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Abstract 183 
Sharks are a diverse group of mobile predators that forage across varied spatial 184 
scales and have the potential to influence food web dynamics. Ecological 185 
consequences of recent declines in shark biomass may extend across broader 186 
geographic ranges if shark taxa display common behavioural traits. By tracking the 187 
original site of photosynthetic fixation of carbon atoms ultimately assimilated into 188 
muscle tissues of 5394 sharks from 114 species, we identify globally consistent 189 
biogeographic traits in trophic interactions between sharks found in different 190 
habitats. We show that populations of shelf-dwelling sharks derive a substantial 191 
proportion of their carbon from regional pelagic sources, but contain individuals that 192 
forage within additional isotopically diverse local food webs, such as those supported 193 
by terrestrial plant sources, benthic production and macrophytes. In contrast, 194 
oceanic sharks appear to use carbon derived from between 30 and 50 degrees of 195 
latitude. Global-scale compilations of stable isotope data combined with 196 
biogeochemical modelling generate hypotheses regarding animal behaviours that can 197 
be tested with additional methodological approaches. 198 
 199 
Introduction 200 
Sharks are one of the most speciose groups of predators on the planet and can be found 201 
over a broad range of habitats in every ocean 1. Globally, population declines have been 202 
reported in many species of sharks, largely due to fishing pressures and habitat degradation 203 
over the last century 2-4. However, the impacts of these declines on broader ecosystem 204 
structure and function remain uncertain 5-11. Global-scale ecological consequences from 205 
declining shark numbers are likely and may be apparent if shark taxa perform broadly 206 
similar functions across different regions and habitat types, such that local effects scale 207 
across wide geographic regions. In marine systems, the impact of an individual on the 208 
wider ecosystem is strongly influenced by trophic interactions 12. Thus, the composition 209 
and spatial origin of diet plays an important part in shaping the ecological roles of 210 
individuals, species, and functional groups. Here, we use the term ‘trophic geography’ to 211 
refer to spatial aspects of feeding and nutrition. Broadly quantifying the trophic geography 212 
of marine consumers is particularly challenging, because the spatial and temporal scales 213 
over which individuals forage can extend for thousands of kilometres and over months to 214 
years. Nevertheless, trophic geography provides critical information on how food webs are 215 
structured and the biological connectivity of ecosystems.  216 
 217 
Extensive use of stable isotope analysis in localised studies of marine food webs has 218 
provided a wealth of published information on trophic ecology across broad geographic 219 
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regions, and numerous ecosystems within those regions. Of particular utility, the stable 220 
isotopic composition of carbon (δ13C) in marine food webs provides spatial and trophic 221 
information on nutrient and biomass residence and translocation, because of the 222 
predictable variation in δ13C values with latitude and among different primary production 223 
types, such as phytoplankton (-24‰ to -18‰), macrophytes (-27‰ to -8‰), and 224 
seagrasses (-15‰ to -3‰) 13-15. The carbon stable isotope composition of primary 225 
producers is directly assimilated by consumers through feeding, and provides a 226 
biochemical tracer linking a consumer to the basal source of carbon and/or latitudinal 227 
origin of the food webs that support tissue growth 16. The extent of fractionation of carbon 228 
stable isotopes during photosynthesis by algal phytoplankton varies strongly with latitude, 229 
and to a lesser extent with dissolved nutrient contents, due to temperature and latitude-230 
dependent variation in variables such as cell size, growth rates and the concentration and 231 
isotopic composition of dissolved CO2 

14,17. The stable isotopic composition of algal 232 
phytoplankton has been simulated using isotope-enabled biogeochemical models 17, 233 
providing global-scale predictions of latitude-dependent variation in δ13C values.  Stable 234 
isotope data can thus be used as an indicator of the latitudinal origin of carbon assimilated 235 
by mobile marine consumers, providing insight into cross-ecosystem foraging without the 236 
need to directly track movements of individual animals 13,16. Sharks assimilating food 237 
fuelled by primary production source(s) in one region but captured in an isotopically 238 
distinct second region should exhibit anomalous isotopic compositions compared to 239 
primary producers in the capture location. Here, we compare latitudinal trends in δ13C 240 
values observed in muscle tissues of sharks found on continental shelves, open oceans, and 241 
deep-sea habitats, with those predicted for phytoplankton in the known capture locations to 242 
establish global patterns of trophic geography in sharks. 243 
 244 
We compile a global-scale database of δ13C values of white muscle tissue from 5394 245 
individual sharks from 114 species associated with continental shelves (neritic waters 246 
<200m in depth), oceanic (open-ocean waters but mainly occurring <200m) and deep-sea 247 
(continental slopes and seamounts ≥200m) habitats (Supplementary Table 1, Figure 1). We 248 
compare observed shark δ13C values (δ13CS) to biomass-weighted annual average δ13C 249 
values predicted for phytoplankton (δ13CP) within biogeographically distinct ecological 250 
regions (Longhurst Biogeographical Provinces) corresponding to shark capture locations 251 
(Figure 2). We test the null hypothesis that sharks feed exclusively within the 252 
phytoplankton-derived food webs of their capture locations by comparing the observed 253 
and predicted latitudinal trends in δ13C values. Capture location δ13CP values are calculated 254 
from a carbon-isotope-enabled global ocean-ecosystem model (17, Figure 1). Global-scale 255 
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isoscapes are not available for sources of marine production other than phytoplankton, thus 256 
we cannot discount the possibility that all sources of production show consistent latitudinal 257 
gradients in δ13C values. However, the isotopic offset between phytoplankton, seagrass, 258 
macrophytes and benthic production varies substantially between sites 16. Furthermore, 259 
variables such as cell size, growth rates and dissolved CO2 concentrations, have less 260 
influence on the δ13C values of alternative marine production sources 14. We therefore 261 
expect that δ13C values of alternative primary production sources will vary more at the 262 
local level, and varying contributions of different production sources within shark food 263 
webs will predominantly influence the variance seen in shark δ13C values. A detailed 264 
description of the considerations and rationale behind the isotopic comparisons are given 265 
in the supplementary material. 266 
 267 
Results 268 
Carbon isotope values of shark muscle (δ13CS) co-vary negatively with latitude for oceanic 269 
and shelf sharks, but the relationship between latitude and δ13CS values differs among 270 
habitats (Figure 2). In continental shelf waters, latitudinal trends observed in shark muscle 271 
were similar to those estimated from biochemical models. The observed rate of change in 272 
δ13C values per degree of latitude was -0.11 for sharks and -0.13 for plankton, although 273 
these rates were statistically distinguishable (ANCOVA F11.864, p=0.0006). 274 
 275 
The average isotopic offset between plankton and shelf sharks (the difference in intercept 276 
values between the best fit linear regressions) is 4.6‰, close to the expected trophic offset 277 
of 4.5‰, given that the median trophic level for sharks is estimated at 4.1 18, and the mean 278 
isotopic difference between sharks and their prey, i.e. trophic discrimination factor for 279 
δ13C, is 1.1‰ (Supplementary Table 2). Best-fit generalised additive models (GAMs) 280 
indicate that the largest amount of deviance in δ13CS in shelf sharks is explained by latitude 281 
(42.0%), with very little effect of shark size (3.1%), and a combined explanatory deviance 282 
of 46.7% (Supplementary Table 3). Regional biogeography among continental shelf sharks 283 
are not ubiquitous though, and across all latitudes, the range of δ13CS values within a given 284 
single-species population of shelf sharks is higher than that of oceanic or deep-sea sharks 285 
(Figure 2).  286 
 287 
Conversely, while oceanic and shelf sharks were sampled from a similar latitudinal range, 288 
the observed latitudinal trends in δ13CS values from oceanic sharks are less steep than those 289 
predicted for phytoplankton from the corresponding Longhurst Biogeographic Province 290 
(ANCOVA: F205.63, p<0.001; Figure 2). Irrespective of capture latitude, the observed range 291 
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of δ13CS values in oceanic sharks was small (-17.22 ± 0.99‰) across the sampling range. 292 
The lack of covariance of δ13CS with latitude suggests oceanic sharks assimilate the 293 
majority of their carbon from a relatively restricted latitudinal range, although temporal 294 
differences in habitat use and δ13C values of prey coupled with relatively slow isotopic 295 
turnover rates of muscle in elasmobranchs could potentially mask variability driven by 296 
latitude (discussed further in supplementary methods). Best-fit GAM models indicate that 297 
only 20.2% and 4.8% of the deviance in oceanic shark muscle isotope values is explained 298 
by latitude and shark size, respectively (Supplementary Table 3).  299 
 300 
Despite the concentration of deep-sea samples from the North Atlantic, latitudinal trends 301 
in δ13CS for deep-sea sharks do not co-vary with latitude (R2 = <0.001, p = 0.314) or with 302 
δ13CP (ANCOVA: F1581.9, p<0.001; Figure 2), displaying patterns similar to those seen in 303 
oceanic sharks. Body size explained 25.3% and depth of capture 17.6% of the deviance in 304 
carbon isotope compositions of deep-sea sharks (Supplementary Table 3), which implies 305 
that their trophic ecology is strongly depth and size-structured, consistent with other fishes 306 
from continental slopes 19. 307 
 308 
Discussion  309 
Carbon stable isotope compositions estimated from phytoplankton and those measured in 310 
shelf sharks (δ13CS) express similar latitudinal trends. The observed similarity in latitudinal 311 
isotopic trends between phytoplankton and sharks is consistent with our null hypothesis 312 
that shelf shark populations are supported primarily by phytoplanktonic production close 313 
to their capture location.  314 
 315 
Shelf sharks display relatively high intraspecific variability in carbon stable isotope 316 
compositions compared to oceanic and deep-sea populations (Figure 2). Thus while 317 
population median isotopic compositions imply that the bulk of food assimilated by shelf 318 
sharks is supported by phytoplankton production, it appears that individuals within 319 
populations assimilate nutrients from a range of isotopically-distinct sources. Shelf, and 320 
particularly coastal, ecosystems provide access to a wider diversity of ecological and 321 
isotopic niches than oceanic ecosystems, including food webs supported by seagrasses, 322 
benthic production, macroalgae and coral 13,20. In most shelf habitats, pelagic 323 
phytoplankton yields more negative δ13C values than alternative carbon sources 13.  324 
Foraging within alternative, more isotopically positive, coastal food webs will tend to 325 
produce less negative δ13C values than predicted based on local phytoplankton. We infer 326 
that at the population level, shelf sharks act as generalist predators, but populations of at 327 
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least some of those species are composed of specialist individuals that forage within 328 
distinct food webs during the timescale of isotopic turnover (likely 1-2 years 21).  The 329 
range of δ13CS values observed within populations of shelf sharks is greater in latitudes 330 
lower than around 40 degrees (Figure 2), potentially indicating greater reliance on food 331 
webs supported by a range of non-phytoplankton based resources such as seagrasses and 332 
coral reefs in less productive tropical settings. These hypotheses related to the range of 333 
primary production sources fuelling shark populations could be further tested using 334 
essential amino acid carbon isotope fingerprinting 22. 335 
 336 
Pairing stable isotope analysis with more traditional habitat use methodologies could 337 
improve the resolution of shark behaviour on continental shelves.  Tracking studies 338 
demonstrate that while spatial residency and/or repeated return-migrations (philopatry) are 339 
common traits among sharks that use continental shelves, some species are capable of 340 
undertaking large oceanic migrations (e.g. white and tiger sharks), and philopatry is still 341 
under investigation 23. Some species, identified a priori here as shelf sharks (i.e. tiger, 342 
white, bull sharks etc.), use multiple habitats and undertake offshore migrations in excess 343 
of 1000 km 24. The isotopic compositions of sharks classified as mixed habitat species 344 
diverge in latitudes lower than 35° (Figure 2). Among studies of species capable of 345 
utilising multiple habitats, the majority of populations surveyed displayed δ13C values 346 
more consistent with obligate shelf sharks than oceanic sharks (Supplementary Figure 2). 347 
This suggests that while some shelf shark species may be highly migratory, the carbon 348 
supporting tissue growth is largely assimilated from foraging within shelf areas.    349 
 350 
In contrast to shelf sharks, stable carbon isotope compositions of oceanic sharks and local 351 
phytoplankton do not co-vary, and oceanic shark populations sampled within these studies 352 
show similar carbon isotope values across all reported capture latitudes (Figure 2). The 353 
limited isotopic variability seen in oceanic sharks could reflect either derivation of the 354 
majority of nutrients from a restricted latitudinal range, or extensive foraging across large 355 
latitudinal gradients to produce a consistent average value. In both cases consumption of 356 
carbon with relatively low δ13C values (i.e. from higher latitudes) is needed to explain the 357 
relatively 13C depleted values seen in sharks caught at low latitudes. Oceanic sharks are not 358 
commonly found in latitudes greater than c.50° N or S 25, limiting the potential to balance 359 
diet sources with more positive δ13C values. We therefore infer that the majority of carbon 360 
assimilated was relatively 13C depleted and is consistent with phytoplankton-based food 361 
webs (including mesopelagic food webs) from intermediate latitudes between c.30-50 362 
degrees from the equator. The uncertainty surrounding the predictions of baseline δ13CP, 363 
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capture locations, and isotopic turnover rates limit our ability to identify preferential 364 
foraging latitudes. Oceanic sharks could also potentially be intercepting migratory prey 365 
that has originated from a restricted latitudinal range, such as squid 26. Regardless of the 366 
mechanism(s), our data imply that intermediate latitude areas may provide globally 367 
important sources of energy and nutrients for the oceanic shark populations sampled in 368 
these studies.  369 
 370 
Our inferences of regionally-restricted foraging areas are consistent with latitudinal trends 371 
in oceanic productivity and satellite telemetry studies of several oceanic shark species 27,28. 372 
Pelagic ecosystems at intermediate latitudes are typically characterized by strong thermal 373 
gradients that act to concentrate ocean productivity in frontal and eddy systems 374 
(Supplementary Figure 3) which subsequently attract and support oceanic consumers 375 
including cetaceans, fishes, seabirds and marine turtles 27,29,30. Tracking data from some 376 
oceanic shark species show high residency within intermediate latitudes 28,30,31, and our 377 
interpretation of the stable isotope data supports these predictions of centralised foraging 378 
locations. Migrations away from productive foraging grounds may provide optimal habitat 379 
for behaviours such as breeding, pupping, and avoiding intraspecific competition and 380 
harassment 28,32. Oceanic sharks have distributional ranges spanning ocean basins 33. 381 
Therefore, recognising that most of the carbon assimilated into their muscle tissues is 382 
derived from photosynthesis occurring in a relatively limited latitudinal region highlights 383 
the global importance of regional food webs. More observations of oceanic sharks and/or 384 
potentially migratory prey from tropical waters are required to test our hypotheses of 385 
centralised foraging. 386 
 387 
Similar latitudinal isotopic gradients are observed between oceanic and deep-sea sharks, 388 
which may imply a shared nutrient resource supporting sharks in both habitats 389 
(Supplementary Figure 4). Deep-sea sharks rely on the vertical flux of nutrients derived 390 
mainly from surface phytoplanktonic production 19, and may therefore be expected to 391 
closely track the stable isotopic composition of surface production. However, the 392 
concentration of deep-sea shark samples from the North Atlantic Ocean (74%) make it 393 
difficult to determine the tropho-spatial dynamics of this group, because the ameliorating 394 
effects of the Gulf Stream suppresses latitudinal variation in δ13CP (Figure 1). Latitudinal 395 
trends are further complicated by the strong effect of body size and depth (Supplementary 396 
Table 3), whereby some species of deep-sea shark express bathymetric segregations by 397 
size 34. While movement data for most deep-sea shark species is limited, some larger 398 
species undertake long-distance migrations possibly linked to ontogeny, but may also 399 
undertake diel vertical migrations linked with foraging 35,36. More research is needed to 400 
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fully understand the trophic geography of deep-sea sharks and their functional roles in 401 
deep-sea ecosystems. 402 
 403 
Concluding Remarks 404 
Nearly a quarter of all chondrichthyan species are evaluated as threatened on the IUCN 405 
Red List of Threatened Species, raising concerns on the future of many populations and 406 
the resulting effects such declines may have on ecosystem function 2,4,7,37. Concurrent 407 
declines in species with shared trophic geographies help identify common risks associated 408 
with fishing or climate change. While it is beyond the scope of this study, and these data, 409 
to predict the effects of further removal of sharks from the oceans, we generate questions 410 
that warrant further investigation, specifically (1) many shark species foraging in shelf 411 
environments are typically classed as generalist consumers, but our data suggest that 412 
populations are commonly comprised of individuals that forage in distinct food webs 413 
supported by a range of different carbon sources. Such behavioural specialisation within 414 
generalist populations could in theory reduce within-species competition by partitioning 415 
resources and habitats, but the role of individual specialisation in regulating shark 416 
population densities is unclear. (2) Oceanic sharks appear to predominantly forage on 417 
carbon resources from a restricted latitudinal range in sub-tropical regions characterised by 418 
relatively high productivity. We hypothesise that sharks migrate away from highly 419 
productive regions into warmer waters to engage in alternative behavioural strategies such 420 
as reproduction, but the mechanisms and drivers underpinning latitude-restricted foraging 421 
in oceanic sharks remain unknown. Global patterns of trophic geography in other large 422 
mobile marine predators are generally unknown, but may reveal the role mobile animals 423 
play in distributing nutrients and connecting ecosystems across the global ocean, and help 424 
to predict population responses to changes in local productivity.  425 
 426 
We have provided evidence suggesting that on a global scale, sharks typically forage 427 
within spatially restricted, regional seascapes. Conservation of shelf marine environments 428 
is increasingly addressed through the creation of marine protected areas (MPAs) 38. MPAs 429 
may be effective measures for protecting locally-resident shelf shark species, providing 430 
they encompass the range of adjacent habitats and core areas utilized by these shark 431 
populations 39,40. Although the distributional ranges for most oceanic sharks are expansive, 432 
core intermediate latitudes appear to be important for the provision of nutrients and 433 
energy. Productive intermediate latitudes are also targeted by pelagic fisheries, which 434 
increase the susceptibility of oceanic sharks to exploitation 28. Establishing management 435 
and protective strategies that encompass all critical habitats utilised by a species is 436 
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complex. However, our results suggest that oceanic sharks may benefit from global 437 
strategies that mitigate deleterious impacts on intermediate-latitude food webs and from 438 
fishing practices that minimise shark mortality in these areas 27,28.  439 
 440 
Electronic tagging has revolutionized shark spatial ecology, providing detailed records of 441 
the movement of individual animals 23,30. Tracking the movement of nutrients can 442 
compliment information on individual animal movements by providing a link between the 443 
presence of an animal in an area and the importance of that area for provisioning, 444 
enhancing our knowledge of the extent and scale of connectivity between oceanic habitats. 445 
Locating ecologically-relevant provisioning areas may also assist effective design and 446 
placement of marine protected areas, particularly in open ocean and deep-water habitats. 447 
 448 
Methods 449 
Raw carbon stable isotope data (bulk tissue δ13C values) were compiled from 54 450 
publications and 7 unpublished datasets yielding measurements from 5602 individual 451 
sharks of 117 species. Where possible, information such as location, body size, sample 452 
size, lipid extraction method, and date were reported. The majority of studies were only 453 
able to provide a general area of capture and the mapped locational assignment was taken 454 
as the median of the latitudinal and longitudinal ranges of these areas. Likewise, some 455 
studies sampled landing docks so were only able to provide the area of that landing dock. 456 
The locations provided by these studies were of the landing docks and it was assumed that 457 
fishers were catching sharks in waters in the vicinity of the landing port. Species habitat 458 
preferences were categorised using published information from their prospective papers 459 
(Supplementary Table 1) and on the advice of the corresponding authors. Species that had 460 
multiple habitat descriptions were classified as shelf sharks. Examples of this are 461 
Hexanchus spp, which are classified here as shelf sharks (n=198). Although typically 462 
quoted as deep-sea sharks, all species in this study occur consistently over the shelf so 463 
were not considered as obligate deep-sea shark species.  464 
 465 
Samples from two plankivorous species (Rhinocodon typus: n = 26; 41,42, Megachasma 466 
pelagios: n=2; Wyatt unpublished), from ecotourism provisioning sites (Carcharhinus 467 
perezii; n = 23; 43), and from a riverine study (Carcharrhinus leucas; n = 125; 44) were 468 
excluded as the study focuses on marine predators under natural conditions. Within the 469 
studies comprising the dataset, five chemical treatments were used (none: n = 2386; water 470 
washed: 1407; 2:1 chloromethanol: 748; cyclohexane: 696; and petroleum ether: 157). 471 
Tests for lipid extraction effects were not significant and it is assumed that any effect 472 
associated with chemical pre-treatment methods are spatially averaged across the data. 473 
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Samples with a C:N ratio greater than 10 were removed as it is highly unlikely that the 474 
δ13C value of these samples represents muscle protein. A further 314 samples with C:N 475 
ratios ranging between 4-10 were subjected to mathematical correction for lipid influences 476 
on δ13C values 45. All other values were used under the assumption that published values 477 
were representations of true isotopic composition of muscle protein. The data compiled 478 
will form the “Chondrichthyan Stable Isotope Data Project” and we invite the utilisation of 479 
these data and addition of new data to help build on the global geographic trends observed 480 
here.  481 
 482 
For each major ocean, annual mean sea surface temperature (SST) and chlorophyll a 483 
concentrations (Chl a) were derived from the moderate-resolution imaging 484 
spectroradiometer (MODIS) 9km AQUA night time sea surface temperatures and 9km 485 
MODIS AQUA CHL-a concentration data (NASA Oceancolor) for the median sampling 486 
year for the shark data, 2009 (Supplementary Figure 3). Environmental data extraction was 487 
constrained to oceanic waters within areas highlighted on the map (Supplementary Figure 488 
3).  489 
 490 
δ13C baseline predictions 491 
A mechanistic model predicting the spatio-temporal distribution of global δ13C values of 492 
particulate organic matter (δ13CP) was used to interpret shark isotope data 17. Briefly, the 493 
model estimates δ13C values in phytoplankton from ocean carbon chemistry, 494 
phytoplankton composition and phytoplankton growth rate variables output from the 495 
NEMO-MEDUSA biogeochemical model system at 1 degree and monthly resolution. 496 
Biomass weighted annual average phytoplankton δ13C values together with associated 497 
spatial and temporal standard deviations were averaged across Longhurst Biogeochemical 498 
Provinces (Figure 1). Model-predicted baseline δ13C values were then inferred for the 499 
capture location for each individual shark data point.  500 
 501 
Mathematical models 502 
The relationship between latitude and carbon stable isotope composition for both 503 
phytoplankton (δ13CP) and shark muscle (δ13CS) was modelled using linear regression 504 
(Figure 2, Table 1). For phytoplankton, we recovered the median and standard deviation of 505 
annual average δ13CP values simulated within each Longhurst Province with a 506 
corresponding shark sample. We then ran 500 repeated (Monte Carlo) linear regressions to 507 
account for the spatial variation in predicted δ13CP values within each biogeographic 508 
province. We predicted null hypothesis shark isotope compositions by adding 4.6 per mille 509 
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(reflecting 4.1 as the median trophic level of sharks and using published experimental 510 
studies of trophic discrimination factors for δ13C values in elasmobranch tissues of 1.1 per 511 
mille (Supplementary Table 2) to the intercept of each of the 500 simulated regression 512 
models.  ANCOVA analyses were run to compare the slopes of regressions within a given 513 
habitat and between comparable variables between habitats (δ13CS, δ13CP).  ANOVA with 514 
post-hoc Tukey HSD were used to test for significant differences between population 515 
carbon ranges among habitats. 516 
 517 
Generalised additive models (GAMs) were developed to describe latitudinal trends in 518 
δ13CS. Specific habitat models were used to determine the amount of deviance that could 519 
be explained by single and multiple explanatory variables including distance from the 520 
equator and predicted δ13CP (Supplementary Table 3). A depth parameter was also added 521 
to the deep-sea shark models. δ13CP values were modelled separately from corresponding 522 
capture locations as a function of distance from the equator. By comparing the amount of 523 
deviance explained within both the δ13CS and δ13CP models, it was possible to determine 524 
how much of the predicted δ13CP patterns were captured within δ13CS values. All models 525 
were limited to two smoothing knots in order to make models comparable and 526 
interpretable. Model comparisons were drawn using Akaike’s information criterion (AIC) 527 
to determine the most parsimonious model. Final models were visually inspected using 528 
standard residual q-q plots to assess model suitability. All data analysis were performed in 529 
R-cran (https://cran.r-project.org) and mapping visualisations in QGIS 530 
(http://www.qgis.org).                                                                                                                                              531 
 532 
 533 
 534 
 535 
 536 
 537 
 538 
 539 
 540 
 541 
 542 
 543 
 544 
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List of Figures and Tables 723 
 724 
 725 
Figure 1: Distribution of compiled shark data overlaid on a spatial model of 726 
annual average biomass weighted δ13C values in particulate organic matter (δ13CP) 727 
17 within Longhurst biogeographical provinces from the median sampling year, 728 
2009.  Coloured points signify habitat classification of those samples. Most studies 729 
provided one location for multiple samples.  730 
 731 
Figure 2: a) The relationship between carbon isotope compositions of modelled 732 
particulate organic carbon δ13C (δ13CP) from Longhurst Biogeographic Provinces 733 
associated with shark capture locations (solid black line), and shark muscle stable 734 
carbon isotope (δ13CS) values (dashed black line & open circles) and latitude. 735 
Confidence envelopes around linear regression lines (grey solid lines) reflect 500 736 
Monte Carlo iterations considering variance in δ13CP values within each Longhurst 737 
Biogeographic Provinces, and in red the same latitudinal trends predicted for δ13CS 738 
with an offset of 4.6 per mille added corresponding to the mean offset between 739 
δ13CP and δ13CS, and corresponding to likely trophic effects on δ13C values.  Maps 740 
provide individual shark sample locations overlaid with the δ13CP isoscape from 741 
Figure 1.  b) Distribution of the observed δ13CS ranges of shark populations in each 742 
habitat. Horizontal line is the mean δ13CS range across shark populations within that 743 
habitat. Boxes contain 50% of the data and lines correspond to 95% confidence 744 
interval. Letters signify analysis of variance, Tukey HSD results for significant 745 
difference, with the same letters representing mean values that are not significantly 746 
different from each other. 747 
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 749 
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 Table 1: Regression coefficients for modelled particulate organic matter (POM) 756 
δ13C (δ13CP), estimated δ13C (δ13CE) and observed δ13C shark muscle (δ13CS) 757 
values from Figure 2. Lettered figures are statistically similar as determined from 758 
an ANCOVA.  759 
 760 

δ13CP - soild δ13CS - dashed 

intercept slope R2 p intercept slope R2 p 

-16.87 -0.13 0.61 <0.001 -12.54 -0.11 0.37 <0.001 

-17.75 -0.11 0.80 <0.001 -16.55 -0.03 0.17 <0.001 

-16.74 -0.12 0.67 <0.001 -17.55 <-0.01 <0.001 0.314 
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