11. Processes that contribute to fibril formation. (A) The primary pathways by which 
amyloid fibrils can be propagated include monomer addition to aggregates or primary 
nucleation in which stochastic interactions of monomers results in new aggregates. (B) and (C) 
The secondary pathways enhance the rate of fibrillation kinetics in a number of ways and 
depend on the pre-existence of aggregates. (B) Shows the process of fragmentation of 
preformed aggregates in which mature aggregates fragment to reveal more fibril ends for the 
polymerisation process to take place. (C) Shows surface-catalysed events in which aggregate 
formation is dependent on the concentration of preformed fibrils. Figure adapted and redrawn 
from Cohen et al. 2012112. 
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The complex mechanisms of aggregation make the application of quantitative chemical 

kinetics to analyse these systems difficult, despite the established roles of chemical kinetics in 

many biological systems such as enzymology or protein folding. A main reason for this 

complexity originates from the non-linear nature of the aggregation processes due to different 

competing mechanisms, which complicate the mathematics needed for integrated rate laws. 

However, recent progress has been made to overcome these obstacles and it has been 

demonstrated that chemical kinetics can be used to elucidate the molecular mechanisms of 

aggregation114,116-119. A recent in vitro study on amyloid-β 42 (Aβ42) utilised these techniques 

to interrogate the microscopic processes from macroscopic experimental measurements114. 

This study showed that the dominating process in the aggregation of Aβ42 was secondary 

nucleation catalysed by the fibril surface. This observation could be important with regards to 

disease progression as in a recent study, point mutations of Aβ42 were shown to dramatically 

alter these microscopic processes of aggregation120. 

1.4.3.1 Other structures in the amyloid pathway and the true nature of 

the pathogenic state 

Despite the fact that it has been clear for many years that the appearance of amyloid deposits 

is associated with the onset of pathological events in protein misfolding diseases121, the 

molecular mechanisms underlying amyloid disease pathways remains unclear. In protein 

folding diseases which result in systemic amyloidosis, the likely cause of disease is the 

presence of large quantities of aggregated proteins in vital organs50. However, in 

neurodegenerative disorders, no such correlation between the amount of fibrillary aggregates 

and disease progression has been detected such as in AD122-124. Indeed, post-mortem studies 

have shown a poor correlation between plaque load and disease severity in AD125. This 

suggests the possibility that the disease process is associated with misfolding events which 

result in cellular damage but do not necessarily lead to detectable aggregates126. 

It is the general consensus in the field that the oligomeric intermediates in amyloid fibril 

formation act as the main toxic species in amyloid disorders126-131, rather than mature fibrillar 

structures (although this remains controversial132). Increasing evidence suggests that 

oligomeric species are universally observed during aggregation processes and are generically 

cytotoxic104,122,133-135. Their relatively disordered nature involves the display on their surface of 

chemical groups, especially hydrophobic residues135-137 that would be sequestered in the core 

of folded proteins under normal physiological conditions. Thus, these groups are accessible to 
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the cellular environment and are able to form aberrant interactions with functional cellular 

components, ranging from other proteins to nucleic acids and lipid membranes138,139. 

During the process of protein aggregation, a heterogeneous array of oligomeric and 

intermediate species can form. These species can persist throughout the aggregation process 

and can populate an array of sizes and morphologies such as oligomers, toroids or protofibrils, 

it is unclear, however, whether these species are able to interconvert or progress to 

amyloid140-143 (Figure 1-6). Such oligomeric species may be on-pathway precursors to 

aggregation or off-pathway, requiring conformational reorganisation to become 

aggregation-competent104,144. These species can either be toxic or non-toxic, and have varying 

dynamics and half-lives104. These properties of heterogeneity and the fact that oligomeric 

species are often transiently populated and metastable, has led to difficulties in their detection 

and characterisation. This remains a key challenge as they have been identified in various 

studies as membrane disrupting/ cytotoxic entities145-147.  

On-pathway amyloid assembly intermediates have been shown to contain β-sheet structure 

and become increasingly more stable as assembly progresses104,106,148,149. It was shown that the 

αSyn oligomers that form early in the amyloid formation pathway are relatively disordered 

species which undergo a conformational change resulting in more stable oligomers with a 

rudimentary amyloid-like core. The latter species are capable of causing pathogenic effects 

probably due to their large hydrophobic surface area104. Interestingly, however, on-pathway 

oligomeric ensembles that contain structural disorder have been identified for Aβ42 and, 

furthermore, were shown to be the culprits of cytotoxicity150. The high affinity of various 

oligomeric species for binding to membranes provides a common concept of cytotoxicity in 

which membrane integrity is disrupted during the aggregation process and so causing 

subsequent cell impairment151. Greater toxicity of prefibrillar and oligomeric species relative to 

larger amyloid fibrils is not unexpected since the smaller species have a higher surface area to 

volume ratio and thus have more surface groups exposed per volume that are available to 

interact aberrantly with cellular components as discussed above. Mature amyloid fibrils may, 

in fact, be relatively protective to cells (lower cytoxicity) and act as a reservoir sequestering the 

toxic species136,152. 

The high degree of heterogeneity in relation to the species formed in the aggregation pathway, 

the uncertainty relating to the toxic species imparts a high importance on the study of the 

initial interactions that initiate the aggregation cascade. 
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1.4.4 Amyloid and disease 

The healthy state of a cell is characterised by a complex balance between protein expression, 

degradation and quality control153. Perturbations in this fine balance can lead to deleterious 

effects and disease unless kept under strict control. There are now 40 different proteins, many 

of which may cause several diseases with a multitude of different symptoms that are 

associated with the misfolding of normally functional proteins and peptides (Table 1-1)90, and 

their subsequent aggregation into amyloid fibrils.  Several of these diseases are 

neurodegenerative in which aggregates and their intermediates accumulate in the brain and 

exert their toxic effects. These include Alzheimer’s disease (AD) and Parkinson’s disease (PD), 

which are the two most frequent causes of dementia154. There are also many examples of non-

neuropathic amyloidosis, whereby the disease is localised to specific organs or can affect 

several areas of the body systemically. In many cases, these diseases manifest sporadically in a 

population. There are, however, hereditary causes in amyloidosis. Furthermore, cases of 

transmissible aggregation-based diseases are known along with iatrogenic amyloidosis 

triggered by medical intervention. Examples of these different types of amyloidosis are given 

in Table 1-1. 

The mechanism of toxicity for amyloidosis has not fully been elucidated, but is thought to 

occur via a gain of toxic function50. There is yet no single consensus and cellular toxicity is most 

likely to be mediated through a complex network of dysfunctions as illustrated in Figure 1-12. 

Evidence points to the fact that this may be a generic effect, as non-disease related proteins 

such as the SH3 domain from bovine phosphatidyl-inositol-3-kinase and the N-terminal domain 

of the Escherichia coli (E. coli) HypF protein, have been shown to form amyloid structures and 

exert toxicity when added exogenously to mammalian cells145.  

The toxicity of aggregates depends on both their morphology and location. Several 

amyloidoses are associated with extracellular protein deposits such as Alzheimer’s disease155 

and type II diabetes156, and have been shown to activate signal transduction pathways leading 

to apoptosis by interacting with cell surface receptors (Figure 1-12 i). For example, RAGE 

(receptor for advanced glycation end products) is a surface receptor which has been shown to 

interact with amyloid fibrils composed of amyloid beta (Aβ), islet amyloid polypeptide (IAPP) 

and prion protein (PrP), leading to the activation of cellular and immune stress responses157,158. 

There is also evidence that large extracellular fibrillar structures can disrupt membrane 

structure and hinder normal cellular activity (Figure 1-12 ii)139,159-161. As discussed previously, 

there is extensive evidence that oligomeric and prefibrillar structures also perturb cellular 
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membranes139. Their ability to form ‘pore-like’ morphologies in cellular membranes, alters ion 

homeostasis and dysregulates signal transduction before eventually leading to cell 

death126,162,163 (Figure 1-12 iii). 

Intracellular amyloid fibrils have also been reported and can be localised in various cellular 

compartments. These can damage cells via sequestration of factors essential for cell 

viability138. The example shown in Figure 1-12 iv is that of recruitment of components of the 

proteasome and numerous chaperones to an aggregate, preventing these essential proteins 

from carrying out their normal cellular functions164,165. This competition and burden on the 

proteostasis machinery can apply to all amyloid diseases and especially in age-related diseases 

where mechanisms of proteostasis are already in decline166-168. Indeed this is illustrated in a 

study of a yeast model of Huntington’s disease, where cytosolic inclusions were shown to 

sequester the cellular chaperone Sis1p, inhibiting the clearance of non-amyloid inclusions of 

other, unrelated proteins164. 

Many of the amyloid disorders originate from natively unstructured precursor proteins or 

peptides as shown in Table 1-1. A number of amyloidoses, however, have folded precursor 

proteins, with native folds that are essential for function and are lost upon misfolding and 

aggregation (Figure 1-12 v). The loss of biological function has been suggested as the 

mechanism of toxicity in Huntington’s disease. The huntingtin protein has been proposed to 

play a protective role against apoptosis169, its aggregation can thus lead to neuronal death. 

Furthermore, in amyotrophic lateral sclerosis (ALS) also known as motor neurone disease, the 

protein superoxide dismutase 1 (SOD1) aggregates, preventing the processing of superoxide 

free radicals, leading to cell damage125.  However, it must be noted that the loss of function 

mechanism in these two examples is still unclear125, as evidence against this mechanism has 

been reported169,170. Although mice homozygous for Huntingtin die early in embryonic 

development169, patients that are heterozygous for Huntingtin mutations have similar clinical 

features to patients that are homozygous125. As for ALS, SOD1 knockout studies do not show 

an increase in neuronal degeneration170. Additionally, aggregating proteins may form aberrant 

interactions with other cellular proteins, thereby leading to loss of function of the 

co-aggregate138 (Figure 1-12 vi). 
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Figure 1-12. Mechanisms of amyloid cytotoxicity. Extracellular fibrillary aggregates are known 
as amyloid plaques, have a dense amyloid core, with a halo of oligomeric material often 
present. A scanning electron microscopy (SEM) image of an amyloid plaque from Aβ40171 is 
shown inset (blue: cell bodies, red: extracellular plaques). Extracellular amyloid can cause cell 
toxicity by i) interactions with membrane receptors causing aberrant cell signalling; ii) 
interacting directly with cell membranes causing perturbations (cryo-electron tomography of 
liposome–fibril interactions is shown inset172); and iii) formation of pore like structures causing 
aberrant transmembrane transport (TEM projection averages of pore like structures from αSyn 
A53T173). Intracellular amyloid can iv) interact with cellular machinery such as chaperones and 
can sequester them away from their required function; misfolded proteins can be cytotoxic 
due to v) a loss of native function but also vi) via aberrant non-native interactions with various 
cellular components causing them to co-aggregate. A Lewy body positively stained for αSyn is 
shown inset as an example of an intracellular aggregate174. 
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Disease Aggregating protein or 
peptide 

Number of 
residues 

Native structure of protein or 
peptide 

Neurodegenerative diseases 

Alzheimer’s disease Amyloid β peptide  40 or 42 Natively unfolded 

Familial encephalopathy 
with neuroserpin 
inclusion bodies 

Neuroserpin 410 α+β 

Various 
neurodegenerative 
disorders 

Actin ~400 Mostly α, some β 

Neuroferritinopathy  Ferritin 175 or 183 All α 

Spongiform 
encephalopathies 

Prion protein or 
fragments thereof 

253 Natively unfolded (residues 1–120) 

and α-helical (residues 121–230) 

Parkinson’s disease α-Synuclein 140 Natively unfolded 

Dementia with Lewy 
bodies 

α-Synuclein 140 Natively unfolded 

Frontotemporal 
dementia with 
Parkinsonism 

Tau  352–441 Natively unfolded 

Amyotrophic lateral 
sclerosis 

Superoxide dismutase 153 All-β, Ig like 

Huntington’s diseased Huntingtin with polyQ 
expansion 

3144 Largely natively unfolded 

Spinocerebellar ataxias Ataxins with polyQ 
expansion 

816 All-β, AXH domain (residues 562–
694); the rest are unknown 

Spinocerebellar ataxia 
17 

TATA box-binding 
protein with polyQ 
expansion 

339 α+β, TBP like (residues 159–339); 

unknown (residues 1–158) 

Spinal and bulbar 
muscular atrophy 

Androgen receptor with 
polyQ expansion 

919 All-α, nuclear receptor ligand-

binding domain (residues 669–
919); the rest are unknown 

Hereditary 
dentatorubral-
pallidoluysian atrophy 

Atrophin-1 with polyQ 
expansion 

1185 Unknown 

Familial British dementia ABri 23 Natively unfolded 

Familial Danish 
dementia 

ADan 23 Natively unfolded 

Non-neuropathic systemic amyloidoses 

AL amyloidosis Immunoglobulin light 
chains or fragments 

~90 All-β, Ig like 

AH amyloidosis Immunoglobulin heavy 
chains or fragments 

~220 All-β, Ig like 

AA amyloidosis Fragments of serum 
amyloid A protein 

76–104 All-α, unknown fold 

Familial Mediterranean Fragments of serum 76–104 All-α, unknown fold 
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fever amyloid A protein 

Senile systemic 
amyloidosis 

Wild-type transthyretin 127 All-β, prealbumin like 

Familial amyloidotic 
polyneuropathy 

Mutants of 
transthyretin 

127 All-β, prealbumin like 

Hemodialysis-related 
amyloidosis 

β2-microglobulin 99 All-β, Ig like 

ApoAI amyloidosis N-terminal fragments of 
apolipoprotein AI 

80–93 Natively unfolded 

ApoAII amyloidosis N-terminal fragment of 
apolipoprotein AII 

98 Unknown 

ApoAIV amyloidosis N-terminal fragment of 
apolipoprotein AIV 

∼70 Unknown 

ApoCII amyloidosis ApoCII 79 α + unstructured 

ApoCIII amyloidosis ApoCIII 79 α + unstructured 

Finnish hereditary 
amyloidosis 

Fragments of gelsolin 
mutants 

71 Natively unfolded 

Lysozyme amyloidosis Mutants of lysozyme 130 α+β, lysozyme fold 

Fibrinogen amyloidosis Variants of fibrinogen α-
chain 

27–81 Unknown 

Icelandic hereditary 
cerebral amyloid 
angiopathy 

Mutant of cystatin C 120 α+β, cystatin like 

Non-neuropathic localised diseases 

Type II diabetes Amylin, also called islet 
amyloid polypeptide 
(IAPP) 

37 Natively unfolded 

Aortic media 
amyloidosis 

Lactadherin C2-like 
domain 

50 Unfolded 

LECT2 amyloidosis Leukocyte chemotactic 
factor-2 

151 Unknown 

Localised cutaneous 
amyloidosis 

Gelactin-7 136 All-β 

Hypotrichosis simplex of 
the scalp 

Corneodesmosin 529 
(truncations 
cause 
amyloid) 

Unknown 

Calcifying epithelial 
odontogenic tumours 

Odontogenic 
ameoblast-associated 
protein 

153 Unknown 

Senile seminal vesicle 
amyloidosis 

Semenogelin 1 462 Unknown 

Medullary carcinoma of 
the thyroid 

Calcitonin 32 Natively unfolded 

Atrial amyloidosis Atrial natriuretic factor 28 Natively unfolded 
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Hereditary cerebral 
haemorrhage with 
amyloidosis 

Mutants of amyloid β 
peptide 

40 or 42 Natively unfolded 

Pituitary prolactinom Prolactin 199 All-α, 4-helical cytokines 

Injection-localized 
amyloidosis 

Insulin 21 + 30 All-α, insulin like 

Injection-localized 
amyloidosis 

Enfuvirtide 36 Unstructured 

Aortic medial 
amyloidosis 

Medin 50 Unknown 

Hereditary lattice 
corneal dystrophy  

Mainly C-terminal 
fragments of kerato-
epithelin 

50–200 Unknown 

Corneal amyloidosis 
associated with 
trichiasis 

Lactoferrin 692 α+β, periplasmic-binding protein 
like II 

Cataract γ-Crystallins Variable All-β, γ-crystallin like 

Calcifying epithelial 
odontogenic tumours 

Unknown ∼46 Unknown 

Pulmonary alveolar 
proteinosis 

Lung surfactant protein 
C  

35 Unknown 

Inclusion-body myositis Amyloid β peptide 40 or 42 Natively unfolded 

Cutaneous lichen 
amyloidosis 

Keratins Variable Unknown 

Table 1-1. Human disorders associated with amyloid deposition. Adapted from Chiti and 
Dobson 200650 and Sipe et al 201690. 

1.5 The physiology and pathophysiology of α-synuclein 

aggregation 

α-synuclein (αSyn) is an intrinsically disordered protein (IDP)175 expressed predominantly in the 

neurons of the central nervous system (CNS) and localised at pre-synaptic termini176-178. Its 

aggregation into amyloid has been shown to cause various, prevalent and debilitating human 

diseases179. This thesis will primarily focus on αSyn and the mechanisms by which this protein 

self-associates.   

αSyn is a 140-amino acid protein that was first described in 1988 when isolated from the 

Pacific electric ray Torpedo californica as a neuron-specific protein localised to presynaptic 

nerve termini and nuclei, hence the name synuclein180.  It was not until 1997 that αSyn was 

associated with the neurodegenerative amyloid disorder Parkinson’s disease (PD) after a 

mutation in the SNCA gene encoding αSyn (causing the missense mutation A53T) was found to 

be associated with familial cases of early-onset PD181. Furthermore, αSyn aggregates were 
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found as the major components of Lewy bodies (LB), the hallmarks of PD182. Although 

extensive research has been carried out on the protein in the subsequent decades due to its 

association with significant human diseases, it is not yet fully clear what the physiological 

functions of αSyn are183,184.  

1.5.1 Physiological functions of αSyn 

As of yet, there is not complete clarity as to what the physiological functions of αSyn are183,184. 

This is likely due to the subtle and complex effects that modulating the expression and 

structure of αSyn have on cells185,186. Even in (knock out) KO mice models, the effect is not fatal 

and there are very few alterations, such as slight differences in the populations of pre-synaptic 

vesicles, observed185,186 indicating that there may be some degeneracy in the functions of 

αSyn. These complexities in understanding the functions of αSyn may also result from the 

structure of the protein. αSyn is an IDP (Section 1.2) and these proteins by their nature have 

evolved to be disordered for various reasons as outlined previously. One of these is that 

intrinsic disorder allows a protein to interact with various partners, IDPs are therefore utilised 

as ‘hub’ proteins in a cell32,36, controlling pathways such as cell signalling where fine ‘volume’ 

control rather than a binary on/ off switch is needed. This may indeed be the case for αSyn. In 

a proteomic study of αSyn using a SILAC technique (stable isotope labelling by amino acids in 

cell culture), 587 proteins were identified to form complexes with αSyn in dopaminergic cells, 

141 of these proteins displayed significant changes in their relative abundance when the cell 

were treated with rotenone, a chemical that induces PD like toxicity187. The promiscuity of 

αSyn physiological function is certain to contribute to the complicated picture of both function 

and dysfunction. 

Despite this lack of consensus, research has shown that αSyn carries out its functions primarily 

in the neurons of the CNS where it is estimated to constitute 1% of total soluble cytosolic brain 

protein176. αSyn has been shown to be localised at the presynaptic termini of neurons where it 

is proposed to regulate synaptic transmission (Figure 1-13) by binding lipid membranes. In 

presynaptic termini, monomeric αSyn exists in equilibrium between membrane bound and 

free states188. The equilibrium is tightly regulated, and it has been estimated that 15% of αSyn 

is membrane bound within synaptic termini44. More specifically, αSyn has been postulated to 

be involved in the packing of neurotransmitter vesicles in the distal reserve pool of synaptic 

vesicles189-191 and subsequent trafficking to the site of synaptic vesicle release185,186 (Figure 

1-13). This has been shown in various studies in which αSyn expression is reduced via KO mice 
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or antisense oligonucleotides, resulting in depletion of the docked and reserve pool vesicles, 

along with impairments in the replenishment of docked pools from the reserve pool185,186,192. 

Over-expression of αSyn has been shown to impair synaptic vesicle exocytosis and 

neurotransmitter release193-195. It also leads to a decrease in readily releasable vesicles196 and 

reduces the size of the recycling pool of synaptic vesicles195. Moreover, αSyn has been shown 

to inhibit the inter-synaptic trafficking of vesicles, maintaining the recycling pool 

homeostasis197. The role αSyn plays in synaptic homeostasis is not limited to its interactions 

with synaptic vesicles: as mentioned previously, αSyn interacts with a plethora of different 

proteins involved in the regulation of synaptic function and plasticity. These include 

interactions with various protein members of the soluble N-ethylmaleimide–sensitive factor 

attachment protein receptor (SNARE) complex which is directly involved in the process of 

neurotransmitter release198, such as the vesicular SNARE (v-SNARE) protein vesicle associated 

membrane protein 2 (VAMP2)199 (Figure 1-13). αSyn also acts as a chaperone, promoting 

SNARE complex assembly both in vivo and in vitro through its membrane binding properties199.  

A recent study suggested a physiological ‘double anchor’ mechanism in which αSyn can bind 

the membranes of synaptic vesicles in two regions of its sequence, involving residues 1-25 and 

residues 65-97. The membrane-binding affinities of these regions are finely tuned so that αSyn 

binds two synaptic vesicles in a double anchor mechanism, causing them to cluster and 

assemble. PD mutations (A30P and E46K) disrupt the fine balance of αSyn membrane affinity 

and may cause increased exposure of aggregation-prone regions leading to pathological self-

self-interactions200. 

It seems that αSyn function is not essential under normal conditions201, but that it subtly 

regulates synaptic vesicle homeostasis. Under conditions of stress, however, its 

neuroprotective properties become more prominent and essential184,202. 
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Figure 1-13. Physiological role of αSyn at pre-synaptic termini shows the various regulatory 
functions αSyn exerts over synaptic vesicles.  αSyn is shown in red ellipses, αSyn mediated 
inhibitory regulatory activity is shown by a flat arrow head and αSyn mediated regulation is 
shown by an open arrow head. αSyn promotes neurotransmitter packaging, maintains the 
reserve pool of synaptic vesicles and promotes subsequent trafficking to the site of vesicle 
release. Chaperone activity has been observed with members of the SNARE complex where it 
increases the stability of target SNARE (t-SNARE) proteins. Adapted and redraw from Lashuel 
et al. 2013184.  
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1.5.2 Structural properties of αSyn and their context dependence 

At the primary structural level, the sequence of αSyn can be divided into three major domains 

as shown in Figure 1-14. The N-terminal domain (residues 1-60) is made up of a series of 

imperfect repeats with the consensus sequence KTKEGV separated by inter-repeat regions, 

this region has amphipathic properties. The central domain (residues 60-95) is highly 

hydrophobic and is known as the non-amyloid β component (NAC), named so as it was 

originally discovered through its co-purification with Aβ from amyloid plaques in AD 

patients203. The NAC region has been shown to be key in the misfolding and aggregation of 

αSyn203,204 and forms the core of amyloid fibril architecture100. This central domain also 

contains additional KTKEGV imperfect repeat motifs. There are varying numbers of the 

imperfect repeats quoted in the literature due to the difficulty in identifying them, however 

there is anything from 6-9 repeats in the N-terminal region and NAC domain of αSyn 

depending on how one counts (Figure 1-5). The first two domains have been shown to be 

involved in lipid binding thought to be mediated by the imperfect repeats as they are similar to 

those found in apolipoproteins205. Consequently, it has been proposed that the lipid 

interaction of αSyn could be similar to that of apolipoproteins205. Lipid binding induces α-

helical structure formation in these regions (Figure 1-14 A)42,206,207. The C-terminal domain (96-

140) is natively unstructured and is enriched with acidic and proline residues, providing 

flexibility in the protein and providing some protection against aggregation208,209. 
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Figure 1-14. SDS micelle induced structure, primary structural elements and a sequence 
alignment of αSyn. (A) NMR structure of αSyn when bound to SDS detergent micelles206 (PDB 
1XQ8). Lipid or detergent induces α-helical structural formation in the N-terminus and the 
central NAC region in the form of a broken helix (residues 3-37 and 45-92)206. Amino acid 
substitutions found in familial mutants are highlighted as space filling spheres. The structure is 
coloured as in B and C. (B) The primary structure of αSyn can be divided into three domains, 
the aliphatic N-terminal region in blue with KXKEGV consensus repeat motifs (light blue), the 
central highly hydrophobic NAC region (magenta), and an unstructured C-terminal domain 
(red) that is highly acidic and contains a high proportion of proline residues. Yellow arrows 
show sites of familial PD mutations. (C) Sequence alignment of αSyn and the human 
homologues β- and γSyn. The central NAC region 71-82 that is both necessary and sufficient for 
aggregation is underlined. This region is not present in βSyn. Dots show residues that are 
identical; dashes show residues absent in the sequence. Numbers at either side of the 
alignment the residues number of each protein at the start and end of each row.  A key of the 
colour coding is at the bottom of the figure and is consistent in A, B and C. 
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There is much evidence showing that αSyn exists as an IDP lacking extensive structure210,211 

(Figure 1-15 A-C). Initial studies showed that αSyn had a larger hydrodynamic radius (RH), 

(determined by size exclusion chromatography (SEC)) and sediments more slowly (determined 

by sucrose gradient ultracentrifugation) than globular proteins of a similar mass175. Circular 

dichroism (CD) and Fourier transform infrared (FTIR) spectroscopy studies showed that the 

majority of the molecule is unstructured at neutral pH210. However, small angle X-ray 

scattering (SAXS) data showed that αSyn has a smaller radius of gyration (Rg) than that 

expected of a random coil polypeptide of the same length (40 Å compared to a theoretical Rg 

of approximately 52 Å for a 140 residue disordered polypeptide chain)210. Therefore, αSyn is 

essentially disordered, but is more compact than a random coil and it may contain some 

transient intramolecular structure210. This relative compactness of αSyn has been observed in 

various other studies, and it has been proposed that the origin of this structure is primarily due 

the clustering of hydrophobic residues, as well as showing that αSyn contains transient long 

range contacts212-218. 

1.5.2.1 Transient conformations 

αSyn can be described as a highly diverse ensemble of preferred conformations and not just 

simply a random structure, similar to the behaviour of other IDPs 34,35. These preferred 

conformations involve distil transient interactions of the proteins, the regulation of which is 

most likely key in the continuum of function and pathological misfolding and aggregation. 

Transient long range interactions have been proposed between the C-terminus and the NAC 

region of the protein215,219 (Figure 1-15 D). These transient interactions have been proposed to 

form a capping interaction of the central hydrophobic NAC region with the disordered C-

terminal region and in doing so, protects it from solvent exposure215,216,220, reinforcing the 

hypothesis that the C-terminal domain is a solubilising region in αSyn208,209.  

In a similar manner to other IDPs (as discussed in Section 1.2), the unstructured nature of αSyn 

is a consequence of its relatively low hydrophobicity and high net charge. The protein, 

therefore, is sensitive to the environment: an increase in the relative hydrophobicity or change 

in the net charge can induce partial folding of the protein210 (Figure 1-15 A-C). The high net 

negative charge of αSyn (pI 4.7) at physiological pH can be neutralised upon acidification. 

Hence, at pH 3.0 αSyn exhibits a more ordered secondary structure, and becomes more 

compact, developing a rudimentary nucleus with a tightly packed core and high affinity for ANS 

(8-anilinonaphthalene-1-sulfonic acid)210 (Figure 1-15 A-C). Indeed, αSyn was shown to be 

more aggregation prone at lower pH210. 
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Figure 1-15. αSyn conformational changes driven by changes in pH. (A) Far-UV CD spectra of 
αSyn as a function of pH210.  pH values were 8.9 (solid line) 7.3, 6.4, 5.3, 4.3, 3.5, 2.7, 1.7, and 
0.9 in order of the increase in negative [θ]222 value. At neutral pH αSyn is essentially a random 
coil. With decreasing pH, the spectra changes and depicts an induced partial formation of 
secondary structure. Inset shows ANS fluorescence spectra measured at pH 8.2, 7.5, 6.6, 5.4, 
4.6, 4.0, 3.7, 3.1, 2.8, and 2.5 (in order of increasing intensity). A decrease in pH leads to a 
characteristic blue shift in λmax indicating a partially folded structure with solvent exposed 
hydrophobic residues. (B) FTIR of the amide I region measured at pH 7.5 (solid line) showing a 
typically unstructured polypeptide, pH 3.0 (dotted line) showing spectral changes, indicative of 
increased ordered structure, and of fibrils (dot-dashed line) for comparison210. (C) Charge-
hydrophobicity plot of αSyn at neutral (open symbols) and at pH 2.5 (filled symbols)221. The 
dashed line represents the boundary between IDP and globular proteins. This plot shows that 
αSyn should have more structure at acidic pH, driven primarily by a gain in structure of the C-
terminus. (D) Intramolecular paramagnetic relaxation enhancement (PRE) NMR intensity ratios 
of amide protons in spin labelled αSyn221. Positions of spin labels are shown at the top of each 
column. The top panel shows data at pH 7.4, the bottom panel shows data at pH 2.5. Blue 
green and red represent the N-terminal, NAC and C-terminal domains respectively. Broken 
lines are the theoretical PRE values of αSyn without any long-range contacts. This data shows a 
pH induced collapse of the C-terminus. Images adapted from references as indicated.  

 

The extra compaction of αSyn at acidic pH has been shown to primarily originate from the 

compaction of the C-terminal region220,221 (Figure 1-15 D) (the C-terminal of αSyn has a net 

charge of -8, 8 negative and 0 positive residues (Figure 1-14 B)). 
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1.5.3 Protein aggregation in Parkinson’s disease and other 

synucleopaphies 

Several observations have established the involvement of αSyn in the pathogenesis of PD and 

other synucleopathies. As mentioned previously (Section 1.5), the association between PD and 

αSyn was first recognised when a mutation (A53T) in the protein encoding gene was found in 

familial cases of early-onset PD181, as well the aggregates of αSyn being found to be the main 

component of LBs, the hallmarks of PD182. Other autosomal dominant missense mutations 

have been shown to result in other cases of familial early-onset PD and  are all localised in the 

N-terminal region (A30P, E46K, H50Q, G51D, A53T, A53E)181,222-227. Genomic duplications or 

triplications that contain the αSyn locus also result in autosomal dominant forms of familial 

PD228,229. Moreover genome wide association studies (GWAS) have identified single nucleotide 

polymorphisms (SNPs) in αSyn as risk factors that increase the susceptibility to sporadic 

PD230,231. Among the SNPs is a risk variant in a non-coding distal enhancer element that leads to 

increased αSyn expression232. These pieces of genetic evidence highlight the crucial link 

between αSyn and PD pathology.  

In PD, dopaminergic neurons of the substansia nigra pars compacta (SNc) are lost in the basel 

ganglia, an area of the brain responsible for co-ordinating fine motor control, which ultimately 

leads to the onset of Parkinsonism symptoms such as bradykinesia, muscle rigidity, resting 

tremors and postural instability233. Dopaminergic neurons in PD also show selective 

vulnerability to the aggregation and fibrillation of αSyn. αSyn is also implicated in other 

disorders and is not simply linked to one disease pathology179, hence the complexity in 

determining the mechanism of toxicity during the misfolding and aggregation of this protein. 

αSyn aggregates in other synucleopathies including dementia with Lewy bodies (DLB)234, 

multiple system atrophy (MSA)235 and various lysosomal storage disorders including Gaucher’s 

disease236. Importantly, αSyn plays a role in the aggregation of Aβ and tau in AD pathology237-

241. 
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Disease Symptoms Pathology 

Parkinson's disease (PD) – Parkinsonism (bradykinesia, 
muscular rigidity, resting 
tremors and postural instability) 
– Nonmotor symptoms 
(constipation, impaired olfaction 
and rapid-eye movement sleep 
behaviour disorder) 
– Cognitive impairment 
 
 

– SNc dopaminergic 
degeneration 
– Variable neuron loss in areas 
including locus coeruleus, dorsal 
motor nucleus of the vagus and 
the olfactory bulb 
– αSyn Lewy body and neurite 
pathology in neurons 

Parkinson's disease with 
dementia (PDD) or dementia 
with Lewy bodies (DLB) 

– Parkinsonism and dementia 
– In DLB versus PDD: fewer 
resting tremors, bilateral 
parkinsonism 

Cholinergic/SNc dopaminergic 
degeneration 
– αSyn Lewy body and neurite 
pathology in neurons 
– Aβ amyloid plaques and tau 
tangles 
 
 

Multiple system atrophy (MSA) – Parkinsonism, cerebellar 
ataxia, autonomic failure 
– Nonmotor symptoms (sexual 
dysfunction, urinary 
incontinence and rapid-eye 
movement sleep) 
 
 

– SNc/olivopontocerebellar 
degeneration 
– αSyn pathology in 
oligodendrocytes 

Gaucher's disease – Type I adult-onset 
(thrombocytopenia, anaemia, 
hepatosplenomegaly and bone 
pain) 
– Type II (infant)/III (juvenile) 
neuropathic form (seizures, 
cognitive impairment and 
oculomotor problems) 
 
 

– αSyn Lewy body and neurite 
pathology in some patients 

Additional lysosomal storage 
disorders  

– Multisystem disorder – αSyn Lewy body and neurite 
pathology in some patients 
 
 

Neurodegeneration with brain 
iron accumulation  

– Variable symptoms that may 
include dystonia, muscle rigidity, 
spasticity and ataxia 

– Iron accumulation in the 
globus pallidus and SNc 
– αSyn Lewy body and neurite 
pathology in some patients 
 
 

Alzheimer's disease (AD) – Progressive memory loss 
– Cognitive impairment 

– Cortical and CA1 hippocampal 
degeneration 
– Aβ amyloid plaques and tau 
tangles 
– αSyn Lewy body and neurite 
pathology in some patients 
 

Table 1-2. Summary of diseases associated with αSyn toxicity. Adapted from Wong and Krainc 
2017179 
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1.5.3.1 The neurotoxic species of αSyn 

Recent studies have yielded insights into the molecular structure of the amyloid fibrils of 

αSyn100,242,243 including a 3D structure at atomic detail of the full length protein showing a β-

serpentine Greek key morphology100. Despite the realisation that oligomers may play a leading 

role, both generally for amyloidogenic proteins (as discussed in Sections 1.4.3 and 1.4.3.1) and 

for αSyn, and the fact that insoluble inclusions rarely correlate with disease progression, fibrils 

of αSyn have been shown to be toxic to cells in various studies244-247. In fact one study 

proposed that αSyn fibrils may be 1000-times more toxic than their precursors161, another 

showed that injections of fibrils (rather than oligomers) into the SNc of rats induced the 

greatest amount of motor impairment, dopaminergic cell loss and synaptic impairment244. 

Conversely, there is a large body of evidence that points to the formation of αSyn oligomeric 

species as major toxic species in the aggregation pathway. A range of oligomers with a 

plethora of different morphologies has been identified, including spherical, elliptical, circular 

tubular and flat104,128,141,248. Similarly, oligomers of various secondary structures have been 

identified and seem to point to structural transitions104 from α-helical to β-sheet, as the 

population shifts from early to late aggregation stages249,250. Much of the studies on αSyn 

oligomers has been focused on these species as toxic elements251. The fact that the PD familial 

mutations A30P and A53T, increase the rate of oligomerisation and not fibrillation suggests 

that oligomeric species may be the most toxic forms of αSyn128. Additionally, identification of 

other variants prone to oligomerisation and the demonstration of their increased toxicity 

relative to WT αSyn also supports this hypothesis252-254.  

It has to be noted, however, that physiological structured oligomers (or multimers) have been 

reported for αSyn in vivo and have been shown to be protective against toxicity46,255-259. The 

population of multimers has been shown to be modulated by the sequence/ presence of the 

N-terminal KTKEGV repeat motifs. PD familial mutations and synthetic mutations that occurred 

within the repeat motifs were found to decrease the multimeric conformation leading to 

increased toxicity46,258. These observations remain controversial due to the great body of 

preceding evidence showing αSyn as an intrinsically disordered monomer. 

1.5.4 Effect of PD familial mutations 

Currently, six familial mutations associated with early onset PD have been identified (A30P, 

E46K, H50Q, G51D, A53T, A53E)181,222-227 (Figure 1-14). Extensive studies have focused on 

characterising the conformation and aggregation characteristics of these mutants. None of the 
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mutants promote a major structural change in the monomeric conformation of αSyn260-262 with 

only A30P displaying reduced propensity to form α-helical structures205.  

The mutants are all localised in the N-terminal region of αSyn which is likely to affect the 

protein’s membrane binding properties. Indeed, A53T and H50Q exhibit a higher propensity 

for membrane interaction263, whereas A30P264, G51D265 and A53E266 attenuate this propensity. 

As discussed in Section 1.5.2, transient, long range interactions play an important role in the 

conformation of αSyn and are partially driven by electrostatics, which are likely disrupted by 

these mutations affecting the stability of the protein in its native and misfolded states216. 

Aberrant intramolecular contacts may promote the formation of folded intermediates that 

would increase self-assembly propensity267.  

The aggregation propensity of αSyn is altered by PD familial mutations. E46K, H50Q and A53T 

increase aggregation propensity measured in vitro260-262,268-271 whereas G51D and A53E266,270,271 

have the opposite effect. A30P is more prone to oligomerisation at the expense of fibril 

formation260,268-270. Familial mutations also display varied fibril morphologies including 

differences in diameter, periodicity and length271,272. However, despite intense study, the 

pathological role of these mutations remains unknown. 

1.5.5 The synuclein homologues 

αSyn is a member of a small family of highly homologous synuclein proteins Other members of 

this family include β- and γ-synuclein (βSyn, γSyn), proteins that are expressed predominantly 

in neurons, although their cellular location varies. βSyn, like αSyn, is expressed predominantly 

in neurons of the CNS at presynaptic termini, whereas γSyn is predominantly expressed in 

neuronal cells of the peripheral nervous system, abundant in spinal cord, sensory ganglia, and 

retina as well as in metastatic breast cancer and other cancer tissue273. The sequence similarity 

between the homologues and αSyn is 78% and 60% for βSyn and γSyn respectively (a sequence 

alignment of the synucleins is shown in Figure 1-14). β- and γSyn aggregate slower than αSyn, 

if at all274,275, however there is evidence from cell-based fluorescence studies that all of the 

synucleins dimerise276 and crosslinking studies have shown that all the synuclein homologues 

can form higher order physiological multimers46. Multiple studies have shown that βSyn, and in 

some cases γSyn, are protective against the aggregation of αSyn both in vitro and in vivo275,277-

280. Intermolecular NMR PRE experiments have shown that βSyn interacts with αSyn directly 

forming a transient dimer with high specificity and low affinity280. The αSyn homodimer 

interactions were shown to be more heterologous and showed interactions between the N-

terminal region (residues 36-44) and the C-terminal region (residues 124-140) in both a “head 
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to head” and “head to tail” conformations. In contrast, the heterodimeric αSyn-βSyn was 

observed to interact in a more specific manner via a “head to tail” interaction between a more 

extensive C-terminal region of βSyn (residues 105-134) and the N-terminal of αSyn. 

Homodimeric interactions of βSyn were not observed.  Heterodimeric αSyn-βSyn were shown 

to interact in a higher affinity complex (KD = 100 μM) that the αSyn-αSyn homodimer (KD = 500 

μM). This tighter binding is thus the bases of inhibition of αSyn aggregation by βSyn.  The 

formation of stable mixed tetramers of αSyn with βSyn may act as regulators of αSyn in vivo281, 

potentially acting as chaperones to prevent αSyn from misfolding and aggregation.  

 

Figure 1-16. Intermolecular PRE NMR experiments of αSyn-αSyn homo-, and αSyn-βSyn 
heterodimeric interactions reveal distinctive profiles. A-D) Contact maps of PRE NMR data 
showing homo- and heterodimeric interactions of both αSyn and βSyn. Each strip represents 
the colour coded value of the residue-specific inter-chain PRE rate (HNΓ2) induced by the MTSL 
paramagnetic label on each of the proteins indicated. In all PRE experiments, both 15N 
isotopically labelled synuclein (NMR “visible”) and MTSL 14N synuclein (NMR “blind”) were 
present. This allows the observation intermolecular interactions as the MTSL labelled has an 
observable PRE effect on 15N synuclein. A-D show four heat maps for all possible permutations 
of the spin label and NMR detectable chains of α S and β S: (A) 14N-αSyn-MTSL/15N-αSyn, (B) 
14N-αSyn-MTSL/15N-βSyn, (C) 14N-βSyn-MTSL/15N-αSyn, (D) 14N-βSyn-MTSL/15N-βSyn. Each strip 
of the contact maps corresponds to a spin label in different positions throughout the 14N 
labelled protein. The x-axis correspond to residue number of the 15N protein. E and F) 
Schematic representations of the possible interactions of αSyn-αSyn (E) and αSyn-βSyn dimeric 
interactions. HS stands for “hot spot” and corresponds to residues 38-45. Taken from 
Janowska et al 2015280. 
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Many aspects of αSyn intermolecular interactions remain to be determined and will be the 

focus of this thesis. 

1.6 Force spectroscopy 

One of the primary techniques utilised in this thesis is force spectroscopy, which has been used 

to interrogate protein-protein interactions on a single molecule scale. Force spectroscopy has 

been used to mechanically unfold proteins and to dissociate protein complexes282-284. The first 

mechanical unfolding experiments were performed over 20 years ago on the giant muscle 

protein titin using atomic force microscopy (AFM)285. Since then, our understanding of protein 

and protein complex mechanical stability has improved by using multiple complementary 

methods. 

Three techniques that have been extensively used to study the effects of force on proteins are 

AFM, optical/magnetic tweezers and patch clamp, the former being extensively used in this 

thesis. The properties of these techniques are highlighted in Table 1-3. 

 AFM Optical Tweezers Patch Clamp 

Temporal resolution 
(ms) 

1 0.1 0.001 

Spatial resolution 
(nm) 

0.1 (vertical) 0.1 50 

Force Range (pN) 1-10,000 0.1-100 n/a 

Applications Unfolding/ dissociation (Un)folding/ (un)binding Single/ multiple ion 
channels 

limitations High level of noise Narrow force range, 
photodamage and local 
heating from laser 

Membrane proteins 
only 

 

Table 1-3. Comparison of key parameters, features and limitations of AFM, optical tweezers 
and patch clamp techniques. Taken from Chen et al 2015286. 

1.6.1 Atomic force microscopy (single molecule force spectroscopy) 

AFM-based single molecule force spectroscopy (SMFS) has been utilised extensively as a 

technique to measure the intramolecular unfolding forces of individual proteins287, and the 

unbinding of non-covalent molecular interactions282,288. AFM is valuable in these scenarios due 

to its operational characteristics: high force sensitivity (theoretically 2-10 pN)289, high dynamic 

range (0.001–5000 nN)290 and high positional accuracy (0.01 nm), combined with the capability 

to operate in a wide range of buffers, including physiological conditions. The AFM has a unique 
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advantage of possessing high spatial resolution in order to detect molecular interactions at 

high lateral resolutions, in combination with possessing great force sensitivity and the wide 

dynamic range required for the mechanical study of proteins282. In this way, AFM can measure 

biologically relevant forces and distances. Recent studies however, have suggested that with 

technological advances, sub-pN forces with greater precision may be achievable in the near 

future291,292. 

A typical AFM instrument uses a cantilever which comprises a very sharp stylus on a flexible 

lever. Typically the cantilever is thin (10 μM) and composed of gold coated silicon nitride; it is 

used as a force-sensitive probe and is attached to an AFM optical head. A photo-diode laser is 

positioned onto the reflective cantilever which detects changes in the reflection signal. This is 

used as an accurate method of monitoring the vertical deflection of the lever, allowing the 

measurement of cantilever deflections in the pico-nanometer range (Figure 1-17 A). A known 

spring constant of the cantilever allows the force to be calculated from the deflection of the 

cantilever according to Hooke’s law (Equation 2-3, Section 2.2.4.2). Spring constants of around 

10-40 pN/nm are ideal in SMFS of protein molecules as the stiffness of the spring constant 

affects sensitivity (typically, cantilevers with spring constants of 30 pN/nm were used in 

experiments in this thesis). A typical experiment (Figure 1-17) consists of many approach 

retract cycles in which the AFM probe approaches and then retracts from a surface at a 

constant velocity. The AFM probe is positioned on the Z-axis by piezo expansion, controlling 

the approach retract cycles. The cantilever is pushed hard against the surface until a defined 

deflection threshold is reached. The cantilever is then withdrawn from the surface at a 

constant velocity which defines the amount of force loaded onto a molecule or complex.  

In a typical SMFS experiment to analyse protein-protein or protein-ligand interactions, the 

proteins and/ or substrates are covalently immobilised to the AFM probe or surface by the use 

of polyethylene glycol (PEG) linkers derived with a functional group at one end in order to 

specifically immobilise the molecule of interest. Initial AFM protein recognition studies did not 

use linkers289, but this simple approach failed when investigating antigen-epitope 

interactions293 due to the lack of molecular mobility and to unspecific tip-probe adhesion 

forces which obscured the specific interactions of interest. The use of flexible linkers was 

developed to address some of these issues294. The use of PEG linkers is advantageous in SMFS 

experiments as it helps to reduce non-specific protein sticking, enables substrate flexibility and 

has a signature resisting force when stretched295. The SMFS procedure involves approaching a 

tip functionalised with proteins to a similarly functionalised surface so that intermolecular 
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complexes are formed (Figure 1-17 B and C). Upon retraction of the AFM probe if an 

interaction has formed, an entropic restoring force will be observed, increasing in a parabolic 

fashion until the interaction breaks and the force sharply falls to zero (Figure 1-17 B and C). 

The force required for dissociation, termed the rupture force (FR), is the force at the apex of 

the parabolic curve (Figure 1-17 B iv and C iv). 

 

Figure 1-17. Schematic of a typical protein-ligand interaction in a SMFS experiment. (A) Typical 
set up of an AFM. A cantilever probe and surface are functionalised with proteins via flexible 
PEG linkers. A laser is positioned on the tip of the reflective probe which detects deformations 
caused by a resisting force. (B and C) Step by step outline of an approach-retract cycle in which 
a protein-ligand interaction is formed and then dissociated under force, plus a corresponding 
force-extension trace. i) The cantilever is initially situated away from the surface, ii) the piezo 
control approaches the cantilever to the surface until a defined deflection is reached and the 
cantilever is pressed into the surface, bringing interaction partners together, iii) an associated 
complex is stretched, iv) creating a force which bends the cantilever v) before the eventual 
dissociation of a complex and the return of the cantilever to its original position. This process 
causes a parabolic force increase in the force-extension profile (B) which can be fitted to a 
worm-like chain (WLC) model (grey line) in order to extract the parameters of rupture force 
(FR) and contour length (LC). 
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SMFS has been established as a powerful technique to study intermolecular interactions as it 

allows the estimation of unbinding forces (Table 1-4), dissociation rate constants, the nature of 

force resistant bonds and the length of the complex before dissociation. The first studies that 

demonstrated the capability of AFM to measure discrete and biologically-specific rupture 

forces of molecular complexes were carried out on avidin and biotin in 1994282. Since then an 

array of molecular complex interactions have been analysed, examples of which are 

highlighted in Table 1-4.  

Molecular partners Pulling velocity (μms-1) Unbinding force (pN) Reference 

Avidin/biotin 5 173 ± 19 Lo et al 1999296 

Strepavidin/biotin 5 326 ± 19 Lo et al 1999296 

Human serum albumin 
(HSA)/anti-HSA 

0.2 244 ± 22 Hinterdorfer et al 
1996294 

Actin/myosin 0.0334 14.8 ± 4 and 24.7 ± 1.4 Nakajima et al 1997297 

Nitrilotriacetate 
(NAT)/histidine 6 (His6) 

0.09–0.27 150–194 Kienberger et al 2000298 

Intercellular adhesion 
molecule-1 (ICAM-
1)/anti-ICAM-1 Ab 

4.68 100 ± 50 Willemsen et al 1998299 

Ganglioside 
GM1/cholera toxin B-
oligomer (ctB) 

0.04–4 54 ± 46–62 ± 30 Cai and Yang 2003300 

Table 1-4. Examples of protein ligand unbinding forces. Values taken from Lee et al 2007282 

1.6.2 Worm-like chain model and contour length analysis  

The force-extension data obtained from SMFS experiments in this thesis were analysed using a 

model for polymer elasticity termed the worm-like chain (WLC) model (Equation 1-1). The WLC 

describes a protein as a continuous flexible string and neglects any discrete structure in the 

polypeptide chain. This model of extension of a polypeptide chain (𝑥), was empirically derived 

from the stretching of DNA301,302, and predicts the entropic restoring force (𝐹): 

 
𝐹(𝑥) =

𝑘𝐵𝑇

𝑝
(0.25 (1 −

𝑥

𝐿𝐶
))

2

−  0.25 +  
𝑥

𝐿𝐶
 

1-1 

 

where LC is contour length (the fully extended length of the protein or protein complex), T is 

temperature (in Kelvin), KB is Boltzmann’s constant and p is the persistence length (a measure 

of the flexibility of a polymer, the point at which a polymer ceases to be treated elastically and 

can thus be treated as a static chain. In these studies this is fixed as the length between two 

α-carbon atoms in a polypeptide chain (0.4nm)303).  
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The WLC model has been used extensively to delineate protein domain unfolding285,304 and 

protein complex dissociation pathways305,306, as the force extension profiles are well defined by 

the model. A valuable piece of information gained from the WLC model is the contour length 

(LC). Firstly, the LC value is important in identifying whether an interaction of two binding 

partners is specific, as the expected LC can be estimated from structural information. Changes 

in LC can report on structural changes in the protein/protein complex such as force-induced 

remodelling of protein domains307 or report on different interactions between proteins. These 

scenarios are highlighted in Figure 1-18. Indeed both of these situations could exist 

concurrently. 

 

Figure 1-18. Properties of proteins which LC may report on.  (A) Different contour length values 
may result from a change in conformation of a protein with the same interaction region (red). 
In the example shown in (A), protein partners are either collapsed or expanded which results 
in different LC values. (B) A different scenario in which the the protein partners interact via 
different interaction regions (red) which would result in different LC values. (C) An 
experimental example taken from Hickman et al 2017307 in which Gram negative TonB 
dependent transporters (BtuB in this example) are remodel under force as a method of gated 
transport in order to transport scarce nutrients across the outer membrane. In this example a 
double LC profile was observed, the difference between these peaks (ΔLC) corresponds to the 
amount of protein that unfolds under force.  
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From further calculations based on the WLC model (Equation 1-1), the instantaneous loading 

rate (the rate in which force is applied to a complex), which is strongly influenced by the LC and 

not just the FR, can be calculated. To do this, a differential WLC model (Equation 2-4) can be 

used to calculate the slope (WLCslope) of the parabolic WLC fit which is the change in force as a 

function of distance (ie. the stiffness of the complex). When multiplied by the known 

retraction velocity, the loading rate (rf) for a specific single event can be calculated. It is 

important to calculate the instantaneous loading rate as these events are kinetic processes and 

so are time dependent.  

1.6.3 Dynamic force spectroscopy (DFS) 

When force is applied to a protein or protein complex, the folded or bound states are 

destabilised. The rate at which force is loaded on a protein affects the apparent strength of a 

protein or protein-protein interaction since DFS is a kinetic measurement. In general, with 

higher velocities, more force is required to unfold/break a complex. This was demonstrated by 

Evans and Ritchie308,309, based on Bell’s model for off-rates310, it was shown that externally 

applied force lowers the energy barrier between low and high energy states (Figure 1-19).  A 

linear dependence is usually observed when the most probably rupture force (FR) is plot as a 

function of ln(rf) (Figure 1-19 and Equation 1-2 (Bell-Evens model)). 

 𝐹𝑅 = (
𝑘𝐵 𝑇

𝑥𝑢
) 𝑙𝑛 (

𝑟𝑓 𝑥𝑢

𝑘𝑜𝑓𝑓
0𝐹 𝑘𝐵𝑇

) 
1-2 

 

where kB is Bolzmann’s constant, T is temperature (in kelvin), rf is the rate at which force is 

loaded onto the complex or loading rate, xu is the distance along the reaction coordinate from 

the low energy state to the transition state and 𝑘𝑜𝑓𝑓
0𝐹  is the spontaneous unfolding or 

unbinding rate in the absence of force. 

The effect of force on a protein or a protein complex can be depicted in a free energy 

landscape in which a low energy state representing the native or bound protein, is separated 

from a higher energy, unbound or unfolded state by an energy barrier which has to be 

overcome in order for a protein unfold or a complex to unbind, which becomes more likely 

under force. Force acts to tilt the energy landscape by a factor of Fxu thereby reducing the size 

of the energy barrier to unfolding or unbinding. In this way, energy barriers that may have 

been hidden at zero force may become rate limiting at certain velocities, giving two linear 

correlations between (F*) and ln(rf)305 (see below). 
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Extending a protein or protein complex at various velocities allows the acquisition of a dynamic 

force spectrum to be acquired. This allows for the quantification of parameters that are used 

to describe the free-energy landscape such as xu and the 𝑘𝑜𝑓𝑓
0𝐹  (Figure 1-19).  

 

Figure 1-19. Free energy landscape and a dynamic force spectrum. A typical energy landscape 
of a two-state system that could be reporting on either protein unfolding or the dissociation of 
a protein complex (black trace). A single energy barrier with a value of ΔG separates a lower 
energy folded or bound state from a higher energy unfolded/ unbound state. The distance 
between the ground state and the energy barrier peak or transition state is xu along the 
reaction coordinate. The energy barrier is spontaneously crossed at a specific rate (koff). 
Application of an external force (red dashed trace) tilts the energy landscape a function of Fxu, 
which lowers the energy barrier, making spontaneous unbinding or unfolding more likely. A 
typical dynamic force spectrum for a two-state system is shown inset. The spectrum is 
governed by a singular linear regime with a slope proportional to 1/xu. The y-intercept of the 

plot allows extrapolation of the koff rate at zero force (𝑘𝑜𝑓𝑓
0𝐹 ). 

 

1.6.4 Studies of aggregation with force spectroscopy 

Force spectroscopy has been utilised previously in the study of aggregation-prone or 

amyloidogenic proteins311-323. Studying protein aggregation is a significant challenge, owing to 

the fact that the aggregating species are heterogeneous, only transiently and lowly populated, 

and the fact that aggregation-prone proteins progress on an exponential timescale towards 

higher order, end point species. Force spectroscopy offers an ideal technique to study 

aggregating systems as experiments can be carried out at low concentrations and single 

molecule events can be isolated without the contributions of heterogeneous, higher order 

species that often occur in ensemble methods.  Both the intramolecular conformation and the 
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intermolecular interactions between aggregation-prone molecules have been studied using 

various force spectroscopy techniques, as discussed below.  

1.6.4.1 Force studies on intramolecular interactions 

An AFM SMFS study by Carrion-Vazquez and colleagues311 used a system in which aggregation-

prone proteins were engineered into a polyprotein construct in order to interrogate the 

intramolecular conformations of the amyloidogenic IDP molecules (Figure 1-20 A). This was 

achieved by engineering the protein of interest into a carrier protein that is part of the 

polyprotein relay in what was termed a “carrier-guest” technique. In this way, force events 

corresponding to the molecule of interest only occur after the carrier molecule has unfolded 

and so the noisy region of the force curve proximal to the surface is avoided. This study 

investigated the mechanostability of several amyloidogenic systems of poly-glutamine proteins 

with different poly-glutamine (poly-Q) expansions (Q19, Q35 and Q62) (Figure 1-20); Aβ42 along 

with fibrillation incompetent (F19S/L34P324) and a familial AD mutants (E22G); Sup35 and αSyn 

along with familial PD mutants A53T and A30P. The study showed that mechanostable force 

events >20pN (at 400 nm/s) could be attributed to the aggregation-prone proteins as shown in 

the force-extension profiles in Figure 1-20 B and C, this was postulated to arise from the 

acquisition of β-structure which has previously been proposed to be concomitant with toxic 

gain of function104. The proportions of mechanostable force events also correlated well with 

aggregation-promoting mutant proteins of αSyn, Aβ42 and polyQ proteins, supporting this 

hypothesis. Moreover, a fibrillation incompetent Aβ42 (F19S/L34P324) and non-toxic short 

stretches of poly-glutamate (Q19) (Figure 1-20 C) showed an absence of mechanostable events 

in a similar manner to a non-amyloidogenic IDP control: VAMP2 (Figure 1-20 C). 
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Figure 1-20. SMFS approach and experimental data from Hervas et al 2012311 in which the 
conformational polymorphism of amyloidogenic IDPs were analysed in a single molecule 
approach. A) Top: schematic representation of the polyprotein system used in this study in 
which a guest NP (neurotoxic protein, in orange) is mechanically protected by a carrier protein 
(C in grey) in a polyprotein scaffold flanked by ubiquitin repeats (U in black). The carrier 
protein consists of either a monomeric ubiquitin or an I27 domain (A, bottom). B) 
Representative force-extension profiles from the system highlighted in A with Sup35 as the NP. 
Different conformations of the NP can be identified using this technique such as non-
mechanostable events (b, orange) which occur after the unfolding of the carrier domain (a, 
grey) in which the ΔLC corresponds to the full length of the NP without additional force peaks; 
and mechanostable events (c, red, bottom trace) in which an additional force peak can be 
attributed to the NP. C) Experimental data using the approach highlighted in A to interrogate 
polyQ tracts of various lengths. The non-disease, “sub-threshold” Q19 tract contains only non-
mechanostable (M) events. The familial disease tracts (Q35 and Q62) include mechanostable 
events which increase in proportion with increasing tract length. These mutants also contain 
hyper-mechanostable (hM) events of more than 400 pN which increase in proportion with 
increasing tract length. C) bottom histograms represent a non-aggregation control IDP, 
VAMP2, showing no M events. Adapted from Hervas et al 2012311. 



INTRODUCTION 

47 

Similar studies by Samori and colleagues312,313 reached similar conclusions. These studies also 

interrogated the intramolecular interactions of αSyn in a polyprotein context (Figure 1-21 A). 

Consisting of three tandem repeat domains of I27 flanking αSyn on either side. A 

conformational ensemble of αSyn was inferred from these studies. Random-coil 

conformational states were attributed to unfolding force events with no resolvable unfolding 

transition attributable to αSyn, while large force events were attributed to β-like 

conformations. These conformations with higher mechanostability increased in population 

when familial PD mutated αSyn variants were analysed (A30P, A53T and E46K) and also under 

aggregation-prone conditions such as lower pH and high ionic strength.   

 

Figure 1-21. SMFS approach and experimental data from Sandal et al 2008312 and Brucale et al 
2009313 in which the conformational polymorphism of αSyn and PD linked mutants (A30P, 
E46K, and A53T) were analysed in a SMFS approach. A) Schematic representation of the 
polyprotein construct used to interrogate the conformation of αSyn in these studies. αSyn is 
inserted into the polyprotein scaffold, flanked by three I27 domains at either side. Only force-
extension data with at least 6 force events were binned for analysis in this study to allow for 
unequivocal stretching of the αSyn chain. Representative force-extension curves are shown 
below in A). Three types of events are identified in these studies, random coil interactions as 
shown in the top left force-extension trace characterised by a featureless region before the 
stretching of six tandem I27 domains. An example curve fitting a β-like signature is shown on 
the top right force-extension trace in which seven force events are observed, one of which 
corresponding to αSyn unfolding. Examples of mechanically weak conformations are shown in 
the bottom traces in which single or multiple small peaks (arrows) corresponding to the αSyn 
unfolding that precede the six saw-tooth-like force events from I27 domains. B) The relative 
proportions of these events of each of four αSyn variants (WT, A30P, E46K, A53T). PD familial 
mutants show a higher percentage of β-like events and a lower percentage of mechanically 
week events. Part A) adapted from Sandal et al 2008312, part B) adapted from Brucale et al 
2009313. 
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Mechanostability of aggregation-prone molecules was also demonstrated in another force 

study314, in which poly-Q tracts of different lengths were investigated. This study used a single 

molecule force clamp approach in order to pull a single chimeric polyprotein carrier with 

different length poly-Q tracts similar to the protocols implemented above, showing that poly-Q 

stretches formed collapsed, but a heterogeneous ensemble of mechanically stable structures.  

All of these studies show evidence of highly mechanostable intramolecular interactions in 

these aggregation-prone IDPs. It was hypothesised that this highly mechanically stable 

ensemble of conformations, which would presumably be kinetically trapped, could play a part 

in mechanistically ‘jamming’ protein processing machinery in vivo, unbalancing cell 

proteostasis, leading to toxicity311. This was postulated because of the existence of AAA+ 

ATPases from degradative machines have been shown to unfold their substrate mechanically 

using relatively low forces325,326. The forces required to mechanically unfold some of the 

misfolded intramolecular interactions revealed by force studies would thus not be accessible 

by the cell processing machinery.  

1.6.4.2 Force studies on intermolecular interactions  

AFM-based SMFS studies have also been used to investigate the intermolecular interactions of 

aggregation-prone proteins on a single molecule scale similar to the approach used in this 

thesis. In this way, the initial interaction event in the aggregation cascade: that of dimerisation, 

can be interrogated. The Lyubchenko group is one of the few groups to have studied the 

interactions of amyloidogenic proteins in this way. Their force studies to date are summarised 

in Table 1-5.  

Lybchencho and colleagues have studied various proteins using SMFS, with most of the work 

being carried out on Aβ and αSyn. The first study of the strength of inter-protein interactions 

was carried out by the group in 2005 and focused on αSyn, Aβ40 and lysozyme315. The proteins 

in this study were immobilised covalently to amino-functionalised mica and to similarly 

functionalised Si3N4 cantilever using glutaraldyhyde crosslinking. A problem with this method is 

that glutaraldehyde reactions take place at all amide moieties in addition to the N-terminus of 

the protein. This immobilisation method would be difficult to use to discern single molecule 

interactions due to the heterogeneity of the immobilisation.  

The same group developed a different experimental method that addressed this problem, 

originally developed for Aβ40321 and subsequently used for other proteins (outlined in Table 

1-5).  This method added an engineered cysteine residue at the N-terminus of Aβ40 allowing 
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the use of thiol-specific chemistry for protein immobilisation. The studies using this method to 

study αSyn used an engineered cysteine at the C-terminus as opposed to the N-terminus. The 

mica substrate and the cantilever tip were functionalised with maleimide-PEG-silantrane 

(MAS) and so were capable of reacting with the unique thiol group on the SH-terminated 

peptide. 



   

 

Table 1-5. Studies looking at the intermolecular interactions of amyloidogenic proteins 
 

Protein Method of 
immobilisation 

Conditions examined Pulling rate Source Points of note 

αSyn Glutaraldehyde 
cross-linking 

pH 9.8 - 1.0 Not stated McAllister et al 2005315 First study into the strength of inter-protein interactions. 

 C-terminal 
cysteine 

pH 6.0 - 2.7 DFS pulling range: 
100pN/s – 
100,000pN/s 

Yu et al 2008316 and 2009317 Dimer lifetime in the range of seconds compared with ns 
range of monomer. Lifetimes increase with decreasing pH 

 C-terminal 
cysteine 

Zinc and aluminium 
cations, dopamine 
and ionic strength 

Not stated Yu et al 2011318 No effect of dopamine and ionic strength. Cations 
increase rupture events and decrease contour lengths- 
cause interactions closer to the C-terminus 

αSyn and 
A30P 

C-terminal 
cysteine 

polyamide 
spermidine 

600nm/s Krasnoslobodtsev et al 2012319 Zero yield of rupture events in absence of spremidine at 
physiological pH. Increased to ~2% in presence of 
spermidine. A30P showed more interactions closer to the 
C-terminus than wild-type 

αSyn and 
A30P, E46K, 
A53T 

C-terminal 
cysteine 

Famillial point 
mutation  A30P, 
E46K and A53T 

600nm/s Krasnoslobodtsev et al 2013320 Mutations decreased LC, increased interactions closer to 
the C-terminus, decreased interactions closer to the N-
terminus compared with wild-type 

Aβ40 Glutaraldehyde 
cross-linking 

pH 9.8 - 1.0 Not stated McAllister et al 2005315 First study into the strength of inter-protein interactions. 

 

 C-terminal 
cysteine 

pH 9.8- 5.0 Not stated Krasnoslobodtsev et al 2005321 More reproducible and reliable immobilisation of protein 
technique produced 

 C-terminal 
cysteine 

pH 2.7 – 7.0 DFS extension 
rates: 1000pN/s-
200,000pN/s 

 

Kim et al 2011322 DFS analysis showed two discrete dissociation rates for 
force experiments below pH 7.0. Only one rate at pH 7.0. 
increased lifetimes of dimers at lower pH 

Aβ40, Aβ42, C-terminal Mutations Aβ40 VPV* 5000- 7000pN/s Lv et al 2013327 Aβ40 VPV Mutations decrease interactions closer to the 



   

 

*  VPV: Gly33Val-Val36Pro-Gly38 Val (mutations in both Aβ40 and Aβ42, reduces the flexibility of the C-terminus, stabilises proposed β-turn in 

C-terminus328)  

**  pP: Val36/D-Pro and Gly37/L-Pro (mutations in both Aβ40 and Aβ42, destabilises proposed β-turn in C-terminus328) 

***  PepP: CGNNPQNY (N-terminal region of Sup35 with engineered Cysteine and a Q10P mutation) 

****  PepQ: CGNNQQNY (N-terminal region of Sup35 with engineered Cysteine 

VPV mutant, 
pP mutant 

cysteine and  Aβ40 pP** N-terminal and increase interactions closer to the C-
terminal. Aβ42 pP mutations do the opposite and revert 
the LC profile back to an Aβ40 like profile. 

Lysozyme Glutaraldehyde 
cross-linking 

pH 1.5 – 9.8 Not stated McAllister et al 2005315 Force increases with lowering pH. Decreases dramatically 
below pH 4.0 

Sup35 
peptide  

N-terminal 
cysteine 

pH 2.0, 3.7, 5.6 in  
PepP***, PepQ**** 

102pN/s – 
105,000pN/s 

Portillo et al 2012 323 DFS analysis showed that PepQ formed low and high force 
interactions and ThT analysis showed that it formed 
fibrils. PepP didn’t form fibrils, didn’t have steep high 
force slope (inner barrier) suggesting the inner barrier 
characterises the formation of aggregates. 
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Several studies to investigate single molecule dimerisation have been were carried out in this 

way in order to interrogate the initial intermolecular interactions of αSyn as highlighted in 

Table 1-5 and in Figure 1-22 andFigure 1-23. Various factors were investigated in the studies 

including pH (Figure 1-22), ionic strength, metal cations (Figure 1-23), the presence of 

dopamine, the presence of the polyamide spermidine (Figure 1-23), plus, the effects of 

pathological mutations (A30P, E46K and A53T) (Figure 1-23) on the self-association of α-Syn. It 

was shown that decreasing pH increases the rupture forces315-317 from 43.1 pN at pH 5.1 to 71 

pN at pH 2.7316. DFS analysis of αSyn allowed derivation of energy landscapes that showed 

dimer lifetimes in the range of seconds316 (4 s for αSyn dimerisation at pH 2.7, Figure 1-22 C) 

compared with that of nanoseconds for monomer (predicted by molecular dynamics 

simulations329). This is an important finding as aggregation-prone dimeric species with longer 

lifetimes increase the probability of their further involvement in interactions that may be on 

pathway in the aggregation cascade. This analysis also revealed that reducing the pH increases 

the dimeric lifetime of the αSyn dimeric interaction from 0.27 s at pH 5.1 to 4 s at pH 2.7316 

(Figure 1-22). Moreover, DFS analysis revealed two linear regimes for αSyn in a Bell-Evens 

analyses316 (Figure 1-22) at pH 2.7 and pH 3.7 but not at pH 5.1, thus suggesting that the 

dimerisation interaction of αSyn at lower pH values is governed by two barriers to dissociation 

whereas at higher values, there is only one barrier suggesting that the dimeric species can 

have different stabilities at different pH values. Given that pH has been showed to play an 

important role in the in vitro aggregation of αSyn, it may be logical to propose that the 

different properties of dimers at different pH values play an important role330. The finding that 

pH plays an important role in the affinity of the dimerisation interaction has implication for the 

disease process in vivo as αSyn comes into contact with various cellular compartments331,332. 
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Figure 1-22. DFS SMFS analysis of the αSyn dimerisation interaction as a function of pH. A) 
Representative force-extension plots of αSyn dimerisation at different pH values (2.7, 3.7 and 
5.1 from left to right). B) Example force distributions at the same pH values as in A. C) DFS 
analysis of αSyn as a function of pH, (a) red triangles, pH 2.7; (b) blue diamonds, pH 3.7; and (c) 
black squares, pH 5.1. Error bars show the standard error. Bell-Evens parameters are denoted 
in the table at the bottom of the figure. Dimerisation interactions at both pH 2.7 and pH 3.7 
show two linear regimes indicating an outer and an inner barrier to dissociation is present in 
the energy landscape of dissociation. Xu1 denotes the outer dissociation barrier (lower gradient 
linear regime), Koff1 indicates the off rate at zero force of the same linear regime and τ0(1) 
indicates the lifetime of this interaction. Similarly, Xu2, Koff2 and τ0(2) correspond to the inner 
dissociation barrier. Adapted from Yu et al 2008316.  

 

Familial PD mutants (A30P, E46K and A53T) of αSyn were investigated by this group and 

showed differences in the dimerisation interactions relative to WT at pH 3.7 (Figure 1-23 A). 
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The observed LC values decreased for PD mutants which indicated that there was an increase 

in interactions closer to the C-terminus in PD mutant dimers compared with WT319,320.  

Most of the SMFS studies carried out on αSyn by the Lyubchenko group were conducted under 

acidic pH as events at neutral pH were not observed. The presence of both metal cations (Al3+ 

and Zn2+) and the polyamide spermidine, however, induce the formation of dimers at neutral 

pH (Figure 1-23 B and C). Cations increased the yield of dimerisation interactions form 0.8 % at 

at neutral pH to 3.9 and 7.0 % for Zn2+ and Al3+ respectively318. The polyamide spermidine at 

physiological pH increases the frequency of interactions from 0 to ~2%319. This data shows that 

external factors can promote the proposed aggregation-prone dimerisation interaction of αSyn 

and be important in promoting conformations that may promote higher order aggregate 

formation and be involved in the implication of disease.  

As mentioned above, most of the dimerisation events analysed for αSyn were analysed at 

acidic pH. However, studying these interactions at neutral pH may be more applicable in 

regards to the relationship between dimerisation formation and disease. The hit rate for αSyn 

dimerisation at pH 7.0 was reported at 0.8 % by this group318 and not further analysed. The 

immobilisation concentration is relatively low (19 nM) in these studies. It is likely, therefore, 

that interactions of αSyn are missed and not analysed in these studies at neutral pH. 

Furthermore, there are other weaknesses with the approach used in these studies. Firstly the 

force-extension traces show a large amount of noise in the regions proximal to the surface 

(Figure 1-22 A and Figure 1-23 B and C). It is likely therefore that interactions that may occur at 

lower LC values are masked by noise in these experiments and therefore not able to be 

analysed. Secondly, LC distributions may have been over-analysed in these studies (Figure 1-23 

A and B). Several distributions were consistently fit to LC data319,320 (Figure 1-23 A and B) and 

the different distributions were interpreted as different dimeric conformations.  

A final caveat with the data obtained in these studies involves the interpretation of the LC 

values. The LC data in these studies were taken as the length of linkers and protein extended in 

an interaction. However, this is only the case in an idealistic scenario in which a protein is 

immobilised onto the cantilever tip apex and the protein partner is situated directly below it 

on the substrate. In reality, this scenario is rare and would be the maximum LC value observed. 

The observed modal LC is therefore lower than the true length of the protein and linkers. This 

is due to the important effects of linker length and AFM tip geometry have on experimental LC 

values. This issue has been discussed by this group previously306. 
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Figure 1-23. SMFS data of αSyn dimerisation and the effects of PD mutants  (A), the presence 
of spermidine (B) and the presence of Al3+ and Zn2+ cations (C). A) LC distributions of WT αSyn 
and PD variants (A30P, A53T and E46K) at pH 3.7320. The different variants give different LC 
distributions relative to WT. Each distribution is fit to several Gaussians which was interpreted 
as different conformations in the dimeric species of αSyn and the PD mutants. B) SMFS data 
showing the effect of spermidine on the dimerisation interaction of αSyn319. Dimerisation 
events were absent at pH 7.0, however, in the presence of spermidine under these conditions, 
force events were able to be observed. LC was again fit with several Gaussian distributions, 
taken to represent different dimeric conformations. A LC vs FR scatter plot is shown on the 
right. C) The effect of Zn2+ and Al3+ on the dimeric interactions of αSyn. As in B, dimerisation 
events were absent at pH 7.0, but were found to be present with the addition of cations318.  

1.7 Thesis aims 

The principal aim of the work carried out in this thesis is to provide molecular insights into the 

initial interactions of the Parkinson’s disease linked protein αSyn. SMFS is used primarily in 

order to interrogate dimerisation interactions on a single molecule scale. 

As discussed in this chapter (Section 1.6.4), SMFS has been used previously to interrogate the 

intermolecular interactions of αSyn at a single molecule level315-320. However there are 

weaknesses in these studies as discussed above (Section 1.6.4.2). Similar methods with more 

robust experimental and analytical protocols, were utilised in order to gain further insights 

into the nature of the dimeric interactions of αSyn, an important event at the start of the 

aggregation cascade. More knowledge is needed about the properties that drive this 

interaction, identifying interaction regions and interrogating likely conformations that may 

occur in the dimeric species, as various SMFS studies have linked highly force resistant 

conformations to increased aggregation propensity311-314. Relating how the driving forces for 

dimerisation compare in aggregation-prone PD mutants and non-aggregation-prone 

homologues is important for understanding the role of this interaction in health and disease. 

The conformation of αSyn as an IDP is dependent on environmental conditions as discussed in 

this chapter (Section 1.5.2.1), it is therefore important to ascertain how the dimeric interaction 

is effected by these factors.  

The work in this thesis aims to: 

1. Gain further knowledge about the conformations observed in the dimeric species of 

αSyn and understand their context dependence. 

2. Identify interaction regions driving dimeric interfaces. 

3. Further understand how intrinsic (synuclein variants) and extrinsic (environmental 

conditions) factors effect αSyn dimerisation, and compare these to the rates of αSyn 

aggregation in bulk solution. 
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4. Postulate mechanisms as to how the dimerisation interaction may be related to the 

aggregation process of αSyn. 

5. Develop a SMFS display system that allows robust measurement of intermolecular 

interactions of highly aggregation-prone-proteins. 

 

Chapter 3 outlines the design and implementation of a protein displaying scaffold which can be 

utilised in SMFS studies of intermolecular interactions of aggregation-prone proteins. This 

technique allows the presentation of small, highly aggregation-prone peptides in a flexible 

loop of a mechanically strong protein. In this way, dimeric interactions in an aggregation-prone 

system can be analysed without the contributions of noisy region of force-distance data, 

proximal to the surface.  

Chapters 4-6 use SMFS and other biophysical techniques to interrogate the nature of dimeric 

interactions of full length synuclein variants. Chapter 4 presents SMFS of full length αSyn 

dimerisation at a single molecule level were validated and shown that robustness of the 

experimental system. 

Results in Chapter 5 indicate force-resistant structure forms in the dimeric species, and that 

this conformation is dependent on pH. Whereas previous SMFS of αSyn dimerisation used an 

experimental technique in which αSyn was immobilised at the C-terminus315-320, several SMFS 

experiments were carried out here in which αSyn monomers were immobilised at different 

positions. Carrying out LC simulations in parallel306 allowed the localisation of areas of structure 

and also interaction regions in the dimer.   

The experimental section of this thesis concludes with Chapter 6 in which environmental and 

intrinsic protein properties driving dimerisation are investigated. The data in this chapter 

allowed the postulation that the dimeric interactions observed in SMFS events may be 

protective to aggregation and, therefore, have significant implications into the physiological 

forms of αSyn. These findings may be important to consider when postulating disease 

modifying agents targeting αSyn. 

The thesis ends with a conclusions chapter which draws findings together, correlating these 

findings with evidence from existing literature and points to future exciting questions. 
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2 Materials and Methods 

2.1 Materials 

2.1.1 Centrifuges 

Avanti J-26 XP Centrifuge (Backman Coulter, Brea, CA, USA) 

Bench top centrifuge: GenFuge 24D (Progen Scientific, London, UK) 

Eppendorf 5810R Centrifuge (Fisher Scientific, Loughborough, UK Beckman Coulter) 

Contifuge Stratos Continuous-Flow Rotor (Heraeus, Hanau, Germany) 

2.1.2 Incubators 

Innova 43 Shaker Incubator (New Brunswick Scientific, USA) 

Innova 44 Shaker Incubator (New Brunswick Scientific, USA) 

SI600 orbital incubator (Stuart, Staffordshire, UK) 

SI500 orbital incubator (Stuart, Staffordshire, UK) 

2.1.3 Protein purification equipment 

ÄKTAprime plus (GE healthcare, Buckinghamshire, UK) 

HisTrap FF 5 mL Ni Sepharose (GE healthcare, Little Chalfont, UK) 

Superdex™ 75 Hiload 26/60 gel filtration column (GE healthcare, Buckinghamshire, UK) 

Superdex™ 75 HR 10/30 gel filtration column (GE healthcare, Buckinghamshire, UK) 

2.1.4 Spectrophotometers  

NanoDrop 2000 UV-Vis Spectrophotometer (Thermo Scientific, MA, USA) 

Ultrospec 2100 pro UV/Visible spectrophotometer (GE Healthcare, Buckinghamshire, UK) 

2.1.5 PCR thermocycler 

T100 thermal cycler (BioRad, CA, USA) 
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2.1.6 AFM 

MFP-3D™ Stand Alone AFM (Asylum Research, Buckinghamshire, UK) 

2.1.7 AFM probes 

MLCT silicon nitride with reflective gold AFM probe (Bruker, CA, USA) 

2.1.8 Electron microscope 

JEOL JEM-1400 transmission electron microscope (JEOL USA Inc., Peabody, USA) with Gatan 

US1000XP 2k x 2k CCD camera (Gatan Inc., Pleasanton, USA) 

2.1.9 Circular Dichroism 

ChirascanTM plus CD Spectrometer (Applied Photophysics, U.K.) 

2.1.10  Fluorometer 

Photon Technology International fluorometer (Ford, West Sussex, UK) 

2.1.11 NMR instrument 

600 MHz NMR magnet (Oxford Instruments, Abingdon, UK)  

QCI-P-cryoprobe and an Avance III HD console (Bruker Corpn., Coventry, UK) 

2.1.12 Microplate readers and plates 

FLUOstar Omega (BMG Labtech, Ortenburg, Germany) 

FLUOstar Optima (BMG Labtech, Ortenburg, Germany) 

Corning® 96 Well Half Area Black with Clear Flat Bottom Polystyrene NBS™ Microplate (Corning 

GmbH, Wiesbaden, Germany) 

2.1.13 MS instrument 

Synapt HDMS quadrupole-time-of-flight mass spectrometer (Waters Corpn., Manchester, UK), 

equipped with a Triversa NanoMate (Advion Biosciences, Ithaca, NY, USA) automated nano-ESI 

interface. The instrument has a travelling-wave IMS device situated between the quadrupole 

and the time-of-flight analysers. 

2.1.14 Gel electrophoresis 

Slab Gel Electrophoresis Chamber AE-6200 (ATTO, Tokyo, Japan)  
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Powerpac 3000 (Bio-Rad Lab., Hercules, CA, USA)  

Powerpac Basic (Bio-Rad Lab., Hercules, CA, USA) 

2.1.15 Gel ladders and dyes  

Precision plus protein dual colour standards protein ladder (BioRad, CA, USA) 

Instant Blue Stain (Expedeon Protein Solutions, UK) 

2.1.16 Kits  

Wizard® Plus SV Minipreps DNA Purification System (Promega Hampshire, UK) 

Q5® Site-Directed Mutagenesis Kit (NEB, Hertfordshire, UK) 

2.1.17 Buffers 

Buffers used in experiments are described in the experimental section, more general buffers 

used in this thesis are described below. 

2.1.17.1 pL purification buffers 

Lysis buffer - 20 mM Tris-HCl pH 8.0, 300 mM NaCl, 20 mM imidazole, 2 mM DTT, 0.025 % 

(w/v) sodium azide, 1 mM PMSF, 2 mM benzamidine, 0.15% (v/v) Triton X100, 20 μg/ml DNase 

(Sigma Life Sciences, MO, USA), 100 μg/ml lysozyme (Sigma Life Sciences, MO, USA). 

Wash buffer - 20 mM Tris-HCl pH 8.0, 300 mM NaCl, 20 mM imidazole, 2 mM DTT, 0.025 % 

(w/v) sodium azide, 1 mM PMSF, 2 mM benzamidine. 

Elution buffer - 20 mM Tris-HCl pH 8.0, 300 mM NaCl, 250 mM imidazole, 2 mM DTT, 0.025 % 

(w/v) sodium azide, 1 mM PMSF, 2 mM benzamidine. 

SEC buffer – 25 mM Tris-HCl, 300 mM NaCl, 2 mM DTT, pH 8. 

2.1.17.2 Full leghth synuclein purification buffers 

Lysis buffer – 20 mM Tris-HCl, 1 mM EDTA, 5 mM DTT, 1 mM PMSF, 2 mM benzamidine, 

100 μg/ml lysozyme, 20 μg/ml DNase, pH 8.0 

Wash buffer – 20 mM Tris-HCl, 5 mM DTT, pH 8.0 

Elution buffer - 20 mM Tris-HCl, 5 mM DTT, 1 M NaCl, pH 8.0 

SEC buffer – 20 mM 20 mM sodium phosphate, pH 7.5 
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2.1.17.3 SDS-PAGE buffers 

SDS-PAGE resolving gel buffer - 1 M Tris-HCl pH 8.45, 0.1 % (w/v) SDS, 15 % (v/v) acrylamide, 

13 % (v/v) glycerol, 0.7 % (w/v) APS, 0.07 % (v/v) TEMED. 

SDS-PAGE stacking gel buffer - 750 mM Tris-HCl pH 8.45, 0.07 % (w/v) SDS, 4 % (v/v) 

acrylamide, 0.32 % (w/v) APS, 0.16 % (v/v) TEMED. 

SDS-PAGE loading buffer (x2 concentrated stock) - 2 % (w/v) SDS, 10 % (v/v) glycerol, 0.1 % 

bromophenol blue, 100 mM DTT. 

SDS-PAGE cathode buffer (x10 concentrated stock) - 1 M Tris, 1 M Tricine, 1 % (w/v) SDS. 

SDS-PAGE anode buffer (x10 concentrated stock)2 M Tris-HCl pH 8.9. 

2.1.17.4 TAE buffer (x25 concentrated stock) 

1 M Tris, 25 mM EDTA, 2.8 % (v/v) glacial acetic acid. 

2.1.18 Peptides 

Peptides were purchased from Genscript, NJ, USA at > 99% purity. All peptides were N-

terminally acetylated and C-terminally amidated. 

2.1.19 DNA primers 

All DNA primers were purchased from Eurofins MWG Operon, Ebersberg, Germany. 

2.1.20 Plasmids 

The pET23a plasmid (expression under control of T7 promotor) encoding pL I60F with an 

existing protein sequence present (TolBox, TolB binding epitope) in an extended loop region 

between β-sheets 3 and 4 was kindly provided by Dr David Brockwell (Astbury Centre for 

Structural Molecular Biology, University of Leeds, UK). 

pET23a-pL αSyn71-82: (central NAC region of αSyn, residues 71-82 engineered within an 

extended loop region between β-sheets 3 and 4, in an expression vector under the control of a 

T7 promotor) . 

pET23a-pL γSyn71-82: (central NAC region of γSyn, residues 71-82 engineered within an 

extended loop region between β-sheets 3 and 4, in an expression vector under the control of a 

T7 promotor) . 
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pET23a-GS: (A non-aggregation control construct in which repeating units of Gly-Ser residues 

of the same size as the peptide inserts, 12 residues/ 6 repeating units,  within an extended 

loop region between β-sheets 3 and 4, in an expression vector under the control of a T7 

promotor). 

The pET23a plasmid encoding αSyn (expression under control of T7 promotor) was provided by 

Prof Jean Baum (Department of Chemistry and Chemical Biology, Rutgers University, NJ, USA). 

pET23a-αSyn A140C: (human αSyn with a C-terminal Cys residue for SMFS studies, in an 

expression vector under the control of a T7 promotor). 

pET23a-αSyn A90C: (human αSyn with Cys residue in the NAC region for SMFS studies, in an 

expression vector under the control of a T7 promotor) kindly provided by Dr Matthew Jackson 

(Astbury Centre for Structural Molecular Biology, University of Leeds, UK). 

pET23a-αSyn A18C: (human αSyn with Cys residue in the N-terminal region for SMFS studies, in 

an expression vector under the control of a T7 promotor) kindly provided by Dr Matthew 

Jackson (Astbury Centre for Structural Molecular Biology, University of Leeds, UK). 

pET23a-αSyn A140C E46K: (human αSyn familial PD mutant E46K with a C-terminal Cys residue 

for SMFS studies, in an expression vector under the control of a T7 promotor). 

pET23a-βSyn A134C: (human βSyn with a C-terminal Cys residue for SMFS studies, in an 

expression vector under the control of a T7 promotor). 

pET23a-γSyn D127C: (human γSyn with a C-terminal Cys residue for SMFS studies, in an 

expression vector under the control of a T7 promotor). 

2.1.21 Bacterial strains 

E. coli XL1-Blue competent cells (efficiency: >1 x 108 cfu/μg) (Agilent technologies, Berkshire, 
UK). 

recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F´ proAB lacIqZΔM15 Tn10 (Tetr)]. 

 

E. coli DH5-α competent cells (NEB, Hertfordshire, UK). 

F– Φ80lacZΔM15 Δ(lacZYA-argF) U169 recA1 endA1 hsdR17 (rK–, mK+) phoA supE44 λ– thi-1 
gyrA96 relA1. 

E. coli BL21(DE3) competent cells (efficiency: >1 x 106 cfu/μg) (Agilent technologies, Berkshire, 
UK). 

F- dcm ompT hsdS(rB– mB–) gal λ(DE3) 
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2.1.22 Chemicals 

A Supplier 

Acetic acid, glacial Fisher Scientific, Loughborough, UK 

Acrylamide 30 % (v/v) Severn Biotech, Kidderminster, UK 

Agar Fisher Scientific, Loughborough, UK 

(3-Aminopropyl)triethoxysilane (APTES) Sigma Life Sciences, MO, USA 

Ammonium persulphate (APS) Sigma Life Sciences, MO, USA 

Ammonium Bicarbonate Sigma Life Sciences, MO, USA 

Ammonium sulfate Acros Organics, Geel, Belgium 

B  

Benzamidine dihydrocholride  Sigma Life Sciences, MO, USA 

C  

Carbenicillin Formedium, Norfolk, UK 

Chloroform  Fisher Scientific, Loughborough, UK 

Calcium chloride (CaCl2) Melford Laboratories, Suffolk, UK 

D  

Dithiothreitol (DTT) Formedium, Norfolk, UK 

Deuterium oxide (D2O) Fluorochem, UK 

E  

Ethanol Sigma Life Sciences, MO, USA 

Ethylenediaminetetraacetic acid (EDTA) Fisher Scientific, Loughborough, UK 

G  

Glycerol Fisher Scientific, Loughborough, UK 

H  

Hexoflouroisopropanol (HFIP) Sigma Life Sciences, MO, USA 

Hydrogen peroxide (H2O2) Sigma Life Sciences, MO, USA 

Hydrochloric acid (HCl) Fisher Scientific, Loughborough, UK 

I  

Imidizole Sigma Life Sciences, MO, USA 

Isopropanol Fisher Scientific, Loughborough, UK 

Isopropyl β-D-1-thiogalactopyranoside (IPTG) Melford Laboratories, Suffolk, UK 

L  

LB broth, granulated Melford Laboratories, Suffolk, UK 

M  
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Monosodium phosphate Fisher Scientific, Loughborough, UK 

N  

N-Hydroxysuccinimide-PEG24-maleimide (SM 

PEG) 

Fisher Scientific, Loughborough, UK 

N,N-diisopropylethylamine (DIPEA) Fisher Scientific, Loughborough, UK 

P  

Phenylmethanesufonyl fluoride (PMSF) Sigma Life Sciences, MO, USA 

S  

Sodium azide (NaN3) Sigma Life Sciences, MO, USA 

Sodium chloride (NaCl) Fisher Scientific, Loughborough, UK 

Sulphuric acid Fisher Scientific, Loughborough, UK 

Sodium hydroxide (NaOH) Fisher Scientific, Loughborough, UK 

Sodium dodecyl sulphate (SDS) Severn Biotech, Kidderminster, UK 

Sodium phosphate dibasic, Na2HPO4 Thermo Scientific, Surrey, UK 

Sodium phosphate monobasic, NaH2PO4 Sigma Life Sciences, St. Louis, USA 

T  

Triton X-100 Sigma Life Sciences, MO, USA 

Tris Fisher Scientific, Loughborough, UK 

Tetramethylethylenediamine (TEMED) Sigma Life Sciences, MO, USA 

Tris(2-carboxyethyl)phosphine hydrochloride 

(TCEP) 

Sigma Life Sciences, MO, USA 

U  

Uranyl acetate Sigma Life Sciences, MO, USA 

Urea MP biomedicals, Loughborough , UK 

 

2.2 Methods 

2.2.1 Molecular biology 

2.2.1.1 Preparation of competent E. coli for transformation 

10 mL of LB medium was inoculated with a desired strain of E. coli; this was grown at 37 ˚C, 

200 rpm for 16 hours. 5 mL of the culture was used to inoculate 100 mL of LB medium and was 

grown to an optical density at 600 nm (OD600) of 0.45 before the cells were harvested by 

centrifugation at 4,000 rpm for 10 minutes at 4 ˚C (Eppendorf 5804R Refrigerated Benchtop 
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Centrifuge). The supernatant was discarded and the pellet gently resuspended in 10 mL of 

sterile pre-chilled (4 ˚C) 100 mM CaCl2. The resuspension was incubated on ice for 10 minutes 

before centrifugation to re-pellet the cells. The supernatant was discarded and the pellet was 

gently resuspended in 2 mL of pre-chilled (4 ˚C) 100 mM CaCl2, 30 % (w/v) glycerol. 100 μl 

aliquots were pipetted into sterile Eppendorf tubes sat on dry ice. Once frozen, the competent 

cells were stored at -80 ˚C. 

2.2.1.2 Q5 NEB site directed mutagenesis 

Site directed mutagenesis was carried out using the NEB Q5 site-directed mutagenesis kit 

(Section 2.1.16). Primers were designed using the NEB online tool 

(http://nebasechanger.neb.com/) and purchased from Eurofins MWG Operon. Both small 

changes such as when substituting an amino acid for a Cys residue into full length αSyn, as 

well as larger insertions such as that required to insert the 12 residue αSyn central NAC 

region into pL were carried out using this method. 

The following reagents were assembled in a 0.2 ml PCR tubes: 

Reagent Volume (μl) 

Q5 Hot start high-fidelity master mix (2X) 12.5 

10 μM Forward primer 1.25 

10 μM Reverse primer 1.25 

Template DNA (1-25 ng/μl) 1 

Nuclease free water 9 

 

 

This was the subjected to the following PCR thermal cycle: 

Step Temperature (oC) Duration (s)  

Initial denaturation 98 30  

PCR 98 10  

50-72* 30 X 35 

72 30 /kb  

Final extension 72 120  

Hold 4 ∞  
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*Annealing temperature depends on mutagenic primers and were taken from the online tool 

NEBaseChanger (http://nebasechanger.neb.com/). 

The PCR reaction mixture from the previous step was the subjected to a kinase, ligase and DpnI 

(KLD) enzyme treatment. The following reagent were set up in a new 0.2 ml PCR tube: 

Reagent Volume (μl) 

PCR product 1 

KLD reaction buffer (2x) 5 

KLD enzyme mix (10x) 1 

Nuclease free water 3 

 

5 μL of the reaction product was transformed into DH5α cells (Section 2.1.21) by heat shock 

(42 °C for 30 seconds). This was then plated onto antibiotic selection agar plates (100 μg/ml 

carbenicillin) after an hour incubation at 37 °C, 200 rpm in SOC medium provided with the kit. 

2.2.1.3 Preparation of plasmid DNA for sequencing 

Single colonies were picked from antibiotic selection agar plates and used to inoculate 10 mL 

of LB medium with the same selection antibiotic as the agar plate (100 μg/mL carbenicillin). 

The inoculated medium was incubated for 16 hours at 37 °C, 200 rpm and the cells were 

subsequently harvested by centrifugation at 4,000 rpm for 10 minutes, 4 ˚C (Eppendorf 5804R 

Refrigerated Benchtop Centrifuge). Using a Wizard® Plus SV Minipreps DNA Purification 

System kit (Section 2.1.16), the plasmids were purified from the bacteria and the 

concentration in water was calculated using a nanodrop 1000 spectrophotometer using the 

optical density at 260 nm (A260) (concentration (μg/mL) = 50 μg/mL x A260). The plasmid DNA 

was diluted to 100 ng/μl and sent for sequencing (Beckman Coulter Genomics). 

2.2.1.4 Protein expression and purification 

2.2.1.5 Starter culture 

200 mL of sterile LB medium containing 100 μg/mL carbenicillin was inoculated with a single 

colony from an ampicillin selection plate of freshly transformed expression cells, BL21 (DE3), 

with the required plasmid constructs (Section 2.1.20). The inoculated medium was incubated 

at 37 °C, 200 rpm for 16 hours. 



MATERIALS AND METHODS 

68 
 

2.2.1.6 Expression and purification of pL constructs 

10 X 1L cultures were inoculated with 10 mL starter culture (2.2.1.5). The cells were grown to 

OD600 = 0.6 before protein expression was induced with 1 mM final concentration IPTG. The 

cultures were allowed to grow for a further 4 hours before harvesting. Cell pellets were 

resuspended in lysis buffer (Section 2.1.17), homogenised and further lysed by cell disruption 

at 30K PSI. The cell lysis solution was then centrifuged at 12000 rpm for 30 minutes. The 

cleared lysate was decanted and syringe-filtered through a 0.22 µm membrane. The proteins 

were subjected to Ni-NTA purification on a 5mL His-Trap FF column (GE Healthcare). The 

column was washed with pL wash buffer (Section 2.1.17), before the protein was eluted in high 

imidazole containing pL elution buffer (Section 2.1.17). The eluted proteins were then 

concentrated using Vivaspin centrifugal columns (20 ml columns 5000 kDa MWCO) to less than 

~3 mL and applied onto a HiLoadTM 26/60 Superdex 75 prep grade SEC column (GE 

Healthcare). The SEC column was equilibrated and run with pL SEC buffer (Section 2.1.17) at 3 

mL/ min. Fractions were analysed by SDS-PAGE. The main peak corresponding to chimeric pL 

variants was pooled. The protein was then dialysed into 20 mM HEPES (4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid) pH 7.5 (for pL SMFS experiments) before being flash frozen 

with liquid N2. The presence, purity and the correct mass of proteins were confirmed by MS. 

2.2.1.7 Expression and purification of full length αSyn constructs 

All full length synuclein constructs (including Cys mutants and homologues) were expressed in 

BL21 (DE3) E. coli cells from a pET23a vector (Section 2.1.20).  Cells were grown in LB medium 

at 37 °C. Expression was induced with 1 mM IPTG at OD600 = 0.6. The protein was expressed for 

4 h post-induction, before harvesting by centrifugation (6000 x g, 30 min, 4 °C).  

Pellets were resuspended in lysis buffer (25 mM Tris-HCl, pH 8.0, 100 μg/mL lysozyme, 50 

μg/mL PMSF and 20 μg/mL DNase). The pellet was homogenised before heating to 80 °C for 10 

min. The homogenate was then centrifuged (35,000 x g, 4 °C, 30 min) and the protein, isolated 

in the soluble fraction, was precipitated with 50 % (w/v) ammonium sulphate, incubated at 

4 °C, 30 min. The suspension was centrifuged at 35,000 x g and the pellet resuspended and 

precipitated again in 50% (w/v) ammonium sulphate, 4 °C, 30 min. After a further 

centrifugation (35,000 x g, 4 °C, 30 min) the pellet was resuspended in 20 mM Tris-HCl, pH 8.0 

prior to anion exchange.  

The partially purified α-syn was loaded onto a Q-Sepharose anion exchange column with a 20 

mM Tris- HCl, pH 8.0 mobile phase. The protein was eluted with a linear gradient of 0-500 mM 
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NaCl and monitored by absorbance at 280 nm. Fractions containing α-syn were analysed by 

SDS-PAGE, dialysed against 50 mM ammonium bicarbonate and lyophilised.  

The protein was the resuspended in 20 mM sodium phosphate, pH 7.5, and loaded onto a 

HiLoadTM 26/60 Superdex 75 prep grade gel filtration column. The protein was eluted from 

the column with 20 mM sodium phosphate, pH 7.5 at a flow rate of 3 mL/min. The protein was 

dialysed against 50 mM ammonium bicarbonate and lyophilised. Purified protein was stored at 

– 20 °C. Examples of chromatographic traces and SDS-PAGE gels of the synuclein purification 

are shown in Chapter 3. 

2.2.2 Biochemistry techniques 

2.2.2.1 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-

PAGE) 

SDS resolving and stacking gel solutions (Section 2.1.17.3) were freshly prepared and APS and 

TEMED were added directly before pouring the gel mixture into a sealed clean casting 

chamber. Once the resolving gel had set, the stacking gel was added and a comb inserted into 

the top of the casting chamber. Excess stacking gel was removed using a pipette tip. The 

rubber seals were removed once the gel had set and the casting chamber containing the gel 

was inserted into the cathode chamber of an electrophoresis cell, which was then filled with 1x 

cathode buffer (Section 2.1.17.3). The anode chamber was then filled with 1x anode buffer 

(Section 2.1.17.3). 10 μL of the protein sample was mixed 1:1 with 2x SDS loading buffer 

(Section 2.1.17.3) and boiled for 10 minutes. 15 μL of this solution was loaded into the wells of 

the stacking gel. 5 μL of Precision plus protein dual colour standards protein ladder (BioRad, 

CA, USA) was also loaded into a single well for molecular weight determination. The electrodes 

were then connected to a power supply and 35 mA per gel was applied until the stained 

sample rested at the surface of the resolving gel. The voltage was then increased to 65 mA per 

gel and was electrophoresed until the stain left the bottom of the resolving gel. The gel was 

removed from the casting chamber and submerged into Instantblue coomassie stain 

(Expedeon) and incubated on a rocking table for ~2 hours before images were recorded. 
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2.2.2.2 Thioflavin T (ThT) aggregation assays 

2.2.2.2.1 Synuclein peptide ThT 

α- and γSyn 71-82 peptides were dissolved in 100 % (v/v) HFIP (hexoflouroisopropanol) at 450 

μM and dispensed into Corning 96-well flat bottom assay plates. 50 μl was dispensed into 

wells, and the HFIP was left to evaporate. The dry peptide in the well was dissolved into 100 μl 

of 20 mM HEPES, 20 μM ThT, pH 7.5 to give a concentration of 225 μM peptide. Incubations 

were carried out at 37 oC shaking at 600 rpm. The samples were excited at 444 nm and the 

fluorescence emission was monitored at 480 nm on a BMG Labtech FLUOstar optima plate 

reader with a gain set at 1450.  

2.2.2.2.2 pL construct ThT  

Using the same plate reader conditions as above (Section 2.2.2.2.1), 100 μM pL constructs 

were incubated at 37oC shaking at 600 rpm in 20 mM HEPES, 20 μM ThT, pH 7.5. 

2.2.2.2.3 Full length synuclein ThT 

Using the same plate reader conditions as above (Section 2.2.2.2.1) 100 μM synuclein 

constructs were incubated at 37oC shaking at 600 rpm in various conditions as discussed in the 

experimental section. The gain was typically set at 350.  

2.2.2.2.4 Fibril yield analysis 

Fibril yields were assessed by densitometry analysis using bands from SDS-PAGE (Section 

2.2.2.1) gels using the GeneTools programme (Syngene). Samples of full length synuclein from 

the end point of ThT experiments were spun down in a bench top GenFuge 24D centrifuge 

(Progen Scientific, London, UK) at 16,000 x g for 30 minutes. Supernatant samples were taken 

and the pelleted samples were resuspended in buffer using the same volume as that of the 

supernatant for accurate comparisons. Two dilutions of each sample were made and all 

samples were prepared and run on SDS-PAGE gels (Section 2.2.2.1). Fibril yields were 

calculated from the percentage of pelleted material related to the whole material in pelleted 

and supernatant samples. 

2.2.2.2.5 Data analysis 

Where normalised data is presented, it has been processed on the plate reader software and 

normalised (after buffer subtraction) between 0 and 100. Lag time analysis was carried out by 

manually fitting a linear regression of the steepest exponential region of the ThT curves on 
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Origin Pro 9.1 software. The fit was extrapolated to calculate the x-intercept (quoted lag 

times). 

2.2.3 Biophysical techniques 

2.2.3.1 Circular dichroism (CD) 

To gain secondary structural information for the purified proteins, Far UV (190-260 nm) 

circular dichroism (CD) spectroscopy was performed in a 1 mm path length curvette (Hellma) 

using a ChirascanTM plus CD Spectrometer (Applied Photophysics, U.K.). 

200 μL of 50 μM protein solution was placed into the cuvette before a far-UV CD spectrum was 

acquired using a 1 nm bandwidth at room temperature, 1 s time step. An average of 3 scans 

(190-260 nm) were taken per sample. 

CD experiments on pL constructs were carried out in 25 mM sodium phosphate buffer, 2 mM 

DTT, pH 8.0. Experiments on full length αSyn were carried out in either 20 mM Tris, 200 mM 

NaCl, 2 mM DTT pH 7.5 or 20 mM acetate, 200 mM NaCl, 2 mM DTT, pH 4.5. 

2.2.3.1.1 CD temperature ramp 

The thermal denaturation of pL variants was measured by setting up a temperature gradient 

from 20 to 90 oC in 1 oC steps. Protein samples were incubated for 180 s at each temperature 

before CD spectra were taken as above. After the thermal melt was carried out, a spectra at 

20 oC was recorded to ensure that folding was reversible. The thermal melt data were analysed 

on Photophysics Global3 software. 

2.2.3.2 Fluorescence spectroscopy 

Intrinsic tryptophan emission spectra of pL constructs were recorded on a Photon Technology 

International fluorometer (Ford, West Sussex, UK). Excitation and emission slit widths were set 

to 1 and 2 nm, respectively. Proteins were excited at 280 nm and emission spectra were 

recorded at 290-400 nm. 

Spectra were recorder for 200 μl of 50 μM pL constructs in 25 mM sodium phosphate buffer, 

2mM DTT, pH 8.0. All data were normalised to the unfolded state. The unfolded state was 

recorded in the same conditions as above in the presence of 8M urea.  
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2.2.3.3 Size exclusion chromatography - small angle X-ray scattering 

(SEC-SAXS) 

All SEC-SAXS experiments were performed in partnership with, and analysed by, Dr Samuel 

Lenton (University of York). 

Size exclusion chromatography in-line with small-angle X-ray scattering (SEC-SAXS) 

experiments were performed at Diamond light source beamline B21. A 2.4 mL Superdex™ 200 

increase 3.2/300 column connected to an Agilent 1200 HPLC system was equilibrated with 

either 20 mM Tris, 200 mM NaCl, pH 7.5 or 20 mM acetate, 200 mM NaCl, pH 4.5. 55 μl of 

αSyn construct (10 mg/mL) was loaded into a well of a 96 well plate; the amount loaded onto 

the column was 45 μL. A fixed wavelength of 1.0 Å (12.4 keV) was used with the X-ray detector 

(PILATUS 2M) placed 4 meters from the sample (suitable for particles with an Rg < 200 Å), the 

flow rate through the detector was 0.075 mL/min. 

Buffer contributions were subtracted using the program SCATTER (version 3.0a) and a Guinier 

approximation (Equation 2.9) of the scattering vector ((ln[I(q)] vs q2) where I(q) is the 

background corrected intensity and q is the momentum transfer (q = 4π sin(θ)/ λ, where 2θ is 

the angle between the incident and scattered beam and λ is the beam wavelength)) was used 

to estimate the radius of gyration (Rg) by limiting q x Rg < 1.3, typical for an IDP. 

 
ln 𝐼(𝑞) =  ln 𝐼(0) −  

𝑅𝑔
2

3
. 𝑞2 

2-1 

 

2.2.3.4 Ensemble optimisation method (EOM) 

To gain structural information of αSyn in different conditions from the SAXS experimental 

data, the software EOM (version 2.0)333 was used. EOM fits the averaged theoretical 

scattering intensity from an ensemble of conformations to experimental SAXS data. A pool 

of 10,000 independent models based upon the sequence of αSyn was initially generated. A 

genetic algorithm compares the averaged theoretical scattering intensity from the 

independent ensembles of conformations against the experimental SAXS data. The 

conformations that best describe the experimental data are selected. 
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2.2.3.5 Heteronuclear single quantum coherence (HSQC) nuclear 

magnetic resonance (NMR) spectroscopy 

NMR experiments were performed in partnership with, and initial analysis carried out by Dr 

Theo Karamanos (University of Leeds). Final processing of the data was carried out by Hugh 

Smith (University of Leeds). 

HSQC spectra of pL αSyn71-82 and pL γSyn71-82  (both 400 μM) were recorded on an AVANCE 

III Bruker spectrometer (600 MHz) equipped with a cryogenic probe in the presence of 20 

mM HEPES buffer pH 7.5. Spectra were processed in NMRPipe and analysed in CCPN 

analysis. Experiments were carried out in 20 mM HEPES buffer, pH 7.5 with 15 ul D2O and 

0.02% (w/v) sodium azide. 

2.2.3.6 Negative stain transmission electron microscopy (TEM) 

The formation and morphology of fibrils was examined by negative stain TEM. 3 µl samples 

were pipetted onto the surface of carbon coated copper grids provided by the University of 

Leeds. The sample was left for 30 seconds and then removed by blotting with filter paper. The 

grid was washed by the addition of 3 µl water which was then removed as described 

previously. The grid was washed with water twice more. Two x 3 µl of 1 % (w/v) uranyl acetate 

was added and blotted as before. The last stain with uranyl acetate was left for 15 seconds 

before blotting. Images were taken on an FEI T12 electron microscope. 

2.2.4 Atomic force microscopy (AFM) based single molecule force 

spectroscopy (SMFS) 

2.2.4.1 Surface functionalisation (for SMFS) 

2.2.4.1.1 Oxidisation of silicon nitride AFM probe and surface 

Silicon nitride surfaces were cut into 1c m2 pieces from larger disks (Rockwood electronic 

material. In order to clean and oxidise both the silicon nitride surfaces and AFM cantilever 

probes, incubations with piranha solution (3:1 ratio of 0.5 M (>95 %) H2SO4 to 30 % (v/v) H2O2) 

was performed. Surfaces were incubated for 30 minutes and then washed with water before 

being dried in N2. Fresh AFM probes were submerged in piranha for 30 seconds and washed in 

the same way as the silicon nitride surfaces. The surfaces and AFM probes were then placed 

on a microscope slide inside a petri dish with a hole in the lid and placed under a UV lamp 

(UVIlite, UVItec) set to 254 nm for 30 minutes (ozone cleaning).  
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2.2.4.1.2 Aminosilination of silicon nitride 

Oxidised AFM probes and surfaces were placed into a desiccator along with 80 μL of (3-

aminopropyl)triethoxysilane (APTES) and 20 μL of N,-N-diisopropylethylamine (DIPEA) held in 

separate 1.5 mL Eppendorf tube lids. The desiccator was evacuated using a vacuum pump for 1 

minute and left to incubate at room temperature for 2 hours. After the incubation, the APTES 

and DIPEA solutions were removed and the desiccator was flooded with N2 and left to cure for 

48 hours. 

2.2.4.1.3 Functionalisation with NHS-PEG24-maleimide linkers 

Amino-silanated AFM probes and surfaces were immersed in ~1 mL chloroform containing 20 

μL of 250 mM SM PEG24 (succinimidyl-[(N-maleimidopropionamido)-diethyleneglycol] ester 

linkers in DMSO) and left to incubate at room temperature for 1 hour. Both AFM probes and 

surfaces were then washed with chloroform and dried with N2. 

2.2.4.1.4 Protein immobilisation 

Full length synuclein variants (5 µM) or pL constructs (50 µM) both containing engineered 

cysteine residues were deposited over the functionalised surfaces and AFM probe and left to 

incubate in a covered container for 30 minutes at room temperature. All proteins analysed by 

SMFS were incubated onto functionalised probes and surfaces in the presence of 1 mM TCEP 

(tris(2-carboxyethyl)phosphine) in order to limit disulfide linkage of proteins, thereby 

increasing the free cysteines available for immobilisation. Unreacted protein was then washed 

from the surface and AFM probe with the reaction buffer as quoted in the experimental 

section.  

2.2.4.2 Cantilever calibration 

The AFM probe (MLCT with reflective gold, Bruker) functionalised with the analyte protein was 

inserted into a cantilever holder and secured. The silicon surfaces with functionalised protein 

were attached to a microscope slide with Loctite superglue and secured to the XY scanner with 

magnetic bars. 

A droplet of reaction buffer was applied to the silicon surface and was held by surface tension. 

The AFM probe in the holder was mounted to the MFP-3D head (Asylum) and approached 

towards the surface until the probe was fully submerged in the buffer droplet. Using the inbuilt 

optics, the laser was positioned to the tip of cantilever D (manufacturers spring constant: 30 

pN/nm) and the deflection was set to zero. The cantilever was engaged using the Asylum 

Research software (MFP version 11), engagement causes a Z-piezo voltage maximum (+150), 
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an indication of full Z-piezo extension and zero surface contact. Using the thumb wheel on the 

MFP-3D head (Asylum), the cantilever was approached to the surface. The z-voltage was 

adjusted to 70, assuring that the piezo was in the middle of its z range (7.5 μm). Spring 

constant calibration was carried out as a two-step procedure: determining the slope of contact 

from a force curve to find the sensitivity of the cantilever (nm/V) and then performing the non-

destructive thermal tune to determine resonant frequency of the cantilever334. A single force-

extension plot was recorded with the trigger (amount of deflection the cantilever undergoes 

before retraction) set to 20-40 nm, which gives a quantifiable deflection slope upon hard 

contact of the cantilever and the surface. The slope of the contact region (inverse optical lever 

sensitivity (InvOLS)) was measured by a linear fit. The cantilever was withdrawn from the 

surface and the deflection was set to 0. A thermal tune was carried out to detect the natural 

thermal fluctuation of the cantilever by performing ~100 frequency sweeps (0-1 MHz). The 

drive frequency (first major resonance peak) was selected and a Lorentzian function was fit. 

The area of the thermal fluctuations (P) is used to find the spring constant (k) using Equation 

2-2: 

 𝑘 =
𝑘𝐵𝑇

𝑃
 

2-2 

where 𝑘𝐵 is the Boltzmann constant, T is temperature in Kelvin. 

The spring constant was always within error of the manufacturer’s guidelines before data 

collection. Hooke’s Law (Equation 2-3) allows the calculation of the force applied (F) to the 

cantilever with a known spring constant by the deflection (or extension (x)). 

 𝐹 = 𝑘𝑥 2-3 

 

2.2.4.3 Data collection in SMFS  

The feedback loop trigger point was set to 10 nm, the retraction distance was typically set to 

1000 nm and approach velocity was set to 2 μm/s during data collection and kept constant 

whilst using various retraction velocities and sample rates (10 kHz per μm/s velocity). The 

buffer on the sample surface was replenished frequently to prevent evaporation. Force maps 

of 20 μm2 with 500 approach-retract cycles were taken to maximise surface coverage, and 

between force maps the AFM probe was repositioned manually using the XY scanner. The 

retraction velocities used in the DFS study on pL variants were 200, 500, 1000, 3000 and 5000 
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nm/s. Typically all other SMFS experiments were carried out at 1000 nm/s including 

experiments on full length synuclein variants. 

2.2.4.4 Contour length (LC) simulations  

The LC simulation method carried out in this thesis are described in Farrance et al, 2015306 and 

further developed by Dr Yun Chen (Universisty of Leeds, unpublished work). The model 

predicts LC measurements from SMFS experiments that consider attachment position on the 

AFM tip, geometric effects, and polymer dynamics of the linkers306. In the ideal situation, one 

immobilisation point for protein would be located on the apex of the cantilever tip whereas 

the second immobilisation point would be directly below on the substrate. In this scenario, the 

observed LC would simply be a sum of the length of the components of the tethered complex. 

In reality, this situation occurs very rarely, it is possible that binding may occur between 

partners whose linkers are immobilized at other locations. The model therefore uses an 

iterative Monte Carlo to randomly pick immobilisation points on both the AFM tip (with a 

modelled geometry of a square-based pyramid) and the substrate surface. The separation of 

the two proteins is then used to calculate the binding probability as described in Farrance et al, 

2015306. 

Additional parameters were added to the published model, such as a Monte Carlo procedure 

which accounted for the stochastic rupture of protein complexes which can occur anywhere 

along the theoretical WLC parabolic curve. This property has an effect on the LC values 

obtained. 

The protein sequences were split into 10 residue segments, each of the 10 residues were 

modelled as interacting with the corresponding region of the second immobilised protein 

monomer. The linker length was set to 10 nm as in SMFS experiments (SM-PEG24). The length 

of αSyn was also set as 140 residues with the carbon α-carbon α position taken as 0.4 nm (total 

length of αSyn monomer = 56 nm). Different immobilisation points were taken into account in 

the fitting. Each LC simulation was carried out for a total of 50 million iterations. 

2.2.4.5 Data processing 

All force spectroscopy data were analysed using IGOR pro 6.32A with an Asylum Research 

extension (MFP3DXop v30). 

The hard contact (0 nm) and baseline (0 pN) of all the force-extension retraction traces were 

manually set, by taking a section of the hard contact or the retraction with no events and 
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setting the zero to the centre of the data (force baseline has a thermal noise of ± 10 pN). The 

WLC model (with a fixed persistence length of 0.4 nm, Equation 1-1) was fit manually to all 

unbinding events that are parabolic by inserting locks at the apex and the base of the curve 

and recording the contour length (LC) and extension (x). 

Force-distance plots were binned for analysis when single characteristic, parabolic WLC events 

were observed. Single Gaussian distributions were fit to unbinding force and contour length 

histograms in order to determine the most probable force and contour length at rupture for 

each retraction velocity investigated. For each pulling velocity used, data were collected in 

triplicate (using a freshly prepared cantilever for each repeat). 

For DFS analysis, loading rates were calculated by fitting a WLC model to the rising edge of 

each unbinding profile when plotted as force versus tip-sample separation. The instantaneous 

gradient of this fit at rupture (WLCslope) was calculated by inserting the derived contour length 

and extension at rupture into a differentiated form of the same equation (Equation 2-4). The 

loading rate at rupture was then obtained by multiplying this value by the retraction velocity. 

 
𝑊𝐿𝐶𝑠𝑙𝑜𝑝𝑒 =

𝑘𝐵𝑇

𝑝
(

1

2𝐿𝑐 (1 −
𝑥
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)
3) +

1

𝐿𝑐
 

2-4 

 

where; p is the persistence length, LC is the contour length, x is the extension, 𝑘𝐵 is the 

Boltzmann constant and T is the temperature. 

The natural logarithm of the mean loading rate (N/s) at each velocity was plot against the 

mean rupture force (N) which gives a linear relationship (dynamic force spectrum see Section 

1.6.3). The Bell-Evans model309 (Equation 1-2) was rearranged to use the gradient of the linear 

fit to calculate the distance from the transition state (xu) (Equation 2-5) and the y-intercept for 

the off rate at zero force (𝑘𝑜𝑓𝑓
0𝐹 ) (Equation 2-6). 

 𝑥𝑢 =  
𝑘𝐵𝑇

𝑚
 

2-5 

 

Where m is the gradient parameter in the linear fit  𝑦 = 𝑚𝑥 + 𝑐 
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𝑘𝐵𝑇

𝑥𝑢
 exp [

𝑐 𝑥𝑢

𝑘𝐵𝑇
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2-6 

 

Where C is the y-intercept parameter in the linear fit  𝑦 = 𝑚𝑥 + 𝑐 

2.2.4.6 Data processing utilising an automated process 

An automated process for analysing force-distance data was developed by Dr Yun Chen 

(University of Leeds) using python scripting software. The force and separation channels from 

force-distance data were exported from IGOR pro 6.32A software as .txt files. The horizontal 

baseline was fit to the first 100 nm of force-extension plots, avoiding later points distal to the 

surface that can be subject to drift.  The vertical baseline was fit to 500 points before the start 

of the horizontal section (pre-surface engagement). WLC models were fit to data that deviated 

from the horizontal baseline. Each force distance plot was subjected to 400 fitting attempts. LC 

thresholds were set at > 10nm and < 150 nm, this eliminates events that are close to the 

surface and have a high probability of noise in the data and also events that are more than the 

theoretical maximum LC. Any peaks that fall outside these thresholds are discounted. The 

lower FR threshold was set to 20 pN. Lower forces than this are outside the force detection 

limit. A complete peak was described as one in which the entropic restoration part of the peak 

returns to within 25 pN of the horizontal baseline over 5 nm.  

The script cycled through each force-distance plot in an experiment and using the parameters 

above, WLC events were fit. A quality control parameter was included in the fitting as a 

reduced chi-square value. This was set so that any fit above 10 was discounted (this value is 

quite high so that filtering is conservative and real hits are not missed). After events had been 

selected via the automated script, a manual screen was then carried out in order to filter any 

false-positive data. The majority of the SMFS on the full synuclein variants were analysed 

utilising this method of data processing.  

2.2.4.7 Data analysis 

Positive hits were fit with a worm-like chain model and the LC and FR distributions were plotted 

in histograms with 5 nm and 7 pN bin sizes respectively. Both of these data sets were 

combined into 2D scatter or contour plots. The ability of this method to observe bone fide 

protein dimerisation interactions was validated by the presence of obvious peaks in LC and FR 

distributions as well as correlations of these in 2D scatterplots, these aspects of the data would 
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not be present if non-specific interactions were being analysed. Correlation of LC and FR in 2D 

scatter or contour plots were assessed in a qualitative manner.  

Hit rate quoted throughout the thesis are the percentage of positive hits out of the total 

number of approach retract cycles. The errors on hit rate are SD between different 

experiments.  

2.2.5 Mass spectrometry (MS) 

All mass spectrometry experiments in this thesis were carried out by Dr Lydia Young. 

2.2.5.1 Native-MS 

All native MS analyses of αSyn fragments, full-length synuclein variants and pL constructs were 

performed using a Synapt HDMS quadrupole-time-of-flight mass spectrometer (Waters Corpn., 

Manchester, UK), equipped with a Triversa NanoMate (Advion Biosciences, Ithaca, NY, USA) 

automated nano-ESI interface. The instrument has three travelling wave ion guides (TWIG) 

situated between the quadrupole and the time-of-flight analysers (Figure 2-1). The first TWIG 

is known as the trap region, the second as the IMS cell and the third as the transfer region. The 

use of hybrid instruments, such as the Synapt HDMS, allows additional characterisation of 

protein or peptide samples using tandem mass spectrometry (MS/MS), most commonly via a 

collisional induced dissociation (CID) mechanism335. 

 

 

Figure 2-1. Schematic showing the layout of the Synapt G1 HDMS used for native MS analysis. 
Figure adapted from Pringle et al. 2007336. 

2.2.5.2 Peptide, full length synuclein variants and pL construct analysis  

Fragment peptides (αSyn and γSyn 71-82), full-length synuclein variant proteins (αSyn, βSyn, 

γSyn and αSyn E46K) and pL construct (pL GS, pL αSyn71-82, pL γSyn71-82) samples were all 

analysed at a 100 μM final concentration in 100 mM ammonium acetate buffer, pH 6.8. 

Samples for MS were analysed using positive mode nanoESI with a capillary voltage of 1.7 kV 
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and a nitrogen nebulising gas pressure of 0.8 psi. The following instrumental parameters were 

used: cone voltage 30 V; source temperature 60 °C; backing pressure 3.2 mBar; ramped 

travelling wave height 7–20 V; travelling wave speed 300 m/s; IMS cell pressure 0.55 mBar. 

Data were acquired over the range m/z 500–6,000. Data were processed by use of MassLynx 

v4.1 and Driftscope v2.4 software supplied with the mass spectrometer. Mass calibration was 

achieved using caesium iodide solution, prepared by dissolving the compound in 50 % (v/v) 

water/ isopropanol to a concentration of 2 mg/ml. 

2.2.5.3 Collision induced dissociation (CID)-MS/MS of synuclein variant 

dimers 

CID-MS/MS experiments were performed using the quadrupole analyser to select synuclein 

variant dimer ions. Increasing collision energy was applied to the trap collision cell in 10 V 

increments from 0-80 V, until the dimer ions were completely dissociated into monomer ions. 

2.2.6 Zyggregator bioinformatics analysis 

The bioinformatics tool Zyggregator was utilised to study the aggregation/amyloid propensity 

of full length synuclein sequences. Developed by M. Vendruscolo and colleagues337-339, the 

software takes into account various intrinsic physio-chemical properties of the protein 

sequence and their contribution to aggregation propensity (as discussed further in Chapter 6). 
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3 Development and implementation of a display system for 

aggregation-prone peptides in SMFS 

3.1 Abstract 

Protein aggregation is linked with the onset of various neurodegenerative disorders, including 

PD, which is associated with the aggregation of αSyn as discussed in Chapter 1. The 

mechanistic details of protein aggregation remain elusive1,51,56, and methods to interrogate the 

species formed during aggregation, especially in the initial stages involving the first dimer 

formation, are distinctly lacking. In this chapter, we have attempted to probe the first 

intermolecular contacts that initiate aggregation at the single molecule level, utilising single 

molecule force spectroscopy (SMFS) to study the fragment αSyn71-82. This region has been 

shown to be necessary for the aggregation of full length αSyn204, and is capable of forming 

amyloid fibrils in isolation204. We demonstrate that the interaction of αSyn71-82 monomers can 

be studied using SMFS. We have achieved this by designing and engineering residues 71-82, a 

highly aggregation-prone peptide of αSyn204 into protein L, a mechanically strong soluble 

scaffold protein340-342 in order to act as a display system for SMFS studies. The corresponding 

fragment of the homologous protein γ-synuclein (γSyn), which has a lower aggregation 

propensity275, has also been studied here. The results from SMFS, in combination with native 

ESI-mass spectrometry analyses and aggregation assays, demonstrate that the dimerisation 

propensity of γSyn71-82 is lower than that of αSyn71-82, but that mixed αSyn71-82: γSyn71-82 dimer 

forms with a similar propensity to the αSyn71-82 homodimer. This study illustrates the utility of 

a novel display protocol for the study of small aggregation peptides using SMFS which would 

otherwise be difficult to study. We have also shown that this display SMFS technique has 

yielded new mechanistic insights into the specific system studied.  

3.2 Introduction  

Studying protein aggregation is a significant challenge, owing to the fact that the aggregating 

species are heterogeneous, only transiently and lowly populated, and the fact that 

aggregation- prone proteins progress on an exponential timescale towards higher order, end 

point species as discussed in reviews and Chapter 11,51,56. Early events in the aggregation 

cascade, therefore, are extremely difficult to study. However, these events are of critical 

importance in relation to protein aggregation. Gaining a greater mechanistic or structural 

understanding of these early events would yield an attractive target for preventative and 

curative treatments for these diseases.  



DEVELOPING A SMFS DISPLAY SYSTEM 

82 
 

Ensemble methods have traditionally been used to investigate protein aggregation and despite 

their limitations have revealed valuable information about the conformation of aggregation-

prone protein monomers and their self-interactions. Small angle X-ray scattering (SAXS) 

experiments have been used to gain insights about the conformation of aggregation-prone 

proteins in an ensemble. Uversky and co-workers have utilised SAXS and a computational 

method of ensemble optimisation modelling to show that αSyn and its aggregation-prone 

mutants have two major conformer groups representing the beginning of oligomer and fibril 

formation pathways343. Paramagnetic relaxation enhancement (PRE) NMR experiments have 

been used by our group to investigate the interchain interactions of a folded aggregation-

prone protein β2M and have demonstrated that weak interactions (KD ≈ 100 μM) play an 

important role in the promotion and inhibition of protein aggregation344. Similar 

intermolecular PRE experiments have been carried out on αSyn and its homologue βSyn in 

order to investigate the inhibitory effect of βSyn on the aggregation of αSyn280. This study 

showed that a heterologous interaction is of five-fold higher affinity than the homologous 

αSyn interaction, giving evidence for a kinetic trap mechanism for inhibition280. 

Dye binding assays have been used extensively in studies of aggregation-prone proteins, the 

most prevalent of which is Thioflavin T (ThT)345. These experiments are valuable in obtaining 

information about an aggregating system. They report on the presence of cross-β amyloid 

structures345 but can give false positives or false negatives as the dye is not perfectly specific 

for amyloid345. They also lacks resolution regarding the early lower oligomeric species in an 

aggregation pathway as they may not bind these species. 

Fluorescence experiments at the single molecule level have been developed to address some 

of the issues with traditional ensemble methods of interrogating an aggregating system as they 

can be performed at low concentrations. Single-molecule fluorescence resonance energy 

transfer (FRET) and fluorescence correlation spectroscopy (FCS) methods have been utilised to 

elucidate the distribution of oligomeric species104,313. The Lyubchenko group have used a total 

internal reflection fluorescence microscopy (TIRFM) in which monomeric αSyn was 

immobilised to a surface and then incubated with fluorescently labelled αSyn346. These 

experiments were able to show lifetimes of dimeric αSyn and how this varied for aggregation-

prone αSyn variants346.  

SMFS studies have also been utilised to address some of the issues associated with studying 

aggregation-prone proteins using ensemble techniques (as discussed in Section 1.6.4). These 

studies are able to probe the dimerisation of aggregation-prone molecules at a single molecule 
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level, as the experiments can be carried out at low protein concentrations, limiting the amount 

of concentration-dependent aggregation. By studying the interactions of these proteins in a 

single molecule setting, the contributions from heterogeneous higher order species do not 

complicate data analysis. These studies are however complicated by the fact that non-specific 

interactions inherent to the experimental set up and/or interactions of higher order events 

may occur, which may mask monomer-monomer interactions. 

In this chapter, we have circumvented some of the problems encountered in aggregation 

studies and in existing SMFS experiments of aggregation-prone proteins by developing a 

method in which a highly aggregation-prone region of a protein of interest is engineered into a 

loop of a mechanically stable monomeric carrier protein. The central NAC region (71-82) of 

αSyn was chosen as a test system for this display system.  

The NAC region of αSyn contains a central, hydrophobic 12 residue long sequence at residues 

71-82 (VTGVTAVAVAQK), known to be both sufficient and necessary for aggregation204, for 

example, deletion of this sequence from full length αSyn ameliorating fibril formation204. 

Additionally, a recent ssNMR structure of an αSyn fibril showed that the NAC sequence forms 

the fibril core100, thus playing a key role in αSyn aggregation. This region of αSyn has been used 

in this study to demonstrate how our developed method can be utilised to study the self-

associations of even small stretches of aggregation-prone proteins at a single molecule scale.  

αSyn71-82 and the same region from the homologue γSyn71-82 were engineered into a 

mechanically strong scaffold protein: protein L (pL)340-342, and the chimeric protein was used as 

a display system for both αSyn71-82 and γSyn71-82 thereby solubilising highly hydrophobic 

peptides (schematic of experimental set up depicted in Figure 3-1, the peptide insertion 

sequences are shown in Figure 3-2). pL is a small 62 residue β-grasp protein that comprises 

four β-strands and one α-helix in the structure ββαββ. Previous work by this group has 

described the mechanical properties of pL in detail 340-342. These studies demonstrated that pL 

is mechanically strong when pulled apart via the C- and N-termini due to the sheer force 

required to rupture the hydrogen-bonded parallel terminal β strands340,342. The mechanical 

strength of pL mutants were analysed341 with the I60F mutation resulting in a 2-fold increase in 

mechanical strength with respect to WT pL (increased from 108 to 216 pN at 447nms-1)341. This 

mechanically stabilised I60F variant was chosen for use in this study (termed pL throughout). 

The application of force is applied in the same geometry as the terminal β-strands which has 

been shown to yield greater mechanical resistance. In addition, this allows some control over 

the direction of force applied to the αSyn71-82 dimer complex.  The insertion site is in an 
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extended loop region between β-sheets 3 and 4 (Figure 3-1). In this way, we are able to use pL 

as a display system in SMFS experiments in a similar manner in which small adheron proteins 

present peptide loops for binding to target molecules347,348.  

 

Figure 3-1. Schematic representation of the approach used in this study. Top left: secondary 
structure topology of the chimeric pL constructs used. The position of the engineered Cys 
residue and synuclein insert are shown in red and blue respectively. Bottom: Different peptide 
sequences, shown in blue were inserted into an unstructured loop of pL (loop has been 
extended using SWISS-MODEL based on PDB file 1HZ6349). The proteins were attached to a 
cantilever tip and a silicon nitride surface derivitised with hetero-bifunctional maleimide/ 
succinimide polyethylene glycol linkers via unique free cysteine residues present in the 
proteins. (A) The AFM tip derivitised with the chimeric pL constructs is brought into contact 
with a similarly derivitised surface and synuclein inserts form an interaction. The complex is 
then extended by retracting the cantilever until a force is reached which bends the cantilever 
(B) until a maximum force is reached (rupture force (FR)) which dissociates the protein complex 
(C) at rupture force (FR). By applying the Worm Like Chain (WLC) model shown by the black 
curve in the force-distance plot (top right), the length of the fully stretched complex before 
dissociation, or contour length (LC) and the FR can be calculated. 
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pL was suitable for use as a scaffold for the aggregation-prone peptide inserts given that the 

interactions between the aggregation-prone peptides would be expected to have a lower 

dissociation force than the unfolding forces required for pL319,320,341. In this experimental 

design, residues 71-82 of αSyn were engineered into a flexible loop extension in pL between β-

strands III and IV. A cysteine residue was engineered into the loop region between β-strands I 

and II (Figure 3-1 and Figure 3-3). The cysteine was used to immobilise pL constructs to both 

Si3N4 cantilever tips and similarly functionalised surfaces. This method involves both surfaces 

and cantilevers being subjected to aminosilanisation, treated with heterofunctional PEG linker 

(MAL-PEG-NHS, MW 3400 Da), before covalently immobilising the chimeric pL molecules to 

the cantilever tips and surfaces. Single intermolecular interactions between chimeric pL 

monomers (which equates to the first step in the amyloid pathway) can be detected when the 

cantilever tip is brought into contact with, and retracted from a similarly derivitised surface 

(Figure 3-1). 

In addition, we have verified our observations with an orthogonal technique: native 

electrospray ionisation-ion mobility spectrometry-mass spectrometry (ESI-IMS-MS) to study 

the assembly of the peptides, both within the pL scaffold and in isolation. This technique has 

been successfully applied to the study of multiple amyloid systems350-354 and enables the 

detailed interrogation of every species within a heterogeneous, assembling mixture. 

3.3 Engineering chimeric display proteins 

3.3.1 Molecular biology  

Molecular biology techniques were used to engineer the αSyn71-82 peptide and its homologue 

γSyn71-82 into pL. The residue sequences for these regions are shown in Figure 3-2. An existing 

protein construct already available in this lab was used as a starting point for molecular biology 

protocols. The starting construct was pL with a C-terminal hexa-His tag, a Cys residue in the 

flexible loop extension in pL between β-strands I and II a different peptide sequence in an 

extended loop region between β-strands III and IV. This peptide would be substituted with 

αSyn71-82 and γSyn71-82. The starting construct contained an extended flexible loop region 

before and after the inserted peptide sequence. All constructs were engineered in a pET-23a 

plasmid. 

New England Biolabs Q5© mutagenesis was performed in which the desired peptide inserts 

were substituted into the extended loop region between β-sheets 3 and 4 (Figure 3-3). Two 

extra flexible linker residues were added at either side of the peptide inserts using the same 
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mutagenesis protocol in order to effectively display the peptides in a flexible loop and to not 

cause steric constraints of this region.  

 

Figure 3-2. Sequence alignment of the central NAC regions of α and γ synucleins: αSyn71-82 and 
γSyn71-82. Residue properties are colour coded: red, blue and yellow show hydrophobic, polar 
and charged residues respectively. The sequences are highly homologous, 7/12 residues are 
identical in the same positions between α and γ, 10/12 residues have the same properties in 
the same positions between α and γ. 

 

The final protein sequence and structure is presented in Figure 3-3 as the pL αSyn71-82 

construct that will be utilised in SMFS as a display protein. A non-aggregation control construct 

has was designed and engineered (termed pL GS) in which repeating units of Gly-Ser residues 

of the same length as the peptide inserts (12 residues/ 6 repeating units) and inserted into the 

same region of the pL display protein as αSyn71-82 and γSyn71-82. 
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Figure 3-3. Sequence and modelled structure schematic of pL αSyn71-82. The red highlighted 
text indicates the position of the engineered cysteine residue used for immobilisation in SMFS 
experiments. Blue highlighted text indicates the αSyn71-82 sequence. This is the same position 
also used for γSyn71-82 insertion and the non-aggregation control GS insertion. Yellow 
highlighted text indicates the presence of a hexa-His tag to enable Ni-affinity purification. The 
structural schematic on the right shows the engineered cysteine residue in the loop between β 
strands I and II in red; and the position of the peptide inserts is shown in blue in the extended 
loop region between β strands III and IV. The loop has been extended using SWISS-MODEL 
based on PDB file 1HZ6349. 

3.3.2 Expression and purification 

pL constructs were transformed into E. coli BL21 (DE3) cells and protein expression was carried 

out as described in Section 2.2.1.6. The purification involved a two-step chromatographic 

process (Figure 3-4) in which the soluble fraction of lysed cells was taken forward for initial 

affinity capture chromatography step (Ni-affinity chromatography) before a second 

chromatography size exclusion chromatography (SEC) step was carried out. At each step in the 

purification process, the presence of ~10 kDa pL constructs were confirmed by SDS-PAGE 

analysis (Figure 3-4 A). The purity of the proteins were confirmed by SDS-PAGE and ESI-MS 

analysis. Mass spectra of the pL constructs showed masses 133 Da lower than that expected as 

the N-terminal Met residue is excised, due to the activity of the E. coli enzyme methonyl-

aminopeptidase which has increased activity with decreasing residue size in the penultimate 

position (alanine in this case)355.   
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Figure 3-4. Overview of the purification process of pL variants used in this chapter. A) SDS-
PAGE gels of the purification process of pL GS, pL αSyn71-82 and pL γSyn71-82 highlighted in pink, 
blue and orange respectively. The final purified protein after SEC is shown as an intense band 
without obvious impurities in the right hand lane (lane 6) of the gels highlighted with a 
coloured box (colour coded as above). B) Example of the initial chromatography step of affinity 
capture via Ni-sepharose (for pL γSyn71-82). The protein is eluted by a step-wise gradient of 
increasing imidazole concentration (Section 2.2.1.6). The main protein peak and the peak that 
was taken forward corresponded to 25% imidazole containing buffer (100%: 250mM 
imidazole). This protein fraction correspond to the fifth lane in A). C) The second purification 
step of size exclusion chromatography (SEC). The main peak fractions were taken, these 
correspond to the final lane in A).  
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3.3.3 Spectroscopic analysis of the protein fold 

In order to ensure that pL constructs were natively, folded various spectroscopic analyses were 

carried out. The correct fold on the pL constructs was important as the mechanical strength of 

pL is dependent on the topology of the correctly folded protein.  

 

Figure 3-5. Far-UV CD spectra and intrinsic tryptophan emission spectra of pL variants. A) 
Far-UV CD spectra of pL variants used in this project analysing the secondary structural content 
of these constructs. The spectra of all 3 proteins are very similar shapes and intensities 
indicating similar secondary structural content. The spectra show characteristics of a folded 
protein with a broad minima from ~210-220 nm, most likely occurring from characteristic β-
sheet contributions at ~215nm and α-helical contributions at ~209 and 222 nm consistent with 
a mixed α/β topology. B) Intrinsic tryptophan fluorescence of pL constructs under folded 
conditions (solid lines) and under unfolded conditions in the presence of 8M of the chaotropic 
agent urea (dashed lines). Pink, blue and orange spectra show pL GS, pL αSyn71-82 and pL 
γSyn71-82 respectively in both A and B. 

 

In order to analyse whether pL variants maintain a secondary structure after purification, far-

UV CD spectroscopy was carried out (Figure 3-5).  The spectra of all 3 proteins are very similar 

shapes and intensities indicating similar secondary structural content. The spectra shows 

characteristics of a folded protein with a broad minima from ~210-220 nm most likely 

occurring from characteristic β-sheet contributions at ~215nm and α-helical contributions at 

~209 and 222 nm consistent with a mixed α/β topology356. 

Tryptophan fluorescence emission spectra were also acquired to analyse whether engineered 

pL variants adopted a correctly folded tertiary structure. All pL constructs contain a single 

tryptophan (W47) that should be within the hydrophobic core of the protein when a native 

tertiary fold is adopted. Fluorescence emission spectra were recorded (290-400 nm) after 

excitation of tryptophan residues at 280 nm both in the presence or absence of 8 M urea 

(Figure 3-5). In the absence of urea, all pL constructs possess spectra typical of a folded 
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globular protein with a λmax of 326 nm for pL αSyn71-82 and pL γSyn71-82  and 327 nm for pL GS, 

all of which possessed similar fluorescence intensities indicating a similar tertiary fold.  The 

reduction in fluorescence intensity and a characteristic red shift (326-349 nm) of the λmax in the 

presence of 8 M urea was indicative that the tryptophan was no longer packed into the 

hydrophobic core of pL constructs showing protein unfolding in these conditions. These 

spectrophotometric analyses of the proteins suggested that all pL variants are folded globular 

proteins with the expected secondary and tertiary structure from crystal structures of pL, and 

were similar to one another. Importantly, both pL αSyn71-82  and pL γSyn71-82  far-UV CD and 

intrinsic tryptophan fluorescence emission spectra are very similar to that of the non-

aggregation control pL GS indicating that the aggregation-prone inserts are not perturbing the 

pL scaffold. 

In order to determine whether the insertion of an amyloidogenic peptide into the pL scaffold 

protein perturbs the stability of the protein, far-UV CD was carried out as a function of 

temperature from 20-90 oC (Figure 3-6). Far-UV CD temperature gradient data was fitted to a 

two-state transition model in Global3 software (Applied Photophysics). The proteins possess 

typical spectra of a mixed α/β topology (Figure 3-5 A) at lower temperatures before unfolding 

and exhibiting spectra characteristic of a random coil at higher temperatures after a transition 

with a Tm of 45.5 and 46.6 oC for pL GS and pL αSyn71-82  respectively. Importantly, the stability 

of the protein variants are similar and the data shows that the insertion of an amyloidogenic 

peptide sequence does not significantly perturb the structure of the protein scaffold relative to 

a non-aggregation control (GS).  
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Figure 3-6. Far-UV CD temperature ramp of pL constructs. A) 3D representation of CD spectra 
as a function of temperature for pL αSyn71-82. The spectra changes from a folded mixed α/β 
topology to that of a random coil at higher temperatures. B) Spectra of pL αSyn71-82 at 20 and 
90 oC (light and dark blue, respectively) C) The relative populations of folded and unfolded 
conformations of both pL αSyn71-82 and pL GS (blue and pink respectively) calculated from the 
global analysis of CD thermal melt data (Global3 software from Applied Photophysics) the Tm 
values are shown inset.  

3.3.4 NMR analysis of the chimeric protein display system 

1H-15N HSQC spectra were taken of pL αSyn71-82 and pL GS constructs (Figure 3-7) in order to 

validate that the constructs were correctly folded and that inserting an amyloidogenic 

sequence doesn’t perturb the structure. Both spectra show disperse, well defined peaks of 

similar intensity, characteristic of a folded protein. The majority of the peaks are identical with 

few chemical shift perturbations between the two constructs. CCPN software was used to 

automatically count peaks in the spectra, 83 main chain peaks were counted for pL αSyn71-82 

and 78 for pL GS. There are likely to be less peaks visible for the pL GS variant because of 

overlap of the resonances arising from the GS linker region. Extra peaks in pL αSyn are likely 

attributable to the 71-82 αSyn insert region (VTGVTAVAQKTV). Moreover, most of the 

additional peaks present in pL αSyn71-82 occupy the unfolded region of the spectrum at ~8.0 
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ppm in the 1H dimension suggesting that these peaks indeed arise from the αSyn71-82 insert and 

that they are present in an unfolded conformation within the loop region. The few chemical 

shift perturbations that are observed between the two constructs are also present in this 

region, suggesting that these differences in the two proteins arise from the residues that are 

close to, or are part of, the flexible loop region.  

 

Figure 3-7. 600 MHz 1H-15N HSQC-NMR spectra of 15N labelled pL αSyn71-82 and pL GS (labelled 
blue and pink respectively). Both spectra have dispersed and well defined peaks characteristic 
of folded proteins. Both constructs also have very similar spectra with few shifted peaks, 
indicating similar overall structure of the proteins.  

 

Additional side chain peaks are present in the spectrum of pL αSyn71-82, most likely due to the 

presence of amide side chains in the αSyn71-82 insert region from Q or K residues (Figure 3-8). 

The single tryptophan (W47) is visible at ≈ 10.5 ppm 1H frequency (Figure 3-7) with identical 

chemical shift, suggesting that the hydrophobic core surrounding W47 is identical in both pL 

αSyn71-82 and pL GS. This also validates the intrinsic fluorescence data (Figure 3-5) indicating a 

similar chemical environment of the tryptophan in the core of the protein.  
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Overall, the spectroscopic and NMR data suggest the pL variants are folded and that inserting 

an amyloidogenic region does not perturb the structure of pL, which is important for utilising 

these display proteins in SMFS experiments.  

 

 

Figure 3-8. Zoomed region of 1H-15N HSQC spectra of pL αSyn71-82 and pL GS (labelled blue and 
pink respectively). A) Expanded central region of the spectrum, extra peaks for pL αSyn71-82 are 
present in the unfolded region of the spectum. A small number of residues also show chemical 
shift perturbations (blue dashed boxes) possible due to these residues being part of or close to 
the insertion loop. B) Additional side chains present in pL αSyn71-82 most likely arising from 
amide containing side chains in the αSyn 71-82 region.   
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3.4 Dimerisation of the αSyn central NAC region detected by 

SMFS 

Dimerisation interactions of αSyn71-82 were probed using AFM-based SMFS methods. The 

pulling velocity was kept constant at 1000 nms-1. All SMFS experiments on pL constructs were 

carried out in 20 mM HEPES, pH 7.5. Thousands of force distance curves were analysed, and 

those which showed a characteristic single molecule “saw tooth” plot were fitted with the WLC 

model (Equation 1-1). From this model, LC data were calculated. These data, along with FR were 

plotted as both scatter plots and the corresponding contour plots (Figure 3-9). Correlated 

values of LC and FR visualised as “hotspots” in the contour plot (Figure 3-9 A) represents a 

distinct interaction in an inherently noisy experimental approach. The histograms in the third 

panel of Figure 3-9 indicate the distributions of LC and FR. The histograms in Figure 3-9 A show 

normal distributions, typical of a stochastic interaction, with Gaussian peak maxima at 22 ± 1 

nm and 57 ± 1 pN for LC and FR, respectively. The estimated length of the pL molecule between 

Cys immobilisation point and the insert is 2.5 nm and the PEG linkers used are approximately 

20 -25 nm each in length, giving a total contour length of 45 - 55nm. The experimental value 

differs from this true LC value due to the geometry of the cantilever. The true LC value should 

fall on the far right-hand side of the histogram of experimental LC values, as previously 

discussed by this group306. Indeed, this is the case for the LC of αSyn71-82 dimerisation (22.0 nm, 

Figure 3-9), confirming that a specific single molecule interaction at the expected LC is being 

observed.  A control experiment was carried out with pL GS. In the control variant, no specific 

dimerisation interaction is observed in the SMFS experiments (Figure 3-9 B), indicating that in 

this setup the interactions observed result from the presence of the αSyn71-82 insert, and not 

from the pL scaffold. 

These results demonstrate dimerisation interactions of amyloidogenic regions can be 

measured at the single molecule scale using SMFS. Such interactions of small amyloidogenic 

peptides which would be extremely difficult to achieve via other methods.  
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Figure 3-9. SMFS data for interactions between chimeric pL monomers. Raw data are shown 
alongside schematics on the left. WLC fits (black line) are shown on characteristic single 
molecule interactions. (A) The dimerisation interactions of αSyn71-82 shown as a scatter plot 
(middle) of individual data points with marginal histograms for LC and FR. The modal LC and FR 
were calculated to be 22 ± 1 nm and 57 ± 1 pN respectively. A “hotspot” of data is highlighted 
by a broken circle and shown in the corresponding contour map (far right). (B) Force events 
between the non-aggregation-prone pL GS shown as a scatter plot of individual data points 
with histograms. This data lacks the “hotspot” that is clearly present in A. The hit rate (HR) is 
denoted with SD between experiments. The total number of force-retract cycles are 8000 and 
2500 for pL αSyn71-82 and pL GS dimerisation interactions, respectively. 

3.5 DFS of the αSyn central NAC region 

Despite the small size of the peptide fragment αSyn 71-82 under study here, the data 

demonstrate that this interaction is sufficiently strong to be detected by SMFS. In order to 

characterise this dimer interaction further, DFS was next carried out (Figure 3-10). These 

analyses allow parameters of the unbinding energy landscape to be calculated (as discussed in 

Section 1.6.3). The SMFS experiments were carried out at different pulling velocities ranging 

from 200 – 5000 nms-1. Using the Bell-Evans model308,309 (Equation 1-2) the dissociation rate 

constant in the absence of force (𝑘𝑜𝑓𝑓
0𝐹 ) and the distance along the free energy landscape of 

bound to transition state (xu) can be calculated. The 𝑘𝑜𝑓𝑓
0𝐹  rate for the dimerisation interaction 

of αSyn71-82 using DFS was calculated to be 0.18 s-1, which equates to a dimer lifetime in the 

range of seconds (5.79 s). Comparable 𝑘𝑜𝑓𝑓
0𝐹  rates, also on a seconds time scale, have been 

reported for the dimerisation of full length αSyn (4.00 s at pH 2.7 and 1.35 s at pH 3.7)316. The 

finding that the lifetimes of full length αSyn and αSyn71-82 dimers are of comparable 

magnitudes suggests that residues 71-82 play a key role in the stability of dimeric species 
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formed from the intact protein. Moreover, molecular dynamic studies on the dynamics of full 

length αSyn monomer reveal dramatic conformational changes on a nanosecond timescale329 

suggesting that the dimeric species of αSyn and αSyn71-82 are relatively stable. 

 

Figure 3-10. DFS speed dependence of aSyn71-82 dimerisation. (A) Schematic representation of 
an unbinding energy landscape. The dotted line depicts the tilted energy landscape under 

force. xU is depicted as the distance from the native energy well to the transition state. 𝑘𝑜𝑓𝑓
0𝐹   is 

shown as the stochastic process of crossing the transition energy barrier. The error bars shown 

are the standard deviation between the mean of the triplicate data. The errors of the 𝑘𝑜𝑓𝑓
0𝐹   

and xU were calculated by manual bootstrapping. (B) Dynamic force spectrum from the 
dimerisation interaction of αSyn71-82 fitted with a linear fit, used to extrapolate the values 

𝑘𝑜𝑓𝑓
0𝐹  and xU using the Bell-Evans model308,309.  

 

3.6 Novel interaction between αSyn71-82 and its homologue 

γSyn71-82 

αSyn is one of a small family of highly homologous synuclein proteins (a sequence alignment is 

shown in Figure 1-14). Other members of this family include βSyn and γSyn, (αSyn homologues 

are discussed in Section 1.5.5). βSyn lacks the central 71-82 sequence of αSyn essential for 

aggregation204 and shown to form the core of fibrillary structures100. βSyn protein is not found 

in pathogenic LBs  in vivo273, nor does it form fibrils in vitro274,275, providing further evidence 

that this sequence is key to the aggregation process of αSyn. Unlike βSyn, the 127-amino acid 

γSyn protein, contains a central NAC domain (residues 71-82). The central NAC region differs in 

sequence between αSyn (71VTGVTAVAQKTV82) and γSyn (71VSSVNTVATKTV82) (Figure 3-2). A 

chimeric pL displaying γSyn71-82, therefore, was engineered for SMFS studies as discussed 

above in order to investigate relative strength of the dimerisation interaction and how this 

might relate to aggregation. The scatter and contour plots in Figure 3-11 show 

heterodimerisation of γSyn71-82 and αSyn71-82, as well as the homodimerisation of γSyn71-82. 
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These data reveal that a heterodimerisation event between γSyn71-82 and αSyn71-82 detected 

using SMFS is similar to that of the αSyn71-82 homodimer. The homodimerisation interaction of 

γSyn71-82, however, has a significantly lower hit rate, with the data  lacking a ‘hot spot’ 

indicating that under this experimental set up, the affinity of γSyn71-82 to homodimerise is 

lower than that of αSyn71-82:αSyn71-82 or indeed αSyn71-82:γSyn71-82. This is the first observation 

of a heterodimeric interaction in an aggregating system by SMFS and also the first observation 

that the central NAC region of αSyn, important for the aggregation of the full length protein, 

interacts with the corresponding sequence of a homologue. In fact, the αSyn71-82:γSyn71-82 

heterodimer has comparable LC and FR values (19 ± 1 nm and 53 ± 1 pN, respectively) to that of 

the αSyn71-82 homodimeric interaction (22 ± 1 nm and 57 ± 1 pN, respectively). Uversky and 

colleagues have previously shown that full length αSyn fibrillation is inhibited by the presence 

of γSyn275. One possible interpretation is that the inhibitory effect reported is mediated by the 

interaction between the central NAC regions of these proteins. 

 

Figure 3-11. SMFS data for the dimerisation interactions of the γSyn71-82 homodimer (A) and 
the γSyn71-82/αSyn71-82 heterodimer (B).  Raw data are shown alongside schematics on the left. 
WLC fits (black line) are shown on characteristic single molecule interactions. The interactions 
between αSyn71-82 and γSyn71-82 are shown as a scatter plot of individual data points with 
marginal histograms for LC and FR. The modal LC and FR were calculated to be 19 ± 1 nm and 53 
± 1 pN respectively. A “hotspot” of data is highlighted by a broken circle and shown in the 
corresponding contour map. (B) The dimerisation interactions of γSyn71-82 shown as a scatter 
plot of individual data points with histograms for LC and FR. These data lack the “hotspot” that 
is clearly present in A. The hit rate (HR) is denoted with SD between experiments. The total 
number of approach retract cycles for pL γSyn71-82 homodimerisation and αSyn71-82/ γSyn71-82 
heterodimerisation interactions are 2000 and 2000 respectively. 
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A SMFS experiment was carried out as highlighted in Figure 3-12 in order to help validate the 

observation of heterodimerisation events and that the apparent absence of a hotspot for 

γSyn71-82 homodimeric interaction was not simply due to a problem with the experimental set 

up such as insufficient functionalisation of cantilever tips and surfaces. In the experimental 

setup, a cantilever tip and a silicon surface were functionalised with pL γSyn71-82. SMFS 

experiments were then carried out carried. A hotspot of data was not observed in this 

experiment (Figure 3-12, as above). A new silicon surface was then functionalised with pL 

αSyn71-82 and SMFS experiments were carried out. The data revealed that the αSyn71-82:γSyn71-82 

heterodimer formed observable interactions. Changing back to the original pL γSyn71-82 

functionalised the surface revealed that a hot spot of events once again disappears.   

 

Figure 3-12. SMFS experiment showing appearance and subsequent disappearance of 
heterogeneous dimer with pL chimeric constructs immobilised on cantilever tips and surfaces. 
αSyn71-82 and γSyn71-82 inserts are shown in blue and orange, respectively. A) Schematic of 
experimental setup γSyn71-82 homodimerisation was probed, followed by changing the 
functionalised surface to probe αSyn71-82: γSyn71-82 heterogeneous dimerisation; and 
subsequently the surface was then changed back to the original pL γSyn71-82 functionalised 
surface in order to probe γSyn71-82 homodimer interactions. B) Contour plots from the 
experimental set up described in (A) in which few interactions are observed for γSyn71-82 
homodimerisation, followed by an appearance of a αSyn71-82: γSyn71-82 heterogeneous 
dimerisation interaction when the surface is swapped, before a disappearance of the 
interaction when the surface is swapped back. These experiments were carried out in the 
same experimental set up in order to validate that the absence of a γSyn71-82 homodimerisation 
interaction is real and not simply due to insufficient surface functionalisation.  
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3.7 Native Mass Spectrometry of pL constructs 

Having observed the dimerisation interactions of the αSyn71-82 and γSyn71-82 sequences using 

SMFS, an orthogonal technique, ESI-IMS-MS, was next applied to the samples to validate that 

the dimerisation events observed using SMFS were a result of a specific interaction between 

the peptide inserts, and could not the pL scaffold. This soft ionisation method enables 

preservation of non-covalent interactions, and protein quaternary structure, in the gas 

phase357. ESI-IMS mass spectra were taken at time point t= 0 hours, and again after 4 hours 

(Figure 3-13). At t= 0 hours, all samples, including each pL peptide variant in isolation and a 1:1 

mixture of pL αSyn71-82 and pL γSyn71-82 , appeared to be purely monomeric. After 4 hours, all 

samples, with the exception of the non-aggregation pL GS linker construct, contained 

oligomeric species (Figure 3-13 B). Both pL αSyn71-82 alone and a 1:1 mixture of pL αSyn71-82 and 

pL γSyn71-82 show monomer through to trimer, whereas the pL γSyn71-82 alone contains only 

monomer and dimer. This indicates, as in the SMFS, a lower self-association propensity for the 

γSyn71-82 relative to that of αSyn71-82 or the co-assembly of the two homologs, αSyn71-82 and 

γSyn71-82.  

Closer analysis of the dimeric species observed in the ESI-mass spectra after 4 hours (Figure 

3-14) also confirmed that in the mixed samples, a heterodimer is observed alongside 

homodimers of pL αSyn71-82 and pL γSyn71-82, corroborating the observation of a heterodimer in 

SMFS experiments.  This is evidenced in the bottom panel of Figure 3-14 A, with a difference in 

mass between the pL αSyn71-82 and pL γSyn71-82 constructs (10.391 and 10.423 kDa, 

respectively), distinct peaks for both pL αSyn71-82 and pL γSyn71-82 homodimers, plus 

heterodimers can be identified in the same spectra. Moreover, these peaks show a higher 

intensity for the pL αSyn71-82 homodimer, followed by a slightly lower intensity for the pL 

αSyn71-82: pL γSyn71-82 heterodimer, with a significantly reduced, lower intensity for the pL 

γSyn71-82 homodimer. This order of apparent affinity is the same as in the SMFS further 

corroborating the relative order of affinities (from highest to lowest apparent dimer affinity: 

αα > αγ > γγ). 
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Figure 3-13. Native ESI-mass spectra of pL constructs immediately after dilution (t = 0) and 
after 4 hours. A) and B) Spectra at time point 0 and after 4 hours, respectively. Pink, blue, 
orange and green show pL GS linker, pL αSyn71-82, pL γSyn71-82 and 1:1 mix of pL αSyn71-82 and pL 
γSyn71-82 constructs, respectively. The numbers above the peaks denote the oligomer order, 
with the positive-charge state of ions in superscript. All variants in isolation and a 1:1 
heterogeneous mixture of α and γ were present as monomer (left side) at t = 0. After 4 hours 
(right side), all variants except the non-aggregation pL GS linker construct showed self-
aggregation. All pL constructs were diluted to a final concentration of 100 µM in 100 mM 
ammonium acetate buffer, pH 6.8. MS analysis carried out by Dr Lydia Young (University of 
Leeds). 
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Figure 3-14. Zoomed ID ESI-native mass spectra of dimeric pL constructs and 3D ESI-IMS-MS of 
pL constructs after 4h incubation. A) Zoomed ESI-mass spectra of two different charge states 
(7+ and 9+) of dimeric pL. Pink, blue, orange and green indicate pL GS, pL αSyn71-82, pL γSyn71-82 
and mixed 1:1 pL αSyn71-82 and pL γSyn71-82 respectively. The numbers above the peaks denote 
the oligomer order, with the positive-charge state of ions in superscript. The spectra of pL GS 
shows the absence of dimer after 4h. The difference in mass between pL αSyn71-82 and pL 
γSyn71-82 allows for pL αSyn71-82 and pL γSyn71-82 homodimers, plus heterodimeric species to be 
discerned from one another. In order of relative intensities there is the most pL αSyn71-82 
homodimer, followed by αSyn71-82: pL γSyn71-82 heterodimer and then least amount of pL 
γSyn71-82 homodimer in the mixed α/γ spectra. B) ESI–IMS–MS Driftscope plots of the pL 
variants showing IMS drift time versus mass/charge (m/z) versus intensity (z, square-root 
scale). Both pL αSyn71-82 and αSyn71-82: pL γSyn71-82 mix show monomer (1) up to trimer (3), γ 
only forms monomer and dimer (2) species. MS analysis carried out by Dr Lydia Young 
(University of Leeds). 

3.8 Characterising the aggregation of pL constructs 

Whether the chimeric constructs were still able to aggregate when aggregation-prone peptides 

were engineered into the pL scaffold protein was next investigated using ThT fluorescence. ThT 

fibril growth experiments (Figure 3-15) confirmed that both pL αSyn71-81 and pL γSyn71-82 show 



DEVELOPING A SMFS DISPLAY SYSTEM 

102 
 

an increase in ThT fluorescence. However, the mixed sample appeared unable to aggregate as 

studied by this assay. The reduced aggregation observed in the pL αSyn71-81: pL γSyn71-82 mixed 

incubation is dependent of either pL αSyn71-81 or pL γSyn71-82 aggregation in isolation. This 

suggests that the homodimeric interaction previously identified by SMFS and MS, inhibits 

further aggregation. This supports the finding that the inhibitory effect reported via full length 

γSyn on the aggregation of αSyn is mediated by the interaction between the central NAC 

regions of both these proteins. It is important to note that the observed pL αSyn71-81 

homodimeric interaction and the pL αSyn71-81: pL γSyn71-82 heterodimeric interaction by SMFS 

appear identical. 

 

Figure 3-15. ThT fluorescence assay of pL variants. Incubations were carried out at 37oC, 600 
rpm. Blue, orange and green data points show the normalised fluorescence over time of pL 
αSyn71-82, pL γSyn71-82 and the 1:1 mix of pL αSyn71-82 and pL γSyn71-82. Proteins are at a final 
concentration of 100 μM (α/γ mix at 50μM of each protein). The mixed α/γ incubation shows 
reduced aggregation that is independent of either α or γ in isolation. 

3.9 Native Mass Spectrometry of synuclein peptides used in 

force studies 

ESI-IMS-MS was also used to study the self-assembly properties of synthetic peptides 

equivalent to the central NAC (residues 71-82) in isolation i.e. not in the context of the pL 

scaffold to further validate that the interactions observed in SMFS. This analysis also allowed 

determination of the role of the pL scaffold in perturbing or encouraging oligomer formation 

of the peptide inserts. ESI-mass spectra of all the samples (αSyn71-82 and γSyn71-82 and a 1:1 

mixture of the two) confirm self-association of the peptides, with oligomers forming up to 

pentamer, with the 1:1 heterogenic mix showing a random distribution between number of α 
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and γ monomers in the oligomers (Figure 3-16). ESI-IMS-MS Driftscope plots of the peptides 

alone, and the 1:1 mixture show monomer (1) through to the tetradecamer (14) present in all 

of the samples. These results confirm that the peptides alone without pL as a display scaffold 

are able to interact and indeed assemble into higher order oligomers. The fact that oligomers 

up to, and including, tetradecamer are observed in the absence of the scaffold, compared with 

a maximum order of trimers when engineered in chimeric pL (Figure 3-13), suggests that the 

pL scaffold disfavours larger oligomer formation of the peptides, likely a result of steric 

hindrance. The data again also confirm that αSyn71-82 and γSyn71-82 sequences directly interact 

forming hetero-oligomeric constructs (Figure 3-16 bottom panel). 
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Figure 3-16. ESI-mass spectra and 3D ESI-IMS-MS of αSyn71-82 and γSyn71-82 peptides. Top, 
middle and bottom spectra and corresponding IMS-MS show spectra of αSyn71-82, γSyn71-82 and 
a 1:1 mix of αSyn71-82 to γSyn71-82 respectively. The numbers above the peaks denote the 
oligomer order, with the positive-charge state of ions in superscript. All mass spectra (left hand 
side) confirm self-association of the peptides up to pentamer, with the 1:1 mix of each peptide 
showing a random distribution between number of αSyn71-82 and γSyn71-82 monomers in the 
oligomers. ESI–IMS–MS Driftscope plots of the peptides alone, and the 1:1 mixture (right hand 
side) show monomer (1) through to the tetradecamer (14) present in all of the samples, two 
minutes after diluting the monomer to a final peptide concentration of 100 μM in 100mM 
acetate buffer pH 6.8. ESI–IMS–MS Driftscope plots show the IMS drift time versus 
mass/charge (m/z) versus intensity (z, square-root scale). MS analysis carried out by Dr Lydia 
Young (University of Leeds). 

3.10  Characterising the aggregation of synuclein peptides used 

in force studies 

The aggregation of the peptides αSyn71-82 and γSyn71-82 were also monitored in fibril growth 

assays. Both αSyn71-82 and γSyn71-82 peptides form ThT-positive amyloid fibrils with a 

comparable lag-time (Figure 3-17). However, a 1:1 mixture of αSyn71-82 and γSyn71-82 resulted in 

a significant increase in lag-time, compared to the peptides in isolation. Transmission electron 
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microscopy (TEM) images show that fibrillar species were present in all samples (αSyn71-82 and 

γSyn71-82 and a 1:1 mixture of the two) after a 90 h incubation. Indeed, the mixture assembles 

at a different rate and results in a distinct fibril morphology with respect to each of the 

peptides alone. This aggregation behaviour of the peptides in isolation mirrors that of the 

chimeric display proteins shown in Section 3.8, both these analyses show that the 

heterodimeric interactions retard the rate of aggregation. 

 

Figure 3-17. ThT fluorescence assay of αSyn71-82 and γSyn71-82 peptides. A) and B) Blue, orange 
and green data points show the normalised fluorescence signal over time of αSyn71-82, γSyn71-82 

and the 1:1 mix of αSyn71-82 and γSyn71-82 peptides, respectively. A) Both αSyn71-82 and γSyn71-82 

are at 225 μM final concentration, the αSyn71-82 + γSyn71-82 mix is at 225μM of both peptides: 
450 μM final concentration. B) Both αSyn71-82 and γSyn71-82 are at 450 μM final concentration, 
the αSyn71-82 + γSyn71-82 mix is the same data as presented in A) for comparison at 450 μM final 
concentration. The αSyn71-82: γSyn71-82 mix showed retarded rates of aggregation with an 
increased lag time in respect to αSyn71-82 and γSyn71-82. The data shows that this cannot simply 
be attributed to either α or γSyn71-82 in isolation, or indeed an artefact of concentration. C) The 
corresponding TEM images were taken at the end points of the incubations and are colour 
coded in the same manner as above. All three incubations form fibrillary structures, the 
morphology of the mixed incubation is independent of that of either αSyn71-82 or γSyn71-82. 
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3.11  Discussion 

The results in this chapter have demonstrated and validated a novel technique for use in SMFS 

experiments investigating the dimerisation of amyloidogenic proteins at the single molecule 

scale. Using a chimeric protein display system for the analysis of these interactions, we were 

able to interrogate specific interactions and minimise the contributions of non-specific events 

that often occur in the surface-proximal regions of force-distance curves. This technique also 

restricts the application of force to a defined geometry, thus giving more confidence that 

specific dimer interactions are being interrogated in a consistent manner. Importantly, we 

have validated that the structure and stability of chimeric display proteins is not perturbed by 

the insertion of amyloidogenic sequences. This is significant as the structure of the chimeric pL 

constructs is integral to the ability to display protein sequences.  

By implementing this technique, we have been able to reveal novel results regarding the 

interactions of αSyn and its homologue γSyn.  We probed specific single molecule dimerisation 

events between the central NAC regions (residues 71-82), integral to the aggregation of 

αSyn100,204. Understanding dimerisation events is crucial in our quest to shed light upon the 

aggregation process as a whole, given that dimer formation is the first stage in the aggregation 

cascade, the toxic species of which remains elusive.  DFS of αSyn71-82 dimerisation revealed 

novel insights into the nature of the αSyn71-82 dimerisation event including its relatively long 

lifetime (in the range of seconds) consistent with previous force data on full length αSyn316. It is 

important to note, however, that previous SMFS experiments on full length αSyn were 

conducted at acidic pH where the full length protein is closer to its pI and therefore more 

prone to aggregate315-320. The experiments carried out here were conducted at a more 

physiological pH (pH 7.5) and are therefore more applicable to the conditions in which the 

protein self-associates in vivo. The fact that the dimerisation lifetime of αSyn71-82 in this study 

was higher than that determined for the full length protein previously316 suggests that this 

highly hydrophobic region of αSyn dimerises with higher affinity than that of full length 

protein. These data provide further support for the central role of this central NAC sequence in 

the aggregation of the full length protein. These data may suggest, therefore, a regulatory role 

for sequences outside of NAC in full length αSyn. 

A novel interaction between αSyn71-82 and its homologue sequence, γSyn71-82, was also 

identified using SMFS and validated using native mass spectroscopy techniques, revealing 

similar LC and FR values to the αSyn71-82 homodimerisation interaction and similar oligomers 

detected by ESI-MS. We have shown that this interaction inhibits aggregation using both 
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chimeric pL constructs and peptides equivalent to the central NAC region in isolation, which 

might suggest that the mechanism by which full length γSyn inhibits the aggregation of αSyn275 

may be mediated by the central NAC region of the proteins. Recently, Baum and colleagues 

have proposed a mechanism in which βSyn inhibits the aggregation of αSyn280 that is 

dependent on the higher affinity interaction of the heterodimeric interactions relative to the 

homodimeric interactions. Thus βSyn inhibits the self-association of αSyn via kinetic 

competition. Here, SMFS shows that the affinity of the αSyn71-82 homodimer and the αSyn71-82: 

γSyn71-82 heterodimer are very similar, at least revealed via SMFS and MS methods, and much 

more avid than the γSyn71-82   homodimer. This points to a similar mechanism of kinetic 

competition as the bases of aggregation inhibition. It can be postulated that heterogeneous 

interactions between α- and γSyn occur as normal physiological complexes, and that these 

interactions may function in chaperoning αSyn away from aggregation under normal cellular 

conditions. Indeed, both α- and γSyn are highly expressed in many of the same cells of the 

brain273. 
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4 Interrogation of the dimerisation events of α-Synuclein 

4.1 Abstract 

In this chapter, the utility of SMFS has been demonstrated in the single molecule study of αSyn 

dimerisation. It has been shown that these experiments can identify single molecule 

dimerisation interactions and that these data can be used to probe the conformation and/or 

interaction regions of αSyn dimers. Biophysical analysis using CD and SEC-SAXS showed that 

although αSyn and E46K αSyn PD early onset PD familial mutant showed similar structural and 

conformational characteristics, there are subtle differences which may play a key role in the 

relative aggregation rates and their role in disease. Indeed, it was shown that the charge 

substitution E46K, decreases the lag time for fibril formation compared to WT αSyn. This 

variant also displays different LC values in SMFS experiments, suggesting differences in the 

dimerisation interaction between the variants. The interaction measured using SMFS may 

therefore be a key step in the aggregation pathway that imparts differential aggregation 

propensity. SMFS studies indicated that the interaction of β- and γSyn which are non-

aggregation-prone, non-PD causing, human homologues of αSyn, form similar dimerisation 

interactions. It was therefore hypothesised that the interactions observed for αSyn in these 

conditions are not linked to the aggregation pathway.  

4.2 Introduction 

As discussed previously in this thesis, studying protein aggregation is a significant challenge, 

especially the important early events in the aggregation pathway. We have therefore utilised 

SMFS in this chapter in order to interrogate the homodimeric interactions of full length αSyn 

and its variants. Similar experiments have been carried out previously by Lyubchenko and 

colleagues316,318-320 which has yielded information about the dimeric interactions of αSyn 

discussed in Section 1.6.4.2. These studies have shown that dimerisation events 

physiological-like conditions are not observed unless the the solution conditions are perturbed 

by acidification315,316, addition of metal cations (Zn2+ and Al2+)318 or addition of the polyamine 

spermidine319. In these studies, however, the aggregation/ fibril formation rates of the proteins 

are not analysed. Additionally, the effects of linkers or tip geometry on LC
306, as discussed later 

in this chapter, are completely neglected. 

In this chapter, we have demonstrated the application of simulating LC distributions and 

comparing these with experimentally observed values in order to gain insight into the 
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interacting regions of the proteins. We have also been able to observe and analyse interactions 

at close to physiological conditions that have not been reported previously in SMFS studies.  

4.3 Engineering recombinant αSyn 

4.3.1 Molecular biology 

pET23a plasmids encoding αSyn were kindly provided by Prof Jean Baum (Department of 

Chemistry and Chemical Biology, Rutgers University, NJ, USA). Variants containing a single 

engineered Cys residue at various positions were engineered to allow for thiol chemical 

immobilisation in SMFS experiments. Mutagenesis was carried out using the New England 

Biolabs Q5© mutagenesis protocol (Section 2.2.1.2). In this chapter, the cysteine was inserted 

at the C-terminal residue (A140C), a region of the protein which is highly disordered and not 

proposed to associate in the aggregation of αSyn. PD E46K and A30P mutants as well as 

synuclein homologues, β- and γSyn were generated using the same method. 

4.3.2 Protein expression and purification 

αSyn and all variants and homologues discussed in this thesis were expressed in the same 

manner, the purification of WT and familial PD mutated αSyn are shown as examples in Figure 

4-1, this however is not extensive of all the constructs used in this thesis. αSyn expressing 

plasmids were transformed in E. coli BL21 (DE3) cells and protein expression was carried out as 

described in Section 2.2.1.7. The purification was carried out by performing an ammonium 

sulphate precipitation in which αSyn was salted out of solution with a high concentrations of 

ammonium sulphate before being washed and resolubilised in 25 mM Tris, pH 8.0. This protein 

solution was then subjected to anion exchange (AEX) chromatography followed by size 

exclusion chromatography (SEC). The purification process is shown in Figure 4-1. The presence 

of αSyn (~15 kDa) was confirmed by SDS-PAGE (Figure 4-1 A). The purity of αSyn and other 

synuclein variants was confirmed by SDS-PAGE and MS. 
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Figure 4-1. Overview of the purification process of selected number of full length αSyn 
variants. A) SDS-PAGE gel highlighting steps in the purification process. The final purified 
protein after SEC is shown as an intense band without obvious impurities in the right most lane 
of the gels highlighted with a blue box. B) Example of the initial affinity capture 
chromatography step: AEX (anion exchange). The protein was eluted via a continuous gradient 
of 0-50 % 1 M NaCl containing buffer (red trace) over 500 ml. The main peak was taken 
forward for further purification. C) The second chromatographic step of SEC. The main peak 
fractions were taken, these correspond to the final lane in A).  

4.4 Biophysical characterisation of αSyn 

αSyn is generally considered to exist as a monomeric IDP175 but, it cannot simply be described 

as a random coil210,211,261 as CD data have shown that αSyn lacks structural features typical of 

an unfolded protein. Additionally, SAXS previously showed that the Rg of αSyn is smaller than 

that of a theoretical random coil of 140 amino acids210 and so can be considered to more 

compact than a classic IDP. 

Different biophysical techniques were used in order to confirm these previous findings for our 

recombinantly engineered synuclein variants. 
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Analytical SEC was carried out on αSyn and its human homologues β and γSyn as these 

proteins are also IDPs but are slightly different molecular weights (14.49, 14.32, and 13.32 kDa 

for α-, β- and γSyn C-terminal Cys mutants respectively). Protein calibrants of various different 

masses were ran on a SEC column and a linear regression was fitted, synuclein variants lie off 

the calibrated line indicating that they run at a different mass than expected of a globular 

protein.  This result shows that synuclein proteins are indeed more unfolded than classic 

globular proteins as they elute sooner than would be expected for a globular protein of their 

mass.  

 

Figure 4-2. Analytical SEC of full length αSyn and homologues. A) Analytical SEC of αSyn and 
homologues studied in this thesis. Blue, grey and orange traces show α, β and γSyn 
respectively. B) Column calibration plot of the molecular standards BSA, ovalbumin, 
chymotrypsin A, chytochrome C, aprotinin and vitamin B12 (66, 43, 25, 12.4 6.5 1.3 kDa, 
respectively) fitted with a linear regression. On the y axis, Ve/Vo denotes the eluted volume/ 
void volume (calculated to be 7.6 ml from the elution of blue dextran with a MW of ~2000 
kDa). Synuclein variants are shown on the plot using the same colour as A. These proteins do 
not fall near the line indicating that they are expanded IDPs. Apparent MWs were calculated 
for synuclein variants from their elution profile and the column calibration. These are shown 
inset and are all much larger than the actual MW (~14k Da) a characteristic typical of IDPs.  

4.4.1 Circular Dichroism analyses  

Far-UV CD analysis was carried out on WT αSyn (blue) and the PD familial mutant E46K (red) 

(Figure 4-3). These spectra are very similar, characteristic of essentially unfolded polypeptide 

chains with an absence of bands in the 210-230 nm region as has been shown previously for 

αSyn210. CD experiments were carried out in 20 mM Tris, 200 mM NaCl, pH 7.5 (to mirror SMFS 

conditions used in this chapter, see below) and so the spectra don’t include wavelengths less 

than 205 nm due to significant noise in this region due to a high concentration of Cl- ions. 

There is a slight increase in negative intensity at wavelengths around 222 nm for E46K 
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compared to WT. A similar effect has previously been observed with decreasing pH210 (Figure 

1-15) and was proposed to indicate an increase in pH-induced structure, providing evidence 

for a partially folded intermediate. It may therefore be the case that altering the charge of the 

protein in the E46K mutation causes subtle increases in protein secondary structure. 

 

Figure 4-3. Far-UV CD spectra of WT and E46K αSyn at pH 7.5.  The data show similar spectra 
for WT αSyn (blue) and the PD familial mutant E46K (red). The spectra are characteristic of a 
random coil structure typical of an IDP. There is a slight difference between WT and E46K that 
could suggest subtle differences in structure between the two proteins. The proteins were at 
100 µM in 20mM Tris 200mM NaCl pH 7.5, the same conditions SMFS experiments was carried 
out (see below). The spectra are displayed from 205 nm onwards as at shorter wavelengths 
there is significant noise attributable to the high concentrations of salt in the buffer used. 

4.4.2 MS  

Native ESI-MS analysis was also carried in order to confirm the proteins were the expected 

mass and also to observe any quaternary interactions between αSyn monomers. Figure 4-4 

shows native MS spectra of α- (blue), β- (grey) and γSyn (orange) as well as αSyn E46K (red). 

The mass of each protein was found be within error of the estimated masses indicating an 

absence of unexpected modifications or truncations in the recombinantly expressed synuclein 

variants.  All spectra show that the synuclein variants are primarily present as monomeric 

proteins with very similar charge state distributions. Some of the charge states are high (up to 

13+ is denoted for monomeric proteins but up to 18+ can be observed) typical of disordered 

proteins358,359.  

A small amount of dimers can be observed in spectra from all the synuclein variants indicating 

that all the proteins studied here have the ability to dimerise as observed previously276. It was 

also shown in the same study that the dimerisation propensities of the synucleins are not 

predictive of aggregation276. The data presented in Figure 4-4 may point to a similar conclusion 



DIMERISATION EVENTS OF ALPHA SYNUCLEIN 

114 
 

as there is an absence in correlation between dimer intensity and the aggregation propensity 

of the synuclein variants.  

 

Figure 4-4. Native ESI-MS of αSyn, synuclein homologues and PD variant αSyn E46K.  Mass 
spectra for WT, E46K, βSyn and γSyn are shown (blue, red grey and orange spectra 
respectively). Proteins were sprayed at 100 μM in 100mM acetate buffer pH 6.8. The proteins 
are present in a primarily monomeric state although all variants show dimer formation. Mass 
spectra show mass to charge on the x-axis (m/z) as a function of intensity. The numbers above 
the peaks denote the oligomer order, with the positive-charge state of ions in superscript.  

 

ESI-mass spectra were also recorded of protein mixtures of αSyn and its homologues β and 

γSyn (Figure 4-5). In mixed samples, the individual spectrum of each homologue can be 

assigned to a particular protein variant due to the differences in MW. Mass spectra from mixed 

α/β (top) and α/γ (bottom) samples are shown in Figure 4-5. Numbers above peaks in blue, 

grey, orange and dark blue indicate a peak attributable to α-, β-, γSyn or mixed samples, 
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respectively. The data shows that both γ- and βSyn are able to form heterodimeric species 

with αSyn. This data may suggest that the association interaction observed is generic between 

synucleins and not dependent on aggregation propensity. 

 

Figure 4-5. Native ESI-MS of heterogeneous mixtures of αSyn with either β or γSyn.  Mass 
spectra for α/β and α/γ mixed samples are shown on the top and bottom panels respectively. 
Numbers above peaks in blue, grey, orange and dark blue indicate a peak attributable to α, β, γ 
or mixed samples respectively with the positive-charge state of ions in superscript.  

 

To investigate the stability of each homodimer, ESI-mass spectrometry experiments were 

carried out in tandem with collision induced dissociation (CID) experiments. In this experiment 

homodimers were accelerated at increasing electrical potentials, causing the proteins to 

collide with neutral gas molecules in the collision cell triggering dissociation. The relative 

proportions of dimeric and monomeric species were monitored at different voltages. These 

experiments were carried out on synuclein variants (α-, β, γSyn and E46K) and the data shown 

in Figure 4-6. Overall, the voltages at which dimeric synuclein species dissociate are similar 

between all variants indicating similar affinities for self-dimerisation. Closer examination of the 

of the CID profiles reveal that E46K dissociates at a higher voltage than WT, the non-

aggregation-prone synuclein homologues β- and γSyn dissociate at lower voltages than WT. 
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This may indicate a higher affinity dimeric interaction for the familial PD mutant αSyn E46K 

than that of WT αSyn or the αSyn homologues. 

 

Figure 4-6. CID voltage dependence of dimer dissociation of synuclein variants. WT αSyn, βSyn, 
γSyn and αSyn E46K are shown in blue, grey, orange and red respectively. Open and closed 
circles show the populations of dimeric and monomeric species respectively. An overlay of the 
dimeric population is shown in the bottom panel. The dissociation profiles of all the synuclein 
species are similar. E46K dissociates at a slightly increased voltage than that of the other 
variants.  

4.4.3 SAXS 

SEC in combination with small angle X-ray scattering (SEC-SAXS) was used in order to analyse 

the structure and the conformation of monomeric αSyn as described (Section 2.2.3.3). For 

comparison, a familial PD mutated variant: E46K was also analysed using this method.  

SEC was required in order to eliminate any contributions of higher order species that may 

occur thus isolating scattering data from monomeric αSyn. SEC-SAXS experiments were carried 

out in 20 mM Tris, 200mM NaCl pH 7.5 (to mirror SMFS conditions used in this chapter, see 
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below). Similar scattering profiles were observed for both WT and E46K αSyn (Figure 4-7). 

Kratky plots of the data (Figure 4-7 B) show features typical of a disordered protein as 

previously reported210 with a lack of an obvious peak and a continuous rise in the profiles. By 

performing a Guinier approximation, the radius of gyration was found to be 41.1 and 41.5 Å for 

WT and E46K respectively. A similar Rg (40 Å) has been reported previously for αSyn at neutral 

pH210. The average Rg for a globular protein of the same size as αSyn would be 15.1 Å whereas 

a completely disorderd chain would have an Rg of approximately 52 Å210. αSyn has been shown 

previously, and here to be disordered, however, the experimental Rg reported here is smaller 

than that of a theoretically completely disordered polypeptide as has been reported 

previously210. This suggests that αSyn is more compact than a random coil and may have some 

structure in these conditions.  

The conformation of αSyn has previously been shown to display a high degree of 

plasticity343,360. To further analyse the different conformational contributions of αSyn in the 

ensemble scattering data an ensemble optimisation method (EOM) was used (Section 2.2.3.4). 

EOM generates a large pool of random structures using sequence and structural information. A 

genetic algorithm then compares the average theoretical scattering intensity from n 

independent ensembles of conformations against the SAXS data and the conformations that 

best fit the experimental data (Figure 4-8 A) are selected. The genetic algorithm carries out this 

process in an iterative manner using various rounds of hierarchical selection in a fitness 

function process. The distributions of the EOM selected ensemble show a distinct bimodal 

distribution of collapsed and expanded states depicting the conformational heterogeneity of 

αSyn. 
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Figure 4-7. SEC-SAXS analysis of αSyn variants WT and E46K αSyn at pH 7.5. A) Scattering data 
of WT (blue) and the PD familial mutant E46K (red) displayed in a conventional semi-
logarithmic plot. B) Kratky plot of experimental data containing features which are typical of an 
IDP - a continuous rise and an absence of a clear maximum peak. C) and D) Guinier plots of WT 
and E46K αSyn, respectively fitted with a linear regression. Rg values were estimated from a 
Guinier approximation to be 41.1 and 40.5 Å for WT and E46K, respectively. Scattering profiles 
in A and B are offset for clarity. 

 

In agreement with these data, a previous study has also observed a bimodal conformational 

distribution for the αSyn monomer using SAXS and343. The Rg values for the collapsed and 

expanded distributions are shown in Table 4-1 calculated from Gaussian fittings from 

individual peak populations. The ratio of each population is different between WT and E46K 

with the PD mutant containing a higher proportion of expanded species (42.1 % compared to 

25.3 %). These data show the same trend as with a previous EOM study in which the expanded 

species of E46K also increased in proportion relative to WT343. This difference between these 

variants could play an important role in the aggregation of the proteins which are otherwise 

very similar.  
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Figure 4-8. EOM analysis of SEC-SAXS data at pH 7.5. A) log-log plot of scattering data with 
EOM fits (solid lines) for WT and E46K αSyn (blue and red respectively). B) EOM Rg 
distributions. The distributions for the random pool (solid line) and those from the EOM-
selected ensemble (dashed line) are shown. The EOM-selected ensemble structures show a 
double distribution for both constructs showing both expanded and collapsed species (see 
Table 4-1) 

 

Protein variant Rg (Å) 

collapsed peak 

Rg (Å) 

expanded peak 

Population of 
collapsed peak 
% 

Population of 
expanded peak 
% 

WT 35.0 50.3 74.7 25.3 

E46K 33.8 51.7 57.9 42.1 

Table 4-1. Data from EOM selected ensemble Rg distributions based on Gaussian fits of the 
individual peak populations observed in EOM data. % peaks are calculated from the area of 
Gaussian fits. 

4.5 Aggregation of αSyn 

4.5.1 Effect of solution conditions on αSyn aggregation 

Fibril growth assays were carried out as described (Section 2.2.2.2) in order to characterise the 

aggregation of αSyn in different conditions and also to choose conditions in which SMFS 

experiments would be carried out (Figure 4-9). The amyloid-binding small molecule ThT was 

used to monitor the time dependence of aggregation in these experiments. Upon binding to β-

sheet rich amyloid structures, the molecules fluorescence emission spectrum displays a 

characteristic red shift 361. The dye is exited at 440 nm and increasing fluorescence in the 

presence of amyloid is monitored at 480 nm in these experiments. 

The aggregation of αSyn in different solution conditions is shown in Figure 4-9 and Figure 4-10. 

The contributions of both NaCl (Figure 4-9) and pH (Figure 4-10) on the aggregation rate of 
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αSyn are highlighted. Increasing concentrations of NaCl increases the rate of aggregation 

(Figure 4-9) as has been shown previously330,362 with a dramatic reduction of the lag time at 

200 mM NaCl.  

 

Figure 4-9. Aggregation of WT αSyn as a function of NaCl. A) ThT fibril growth assay of 80 μM 
αSyn in 20 mM Tris pH 7.5 as a function of varying NaCl concentration. Increasing NaCl 
increases the aggregation rate of αSyn with a dramatic reduction of lag time in the presence of 
200 mM NaCl. The data are replotted with an expanded y-axis on the right. B) Fibril yields as 
assessed by SDS-PAGE with the whole sample (W) and the supernatant sample (S) shown for 
each NaCl concentration. The protein marker (PM) is shown in the left-most lane. C) Example 
TEM images of αSyn at 50 and 1000 mM NaCl showing fibrillar morphologies which aren’t 
significantly different with different NaCl concentrations.  

 

The rate of aggregation also increases with decreasing pH with observable changes in end 

point fibril morphology. The increase in aggregation upon acidification has been shown in 

previous studies330,363. The pI of αSyn is 4.67, the increase in aggregation at acidic pH values 

may therefore arise from the loss of negative charges and neutralisation of the protein 

molecule. In αSyn, acidic residues are concentrated at the C-terminus, loss of negative charges 

in this region may play a role in aggregation. The C terminus supplies flexibility to the protein 

and has been shown to play a role in preventing aggregation208,209. Indeed, as discussed 

previously, studies have shown that at more acidic conditions, the C-terminal region becomes 

more collapsed221 and its proposed capping ability of the central highly hydrophobic regions is 

reduced215,216,220. 
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Similar to the protonation of acidic residues, increasing NaCl concentrations may act to 

neutralise negative charges in αSyn via electrostatic shielding and act to increase the rate of 

aggregation via a similar mechanism. 

 

Figure 4-10. Aggregation of αSyn as a function of pH. A) ThT fibril growth assay of 80 μM αSyn 
in 20m M MES/Tris/Acetate buffer as a function of pH. Lowering of the pH increases the rate of 
aggregation of αSyn. The data are replotted with an expanded y-axis on the right. B) TEM 
images of αSyn incubated at different pH values. The morphology of aggregates changes with 
pH. C) Fibril yields as assessed by SDS-PAGE in which the whole sample (W) and the 
supernatant (S) sample after incubation is shown for each pH value assessed. Overall fibril 
yields appear to increase with decreasing pH. 

4.5.2 The effect of the PD mutation E46K on aggregation 

Six familial mutations of αSyn have been discovered to be associated with early onset PD. Of 

these, E46K is discussed extensively in this thesis. As for the other mutants, E46K is located in 

the N-terminal region of αSyn and has been shown to increase the rate of aggregation relative 

to WT262. In the previous section it was demonstrated that changes in charge due to alterations 

in salt concentrations and pH play an important role in the aggregation of αSyn. E46K was, 

therefore, chosen to complement WT in SMFS experiments as this mutant has the largest 

change in charge of the PD mutants (a negative to a positive residue).  

The aggregation of E46K was monitored and the data are shown in Figure 4-11. E46K 

aggregates significantly faster than WT under the conditions studied. The lag times were 52.4 ± 

7.5 hours and 16.3 ± 0.6 hours for WT and E46K, respectively. Negative stain TEM also revealed 
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the end-point morphology of the fibrils were also different between WT and E46K, which both 

formed fibrillar structures, those for E46K are twisted compared to the characteristic straight 

morphology observed for WT. These data show that a single charge swap mutation can cause 

significant alterations in the aggregation propensity of αSyn. This again indicates the 

importance and the fine balance that charge plays in αSyn conformation and aggregation.  

 

Figure 4-11. Aggregation of WT and E46K αSyn. A) Growth assay of 100 μM WT (blue) and E46K 
(red) in 20 mM Tris 200 mM NaCl pH 7.5 at 37oC and shaking at 600 rpm monitored by ThT 
fluorescence. B) Lag times of WT and E46K calculated from ThT data showing faster 
aggregation for the E46K. Average lag times are represented as filled circles, the mean lag time 
is at the centre of each circle, error bars show SD. C) Negative stain TEM of aggregates at the 
end point of the incubation, fibrillar structures can be observed for both WT and E46K, the 
morphology of which differs between the two variants, straight fibrils are observed for WT and 
twisted fibrils are observed for E46K. D) Fibril yields as assessed by SDS-PAGE. The protein 
marker (PM) soluble (S) and pelleted (P) samples are shown. The fibril yields are 76 % and 85 % 
for WT and E46K respectively. αSyn variants appear as a monomer in both the supernatant (S) 
and pelleted (P) sample, dimeric species are also present in the pelleted sample.  

4.5.3 Aggregation propensity of the human homologues of αSyn  

β- and γSyn, the human homologues of αSyn, are less aggregation-prone and not linked to 

PD273-275. The aggregation propensity of these proteins were analysed in the conditions used 
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for SMFS experiments (Figure 4-12). The data indeed show that whereas αSyn forms ThT 

positive material over time, there is an absence of an increased ThT signal for β- and γSyn in 

the same conditions up to 150 hours. The self-association of synuclein observed in MS studies 

described in Section 4.4.2, is therefore not likely to be on pathway to aggregation. 

 

Figure 4-12. ThT aggregation assay of αSyn and its human homologues.  ThT fibril growth 
assays of α, β and γSyn in blue, grey and orange respectively. The data shows that αSyn 
aggregated to form ThT positive material after around 40 hours whereas β and γSyn solutions 
don’t show an increase in ThT fluorescence after 150 hours at least.   

4.6 SMFS experiments 

One of the main aims of this thesis is to analyse the dimerisation interaction between 

monomers of αSyn on a single molecule scale. A schematic of the SMFS experimental setup 

used to achieve this is shown in Figure 4-13. In this design, variants containing single Cys 

residues are covalently immobilised onto silicon nitride AFM probes and surfaces using flexible 

heterofunctional PEG linkers (SM PEG24). The functionalised tip then approaches a similarly 

functionalised surface in buffered solutions allowing αSyn to form dimerisation interactions 

(trigger: 300 pN with no dwell). The interaction is then pulled apart by withdrawing the probe 

from the surface at 1000 nms-1. Force maps consisting of 500 approach retract cycles taken 

over an area of 20 μm2 were taken and the cantilever moved to a new area of the 

functionalised silicon nitride wafer between force maps (to ensure adequate surface coverage 

and to avoid contributions of high local protein concentration which may occur). All detected 

events (that meet filtering criteria, Section 2.2.4.6) are then fit to a WLC model (Equation 1-1) 

with a fixed persistence length (0.4 nm), using the hard contact to identify the zero distance 

and the retraction baseline to zero the force.  



DIMERISATION EVENTS OF ALPHA SYNUCLEIN 

124 
 

 

Figure 4-13. Schematic of SMFS experimental setup to investigate dimerisation of full length 
αSyn. αSyn Cys mutants (represented as green chains lacking structure with red dots showing 
the position of a unique Cys residue) are covalently immobilised onto silicon nitride AFM 
probes and surfaces via hetrofunctional PEG linkers with 24 repeating units with a defined 
length of 9.5 nm. Functionalised cantilevers are brought into contact with similarly 
functionalised surfaces enabling αSyn molecules to interact. Upon interaction, withdrawing the 
AFM probe will propagate force across the dimers. The force increases until the protein 
complex ruptures and at this point the FR can be found and LC can be calculated.  

4.6.1 Single molecule dimerisation of αSyn 

4.6.1.1 Optimising SMFS experiments 

In order to obtain conditions in which single molecule events can be observed reliably in force 

experiments, different concentrations of proteins and or PEG linkers were used. It is especially 

important in force experiments of aggregating systems that the surface density of protein is 

low enough so that contributions from higher order species are limited. PEGylated silicon 

nitride surfaces and cantilevers were first incubated with 50 μM A140C αSyn (Cys mutant at 

the C-terminal residue) and the data are shown in Figure 4-14. The data are presented in 

scatterplots of LC as a function of FR, the deeper colour denoting a higher frequency of events. 

Combining the data in a scatter plot allows for the specificity of the interaction to be assessed 

by the presence (specific interactions) or absence (non-specific) of a ‘hotspot’ in the data 

indicative of correlated forces and distances (Figure 4-14 B). Individual force events were 

classified into single events in which only one event is observed in a force-extension trace; or 

multiple events when more than one event is observed. In the data using 50 μM protein 

solution for the immobilisation step (Figure 4-14) there is an absence of obvious hotspot in the 
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total, single and multiple type events. The hit rate for the total combined single and multiple 

events is 17.9% which is high in experiments aiming to interrogate single molecule 

interactions. Typically, the hit rate for SMFS experiments should be low at around 5% to 

ensure a single molecules regime364. The ratio of multiple: single events is also high, this again 

suggests that interactions of a higher order than single molecule are being probed in this 

experiment. Overall, the data suggests that in these conditions, it is not possible to reliably 

analyse specific, single molecule interactions. 

 

 

Figure 4-14. SMFS data during optimisation experiments using 50 μM αSyn A140C protein 
solution for the immobilisation step. A) Raw force-extension traces with examples of a multiple 
(dark green) and single event (light green). B) Scatter plots of SMFS displaying contour length 
as a function of force. The points were binned by increments of in LC of 5 nm and FR of 7 pN. 
The data were normalised to the total number of approach-retract cycles in the experiment. 
Deeper colours denote higher frequency of events. From left to right scatter plots for total 
events, single events, and multiple events observed during 1500 approach-retract cycles. Hit 
rates (HR) are shown inset for each type of event. Errors are SD of HR between force maps. A 
clear ‘hotspot’ of events is absent in all of the plots indicating non-specific interactions. All 
experiments were carried out at 20 mM Tris, 200 mM NaCl pH 7.5. 

 

The SMFS experiments as outlined in Figure 4-13 and Figure 4-14 were repeated using 5 μM of 

αSyn A140C for immobilisation. The multiple and single events were analysed as before (Figure 

4-14). The data shows that at this immobilisation density, single events occur at a 3.4 % hit 
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rate, whereas reducing the concentration of immobilised protein has reduced to incidence of 

multiple events to 0.6 %, this is within the level of noise from those observed in control 

experiments (Figure 4-16). Moreover, a clear hotspot is present in the single event analysis 

suggesting that distinctive single molecule interactions are being observed. These conditions, 

therefore, were used in all subsequent SMFS experiments on full length synuclein variants. 

 

Figure 4-15. SMFS data during optimisation experiments using 5 μM αSyn A140C protein 
solution for the immobilisation step. Scatter plots of SMFS displaying contour length as a 
function of force. The points were binned by increments in LC of 5 nm and FR of 7 pN. The data 
were normalised to the total number of approach-retract cycles in the experiment. Deeper 
colours denote higher frequency of events. From left to right scatter plots for total events, 
single events, and multiple events observed during 2000 approach-retract cycles. Hit rates (HR) 
are shown inset for each type of event. A clear ‘hotspot’ of events is present in for analysed 
single molecule events (left) and absent for multiple events (right). All experiments were 
carried out at 20 mM Tris, 200 mM NaCl pH 7.5. 

 

 

Figure 4-16. Control SMFS experiment. A) Scatter plot of SMFS data displaying contour length 
as a function of force. The points were binned by increments in LC of 5 nm and FR of 7 pN. The 
data were normalised to the total number of approach-retract cycles in the experiment (total 
1,500). Deeper colours denote a higher frequency of events. A ‘hotspot’ is absent in the data 
suggesting a lack of a specific single molecule interaction. B) Schematic of the control 
experiment carried out with Si3N4 surfaces immobilised with 5 μM αSyn A140C and cantilevers 
in absence of protein. 
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Control experiments showed an absence of a hot spot of data when only the surface was 

functionalised with protein (Figure 4-16). This confirms that the SMFS data shows distinctive 

interactions between αSyn molecules immobilised on AFM tips with those immobilised on 

Si3N4 surfaces.  

SMFS experiments using optimised conditions described above are shown in Figure 4-17. 

Characteristic single molecule events shown in Figure 4-17 A were fitted to the WLC model in 

order to obtain LC and FR. The experiment was carried out in triplicate with each single 

experiment consisting of at least 4 force maps of 500 approach retract cycles. The overall 

number of approach retract cycles for the experiment in triplicate was 10,000. The hit rate is 

lower (3.0 %), increasing the probability that true single molecule complexes are being 

observed. There is an obvious hotspot of data as displayed in the scatter plot (Figure 4-17 B). 

Histograms of LC and FR are shown and the modal Gaussian value is denoted (LC = 26.5 nm, FR = 

48.9 pN). Overall the data suggests that we are able to observe specific single molecule 

interactions in these conditions.  

 

 

Figure 4-17. SMFS data from combines triplicate experiments for αSyn A140C. A) Example raw 
force-distance curves for αSyn A140C showing characteristic single events. B) Scatter plot of 
SMFS data displaying contour length as a function of force. The points were binned by a 
contour length of 5 nm and a rupture force of 7 pN. The data was normalised to the total 
number of approach-retract cycles in the experiment (total 10,000). Deeper colours denote 
higher frequency of events. A ‘hotspot’ is clearly present in the data suggesting a specific single 
molecule interaction. The hit rate (HR) is shown inset for the combined triplicate experiments. 
Histograms of both LC (red) and FR (green) distributions are also shown with the modal value 
from Gaussian fittings denoted. All experiments were carried out at 20 mM Tris, 200 mM NaCl 
pH 7.5. 
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SMFS on αSyn A140C was carried out in triplicate and the reproducibility of data using SMFS 

was assessed between triplicate data sets is displayed in Figure 4-18. The distributions of LC 

(red) and FR (green) of individual triplicates for αSyn A140C as shown in Figure 4-17. 

Histograms are shown in the top panes and the modal value from Gaussian fits are denoted, 

these values are similar between the triplicate data sets. It is common in SMFS to analyse data 

in this way, however, the Gaussian fits of the LC and FR distributions may not be sufficient as it 

is unclear whether the observed data represents multiple populations as it is not normally 

distributed. Box plots are, therefore also plotted and median values taken as another 

comparable value to the modal LC. Box plots show that there is some asymmetry in the data 

and minor variations between triplicates that is mainly due to differences in higher values of LC 

and FR, this is most likely due to noise as there is no correlation or hotspot in the data at these 

higher values.  

In contrast to the data presented here, previous work by Lyubchenko and colleagues failed to 

observe dimerisation of αSyn at close to physiological pH316,318,319. This is most likely because of 

the differences in protein concentrations used in the immobilisation step (5 μM in this study 

compared to 19 nM in previous studies). The hit rate for αSyn dimerisation at pH 7.0 was 

reported to be 0.8 % by Lyubchenko and colleagues318 and not further analysed. It is likely, 

therefore, that the interactions of αSyn at neutral pH were not analysed in previous studies. 

We have, therefore, presented the first SMFS of αSyn dimerisation under physiological like 

conditions here.  

The LC from SMFS experiments will be discussed in detail in the subsequent sections and 

throughout this thesis. The FR of αSyn dimeric interactions observed in SMFS experiments will 

not be the main focus of attention in this thesis, however, the FR observed in SMFS (Figure 

4-17 and Figure 4-18) are surprisingly high for a non-evolved interaction of two IDPs. The 

cognate interaction between the E. coli proteins E9 and Im9 as studied by this group305 

dissociates at a similar FR of ≈40 pN at 1000 nm/s (comparable to pulling velocity used here). 
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Figure 4-18. LC and FR distributions for each triplicate SMFS experiment of αSyn A140C. A) Top, 
LC distribution histograms (red, bin size 5 nm) displayed as area plots with modal values from 
Gaussian fittings denoted. Frequency is normalised to the maximum frequency of each 
triplicate. Box plots of LC distributions with the same colour coding as above showing some 
asymmetry of the data sets. The median LC values are 34.8, 32.0 and 32.3 nm and for box plots 
from left to right. Whiskers on box plots are minimum and maximum values B) FR distributions 
are shown in the same manner as LC (histograms binned at 7pN). The median values for box 
plots from left to right are 54.9, 50.9 and 52.2 pN. Whiskers represent minimum and maximum 
values. The data shows that similar distributions of events are observed between triplicate 
experiments. All experiments were carried out at 20mM Tris, 200mM NaCl pH 7.5. 

 

4.6.2 Analysis of SMFS experiments 

4.6.3 Contour length simulations 

The LC data reveal a great deal of information about the dimerisation interaction of αSyn. As 

discussed (Section 1.6.2), the LC can be used to interrogate different aspects of dimeric 

structure such as the interaction region or the conformation of the proteins in the dimer. The 

LC data cannot, however, simply be interpreted as the length of linkers and protein. This is due 
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to the important effects that linker length and AFM tip geometry have on the apparent LC 

values measured experimentally (depicted in Figure 4-19). These effects have largely been 

neglected previous SMFS studies of proteins leading to incorrect estimations of LC. This issue 

has been addressed by our group previously306. Brockwell and colleagues have derived a model 

that predicts LC for SMFS experiments. This model was further adapted by Dr Yun Chen 

(Brockwell Group, University of Leeds). An additional parameter was added to the published 

model which uses as a Monte Carlo procedure which accounts for the stochastic rupture of 

protein complexes which can occur anywhere along the theoretical WLC parabolic curve. This 

property has an effect on the LC values obtained. 

 

 

Figure 4-19. Schematic representation of considerations for determining the observed LC in 
SMFS experiments. The observed LC is dependent on the immobilisation location of protein 
partners on both the tip and surface. A) Schematic of different possible attachment positions 
on AFM tips and surfaces. B) Corresponding schematic force curve that describe the events in 
A. i) The interaction of proteins distal to the apex of the AFM tip and not directly below the tip 
results in shorter observed LC values than expected (red line). ii) The maximum observable LC 
corresponds to an interaction when a protein immobilised onto the tip apex interacts with a 
protein partner directly below it on the substrate (blue line). Figure redrawn and adapted from 
Farrance et al 2013305. 
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It was assumed that αSyn behaves as an IDP in SMFS experiments and that αSyn dimers have a 

single interaction site. Given the results from the previous chapter, and previous literature, 

this interaction region was hypothesised to exist in the NAC region.  

To locate the interaction interface, the LC model simulation described above was carried out 

and compared to experimentally determined LC values. In all, 14 separate LC simulations were 

carried out, each modelled a 10 residue sequence of αSyn interacting with the corresponding 

sequence in the second monomer in a dimeric interaction. This was carried out throughout the 

protein sequence in sequential, non-overlapping, 10 residue sequences. The modelled LC data 

is shown in Figure 4-20 as coloured histograms, the experimentally observed LC data for αSyn is 

overlaid as a black line. The data suggests that the dimerisation interaction of αSyn occurs at 

the C-terminus of the protein primarily in residues 100-140. This is in contrast to the 

hypothesised interaction interface in the highly aggregation-prone NAC region. The 

experimental distribution of data has a wide range which may indicate some heterogeneity of 

the interaction region.   

It is however important to consider the caveats with modelling the data in this manner. The 

model treats the αSyn monomers as essentially unstructured polypeptide chains. As discussed 

previously and highlighted in data in this chapter, αSyn does exist as an IDP210,211, but, it has 

been shown to form long range transient interactions212-214,216-218 and to exhibit some structure 

in the monomer210. We may not therefore be able to treat the proteins as essentially 

disordered chains in the modelled data. If there were indeed some structure in the dimer, the 

modelled approach would locate an interaction interface closer to the immobilisation region. 

To our best knowledge, there are no studies in the literature of the conformational 

arrangement of dimeric αSyn.  
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Figure 4-20. LC modelled data for αSyn A140C SMFS experiments with overlaid experimentally 
observed data at 20 mM Tris 200 mM NaCl pH 7.5. A) Schematic of approach in modelling the 
LC arising from different interaction interfaces. αSyn is represented by light green chains 
lacking structure. Interaction regions are shown in dark green. The immobilisation point (in this 
case C-terminal A140C). the LC increases with increasing distance of the interaction region 
from the immobilisation point. B) Modelled LC data is shown in histograms coloured from blue 
to red in order of increasing LC. Histograms of modelled data simulate a 10 residue sequence of 
αSyn interacting with the corresponding sequence in the second monomer. This was carried 
out throughout the protein sequence in sequential, non-overlapping, 10 residue sequences. 
The simulation probability is shown on the left y-axis. Experimentally observe LC data is shown 
as a black line depicting the outline of a histogram (bin size 5 nm). The normalised frequency 
of experimental data is shown on the right hand y-axis. 

4.7 Single molecule dimerisation of a PD familial mutant  

To further validate the approach, we next examined the interaction of the PD familial mutant, 

E46K dimers as the protein has distinct aggregation kinetics to WT yet is highly similar in 

sequence and conformation, a change in the scatter plots would reinforce the idea that real 

interactions are being interrogated. E46K was immobilised in the same manner as WT at the C-

terminus (A140C). The SMFS data for E46K is shown in Figure 4-21 (red) and is compared to 

WT data (blue). The data for E46K, as with WT is the sum of triplicate experiments. Each 

individual experiment for E46K consisted of at least 5 force maps of 500 approach-retract 
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cycles. The overall number of approach-retract cycles for the experiment in triplicate was 

9,000. The scatter plots in Figure 4-21 A show a different scatter profile for the E46K when 

compared to WT. LC distributions are displayed in Figure 4-21 B and C, the data show that E46K 

has a longer LC than that for WT (Gaussian modal values of 29.5 and 48.4 nm for WT and E46K 

respectively) suggesting that the conformation of the E46K and/or the interaction interface is 

different in E46K relative to WT. the longer LC may therefore be reporting on a dimeric 

interface that is further away from the C-terminus (immobilisation point) or/and in fact the 

protein conformations are more expanded. SAXS data (Section 4.4.3, Figure 4-8) indeed 

indicates that a higher proportion of monomeric E46K exists in an expanded conformation 

(42 %, 51.7 Å) than WT (25 %, 50.3 Å).  

 

Figure 4-21. SMFS experiments of WT and E46K. A) Scatter plots of SMFS triplicate experiments 
for WT (blue), and E46K (red). The same colours are used throughout.  The points were binned 
by increments of in LC of 5 nm and FR of 7 pN. The data were normalised to the total number of 
approach-retract cycles in the experiment (total 9,000). Deeper colours denote higher 
frequency of events. The hit rate (HR) is denoted for the combined triplicate experiments. B) LC 
(left) and FR (right) distributions for WT and E46K. The modal LC values as calculated from 
Gaussian fits of the data are shown inset. E46K has a longer modal LC (48.4 nm) than that of 
WT (29.5 nm). Modal FR values were calculated in the same way yielding similar FR values for 
WT (48.9 pN) and E46K (43.5 pN). C) Box plots showing the distributions of LC (left) and FR 
(right). Median values are shown below the plot. Whiskers represent minimum and maximum 
values. All experiments were carried out at 20 mM Tris, 200 mM NaCl pH 7.5. 
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The LC distribution for E46K is also much wider which may suggest the presence of more than 

one interaction site and/or more than one dimeric conformation. The hit rate is also different 

between the proteins variants, 3.0 and 5.9 % for WT and E46K respectively which may indicate 

that E46K has a higher dimerisation affinity than that of WT. The FR of E46K (48.9 pN) is similar 

to that of WT (43.5 pN).  

The single point mutation E46K, which only causes subtle changes in the monomeric 

conformation (see Section 4.4), causes dramatic changes in the ensemble aggregation assays 

(Figure 4-11) as well as causing early onset PD in vivo. The mutation causes significant changes 

in the dimerisation of the αSyn as revealed by SMFS experiments here, possibly showing that 

the conformation or dimeric interaction interface is different in E46K relative to WT. This could 

indicate that dimerisation is a key step for this PD mutant and could provide a selective target 

for therapeutics aimed at this mutant. 

4.7.1 Contour length simulations 

As discussed in section 4.6.3, experimentally observed LC values can be compared to modelled 

values in order to gain more information about the interaction region in the dimer. As 

discussed above, the SMFS data for E46K differs from that of WT. Dimerisation interactions for 

E46K display a longer contour length than that of WT. Both the modelled (coloured 

histograms) and experimentally observed LC values (black line) are shown in Figure 4-22. The 

experimental LC distribution of E46K is wide relative to WT indicating that the interactions for 

E46K are more heterogeneous than that of WT. Comparisons to the modelled data suggest an 

interaction region in the dimer is primarily in residues 60-130, from the NAC region extending 

into the C-terminal region (assuming that αSyn adopts an intrinsically disordered 

conformation).  
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Figure 4-22. LC modelled data for αSyn E46K A140C SMFS experiments with overlaid 
experimentally observed data at 20 mM Tris 200 mM NaCl pH 7.5. Modelled LC data is shown 
in histograms coloured from blue to red in order of increasing LC. Each individual histogram of 
modelled data simulated a 10 residue sequence of αSyn E46K interacting with the 
corresponding sequence in the second monomer in the dimeric interaction. This was carried 
out throughout the protein sequence in sequential, non-overlapping, 10 residue sequences. 
The simulation probability is shown on the left y-axis. Experimentally observe LC data is shown 
as a black line depicting the outline of a histogram (bin size 5nm). The normalised frequency of 
experimental data is shown on the right hand y-axis. 

 

As discussed above, this however, may not be the case as the model treats the proteins as 

essentially random coils absent of structure. As previously discussed, it is well established that 

αSyn cannot be treated in this way. I have also shown evidence here from SAX and CD data 

that the structural/ conformational properties of E46K and WT monomeric proteins show 

subtle difference which may lead to differences in the mechanism of the dimeric interactions 

in these proteins. 

4.8 Single molecule dimerisation of synuclein homologues 

Data above suggest that the interaction region detailed here is not the NAC. To investigate this 

surprising result, SMFS experiments were also performed on β- and γSyn. As discussed in 

Section 1.5.5, αSyn is a member of a small family of highly homologous proteins that include β- 

and γSyn. These proteins have a much lower aggregation propensity, if they aggregate at 

all274,275, and are not linked with PD and other synucleopathies273. Importantly, both β- and 

γSyn have smaller, less aggregation-prone NAC regions than αSyn, the NAC region in βSyn is 

also smaller and lacks the key central 12 residue sequence (71-82, the subject of investigation 

in Chapter 3) that has been shown to be both necessary and sufficient for fibril formation204. 
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 SMFS was carried out on the synuclein homologues in the same way in which force 

experiments were carried out on αSyn, immobilising the proteins at their C-termini. The data 

for β and γSyn, as with WT is the sum of triplicate experiments. Each individual experiment for 

β and γSyn consisted of at least 5 force maps of 500 approach-retract cycles. The overall 

number of approach retract cycles for the experiment in triplicate was 9500 and 7500 for β- 

and γSyn respectively. 

 The data for these SMFS experiments are shown in Figure 4-23. Scatter plots are shown for 

each of α, β and γSyn (blue, grey and orange respectively) in Figure 4-23 A. The data shows 

that all members of the synuclein family dimerise in SMFS experiments (validated by previous 

MS experiments, Section 4.4.2) as each contains an obvious hotspot in the data. The 

interactions appear very similar when judged on the scatter plots, with similar hit rates of 3.0, 

4.7 and 3.3 % for α, β and γSyn respectively. The LC distributions are displayed as histograms in 

Figure 4-23 B with modal values displayed inset calculated from Gaussian fittings, plus median 

values displayed in box plots of the LC distributions (Figure 4-23 D). The FR distributions are also 

shown to be similar in modal values and spread of the data (Figure 4-23 and Figure 4-23 C and 

D). The similarity of the distributions suggest a common dimerisation interactions of each of 

the synuclein variants. Interestingly, this is despite the different aggregation propensities in 

the members of the synuclein family. It can, therefore, be proposed that the dimerisation 

interactions of αSyn detailed by SMFS are not pathological interactions on pathway to 

aggregation. It has previously been proposed that αSyn may exist in vivo as physiological 

multimers46,255-258 that, when disrupted, increase toxicity. This hypothesis will be explored in 

more detail in subsequent chapters.  
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Figure 4-23. SMFS experiments of synuclein homologues.  A) Scatter plots of SMFS triplicate 
experiments for αSyn A140C (blue) βSyn A134C and γSyn D127C showing an obvious hotspot 
of data in each construct.  The points were binned by increments of in LC of 5 nm and FR of 7 
pN. The data was normalised to the total number of approach-retract cycles in the experiment 
(total 10,000, 9500 and 7500 for α, β and γSyn respectively). Deeper colours denote higher 
frequency of events. The hit rate (HR) is denoted for the combined triplicate experiments. B) 
αSyn (blue), βSyn (grey) and γSyn (orange). The modal LC values as calculated from Gaussian 
fits of the data are shown inset. D) and E) Box plots of LC and FR distributions, respectively. 
Medium values are shown below each plot. Whiskers show minimum and maximum values. All 
experiments were carried out at 20 mM Tris, 200 mM NaCl pH 7.5. Colours are the same 
throughout. 

4.9 Discussion 

In this chapter, the structural properties of monomeric αSyn and its aggregation propensity 

was explored. These data were also compared to that of an aggregation-prone, familial PD 

αSyn mutant αSyn E46K, as well as non-aggregation-prone human synuclein homologues β and 

γSyn.  It was confirmed via SAXS, CD and analytical SEC studies that αSyn does exist primarily 

as a IDP in the conditions studies (20 mM Tris, 200 mM NaCl pH 7.5), as is well established in 

the literature175. However, the results from SAXS experiments confirmed that the Rg of αSyn 

(40.5 Å) is in fact significantly smaller than the calculated value for a completely unstructured 
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random coil of the same length (52 Å), as have been previously shown210. This indicates that 

αSyn may have some degree of structure in an essentially disordered protein. SAXS and CD 

studies showed that the PD familial mutant, αSyn E46K, is very similar to that of WT but 

indicates subtle structural and conformational differences.  

EOM data analysis further analysed the ensemble SAXS data and showed that αSyn may exist 

in two distinct conformations, a more collapsed form, centred around 35 Å, and a more 

expanded conformation at around 50.3 Å. Similar results were obtained for αSyn E46K but 

differences in the relative proportions of collapsed and expanded conformations were 

observed. These subtle difference may be key to the intrinsically different aggregation 

propensity for these different variants and their subsequent links to disease. 

Aggregation experiments revealed the importance of solution conditions on the aggregation 

propensity of αSyn. It is clear that the relative charge of αSyn plays a highly important role. 

Modulating the relative charge of αSyn with either changes in pH or salt concentration changes 

the aggregation rates significantly. The importance of charge is also evidenced by the 

increased aggregation propensity of αSyn E46K when compared to WTαSyn. A single charge 

mutation increases aggregation propensity by over 3 times based on lag time analysis. 

Moreover, SMFS experiments revealed that there is a significant difference in the dimerisation 

of E46K and WT αSyn at the single molecule scale. The modal LC values increase significantly 

from 29.5 nm for WT to 48.4 nm for E46K which may report on a difference in conformation or 

interaction region of the dimer. 

Importantly, it was observed from SMFS studies that the dimerisation interactions of 

homologues are very similar to that of WT αSyn. This is despite the differences in the NAC 

region between these proteins. The evidence, therefore, suggests that this is not the 

predominant interaction region. SMFS revealed, however, that the LC distributions of E46K are 

significantly different to WT (Figure 4-21 and Figure 4-22, 29.5 nm and 48.4 nm for WT and 

E46K, respectively). This could suggest that the conformation of E46K dimers or/and the 

interaction interface are different for E46K relative to WT. The modelling approach would 

locate a proposed interaction interface of WT primarily in the C-terminus of the protein 

(residues 100-140). The interaction region for E46K, importantly, extends into the hydrophobic 

NAC region (60-130). It must be noted that these modelled interaction interfaces are estimates 

based on the assumption that the proteins interact as intrinsically dishoarded chains. The 

increased aggregation propensity in E46K may therefore be attributed to the face that the 

protein can form dimers via the NAC region, shown to be the core of amyloid fibrils100. 
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The data presented in this chapter may therefore indicate that the dimerisation interaction of 

WT probed in these experiments is therefore not linked to aggregation and may therefore be 

physiological. Indeed it has been observed previously that αSyn may exist in vivo as structured 

multimers, proposed to be predominantly tetramer, but also showed significant amounts of 

dimer. Disruption of multimeric interactions by mutations in the N-terminus of the protein led 

to a decreased multimer: monomer ratio which correlated to an increase in toxicity46,255-259. 

This observation is further corroborated in our SMFS studies in that E46K changes the 

‘physiological’ dimerisation of αSyn. This hypothesis will be further interrogated in subsequent 

chapters. 
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5 Novel dimeric conformations revealed by SMFS 

5.1 Abstract 

In the previous chapter, it was demonstrated that bone fide single molecule interactions can 

be accurately detected in SMFS studies. There is, however, uncertainty in the interpretation of 

LC data as differences in these values may arise due to the presence of different interaction 

interfaces and/or different protein conformations. Here we address this issue by utilising 

different immobilisation regimes and interrogating these data using with LC simulations. The 

data reveal that dimeric αSyn contains some degree of force-resistant structure. A similar 

SMFS approach was used to analyse the differences in dimerisation under acidic conditions. 

These experiments revealed a more collapsed conformation of the dimeric αSyn species. The 

data suggest that this collapse is localised in the acidic, C-terminal region of the protein. 

5.2 Introduction 

It has previously been shown that αSyn exists as an ensemble of conformations34,35, whose 

structural organisation depends on the environmental conditions210. These, often subtle, 

differences in protein structure can have a significant effect on aggregation propensity210 and 

therefore can modulate disease pathology. As discussed previously, αSyn has been shown to 

have a smaller Rg than that of a theoretical unstructured polypeptide chain of the same 

length210, suggesting compaction. It is also well established that αSyn forms a variety of 

intramolecular, transient interactions212-218 which may also play a role in the contribution of 

structure in the IDP. These studies were carried out on the monomeric protein and it is 

conceivable that upon dimerisation, there is an increase in structure as the conformational 

space and the internal free energy reduces. The data presented in this chapter describe the 

interrogation of force-resistant structure in the dimeric species of αSyn.   

As noted in the previous chapter, pH changes significantly affect the aggregation propensity of 

αSyn, as expected for an IDP that is highly receptive to changes in the environmental 

conditions. Decreasing pH generally increases the rate of fibril formation330,363 (Chapter 4). It 

has also previously been shown that αSyn becomes more compact and structured in acidic 

conditions210. It is important to consider how αSyn is affected by pH as different pH 

environments are present in vivo to which αSyn is exposed. Specifically, the acidic environment 

of the lysosome (pH 4.5) plays an important role in the cellular trafficking of αSyn in the 

endocytic pathway in the constitutive process of proteostasis. The chaperone mediated 

autophagy (CMA) arm of the endocytic pathway is particularly important in the cellular 
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processing of αSyn331. The process involves the interaction of a pentapeptide recognition 

motif, which is present in αSyn (95VKKDQ99), with a cytosolic chaperone and subsequent 

transport to the lysosome where the protein is degraded332.  The importance of lysosomal 

impairment in PD is supported by the identification of genetic associations between PD and 

Gaucher’s disease, the most common lysosomal storage disorder, which is caused by 

mutations in the gene encoding the lysosomal hydrolytic enzyme glucocerebrosidase365. 

Studies have shown that 5-10% of PD patients possess glucocerebrosidase mutations365. The 

self-association of αSyn at lysosomal pH is therefore highly relevant and important to study.  

5.3 Contour length distributions suggest structure in the dimer 

5.3.1 SMFS using different immobilisation regimes  

The presence of structure in each monomer at dissociation in SMFS experiments makes 

identification of the interaction region difficult.  In order to interrogate the dimeric interaction 

further, different αSyn Cys mutants were engineered using the New England Biolabs Q5© 

mutagenesis protocol (Section 2.2.1.2). Cys residues were substituted in each of the 3 domains 

of αSyn, the N-terminal (A18C), NAC region (A90C) and at the C-terminal (A140C, the 

immobilisation regime used in the previous chapter). Moving the point at which αSyn 

monomers are immobilised on AFM cantilever tips and surfaces, may reveal the interaction 

region together with the locations of any conformational changes.  

SMFS experiments were carried out on each of the different αSyn Cys mutants (Figure 5-1) in 

the same experimental setup as described in the previous chapter and Section 2.2.4. The 

scatter plots (Figure 5-1 A) and contour length distributions (Figure 5-1 B) from SMFS 

experiments for all 3 immobilisation regimes at neutral pH (20mM Tris, 200mM NaCl, pH 7.5) 

are presented in Figure 5-1. Differences are observed in the LC distributions of dimeric 

interactions of αSyn immobilised at different positions. It is intuitive that if the immobilisation 

point of αSyn changes, the LC should also change. The change in LC between the different cys 

mutants provides further validation that we are looking at a distinctive protein-protein 

interaction.  

The data suggests that the interaction region is closer to the C-terminus than to the N-

terminus as the LC values are smaller for A90C (23.4 nm) and A140C (29.5 nm) than to A18C 

(40.1 nm). However, in order to get a more accurate picture of the interaction region, 

experimental data can be compared to simulated data as discussed in the previous chapter, 

these data are presented in subsequent sections here. 
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Figure 5-1. SMFS experiments of different αSyn cys mutants using different immobilisation 
regimes. A) Schematic representation of the αSyn sequence with primary regions shown (blue, 
pink and red represent the N-terminal region, NAC and acidic C-terminal region, respectively. 
Imperfect repeats are represented in light blue). Immobilisation positions are represented by 
red circles.  B) Scatter plots of SMFS from A18C, A90C and A140C (lightest blue to darkest blue 
respectively). The points were binned by a contour length of 5 nm and a rupture force of 7 pN. 
The data was normalised to the total number of approach-retract cycles in the experiment 
(total events: A18C = 2000, A90C = 2000, A140C = 10,000). Deeper colours denote higher 
frequency of events. The hit rate (HR) is denoted inset. C) LC distributions for A18C (light blue, 
top panel), A90C (mid blue, middle panel) and A140C (dark blue bottom panel). The modal LC 
values as calculated from Gaussian fits of the data are shown inset. Each Cys mutant has a 
different LC distribution with different modal values. Median values are shown below the plot 
D) Box plots representing the distribution of the LC data. Whiskers show minimum and 
maximum values. All experiments were carried out at 20 mM Tris, 200 mM NaCl pH 7.5. 

1.1.1.1 Contour length simulations 

Contour length simulations were carried as discussed in the previous chapter. In all, 14 

separate LC simulations were performed; each modelled a 10 residue sequence of αSyn 
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interacting with the corresponding sequence in the second monomer in a dimeric interaction. 

This was carried out throughout the protein sequence in using non-overlapping, contiguous, 

10-residue sequences. This was carried out for each of the three Cys mutants. The simulated LC 

distributions are presented in Figure 5-2 and experimental distributions are overlaid (Figure 

5-2 A) for SMFS experiments carried out at physiological and acidic pH. The SMFS data at pH 

4.5 will be discussed in subsequent sections in this chapter. The same simulated LC 

distributions are shown in Figure 5-2 B with offsets between individual simulated sections. The 

data are presented in this manner as there is considerable overlap of histograms from 

different simulated, interacting sections when the immobilisation point is at a central point as 

opposed to a proximal point in the protein sequence. This also acts to increase the ambiguity 

of experimental data as the same distributions of experimental data can occur from a much 

larger proportion of the protein interacting, as is the case for the data presented here. 

For A140C, comparison of the experimentally determined data (at pH 7.5, light grey line in 

Figure 5-2 B) to the simulated data would suggest that the interacting region in the dimer is in 

the C-terminus at around residues 100-140. Making the same comparisons for A18C and A90C, 

however, suggests different interaction regions (residues ≈ 40-70 for A18C and ≈ 40-140 for 

A90C). All distributions are relatively wide, this may indicate that the interactions are 

heterogeneous and can ‘slide’ up and down the protein. Another possibility is that there is 

some conformational heterogeneity in the dimer observed in SMFS experiments. The 

increased ambiguity of the interaction region (more than 70% of the protein) in A90C is a 

result of the immobilisation point being in the middle of the protein as highlighted in Figure 

5-2 B. 

Comparing the simulated data to experimentally determined data should yield the same 

interacting regions for the different αSyn Cys mutants as in these experiments the protein 

remains the same, but is immobilised at different points. If A18C and A140C are taken as an 

example, this is not the case as the interacting regions as derived from the comparisons of 

simulated and experimental data, are different. The modelled data assumes that each 

monomer is devoid of structure at rupture. As discussed in the previous chapter, αSyn cannot 

be assumed to be a completely unstructured polypeptide (shown in data in this thesis and 

previously by other groups210,212-215,217,218). The discrepancy of the LC data may indeed suggest 

that αSyn cannot be modelled in this way.  The data indicates, therefore, that there is some 

force resistant structure in the dimer at physiological pH.  
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Figure 5-2. LC modelled data of SMFS experiments carried out on immobilisation point variants 
with overlaid experimentally observed data. A) Modelled LC data are shown in histograms 
coloured from dark red to light red from the N-terminal to the C-terminal of the protein 
respectively. Each individual histogram of modelled data simulated a 10 residue sequence of 
αSyn interacting with the corresponding sequence in the second monomer in the dimeric 
interaction. This was carried out throughout the protein sequence in sequential, 
non-overlapping, 10 residue sequences. The simulation probability is shown on the left-hand y-
axis. Experimentally observed LC data are shown as solid lines depicting the outline of a 
histogram (bin size 5nm). Dark grey and light grey denote experiments at acidic and neutral 
pH. The normalised frequency of experimental data is shown on the right hand y-axis. B) Offset 
simulation histograms in order to increase clarity with regards to overlapping interaction 
segments. 

 

The difference in modal LC values between A90C and A140C is 6.0 nm (Figure 5-1). This 

distance equates to 15 residues when taking a single residue as 0.4 nm. Therefore, there is a 
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35 residue discrepancy between these two immobilisations. It is possible that this can be 

attributed to the formation of structure in this region.  

5.4 The key role of pH on αSyn and its dimeric interactions 

5.4.1 Biophysical analysis upon acidification of pH 

5.4.1.1 SAXS studies at acidic pH 

In the same way as described in the previous chapter, SEC-SAXS was utilised to analyse the 

structure and the conformation of monomeric αSyn used in this study (Section 2.2.3.3). For 

comparison, a familial PD variant: E46K was also analysed using this method.  

SEC-SAXS experiments were carried out in 20 mM acetate, 200 mM NaCl pH 4.5 (to mirror 

SMFS conditions used in this chapter) (Figure 5-3). As for SAXS data at pH 7.5 (see previous 

chapter), the scattering data for pH 4.5 are similar for both WT αSyn and E46K (Figure 5-3 A). 

The Kratky plots of both of these variants again show data typical of an IDP (as with pH 7.5) as 

there is an absence of an obvious peak and a continuous rise in the data (Figure 5-3 B). By 

performing a Guinier approximation (Figure 5-3 C and D), the Rg was found to be 36.5 and 34.9 

Å for WT and E46K respectively. These Rg values are smaller than that recorded at pH 7.5 (41.1. 

and 41.5 Å for WT and E46K respectively), reflecting previous findings that acidification causes 

conformational changes in αSyn such as its compaction210. Previous SAXS studies indeed 

showed that αSyn had a smaller Rg at acidic pH of 30 Å, this is less than observed in the 

scattering data presented here, but, at a slightly lower pH (pH 3.0)210. Moreover, it has been 

shown that this compaction is primarily due to compaction of the highly acidic C-terminus of 

the protein220,221. This data suggests that at pH 4.5, αSyn remains primarily unstructured as 

previous studies have shown220, it does however, show some compaction which may suggest a 

gain of some rudimentary structure. The E46K mutant possessed a similar Rg value to that of 

WT which suggests that a similar conformational rearrangement occurs in WT and E46K.  

EOM analysis was subsequently carried out on ensemble scattering data in the same manner 

as discussed in the previous chapter. The optimised structures that best fit scattering data 

were selected (Figure 5-4 A solid lines). The Rg distributions for the EOM ensemble species are 

shown in Figure 5-4 B. The distributions at pH 7.5 showed an obvious bimodal distribution of 

both collapsed and expanded species for both WT and E46K. This is not the case, however, at 

acidic pH. There is some heterogeneity present in the Rg distributions of the synuclein variants 

at pH 4.5, which can be fit as separate species. However, these ‘species’ are much closer in size 
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and don’t display the obvious collapsed or expanded conformations shown in the EOM data 

for synuclein variants at neutral pH.  

 

Figure 5-3. SEC-SAXS analysis of αSyn variants WT and E46K at pH 4.5. A) Scattering data of WT 
(blue) and PD familial mutant E46K (red) displayed in a conventional semi-logarithmic plot. B) 
Kratky plot of experimental data containing features of typical of an IDP with a continuous rise 
and an absence of a clear maximum peak. Plots in A) and B) are offset for clarity. C) and D) 
Guinier plots of E46K and WT αSyn fitted with a linear regression. Rg values were estimated 
from a Guinier approximation to be 36.5 and 34.9 Å for WT and E46K respectively. 

 

The EOM Rg distributions were fit to multiple Gaussians and the modal Rg values calculated 

(Table 5-1).  Both WT and E46K possess two similar Rg populations at around 30 and 38 Å. The 

WT protein has an extra expanded peak at 51.9 Å that is absent in E46K. This expanded peak is 

present at a higher population in both WT and E46K at pH 7.5. This data suggests that the 

collapse of synuclein upon acidification is due to the reduction in population of the expanded 

species.   
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Figure 5-4. EOM analysis of SEC-SAXS data at pH 4.5. A) log-log plot of scattering data with 
EOM fits (solid lines) for WT and E46K αSyn (blue and red respectively). B) EOM Rg 
distributions. The distributions for the random pool (solid line) and those from the EOM-
selected ensemble (dashed line) are shown.  

 

Protein 
variant 

Rg (Å) 

Peak 1 

Rg (Å) 

Peak 2 

Rg (Å) 

Peak 3 

Peak 1 % Peak 2 % Peak 3 % 

WT 30.8 38.0 51.9 44.0 31.7 24.2 

E46K 31.0 39.3 -  38.0 62.0 0 

Table 5-1. Data from EOM selected ensemble Rg distributions based on Gausian fits of EOM 
data. % peaks are calculated from the area of Gaussian fits. 

1.1.1.2 CD analysis at acidic pH 

Far-UV CD was carried out in order to interrogate structural changes of αSyn as a function of 

pH.  CD spectra were recorded for both WT and E46K (Figure 5-5 A and B respectively. At both 

pH 4.5 and 7.5, similar characteristic spectra are observed for WT αSyn of mostly unfolded 

polypeptide chains with an absence of bands in the 210-230 nm region for both proteins. 

There are, however, differences in the intensity of the spectra between neutral and acidic pH 

values for WT αSyn. There is an increase in negative intensity at around 222 nm at pH 4.5 

relative to pH 7.5, which may denote an increase in secondary structure at acidic pH. This has 

been reported previously for αSyn210.  

This gain in structure upon acidification was not observed for E46K (Figure 5-5 B). CD 

experiments were carried out in 20 mM Tris, 200  mM NaCl, pH 7.5 and 20 mM acetate, 200 

mM NaCl pH 4.5 (to mirror SMFS conditions used in this chapter, see below) and so the spectra 

don’t include wavelengths less than 205 nm due to significant noise in this region due to a high 

concentration of Cl- ions. These results suggest that E46K is resistant to secondary structural 

changes upon acidification whereas WT is not. The CD results presented in the previous 
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chapter showed that E46K may have an increased structure relative to WT at neutral pH. Taken 

together, these results suggest that E46K forms some structure at pH 7.5, and it may be 

possible that this structure doesn’t change with pH, unlike WT αSyn. These structural nuances 

may play a role in the difference in the aggregation propensities of the proteins and their 

corresponding association with disease progression/ severity. 

 

Figure 5-5. Far-UV CD spectra of WT αSyn and αSyn E46K at neutral and acidic pH.  A) Spectra 
of WT αSyn at pH 7.5 (light blue) and 4.5 (dark blue). The spectra are characteristic of a 
random coil structure typical of an IDP. The WT spectra show slight differences at pH 4.5, there 
is an increase in negative intensity at wavelengths around 222 nm which may suggest a gain in 
secondary structure upon acidification. B) Spectra of αSyn E46K at pH 7.5 (light red) and 4.5 
(dark red). The spectra are characteristic of a random coil structure typical of an IDP and are 
identical at the two pH values. The proteins were at 100 µM in 20 mM Tris 200 mM NaCl pH 
7.5, the same conditions as SMFS experiments (see below). The spectra are displayed from 205 
nm onwards as at lower wavelengths there is significant noise attributable to the high 
concentrations of salt in the buffer conditions. 

5.4.2 Aggregation of αSyn at different pH values 

Fibril growth assays were carried out on both WT and E46K αSyn under both neutral and acidic 

conditions (light and dark blue, respectively) (Figure 5-6). As discussed in the previous chapter, 

the aggregation of WT αSyn is significantly faster at pH 4.5 (lag time = 7.3 ± 0.5 hours) than pH 

7.5 (lag time = 52.4 ± 7.7 hours) (Figure 5-6 A).  This trend is less obvious for E46K (Figure 5-1 

B). Although the aggregation propensity is higher in acidic conditions (dark red) (lag time = 

13.2 ± 1.8 hours) relative to neutral conditions (light red) (lag time = 16.3 ± 0.6 hours), E46K is 

much less affected by a change in the pH than WT. These data reflects the same trend as 

observed in CD experiments shown above in that E46K is resistant to structural changes upon 

acidification of the pH whereas WT may gain some functional features upon this change in 

environment (Figure 5-5). It was also shown in the previous chapter that E46K possesses a 
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lower minimum value at around 222 nm suggesting more structure in the PD variant at neutral 

pH. This correlated with a higher aggregation propensity of E46K when compared to WT at pH 

7.5. This suggests that a gain in structure as shown by CD experiments caused by a charge 

mutation or change in pH is linked with increased aggregation.  

 

Figure 5-6. Aggregation of WT and E46K αSyn at neutral and acidic pH. A) and B) ThT fibril 
growth assays of 100 μM A) WT (blue)  and B) E46K (red) in either 20mM Tris 200 mM NaCl pH 
7.5 or 20 mM acetate, 200 mM NaCl pH 4.5, at 37oC and shaking at 600 rpm. Incubations at pH 
7.5 are shown as a lighter colour whereas incubations at pH 4.5 are shown with a darker 
colour. Colour coding is consistent throughout. Lag times are shown to the right of ThT plots. 
Average lag times are represented as filled circles, the mean lag time is at the centre of each 
circle. Error bars show SD. The data show a much stronger lag time dependency on pH in WT 
than in E46K. C) and D) Negative stain TEM images of aggregated structures at the end-point of 
ThT incubations. For both variants, fibrillar structures are observed at neutral pH whereas 
amorphous aggregates are observed under acidic conditions. E) and F) Fibril yields as assessed 
by SDS-PAGE densitometry analysis. The protein marker (PM) supernatant (S) and pelleted (P) 
samples are shown. Fibril yields for WT are 79 and 95 % at pH 7.5 and 4.5 respectively. Fibril 
yields for E46K are 85 and 92 % at pH 7.5 and 4.5, respectively.  

 

The fibril architecture as observed from negative stain TEM, shows fibrillar structures form at 

neutral pH for both WT and E46K, but, amorphous-like aggregates are predominantly observed 

for both protein variants at pH 4.5 (Figure 5-6 C and D).  A higher proportion of protein is 
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present in the insoluble, pelleted fractions for both WT and E46K in acidic conditions (95 and 

92 % for WT and E46K respectively) relative to neutral conditions (79 and 85 % for WT and 

E46K respectively) as assessed by SDS-PAGE densitometry analysis (Figure 5-6 C and D). Gel 

samples of the insoluble fractions reveal additional bands around monomer and dimeric 

molecular weight at acid pH which most likely are due to various αSyn truncations. The 

aggregation data taken together indicates that changing pH plays a significant role in the 

aggregation of both WT and E46K. 

5.4.3 SMFS studies reveal structured dimer at acidic pH 

5.4.3.1 Contour length collapse of WT at acidic pH 

The effect of acidic pH on the dimerisation of αSyn was then studied by SMFS. Experiments 

were carried out in 20 mM acetate, 200 mM NaCl pH 4.5 in the same manner as SMFS 

experiments carried out at neutral pH. The effect of pH on the dimerization of αSyn A140C in 

SMFS experiments is highlighted in Figure 5-7.  The modal LC distribution reduces from 29.5 nm 

at neutral pH to 23.5 nm at acidic pH. This may suggest that either the interaction region is 

changing (closer to the C-terminus in acidic conditions) or there is a change in conformation/ 

structure of the protein.  

As has been reported earlier in this chapter, the conformation and possibly structure of αSyn 

changes upon acidification of the pH. This is also well established in the literature as discussed 

in Section 1.5.2. Partial folding of αSyn upon a reduction in pH has previously been 

proposed210. It has also been shown using intermolecular PRE experiments that reduction of 

the pH induces a collapse of the highly acidic C-terminus220,221. This scenario would indeed fit 

with the pH dependent collapse of the LC highlighted in the SMFS data here. Moreover the RF 

for dimers are similar at both neutral and acidic pH, suggesting that the interaction is the same 

at both pH values, the collapse in the LC may therefore be attributed to a conformational 

change in the dimer.   
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Figure 5-7. SMFS experiments of αSyn A140C at physiological and acidic pH. A) Scatter plots of 
SMFS from αSyn A140C at pH 4.5 (dark blue) and pH 7.5 (light blue). The points were binned by 
a contour length of 5 nm and a rupture force of 7 pN. The data were normalised to the total 
number of approach-retract cycles in the experiment (totals: pH 7.5 = 10,000 and pH 4.5 = 
7500). Deeper colours denote higher frequency of events. A ‘hotspot’ is clearly present in the 
data for both conditions suggesting a specific single molecule interaction. The hit rate (HR) is 
shown inset for the combined triplicate experiments. B) LC and FR distribution histograms with 
the same colour coding as in A (bin size 5 nm and 7 pN for LC and FR, respectively) displayed as 
area plots with modal values from Gaussian fittings denoted inset. The data shows that the 
modal LC in acidic conditions (23.5 nm) is smaller than that at neutral conditions (29.5 nm). 
Similar FR values are observed at both pHs (49.5 and 49.9 pN for pH 4.5 and 7.5 respectively). 
C)  Box plots of LC (left) and FR (right) distributions showing the spread of the data. Whiskers 
show 5th and 95th percentiles. Median values are shown below the plot. Experiments were 
carried out at either 20mM Tris, 200 mM NaCl pH 7.5 or 20 mM acetate, 200 mM NaCl, pH 4.5. 

5.4.3.2 The effect on pH in different immobilisation regimes 

SMFS experiments were carried out using different immobilisation regimes as discussed above 

at lower pH (Figure 5-8) to gain more insight into the region interaction interface and any 

conformational rearrangement that may occur. The pH dependent collapse of LC (as discussed 

above) is only observed in the A140C immobilisation regime; A18C and A90C maintain the 

same modal LC value at both neutral and acidic pH (41.1 and 23.5 nm respectively). This 

suggests that the interaction region of the dimer remains the same at the different pH 

conditions, but that the LC collapse observed in A140C is due to a conformational change. 

Information can also be gained about the location of the proposed structure due to the fact 

that A18C and A90C are resistant to the pH induced collapse of the LC. As outlined in the 
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schematics in Figure 5-8 B, it can be hypothesised that there is some degree of structure 

induced by a drop in pH in the dimer in the C-terminal region of the protein. The interaction 

region is closer to the N-terminal relative to the region of proposed structure. The fact that the 

LC of A90C at pH 4.5 (23.5 nm) is the same as A140C in the same conditions (23.5 nm) suggests 

that almost the entirety of the C-terminal region of αSyn (residues 90-140) does not contribute 

to the LC at acidic pH. These data suggest that at least these residues are collapsed and form 

some structure at pH 4.5. It should be noted however that this structure is force-resistant as it 

doesn’t unfold when pulled from the C-terminus (A140C), it could be hypothesised, therefore, 

that the structure in this region is β-sheet structure.  

There is precedent from previous studies by other groups that αSyn does indeed undergo a pH 

induced collapse of the C-terminus as discussed previously220,221. These studies have analysed 

the monomeric species of the protein. It should be noted that the collapse proposed here is 

novel in that it has been proposed to occur within the dimeric species of αSyn.  

These experimental data can be compared to simulated LC distributions as carried out 

previously. The data from different immobilisation regimes in acidic conditions is showed 

overlaid with LC simulation data in Figure 5-2. The simulation data treats αSyn as a completely 

disordered chain, which, as discussed above, has been shown in this thesis not to be the case 

as there is evidence suggesting the formation of structure in the αSyn dimer. However, given 

that we are able to use the data here to propose the C-terminus as the location of structure in 

the dimer, we can interpret data from the A18C immobilisation as more accurately reporting 

on the interaction interface. This is highlighted in the schematic in Figure 5-8 B top panel. 

Given that the immobilisation is distal to the structured region, the observed LC may be used in 

parallel with the corresponding simulations to predict an interaction interface. This suggests an 

interaction region in residues 40-70. This is a novel region of proposed dimeric interaction 

located mostly in the N-terminal and interestingly, mostly not in the highly hydrophobic NAC 

region of the protein (residues 65-90). It is also interesting that this region contains all but one 

of the six familial PD mutations. SMFS experiments of E46K presented in the previous chapter 

revealed different LC distributions relative to WT which may also indicate the importance of 

this region. This novel interaction will be discussed in more detail in the next chapter in this 

thesis.  
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Figure 5-8. SMFS experiments of different αSyn Cys mutants using different immobilisation 
regimes in both neutral and acidic conditions. A) LC distribution histograms presented as area 
plots of αSyn immobilised using different regimes and modal values from Gaussian fits are 
shown. Box plots of LC distributions are shown inset. Whiskers indicate the 5th and 95th 
percentiles. Median values are shown below each plot. Data for conditions at pH 7.5 and 4.5 
are shown in light blue and dark blue respectively. Data for A18C, A90C and A140C are shown 
in top, middle and bottom panels respectively. The points were binned by a contour length of 
5 nm. B) Schematics of hypothesised dimeric interactions for each immobilisation regime 
(different rows) and at both neutral (light blue box, left column) and acidic conditions (dark 
blue box, right column). The interaction regions are shown in the schematic at red sections. A 
gain in structure upon lowering of the pH is proposed which results in a lowering of the LC for 
A140C, but not A18C or A90C.   

5.4.3.3 SMFS homologues at acidic pH 

SMFS experiments were also carried out on the human homologues of αSyn at acidic pH 

(Figure 5-9) in the same manner as those carried out at neutral pH in the previous chapter with 

proteins immobilised at their C-termini. As discussed previously, β- and γSyn are highly 

homologous proteins to αSyn, but, are not associated with PD and have a lower aggregation 

propensity and may not aggregate at all274,275. The data for β- and γSyn, as with WT is the sum 

of triplicate experiments. Each individual experiment for β- and γSyn consisted of at least 4 
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force maps of 500 approach-retract cycles. The overall number of approach-retract cycles for 

the experiment in triplicate was 9500 and 9500 for β- and γSyn, respectively. 

The results show that there is a similar pH induced reduction in the LC for both β- and γSyn. 

This shows that the pH induced structure is not limited to αSyn but also includes its human 

homologues and so is possibly due to the similarity in the gross properties of these proteins. It 

has been shown previously that a reduction in pH leads to a similar increase in structure and 

compaction in the synuclein homologues as observed for αSyn in studies on the monomeric 

proteins275.  This is reflected in the dimeric interactions presented here.  

The three proteins have similar gross properties to each other as they contain three domains 

as highlighted in Section 1.5.2 (Figure 1-14). The main differences between the proteins are an 

absence of a 12 residue stretch in the central NAC region in βSyn that is present in both α- and 

γSyn (as discussed in Chapter 1) and divergence at the acidic C-termini of the protein 

homologues. Importantly, the homologues dimerise at both physiological and acidic pH 

despite the absence of the central NAC region in βSyn. The fact that the dimerisation can still 

be observed and is similar suggests that this region doesn’t play a role in the association of the 

proteins observed in these experiments. The divergence in the C-termini of the homologues 

may explain some of the variations in the LC distributions between these proteins.  A reduction 

in the LC of γSyn at acidic pH can be observed, however, this homologue maintains a longer LC 

in acidic conditions (27.9 nm) than that of either α- or βSyn (23.5 and 22.2 nm respectively). 

This may be due to the shorter C-terminus of γSyn compared to either α- and βSyn. It has been 

hypothesised in this chapter that the pH dependent reduction in the LC of the αSyn dimer is 

due to the collapse of the acidic C-terminus. Given that γSyn has a shorter C-terminus but, 

maintains a longer LC than the other synucleins upon acidification supports this finding that the 

C-terminal forms some pH dependent structure. 
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Figure 5-9. LC distributions from SMFS data from C-terminal immobilised synuclein homologues 
at both physiological and neutral pH. Histograms of LC distributions are shown as area plots 
(bin width: 5 nm). Blue, grey and orange histograms show α-, β- and γSyn LC distributions in 
both neutral (light coloured histograms) and acidic (dark coloured histograms) conditions. 
Modal LC values from Gaussian fits are denoted inset. The collapse of the LC at acidic pH is clear 
in all three homologues. Box plots of LC distributions are shown (left-hand side). Whiskers 
represent the 5th and 95th percentile. Median values are shown below the plots. Experiments 
were carried out at either 20mM Tris, 200 mM NaCl pH 7.5 or 20 mM acetate, 200 mM NaCl, 
pH 4.5. 

5.4.3.4 SMFS E46K at acidic pH  

The effect of pH on the dimerisation of E46K was also investigated in SMFS studies (Figure 

5-10) in a similar manner to αSyn as discussed previously in this chapter. Each individual 

experiment for E46K consisted of at least 4 force maps of 500 approach-retract cycles. The 

data for E46K, as with WT is the sum of triplicate experiments. The overall number of 

approach-retract cycles for the experiment in triplicate was 8000. 
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The overall effect of decreasing the pH in SMFS studies of E46K is similar to that of WT αSyn 

(Figure 5-7). There is an obvious reduction in the LC of the dimeric interaction. The distribution 

of LC at pH 4.5 is very similar between WT and E46K with modal values of 23.5 and 20.9 nm 

respectively. This is despite the fact that there are obvious differences in the LC distribution 

between WT and E46K at neutral pH.  SMFS results suggest the dimerisation of E46K is 

different at acidic pH relative to physiological pH, this is despite the similar structural 

properties (Figure 5-5) and similar aggregation propensities (lag times: 13.2 and 16.3 hours in 

acidic and neutral conditions respectively) of the monomeric protein. The SAXS and EOM data 

(Figure 5-3 Figure 5-4) do however suggest a more collapsed conformation of E46K at lower pH 

in a similar manner to WT (SAXS data in neutral conditions is presented in Chapter 4). The FR of 

αSyn dimerisation is overall similar (Figure 5-10 B and C). However, at pH 4.5 there is a higher 

proportion of events with higher FR values (Figure 5-10 C) which may indicate an additional 

population of more avid dimers.  

The collapse of the LC upon acidification of E46K is consistent with WT and the synuclein 

homologues; this fact suggests that the interaction interface and the proposed structure in the 

dimer in these conditions are similar in E46K. In acidic conditions, the K46 residue will be 

protonated, the E46  will be ≈ 50% protonated (pKA of the E sidechain is 4.4) and so, it is logical 

that the dimerisation of these two variants will be similar in these conditions, but, show 

differences at neutral pH when E46 is protonated but the mutated K46 is not. It has been 

shown throughout this thesis that charge contributions play a significant role in the structure, 

conformation, aggregation and single molecule association of αSyn, these data therefore 

supports this observation.  
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Figure 5-10. SMFS experiments of αSyn E46K A140C at both physiological and acidic pH. 
A) Scatter plots of SMFS from αSyn E46K at pH 4.5 (dark red) and pH 7.5 (light red). The points 
were binned by a contour length of 5 nm and a rupture force of 7 pN. The data was normalised 
to the total number of approach-retract cycles in the experiment (total pH 7.5 = 9,000 and pH 
4.5 = 8000). Deeper colours denote higher frequency of events. A ‘hotspot’ is clearly present in 
the data from both conditions suggesting a specific single molecule interaction. The hit rate 
(HR) is shown inset for the combined triplicate experiments. B) LC distribution histograms with 
the same colour coding as in A) (bin size 5 nm) displayed as area plots with modal values from 
Gaussian fittings denoted inset. The data shows that the modal LC in acidic conditions (20.9 
nm) is smaller than that at neutral conditions (48.4 nm). C) Box plots of LC and FR distributions 
Whiskers represent the 5th and 95th percentile. Median values are shown below the plots. 
Experiments were carried out at either 20mM Tris, 200mM NaCl pH 7.5 or 20mM Acetate, 
200mM NaCl, pH 4.5. 

5.5 Discussion 

The results presented in this chapter have demonstrated several important findings about the 

dimerisation interaction of αSyn. Firstly, the novel use of LC simulations has been used in 

parallel with experimental data to reveal the presence of force resistant structure in the 

dimeric protein at physiological pH. Different immobilisation regimes were used in order to 

gain more information about the dimeric interaction. When analysed alongside LC simulations, 

the data reveal discrepancies in the proposed interaction region between different 

immobilisation regimes. This finding showed that the dimeric interaction of αSyn cannot be 

modelled by the simple interaction of two disordered monomers. There must be some 
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structure in the αSyn dimer and, moreover, this structure has to be force-resistant as there is 

an absence of additional unfolding events in the data.  

Furthermore, SMFS experiments in acidic conditions showed that the dimerisation interaction 

is different to that in physiological conditions. These data show a pH dependent collapse of the 

LC in acidic conditions. However, when the same experiments were carried out using different 

immobilisation points (A18C and A90C), the same collapse was absent. This suggested that the 

interaction region of αSyn at both physiological and acidic pH is the same but there is an 

increased level of collapse or structure in the dimer. Moreover, the data enabled some degree 

of localisation of the proposed structured region. The fact that the A140C interaction showed a 

pH dependent collapse whereas A18C and A90C did not allowed the proposal of a structured 

C-terminus in the dimeric species of αSyn in acidic conditions. The SMFS experiments indicated 

a modal LC value of 23.5 nm for A90C at pH 7.5, the same as A140C at pH 4.5. This suggests 

then that at least this region of the protein: residues 90-140 collapse in acidic conditions and 

don’t contribute to the LC value.  

The pH dependent formation of structure in the acidic C-terminus is supported by various 

studies of monomeric αSyn and biophysical data presented in this thesis. Intramolecular NMR 

PRE studies have shown that at acidic pH, the C-terminus is significantly more collapsed220,221. 

These studies also showed that this compaction extends into the NAC region. Here, we shown 

that pH induced structural formation doesn’t just effect the intramolecular conformation of 

monomeric αSyn but also causes changes in the structure of the dimeric protein. The data 

presented here is the first evidence of this.  

An interaction interface for the dimerisation of αSyn was proposed based on the SMFS for 

A18C. This immobilisation regime is distil to the proposed structure in the C-terminus of the 

protein. The experimentally observed LC distributions were therefore used in parallel with 

simulated values to suggest an interaction region from at residues 40-70. Given that the LC 

value doesn’t change between neutral and acidic pH for this immobilisation regime, it was 

proposed that this is the interaction region in both conditions. This is a novel region of 

proposed dimeric interaction located mostly in the N-terminus and interestingly, mostly not in 

the highly hydrophobic NAC region of the protein (residues 65-90). It is also interesting to note 

that this region contains all but one of the six familial PD mutations. The data from SMFS 

experiments on E46K provide further evidence that this is the site of the interaction interface 

as at pH 7.5, the dimerisation interaction of E46K is vastly different to WT suggesting this 

mutation disrupts the interaction interface. 



POSTULATING A PROTECTIVE DIMERIC INTERACTION 

160 
 

  



POSTULATING A PROTECTIVE DIMERIC INTERACTION 

161 
 

6 Postulating a protective dimeric interaction  

6.1 Abstract 

From the data presented in previous chapters, an interaction interface in the αSyn dimer was 

proposed to be present in the N-terminal region of the protein. The nature of the dimerisation 

interaction of αSyn is further explored in this chapter. SMFS and ThT aggregation assays were 

carried out in different ionic strengths and different salts. The results reveal that the dimeric 

interaction observed by SMFS is hydrophobically driven but the contributions of charge are 

critically important. Under conditions where an interaction is absent in SMFS studies, the rate 

of aggregation increases which offers more evidence that the interaction proposed here is 

protective to aggregation. Bioinformatics analysis of the αSyn sequence revealed aggregation-

prone stretches in the N-terminus which likely form part of the interaction interface and 

corroborate SMFS experiments in which this region is proposed to interact in the dimeric 

species of αSyn. The same analysis on synuclein homologues was carried out in which the 

same aggregation-prone regions of the N-terminus are revealed, further suggesting that the 

dimeric interaction, proposed to be driven by these regions, is protective to aggregation and 

may be a physiological interaction.  

6.2 Introduction 

As discussed previously in this thesis, a variety of information can be extracted from the LC in 

SMFS data. It was demonstrated in the previous chapter that using this information alongside 

simulated LC data, the postulation of novel dimeric conformations are possible. In turn, the 

presence of force-resistant structure in the dimeric species increases the difficulty of 

predicting the exact location of the interaction interface as both the force-resistant dimeric 

structure and the location of the dimeric interface contribute towards the experimentally 

observed LC data. By utilising different immobilisation regimes and analysing these in parallel 

with simulated LC data, an interaction region was proposed, which is located in the 

amphipathic N-terminus of the protein.  

Importantly, it was observed that dimerisation of synuclein homologues was also observed. As 

discussed previously the homologues are less aggregation-prone and not linked to PD274,275. 

There is literature precedent for this as all the synucleins have been shown to dimerise, 

however, this is not proposed to report on their respective aggregation propensity276. Given 

that the dimerisation interaction of the homologues and WT αSyn is similar in SMFS 

experiments, the interaction may not be one in which aggregation would be promoted, and 
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may therefore be proposed as a physiological interaction. The presence of physiological 

multimers of αSyn have been studied previously in cross-linking studies46,255-259 in which they 

have been showed to be protective to cytotoxicity. These physiological multimeric species 

were proposed to be mediated by the N-terminal region of the protein, specifically the KTKEGV 

imperfect repeat motives. Altering these repeats with PD familial258 or synthetic mutations46 

was shown to inhibit multimer formation and increase toxicity. Indeed, the localisation of all 

six known familial PD mutations in this region of the protein indicates its importance in the 

balance between health and disease.  

The importance of charge on the dimerisation interaction and aggregation of αSyn has been 

demonstrated in this thesis, pH, ionic strength and charge mutations have all been shown to 

play an important role. In this chapter, the effect of different ionic strengths and also a 

different salt in the Hoffmeister series, on the dimerisation and aggregation of αSyn, was 

investigated.  

6.3 Salt dependence of αSyn dimerisation 

6.3.1 SMFS experiments reveal different populations of dimeric 

interaction 

The effect of different ionic strength on the dimerisation of αSyn was investigated in SMFS 

experiments as described previously (Section 2.2.4). All SMFS experiments on full length αSyn 

in previous chapters were carried out in 200 mM NaCl. SMFS studies were also carried out at 

ten-times lower ionic strength at neutral pH (Figure 6-1). This was compared to the effects of a 

different salt, (NH3)2SO4, which is lower in the Hoffmeister series of salts and acts to ‘salt out’ 

proteins by increasing the contribution of hydrophobic interactions366. The data show that at 

physiological pH, altering the ionic strength and salt does not cause dramatic differences in the 

dimerisation of αSyn. However, there are some subtle differences in the data: in the presence 

of low ionic strength (NH3)2SO4, the distributions of both LC and FR become narrower than in 

other conditions. The width of the data were analysed by the full width at half maximum 

values (FWHM) of Gaussian fitted data. This may suggest that at other conditions, the data 

may contain contributions from different dimer populations. This goes some way to explain 

the large spread of the data observed at this pH throughout this thesis. In particular, the FR 

data in the presence of low ionic strength (NH3)2SO4 is much narrower than at other conditions 

with a FWHM of 15.9 pN compared to that of 43 pN for SMFS experiments carried out in high 

ionic strength NaCl. The modal Gaussian value is lower at 30.4 pN in low ionic strength 
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(NH3)2SO4 than the other conditions. The data suggests that there are contributions of dimeric 

interactions that occur at higher FR that are present in all salt conditions at pH 7.5, but, which 

are absent in  low ionic strength (NH3)2SO4. This suggests, therefore, that in these conditions 

αSyn dimerises by a more homogenous interaction, or that the interaction surface is the same, 

but, with a narrower range of dimeric conformations, this is shown in the more distinctive 

hotspots in the SMFS data (Figure 6-1 A far right panel).  

 

Figure 6-1. SMFS data of αSyn A140C under different salt conditions at neutral pH. A) Scatter 
plots of SMFS data carried out in different conditions denoted at the top of each panel. 
Concentrations denoted at the top of each panel are ionic strengths of the salt in the solution 
(experiments were carried out in 200 or 20 mM molar concentration of NaCl and 67 or 6.7 mM  
molar concentration of (NH3)2SO4). The points were binned by a contour length of 5 nm and a 
rupture force of 7 pN. The data were normalised to the total number of approach-retract 
cycles in the experiment. Deeper colours denote higher frequency of events. The hit rate (HR) 
is denoted inset. B) Histograms of LC distributions for each condition. The modal LC value from 
Gaussian fits are shown inset. The width of the data is shown via the FWHM value of the 
Gaussian fits and shown inset. C) FR distributions displayed in the same manner as LC data in B.  

 

The same series of experiments were carried out in acidic conditions to investigate further the 

importance of charge on the dimerisation of αSyn (Figure 6-2). SMFS experiments carried out 

in the previous chapter showed that at acidic pH, a characteristic pH dependent collapse of the 
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LC occurred. This is consistent with the data presented in Figure 6-2. Strikingly, at low ionic 

strength NaCl, the hit rate of dissociation drops and a hotspot in the scatter plot disappears 

suggesting that the dimerisation interaction is no longer formed in these conditions. However, 

when experiments carried out in the same ionic strength of (NH3)2SO4, a dimerisation 

interaction returns. These data suggest that the interaction is hydrophobically driven in that it 

is absent in a low ionic strength of NaCl, but present in the same ionic strength of (NH3)2SO4, a 

salt lower in the Hoffmeister series that strengthens the hydrophobic effect of proteins.  

 

Figure 6-2. SMFS data of αSyn A140C under different salt conditions at acidic pH. A) Scatter 
plots of SMFS data carried out in different conditions denoted at the top of each panel. 
Concentrations denoted at the top of each panel are ionic strengths of the salt in the solution 
(experiments were carried out in 200 or 20 mM molar concentration of NaCl and 67 or 6.7 mM  
molar concentration of (NH3)2SO4). The points were binned by a contour length of 5 nm and a 
rupture force of 7 pN. The data was normalised to the total number of approach-retract cycles 
in the experiment. Deeper colours denote higher frequency of events. The hit rate (HR) is 
denoted inset. B) LC distributions for each condition. The modal LC value from Gaussian fits are 
shown inset. The width of each distribution is shown via the FWHM value of the Gaussian fits 
and shown inset. C) FR distributions displayed in the same manner as LC data in B. LC and FR 
distributions in B and C for αSyn in low ionic strength NaCl (second column) are normalised to 
the distributions for those in high ionic strength NaCl (first column) in order to graphically 
show the absence of events.  
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At pH 4.5, αSyn is almost neutral (pI 4.7). It may be hypothesised that in these conditions, salt 

mediates a hydrophobically driven dimerisation interaction by shielding charges such as 

positive K residues. This would indeed have to be the case, if as proposed, the N-terminal 

region of αSyn was the location of a hydrophobically driven dimerisation interaction. This 

explains why an interaction would be observed in high NaCl but not in low NaCl but also why 

the interaction can also be observed at low ionic strength (NH3)2SO4 where the hydrophobic 

effect is more pronounced.  

The absence of interaction was validated via carrying out SMFS experiments on the same 

functionalised AFM tip and surface in the same experimental setup and simply changing the 

buffer conditions. This experiment is shown in Figure 6-3 and demonstrates that there is 

indeed an absence of dimerisation at low ionic strength NaCl but when the same 

functionalised tip and surface is incubated in higher ionic strength conditions, a distinctive 

hotspot appears in the data denoting the presence of a dimeric interaction.  

 

Figure 6-3. Scatter plots of SMFS experiments for αSyn A140C at different ionic strengths of 
both NaCl and (NH)3SO4 in acidic conditions. A) Scatter plots for SMFS experiments carried out 
in low ionic strength (20 mM) NaCl (first panel) and those carried out in high ionic strength 
(200 mM) NaCl (second panel). B) Scatter plots carried out in (NH3)2SO4 presented in the same 
manner as in A with the same ionic strength conditions used as in A. All scatter plots presented 
here were carried out in the same experimental set up with the same functionalised cantilever 
tip and silicon nitride surface in order to confirm the absence of events in low ionic strength 
NaCl. Arrows show the sequence in which the experiment was carried out. 
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6.3.2 Aggregation of αSyn reveal promotion of a protective interaction 

Aggregation assays were performed on αSyn in the various ionic strength and pH conditions 

used in the SMFS experiments as described in the previous section. Firstly, the aggregation 

kinetics at high and low ionic strength NaCl, conditions in which dimerisation events were 

absent and then reappeared respectively in SMFS experiments, were analysed (Figure 6-4). 

Interestingly, in conditions in which a dimerisation interaction is not observed in the SMFS 

experiments, the rate of fibril formation was more than twice as fast when compared to the 

same conditions with high ionic strength NaCl (2.2 ± 1.7 compared to 7.3 ± 0.5 hours). Both the 

aggregate yields and morphology were almost indistinguishable between the two conditions. 

Taken together with the SMFS data, this suggests that the interaction that is observed in SMFS 

studies is a protective to aggregation and offers more evidence that the interaction may be 

physiological. When this interaction can not be observed in SMFS studies, the aggregation rate 

speeds up suggesting that there is less competition from the proposed protective interaction 

and αSyn can go on to form interactions that are on pathway to aggregation.  

 

Figure 6-4. ThT aggregation assay of αSyn at different ionic strength NaCl in acidic conditions. 
A) ThT fibril growth assays of 100 μM αSyn in 20 mM acetate buffer pH 4.5 with either low or 
high ionic strength NaCl (20 or 200 mM in light and dark blue respectively). αSyn incubated in 
low ionic strength conditions has a faster lag time (2.2 ± 0.7 hours) relative to high ionic 
strength conditions (7.3 ± 0.5). B) Negative stain TEM images of aggregated structures at the 
end-point of ThT incubations colour coding is consistent throughout. Amorphous aggregates 
are observed in both conditions. C) Fibril yields as assessed by SDS-PAGE. The protein marker 
(PM) soluble (S) and pelleted (P) samples are shown. Fibril yields for both high and low salt 
conditions are identical at 76%. 
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The lag times determined from ThT aggregation assays for a variety of conditions are shown in 

Figure 6-5 and Table 6-1. Incubations at both acidic and physiological pH, in high and low ionic 

strength of both NaCl (Figure 6-5 A) and (NH3)2SO4 (Figure 6-5 B) were carried out on both WT 

αSyn and αSyn E46K. The lag time analyses reveal differences between the speeds of fibril 

formation in different conditions of the different αSyn variants. As discussed in previous 

chapters, reducing the pH has the general effect of increasing the aggregation rate 

(incubations carried out at neutral and acidic pH are represented by green and red data points 

respectively). At pH 7.5 in NaCl, the aggregation of WT αSyn is generally unaffected by a 

change in ionic strength. E46K in the same conditions, however, is significantly affected by 

changing ionic strength. The lag time for E46K is more than 3 times faster in high salt 

compared to low salt. This effect may occur in E46K as it is a charge mutation in an important 

N-terminal region of the protein which has been proposed in this thesis to be protective from 

aggregation. It can be proposed that an increase in salt concentration acts to generically 

increase aggregation by inducing a Hoffmeister salting out effect at high salt concentrations366, 

which, with a disrupted region than can no longer form a protective interaction, leads to an 

increased aggregation rate.  

As discussed previously, the rate of aggregation of WT αSyn is increased with decreasing ionic 

strength, under these conditions an interaction is also absent in SMFS studies. This indicates 

that the proposed protective, hydrophobic interaction requires a high ionic strength in order 

to shield charges and facilitate the formation of a protective dimer. The same trend occurs for 

E46K but at a much lower extent as there is a lower average lag time for this variant in low 

ionic strength NaCl, but, this is not significantly different from high ionic strength conditions. 

This may be due to the fact that at pH 4.5, the E46K mutant retains an extra positive charge in 

respect to WT at the same pH, the association of the protein may thus be less susceptible to a 

change in ionic strength. The aggregation rate for E46K is also slightly slower than that of WT 

under acidic conditions. It could be postulated, therefore, that the protective hydrophobic 

interaction in which charges have been proposed to play a key role, still forms in E46K slowing 

down the aggregation of the protein. Indeed at pH 4.5 in high salt, both E46K and WT show a 

similar dimerisation interaction (see previous chapter). 

The lag time analyses for synuclein variants in the presence of (NH3)2SO4 under neutral 

conditions retains a similar trend with similar lag times to those in the presence of NaCl (only 

WT at high ionic strength is significantly different between the salt types). This indicates that 
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the enhanced hydrophobic effect in (NH3)2SO4 does not play a significant role in the rates of 

aggregation. This may be caused by the protein possessing a highly negative charge at this pH.  

Conversely, in acidic conditions in the presence of (NH3)2SO4, the trends in the lag times are 

reversed in respect to the lag times recorded in the presence of NaCl. This indicates that 

enhancing the hydrophobic effect in these conditions plays a key role in the aggregation of 

αSyn variants. This may be because at pH 4.5, the protein is almost neutrally charged (pI 4.7) 

and so hydrophobic interactions are more important. The aggregation of the WT protein in 

these conditions at low ionic strength is significantly slower than in high ionic strength 

conditions. This could be because the protective hydrophobic interaction is promoted by 

(NH3)2SO4 in which the hydrophobic effect is strengthened. The interaction was proposed to be 

modulated by charged residues in the N-terminal region, these however, are minimised at pH 

4.5. The fact that this interaction in low ionic strength (NH3)2SO4, slows down aggregation, and 

causes the reappearance of a dimerisation event in SMFS experiments supports the hypothesis 

that a hydrophobically driven protective interaction is being observed in SMFS studies. The 

same trend can be observed for E46K in the same conditions, but, again to a lesser extent.  
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Figure 6-5. Lag time analysis from ThT aggregation assays of WT and E46K αSyn at 20 and 200 
mM ionic strength, NaCl or (NH3)2SO4 and pH 4.5 or 7.5. A) Incubations in the presence of NaCl, 
neutral (pH 7.5) and acidic (pH 4.5) conditions are shown in green and red respectively. 
Expansions of the lag times in acidic conditions are shown inset. Each incubation is as titled at 
the bottom of the figure labelled on the x-axis. Ionic strengths of NaCl are denoted. The 
centres of filled circles represent the average of at least 4 ThT incubations. Error bars 
represent SD. B) presented the same as in A, but showing lag times for incubations in the 
presence of (NH3)2SO4. Each incubation is as titled at the bottom of the figure labelled on the x-
axis. Ionic strengths of (NH3)2SO4 are denoted. 
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pH Protein 
variant 

Ionic strength 
(mM) 

Lag time 
(hours) 

pH Protein 
variant 

Ionic strength 
(mM) 

Lag time ± 
SD (hours) 

+ NaCl + (NH3)2SO4 

7.5 WT 200  52.4 ± 7.7 7.5 WT 200  37.1 ± 3.3 

20  61.5 ± 8.0 20  71.1 ± 17.4 

E46K 200  16.3 ± 0.6 E46K 200  24.3 ± 5.5 

20  50.9 ± 3.7 20  57.9 ± 14.0 

4.5 WT 200  7.3 ± 0.5 4.5 WT 200  4.8 ± 0.5 

20  2.2 ± 0.7 20  14.5 ± 3.0 

E46K 200  13.2 ± 1.8 E46K 200  5.4 ± 0.4 

20  11.0 ± 1.3 20  8.8 ± 1.9 

Table 6-1. Lag times determined from ThT assays in various conditions for both WT and E46K.  

6.4 Proposing a novel interaction region 

The bioinformatic tool Zyggregator was used to analyse the aggregation propensity of αSyn in 

different conditions. Zyggregator is an algorithm derived by Vendruscolo and colleagues 

determining the intrinsic amyloid aggregation propensities of proteins337-339. The algorithm 

takes into account the intrinsic physio-chemical properties of a protein or peptide sequence 

and their contributions to its amyloid propensity. It takes into account the hydrophobicity, 

charge and secondary structural propensity of a polypeptide. It also takes into account the 

existence of patterned regions of residues with alternating hydrophobic and hydrophilic 

residues that have been shown to influence strongly the aggregation process367. Regions of the 

polypeptide sequence that have a high aggregation propensity also influence the likeliness of 

amyloid formation338, therefore the algorithm takes into account intrinsic aggregation 

propensity in a seven residue sequence of the protein centred on a specific residue and this is 

carried out throughout the protein sequence. Residues that are considered “gatekeepers” are 

also taken into account. This term considers that if a hydrophobic sequence is flanked by 

charged residues its contribution to the aggregation propensity is much reduced by 

electrostatic repulsions339. Local structural properties are also taken into account in the 

algorithm as hydrophobic regions that are sufficiently unstructured increase the aggregation 

propensity368.   

The extrinsic effects of pH on the amyloid propensity are taken into account in the software 

and have been utilised in this section. The Zyggregator scores for both WT and E46K in neutral 

and acidic conditions are shown in Figure 6-6. A score of 0 in the sequence profiles indicates 

that the aggregation propensity is equal to that of a random sequence; a score of 1 indicates 
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regions which are one SD more aggregation-prone. There are three main aggregation-prone 

peaks in the αSyn and the PD mutant E46K sequence highlighted by shaded regions in Figure 

6-6. The highly hydrophobic NAC region is highlighted, as are two additional regions in the 

amphipathic N-terminal region labelled 1 and 2 in Figure 6-6. These peaks are centred on 

residues 39 and 51. This data offers further evidence that αSyn may be likely to form 

intermolecular interactions via the N-terminal region, so far not greatly implicated in the 

aggregation of the protein.  

This novel interaction has previously been proposed in this thesis. The data reveals that the 

aggregation-prone peaks in the N-terminal region are among the most pH dependent regions 

in the protein sequence. Neutral and acidic Zyggregator profiles (light and dark coloured 

respectively) are shown for both WT and E46K (Figure 6-6). At pH 4, the second peak in the 

profiles drop significantly. Taken with the data from SMFS studies in which the dimerisation 

interaction disappears in acidic conditions at low ionic strength (Figure 6-2 and Figure 6-3), this 

suggests that this region is crucial in the formation of a dimeric interaction observed in SMFS 

experiments. Data presented in previous chapters and in Figure 6-5 here, demonstrate that the 

rates of aggregation of αSyn at acidic pH are faster than those in neutral conditions. This may 

suggest that the balance of hydrophobicity in this region compared to the highly aggregation-

prone NAC region plays an important role in aggregation. In neutral conditions the Zyggregator 

scores of this region is higher and so more likely to form an intermolecular interface that is 

protective to the aggregation of the protein. It has to be noted however that the conformation 

of the monomeric protein and the dimeric species changes with pH and so may also play an 

important role in the aggregation propensity of αSyn. 

The pH dependency of region two in the Zyggregator plots also helps to rationalise SMFS 

carried out at different ionic strengths. At acidic pH, the fact that the dimerisation interaction 

requires high ionic strength NaCl conditions in order to form and be observed indicates the 

importance of charge in modulating this interaction (Figure 6-2 and Figure 6-3). This 

dependence on ionic strength is not present in SMFS experiments at neutral pH (Figure 6-1), as 

region 2 has a higher hydrophobicity in these conditions, and so is able to more readily form an 

interaction. The N-terminal region including peaks 1 and 2 denoted in Figure 6-6 is highly 

charged. The aggregation-prone peaks include and are surrounded by K residues that remain 

positively charged at acidic pH. High ionic strength NaCl would therefore aid in shielding these 

charges and mediate the formation of a hydrophobic interface. A lack of ionic strength 

dependence on the observation of the dimeric interaction also occurs in SMFS experiments 
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carried out in (NH3)2SO4 (Figure 6-2 and Figure 6-3). In these conditions the hydrophobic effect 

is strengthened and so N-terminal interactions are more likely to form even without charge 

shielding interactions taking place.   

 

Figure 6-6. Zyggregator plots of the WT (A) and E46K (B) αSyn sequences in neutral and acidic 
conditions. A) Zyggregator profiles for WT αSyn at pH 7 (light blue) and pH 4.5 (dark blue). B) 
Zyggregator profiles for E46K αSyn at pH 7 (light orange) and pH 4.5 (dark orange). Regions 
with high amyloid propensity are shaded with grey boxes and labelled 1, 2 and NAC. A score of 
0 in the sequence profiles indicates that the aggregation propensity is equal to that of a 
random sequence; a score of 1 indicates regions which are one SD more aggregation-prone. 

 

The Zyggregator scores of WT and E46K αSyn are compared in Figure 6-7. The main difference 

in the aggregation propensity in the two proteins is in the 2 N-terminal peak regions as 

highlighted previously. This is expected as the mutation is close to both these regions at 

residue 46 and the algorithm takes into account local regions of the protein such as the 

hydrophobicity of 7 residue segments as well as the contribution of charged gatekeeper 

residues are taken into account over longer regions of 21 residues. E46K causes a drop in 

aggregation propensity in peaks 1 and 2 at both acidic and neutral conditions. The effects that 

the mutation has on the profiles are subtle, but may contribute to the significant difference 

observed in the dimerisation of the proteins and also in their aggregation. The subtle drop of 

Zyaggregator score of these regions in E46K may lead to a reduction in the propensity of a 

proposed protective interaction in this region and may offer and explanation as to the 

different dimerisation interaction relative to WT observed in SMFS studies (Chapter 4).  
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Figure 6-7. Zyggregator plots of the WT and E46K αSyn sequences at pH 7 and 4. A) 
Comparison of Zyggregator profiles of WT (blue) and E46K (red) at pH 7. The plots are 
presented in the same way as in Figure 6-6 with shaded regions indicating the main sections 
with high aggregation propensity. B) Difference of Zyggregator profiles of WT (blue) and E46K 
(red) at pH 4. C) The ΔZyggregator scores for both WT (blue) and E46K (red) calculated by 
subtracting the Zyggregator scores at pH 7 from those at pH 4. In this way, a negative value 
shows a decrease in amyloid propensity at pH 4 relative to pH 7. The ΔZyggregator profiles 
indicate that E46K is less pH dependent than WT. 

 

The same bioinformatics approach was carried out on the synuclein homologues β- and γSyn 

(Figure 6-8). Very similar profiles were observed for the non-PD associated homologues as 

were previously observed for αSyn. The main features in the profiles are retained such as the 

presence of 2 N-terminal regions of high aggregation propensity as well as hydrophobic NAC 

regions in the centre of the proteins. The highlighted regions in Figure 6-8 are identical to 

those regions in αSyn (Figure 6-6 and Figure 6-7) for reference. Both the synuclein homologues 

(β- and γSyn) contain hydrophobic NAC regions which are generally less hydrophobic and 

shorter in length than αSyn, illustrating their lower aggregation propensity. The pH dependent 

reduction in the aggregation propensity of the N-terminal regions is also consistent in the 

homologues. The presence of N-terminal peaks in the homologues may suggest that the 
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interaction of these proteins are also mediated by the N-terminal region. Taken together with 

the fact that the dimerisation interaction observed by SMFS studies is similar between α-, β- 

and γSyn provides evidence that the interaction in αSyn is protective to aggregation. 

 

Figure 6-8. Zyggregator plots of synuclein homologues: β- (A) and γSyn (B). A) Zyggregator 
profiles for βSyn at both pH 7 (light grey) and pH 4 (dark grey). B) Zyggregator profiles for γSyn 
at both pH 7 (light grey) and pH 4 (dark grey). The same shaded areas showing high 
aggregation propensity of αSyn as shown in Figure 6-6 and Figure 6-7 are shown in the plots. 
These highlight the same regions of high aggregation propensity present in the synuclein 
homologues.  

 

The intrinsic hydrophobicity of αSyn and the dependence on pH was investigated by carrying 

out a different bioinformatics approach (Figure 6-9). The bioinformatics tool CamSol, an 

algorithm that has also been derived by Vendruscolo and colleagues369.  The CamSol method 

yields a solubility profile (one score per residue in the protein sequence) where regions with 

scores larger than 1 denote highly soluble regions, while scores smaller than -1 denote poorly 

soluble ones. CamSol profiles indicate that same peaks that were shown to have a high 

Zyggregator score are also have low hydrophobicity (negative peak in CamSol profile, Figure 

6-9). The same peaks are present in the synuclein homologues and E46K. CamSol profiles do 

not have a high dependence on pH unlike the Zyggregator scores shown previously (Figure 6-6 

and Figure 6-8).  
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Figure 6-9. CamSol profiles from synuclein variants at pH 7.5 and 4.5. WT αSyn, E46K αSyn, 
γSyn and and βSyn CamSol profiles are shown in A-D, respectively. Profiles for pH 7 and 4 are 
shown for all the variants in light and dark colours, respectively. Regions with scores larger 
than 1 denote highly soluble regions, while scores smaller than -1 poorly soluble ones. Regions 
of high hydrophobicity are highlighted in grey and are the same regions as for the Zyggregator 
profiles (Figure 6-6, Figure 6-7 and Figure 6-8). 

6.5 Discussion 

In this chapter, the nature of the dimerisation interface has been further explored. It has been 

shown that an interaction is dependent on the fine balance of hydrophobic and charged 

interactions. In previous chapters, SMFS studies of full length αSyn extended from different 

immobilisation points suggested that the interaction interface occurred in the N-terminal 

region of the protein and not in the central highly hydrophobic central NAC region. This was 

further supported by bioinformatics data presented in this chapter in which two predicted 

regions in the N-terminal region, close in proximity relative to each other, were identified as 

highly aggregation-prone. The data suggests that these aggregation-prone sections may indeed 

be able to interact, and taken together with observed and simulated LC data from SMFS studies 

suggest that these regions are most likely to form the intermolecular interaction interface in 

WT αSyn.  
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The contributions of charge and of different Hoffmeister salts were also explored in SMFS and 

aggregation experiments. The results shed light on the main properties that are driving the 

dimeric interaction that has been observed in SMFS studies. Under acidic conditions at low 

ionic strength NaCl, a dimeric interaction disappears relative to high ionic strength conditions 

(Figure 6-2 and Figure 6-3). This suggests that the interaction at this pH requires a high ionic 

strength in order to act as a charge screen. The Zyggregator profiles revealed that the 

interactions are most likely in regions of high amyloid-propensity in the N-terminal region. 

High ionic strength NaCl would therefore be required for this interaction to shield local charges 

in order to promote a hydrophobically driven dimerisation interface. Interestingly, aggregation 

assays reveal that in low ionic strength conditions where a dimerisation interaction is absent in 

SMFS studies, the rate of aggregation actually increases. This provides further support of the 

proposed hypothesis that the dimerisation interaction is in fact protective to aggregation. This 

hypothesis is corroborated by SMFS experiments carried out on the lower aggregation-prone, 

non-PD linked synuclein homologues presented in previous chapters. The Zyggregator data 

here show very similar profiles for the homologues in respect to αSyn. Importantly, 

Zyggregator peaks are also present in the N-terminal region of the synuclein homologues 

suggesting that their dimerisation is driven by the same regions of the homologues as for αSyn. 

The same peaks are confirmed in CamSol predictions revealing the high hydrophobicity of 

these regions (Figure 6-9).   

Experiments carried out in (NH3)2SO4 also suggest that the interaction is hydrophobically 

driven. At acidic pH with low ionic strength (NH3)2SO4, a dimerisation interaction is once again 

observed. (NH3)2SO4 is lower than NaCl on the Hoffmeister series and so strengthens the 

hydrophobic effect in proteins366. The reappearance of a dimerisation event highlights the fine 

balance between hydrophobicity and charges driving an intermolecular interaction of αSyn. 

The balance of charge and hydrophobicity and the contributions of each on dimerisation is 

summarised in Figure 6-10. 

A subtle fall in aggregation propensity of the N-terminal region in E46K may provide some 

explanation as to why the dimerisation interactions revealed by SMFS for this protein are 

significantly different (Chapter 4). It reveals the fine balance between intermolecular 

interactions in these regions, in that inhibiting the interaction by subtly reducing 

hydrophobicity in the N-terminal region, may alter the balance between a protective 

dimerisation interaction and an interaction that may promote aggregation in this disease-
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linked mutant. Modelled LC data for E46K in fact, located a wide interaction interface that 

extends into the NAC region.  

As discussed throughout this thesis, previous studies have suggested that physiological 

multimeric species of αSyn may exist and are protective to aggregation46,255-259. These studies 

also showed that by mutating important repeat motives in the N-terminal region, the area of 

αSyn that has been shown to form part of the dimerisation interface this thesis, multimeric 

interactions are perturbed and in cell models these mutants cause toxicity. Importantly, these 

studies support the data presented in this thesis that protective, possibly physiological 

intermolecular interactions of αSyn take place and they are driven by interactions in the N-

terminal region.  
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Figure 6-10. Schematic representation of the dimerisation interface in the N-terminal region 
(residues 1-60) of αSyn. Schematic of full length αSyn (top) with the N-terminal region 
highlighted (blue). Peaks 1 and 2 from Zyggregator (Figure 6-6) analysis are shown in grey. The 
top panel (red box) shows the interaction in the presence of NaCl. Interactions at pH 7.5 and 
4.5 are shown in the top and bottom boxes in this panel, respectively. Interactions at low (20 
mM) and high (200 mM) ionic strength are shown in left and right boxes, respectively. Charged 
residues are represented by grey plus and negative signs. The negative values attributed to E 
are absent at pH 4.5. Net charge of the N-terminal region are shown at the bottom right in 
each box. The charge increases from +5 at pH 7.5 to +10 at pH 4.5 due to neutralisation of E 
residues. Ticks and crosses in each box represent the presence or absence of dimerisation 
interaction observed in SMFS experiments. An interaction is absent in low ionic strength (20 
mM) NaCl, pH 4.5 as there is insufficient charge shielding for the highly positively charged 
protein region. The bottom panel (blue box) shows the interaction in the presence of 
(NH3)2SO4. The Zyggregator peak regions are shown in darker grey to represent the increased 
hydrophobic effect on these regions. Interactions are observed in conditions in which an 
interaction was absent in NaCl due to strengthened hydrophobic interactions. 
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7 Conclusions and future directions 

The conversion of normally soluble functioning proteins into intractable aggregates or amyloid 

has been the subject of intense research over recent decades as amyloid disorders represent 

some of the most debilitating diseases in the world at present. The aggregation of αSyn in the 

CNS causes several prevalent human diseases including PD, DLB and ALS amongst several 

others. Although the association of αSyn with PD was made 20 years ago181, the aggregation 

process is still not fully understood and, like other amyloid diseases, there are as yet no 

disease modifying therapies. It is therefore important to carry out studies in order to gain 

more fundamental knowledge regarding the properties of αSyn self-association. 

In this thesis, the intermolecular self-association of αSyn was interrogated on a single molecule 

scale primarily using SMFS. These experiments were carried out in parallel with various 

biophysical analyses in order to better understand the process of self-association. Utilising 

SMFS in this manner allowed the interrogation of the first association step in the complex 

association pathway. As it is not known where the toxic species lie on this pathway, it is a 

logical step to attempt to identify possible therapeutic targets.  

7.1 A display system for aggregation-prone peptides 

A SMFS technique was developed in this thesis which involved a novel display system in order 

to identify accurately, interactions of small aggregation-prone peptides on a single molecule 

scale. This would be impossible to achieve using a conventional AFM SMFS setup as 

interactions of the small peptides used (12 residues) would be obscured by noise that occur in 

force-distance plots proximal to the surface. Importantly, biophysical analysis confirmed that 

the engineered display constructs, mechanically strong pL with displaying peptides of interest, 

maintained the same structure which may otherwise affect SMFS experiments.  

This novel technique was utilised to study dimerisation on the single molecule scale of 

αSyn71-82, a region of αSyn shown to be both necessary and sufficient for aggregation204. DFS 

showed that the dimerisation interaction had a lifetime in the range of seconds (a 𝑘𝑜𝑓𝑓
0𝐹  of 0.18 

s-1 corresponding to a lifetime of 5.79 s). Comparable lifetimes, also on a seconds time scale, 

have been reported for the dimerisation of full length αSyn (4.00 s at pH 2.7 and 1.35 s at pH 

3.7)316. The finding that the lifetimes of full length αSyn and αSyn71-82 dimers are of comparable 

magnitudes suggests that residues 71-82 play a key role in the stability of dimeric species 

formed from the intact protein. However, it was shown in subsequent chapters in this thesis 

that this region so not part of the dimerisation interface of full length αSyn. It is possible 



CONCLUSIONS AND FUTURE DIRECTIONS 
 

182 
 

therefore that the avid interaction of the central NAC region revealed in Chapter 3 is shielded 

by other regions of the protein in the context of full length αSyn. 

Additionally, a novel heterodimeric interaction was identified between αSyn71-82 and the same 

region from the non-PD associated protein γSyn71-82 and validated by native MS techniques. 

The studies revealed that γSyn71-82 had an inhibitory role on the aggregation of αSyn71-82 

suggesting that this sequence plays a key role in the inhibition of aggregation observed in the 

full length proteins275. Moreover, SMFS and MS experiments suggested a similar dimerisation 

affinity of the αSyn71-82/ γSyn71-82 heterodimer to the αSyn71-82 homodimer. This allowed the 

proposal of a kinetic competition mechanism of inhibition similar to that recently reported for 

the inhibition of full length αSyn by βSyn. 

7.2 SMFS reveals dimerisation interaction of αSyn  

SMFS studies were also carried out on full length αSyn. The data revealed that dimerisation 

interactions could indeed be observed and analysed on the single molecule scale. SMFS hits 

were also observed under conditions in which dimerisation interactions have been previously 

reported to be absent at neutral pH316,318,319. This is most likely due to the difference in protein 

concentrations immobilised on AFM tips and surfaces (5 μM in this study compared to 19 nM 

in previous studies). The hit rate for αSyn dimerisation at pH 7.0 was reported to be 0.8 % by 

this group318 and not further analysed. It is likely, therefore, that interactions of αSyn were 

missed and not analysed in these studies at neutral pH. We have therefore presented the first 

SMFS of αSyn dimerisation under physiological-like conditions in this thesis. 

The dimerisation of an early onset familial PD mutant: E46K was also analysed throughout this 

thesis, the LC distributions showed significantly differences to WT at neutral pH. Biophysical 

analysis however, revealed very similar structural and conformational properties of WT αSyn 

and E46K with some subtle differences. Modelled LC data localised a wide interaction interface 

for E46K dimerisation that includes the NAC region (residues 60-130). The dimerisation 

interaction of E46K therefore, may report more clearly on an aggregation promoting pathway.  

7.3 Proposed novel dimeric structure of αSyn and its 

environmental dependence 

SMFS experiments were carried out in parallel with a LC simulation method. By comparing the 

experimentally observed data with simulated values, important information on the interaction 

interface and the conformational structure in the dimer was revealed. Different immobilisation 
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regimes were then used to yield more information about the dimer interaction. When LC data 

of αSyn under different immobilisation regimes were analysed in parallel with simulated 

values, there appeared to be a divergence of reported interaction regions. This offered 

evidence that that the dimerisation interaction cannot be modelled as two polypeptide chains 

lacking structure interacting and must therefore contain some structure. Importantly, in order 

for this structure to contribute to the LC values, it must be force resistant and therefore, it can 

be hypothesised that this dimeric structure is mechanically strong β-sheet in nature.  

Experiments carried out in acidic conditions revealed a pH dependence in the dimerisation of 

the protein. SMFS experiments showed that the LC became more collapsed (in A140C 

immobilisation experiments). Different immobilisation regimes in parallel with simulated LC 

values indicated that the location of the pH induced collapse was at the C-terminus. There is 

precedent from previous studies by other groups that αSyn does indeed undergo a pH induced 

collapse of the C-terminus as discussed previously220,221. These studies have analysed the 

monomeric species of the protein. It should be noted that the collapse proposed here is novel 

in that it has been proposed to occur within the dimeric species of αSyn. Acidic pH also cause 

the rates of aggregation to increase, the more compact structure of the dimeric species may 

therefore play an important role in increased aggregation propensity.  

The conformations of the αSyn dimer is of great relevance in physiological and pathological 

settings. Different pH environments are present in vivo to which αSyn is exposed. Specifically, 

the acidic environment of the lysosome (pH 4.5) which plays an important role in the cellular 

trafficking of αSyn in the endocytic pathway in the constitutive process of proteostasis331,332. 

The importance of lysosomal impairment in PD is supported by the identification of genetic 

associations between PD and Gaucher’s disease, the most common lysosomal storage 

disorder, which is caused by mutations in the gene encoding the lysosomal hydrolytic enzyme 

glucocerebrosidase365. Studies have shown that 5-10% of PD patients possess 

glucocerebrosidase mutations365. The self-association of αSyn at lysosomal pH is therefore 

highly relevant and important to study. 

7.4 Proposed novel interaction interface  

SMFS experiments on different immobilisation positions allowed the proposal of a novel 

dimeric interface in the amphipathic N-terminal region of the protein and not in the central, 

highly hydrophobic NAC region. It is also interesting to note that this region contains all but 

one of the six familial PD mutations. The data from SMFS experiments on E46K provide further 

evidence that this is the site of the interaction interface as at pH 7.5, the dimerisation 
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interaction of E46K is vastly different to WT which may suggest that this mutation disrupts the 

interaction interface.  

Bioinformatic analysis also supported the hypothesis of an interaction in the N-terminal region. 

The Zyggregator algorithm highlighted two highly aggregation-prone areas, other than the NAC 

region in the sequence of αSyn and both were localised in close proximity in the N-terminal 

region. The presence of the same regions in the synuclein homologues, which in SMFS studies 

have very similar dimerisation profiles, further suggest the interactions observed are driven by 

these regions. CamSol predictions showed regions of high hydrophobicity correlated with the 

high Zyggregator scores. 

7.5 Postulating a protective physiological interaction 

Various data in this thesis indicate that the interactions observed in SMFS experiments are not 

ones which promote aggregation and may therefore be protective.  Firstly, the dimeric 

interactions of non-aggregation-prone, non PD-linked synuclein homologues detailed by SMFS 

are very similar to those of αSyn. This idea is supported by previous studies in which all 

synucleins were shown to dimerise, but this interaction was not predictive towards 

aggregation276. Crosslinking studies have also showed that all three synucleins can exist as 

physiological multimers46,257, with very similar distributions of multimeric species. These 

studies indicate that the dimeric interaction being interrogated in SMFS studies may be in fact 

a physiological one and not necessarily one that is on-pathway or promotes pathological 

aggregation. This is further supported by the fact that the dimeric interaction for the PD 

familial mutation E46K revealed by SMFS showed significantly different LC distributions to that 

of WT αSyn. This mutant was also shown to disrupt protective multimeric interactions in cross 

linking studies and increased toxicity258. A recent in vivo study provided evidence to the 

physiological importance of regions in the N-terminal region370. This study showed that alleles 

of the major histocompatibility complex that are associated with PD recognise residues 31-46 

of αSyn. This indicates that when this “protective” region of αSyn is targeted by variants of the 

major histocompatibility complex, the protein can aggregate and this leads to PD.  

The presence of aggregation-prone stretches in the N-terminus of αSyn and its homologues, 

revealed by Zyggregator analysis as discussed above, led to the hypothesis that the 

interactions were driven by hydrophobic interactions in these regions. Interestingly, at acidic, 

low ionic strength conditions (20 mM NaCl), dimerisation events as viewed by SMFS are 

absent. Aggregation assays showed that in these conditions, the rate of aggregation of αSyn 

was actually increased which suggested that the dimeric interactions may be protective to 
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aggregation. Moreover, when the NaCl was substituted for a salt lower in the Hoffmeister 

series, (NH3)2SO4, the dimerisation interaction was once again observed. (NH3)2SO4 acts as a 

kosmotrope in that it increases the stability and structure of water-water interactions, it 

therefore, effectively strengthens the hydrophobic effect in the protein. It shows that the 

dimeric interaction is indeed hydrophobically driven. The aggregation of αSyn in these 

conditions is much slower which also supports the fact that this interaction is protective to 

aggregation. The fact that ionic strength also plays an important role in the dimerisation 

indicates that the interaction is more complex than simply driven by hydrophobic effect, but 

mediated by local electrostatics. This would therefore go some way to rationalising the 

differences in aggregation due to ionic strength, pH and charged mutations. 

A schematic representation of the possible dimeric interaction is shown in Figure 7-1. 

 

Figure 7-1. Schematic representation of one possible hypothesised mechanism of synuclein 
interactions. Schematic of the primary sequence of αSyn is shown at the top of the figure. The 
N-terminal region, NAC and acidic C-terminal are shown in blue, pink and red, respectively. 
Grey regions (residues 36-42 and 45-57) are regions with high Zyggregator scores. Colours are 
the same throughout. The top interaction schematic shows the possible physiological 
interaction of αSyn which is similar to the interactions of non-aggregation-prone synuclein 
homologues. The interaction is driven by hydrophobic stretches of the N-terminal region. E46K 
disrupts these interactions, increasing aggregation promoting interactions in the NAC region. 
This subsequently leads to increased fibril formation. The C-terminal region of the αSyn 
monomers in the dimeric species are shown as being structures. 
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7.6 Future directions 

The novel dimeric structure revealed in this thesis requires more study. The data presented 

here presents a coarse model as to the nature of a structured dimer and its dependence on 

environmental conditions. Further structural analysis of the dimeric species would be difficult  

given the probable transient nature of any dimeric interaction in this pathway, however it 

would be an important area to study given that the conformation of the dimer may play a key 

role in the shifting the protein population to a less or more aggregation-prone state. In order 

to carry out such studies, these interactions would have to be trapped, possibly by crosslinking 

techniques similar to the techniques used in the literature proposing multimeric interactions of 

αSyn46,255-259. This could also be an approach for structural studies to confirm the region of 

intermolecular interaction proposed here to be in the N-terminus of the protein. Importantly, 

in this thesis we have shed light on the nature of a proposed protective interaction and 

therefore have a more coherent and rational starting point to derive experimental conditions 

in which the protective interaction is promoted.  

Proposed here is some evidence of an interaction which may be protective to aggregation. 

However this has only been analysed in in vitro aggregation experiments. It would be 

important to study whether these interactions relate to reduced cytotoxicity and aggregation 

in vivo.  

7.7 Final remarks 

The data presented in this thesis has provided various novel insights into the initial 

intermolecular self-association events of αSyn. The data has suggested that the interaction 

observed is one of a protective, possibly physiological interaction that has varying degrees of 

force-resistant structure depending on the environmental conditions. If these conclusions and 

hypothesis are correct, there is a huge potential for targeting these novel events with 

therapeutics. Indeed, the only regulatory-approved drug that can slow the progression of a 

human amyloid disease (familial amyloid polyneuropathy, FAP) is Tafamidis60. In FAP, 

tetrameric species of TTR dissociate into misfolded monomers which leads to the formation of 

non-fibrillar and amyloid aggregates in the plasma371. Tetramer dissociation is the rate-limiting 

step and Tafamidis acts to bind and kinetically stabilise this species60,371-373. Exciting parallels 

can be drawn with this, the only example we have of a drug which slows amyloid progression, 

and with αSyn. If the interactions that have been proposed in this thesis are indeed protective 

and exist physiologically, the disease process could be targeted by promoting these 

interactions. 
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8 Appendix 

8.1 Protein and peptide sequences 

pL αSyn71-82 

MAMEEVTIKANLIFACGSTQTAEFKGTFEKATSEAYAYADTLKKDNGEWTVDVADKGGGARGSV

TGVTAVAQKTVGSARGGGYTLNFKFAGSGHHHHHH 

αSyn71-82 

pL γSyn71-82 

MAMEEVTIKANLIFACGSTQTAEFKGTFEKATSEAYAYADTLKKDNGEWTVDVADKGGGARGSV

SSVNTVATKTVGSARGGGYTLNFKFAGSGHHHHHH 

γSyn71-82 

pL GS  

MAMEEVTIKANLIFACGSTQTAEFKGTFEKATSEAYAYADTLKKDNGEWTVDVADKGGGARGSG

SGSGSGSGSGSGSARGGGYTLNFKFAGSGHHHHHH 

GS extension 

αSyn71-82 peptide 

VTGVTAVAQKTV 

pL γSyn71-82 peptide 

VSSVNTVATKTV 

αSyn A140C 

MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVT

NVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMP

SEEGYQDYEPEC 

A140C 
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αSyn E46K A140C 

MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKKGVVHGVATVAEKTKEQVT

NVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMP

SEEGYQDYEPEC 

E46K 
A140C 
 
βSyn A134C 

MDVFMKGLSMAKEGVVAAAEKTKQGVTEAAEKTKEGVLYVGSKTREGVVQGVASVAEKTKEQAS

HLGGAVFSGAGNIAAATGLVKREEFPTDLKPEEVAQEAAEEPLIEPLMEPEGESYEDPPQEEYQ

EYEPEC 

A134C 
 

γSyn D127C 

MDVFKKGFSIAKEGVVGAVEKTKQGVTEAAEKTKEGVMYVGAKTKENVVQSVTSVAEKTKEQAN

AVSEAVVSSVNTVATKTVEEAENIAVTSGVVRKEDLRPSAPQQEGEASKEKEEVAEEAQSGGC 

D127C
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