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Abstract—In the presence of scale, dynamism, uncertainty and elasticity, cloud software engineers faces several challenges when
modeling Quality of Service (QoS) for cloud-based software services. These challenges can be best managed through self-adaptivity
because engineers’ intervention is difficult, if not impossible, given the dynamic and uncertain QoS sensitivity to the environment and
control knobs in the cloud. This is especially true for the shared infrastructure of cloud, where unexpected interference can be caused
by co-located software services running on the same virtual machine; and co-hosted virtual machines within the same physical
machine. In this paper, we describe the related challenges and present a fully dynamic, self-adaptive and online QoS modeling
approach, which grounds on sound information theory and machine learning algorithms, to create QoS model that is capable to predict
the QoS value as output over time by using the information on environmental conditions, control knobs and interference as inputs. In
particular, we report on in-depth analysis on the correlations of selected inputs to the accuracy of QoS model in cloud. To dynamically
selects inputs to the models at runtime and tune accuracy, we design self-adaptive hybrid dual-learners that partition the possible
inputs space into two sub-spaces, each of which applies different symmetric uncertainty based selection techniques; the results of
sub-spaces are then combined. Subsequently, we propose the use of adaptive multi-learners for building the model. These learners
simultaneously allow several learning algorithms to model the QoS function, permitting the capability for dynamically selecting the best
model for prediction on the fly. We experimentally evaluate our models in the cloud environment using RUBiS benchmark and realistic
FIFA 98 workload. The results show that our approach is more accurate and effective than state-of-the-art modelings.

Index Terms—Software quality,search-based software engineering,self-adaptive systems,machine learning,cloud computing
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1 INTRODUCTION

C LOUD software engineering paradigm is gaining mo-
mentum as evident by the tremendous use of cloud-

based software services. Software-as-a-Service (SaaS) in the
cloud often run on top of a software stack within the
Platform-as-a-Service (PaaS) layer [1]. They are also sup-
ported by the Virtual Machines (VM) and hardware run-
ning at the Infrastructure-as-a-Service (IaaS) layer [2]. To
offer scalability and elasticity under changing environment
conditions (e.g., workload, size of incoming job etc.), cloud
providers often have the capability to dynamically scale
various internal control knobs, providing on-demand con-
figurations of software (e.g., threads of service) and hard-
ware resources (e.g., CPU and memory of VM) in a shared
infrastructure. In this work, we term both control knobs and
environment conditions in the cloud as cloud primitives.

The elasticity of cloud has caused a paradigm shift in the
way we manage cloud-based software services. However,
by design time, it would be difficult for software engineers
and cloud engineers to anticipate the dynamic changes in
workload and the runtime demands of these cloud-based
software services. This fact implies that it becomes more
complex to assure the Quality of Service (QoS) during the
engineering process. By QoS, we refer to the non-functional
attributes (e.g., Throughput) experienced by the end-users

• T. Chen and R. Bahsoon are with CERCIA, School of Computer Science,
University of Birmingham, Birmingham, UK, B15 2TT.
E-mail: t.chen@cs.bham.ac.uk, r.bahsoon@cs.bham.ac.uk

Manuscript received 1 Jan. 1970; revised 1 Jan. 1970; accepted 1 Jan. 1970.
Date of publication 1 Jan. 1970; date of current version 1 Jan. 1970. For
information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below. Digital
Object Identifier no. xx.xxxx/TSC.xxxx.xxxxxxx

of cloud-based software services.
With such context in mind, the key problem, which

cloud/service providers face is how to manage runtime QoS
by auto-scaling to the best set of control values on the fly. In
particular, the fundamental challenge is how to dynamically
link QoS with the primitives in cloud, which we address in
this paper. The QoS models generally take values of cloud
primitive as inputs and predict the likely QoS value as
outputs. An accurate QoS model in the cloud can serve as a
powerful tool that assists software/cloud engineers or other
automated agents to diagnose the cause of violation on QoS
requirements; and more importantly, to compare and reason
about elastic auto-scaling strategies in the cloud.

The majority of the existing approaches for QoS mod-
eling in cloud has been either static (i.e., analytical, e.g.,
[3] [4] and simulation based, e.g., [5] [6]) or semi-dynamic,
e.g., [7] [8] [9]. The former is being static in the sense that
the expression of models are fixed, and therefore, they are
insensitive to the QoS fluctuations at runtime; this is due to
the entire modeling process has relied on manual and offine
analysis. On the other hand, the semi-dynamic approaches
focus on adaptive and dynamic modeling for the magnitude
of primitives in correlation to QoS, which means the model
changes with respect to the QoS fluctuations. However, their
selection of primitives to determine the feature inputs of
models has been manual and offine, resulting fixed inputs
for the models. Thus, they suffer limited self-adaptivity.

1.1 The Challenges and Current Limitations
In the following, we identify several important challenges
for QoS modeling in the cloud, which have not been or have
only been partially considered in previous work.
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Fine-grained QoS Modeling: There can be different
cloud-based software services running on a VM, each with
its own QoS requirements. Fine-grained QoS modeling
is challenging as more heterogeneity (e.g., derivatives of
QoS requirements and service characteristics etc.) need to
be considered. However, existing static and semi-dynamic
modeling tend to focus on the mean QoS of the entire VM,
limiting the model accuracy for individual software service.

Dynamic and Uncertain QoS Interference: QoS modeling
in the cloud suffers from the problem of QoS interference.
QoS interference refers to scenarios where a software service
exhibits wide disparity in its QoS performance that depends
on the dynamic behaviors of its neighbors. In particular, we
distinguish two major causes of interference, these are: co-
located service interference and co-hosted VM interference.
The former is an inherent issue from the traditional cluster
computing, where multiple applications/services running
on the same operating system can suffer contention on
the shared memory/cache, and therefore cause interference
[10]. This is also true for multi-core systems [11]. The later,
on the other hand, is a significant unique problem in cloud
computing, where virtualization has been used as the basis.
This is because in such scenario, certain aspects of the
underlying infrastructure are shared amongst the co-hosted
VMs on a machine (e.g., last level cache of CPU and memory
bandwidth), henceforth it can result in contention and create
the chances for interference, as evident by many recent
work [12] [13] [14]. Given that it can be extremely difficult
to completely eliminate QoS interference or it can be too
expensive to do so [13], it is crucial to consider and handle
the interference when modeling QoS in the cloud. Here, the
challenge lies in the difficulty to dynamically incorporate
information about interference in the modeling, especially
when the QoS interference is dynamic and uncertain in
nature—it is difficult to know when contention would oc-
cur and what the degree of such contention is. However,
existing work either considers co-hosted VM interference
only (e.g., [13]) or completely ignores the presence of QoS
interference (e.g., [7]), which is unrealistic.

Dynamic and Uncertain QoS Sensitivity: The core of
QoS modeling is how to model its sensitivity with respect to
the primitives in cloud. By QoS sensitivity, we are interested
in which (e.g., are CPU and Throughput correlated?), when
(i.e., at which point in time they are correlated?) and how
(i.e., the magnitude of primitives in correlation) the prim-
itives correlate with QoS. Given the nature of cloud, QoS
sensitivity is dynamic and uncertain, i.e., runtime changes
occur in terms of which, when and how primitives correlate
with QoS. Specifically, the challenges of QoS sensitivity in
the modeling can be attributed to two important phases,
namely primitives selection and QoS function construction:

1) Primitives Selection: To model QoS and its sensitivity
in the cloud, a fundamental task is to adaptively determine
what are the primitives that should be used as feature inputs
of the model (i.e., which and when the primitives correlate
with QoS). To show a simple example of the dynamics and
uncertainties in primitives selection, in Fig. 1, we vary the
workload of a service while keeping that of the co-located
services and co-hosted VMs unchanged, we can see that the
Response Time of the said service tends to be insensitive
to CPU at the beginning hence it cannot provide relevant
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Fig. 1: The exampled fluctuations of CPU utilization and
Response Time in cloud.

information about the QoS. However, after the 18th interval,
the Response Time gradually become more affected by the
CPU as the workload change by time, which is uncertain in
nature; this becoming even more true in the cloud when
there is uncertain QoS interference, i.e., the workload of
neighbor services/VMs changes. Therefore, the primitives
selection needs to cope with the dynamics and uncertainties
in QoS sensitivity. Given that the selected inputs have a
great impact to the model accuracy (as we will show in
Section 4), it is important to select a right set of primitives.
In particular, too limited inputs may not provide enough
information of relevance to the QoS (i.e., the information
that drives the changes in QoS), which restricts the model
accuracy and applicability. On the other hand, too many
inputs can generate noise in the modeling, because it intro-
duces irrelevant information and large redundancy in the
inputs (i.e., the same information has been provided by
more than one selected primitives, thus it becomes noise),
this will downgrade the model accuracy [15] and generate
unnecessary overhead. Though some machine learning al-
gorithms are proved be be resistant to noise, e.g., those with
regularization [16], we believe that the benefits gained from
primitives selection is vast, e.g., improved accuracy, more
intuitive model and faster modeling time. The challenge
here is how to dynamically select the most significant set
of primitives as inputs, including the information of QoS
interference from neighboring services and VMs, which
provides good model accuracy and adequate complexity.

Nevertheless, existing static and semi-dynamic ap-
proaches for QoS modeling in the cloud rely on fixed and
manual analysis to select the primitives as inputs, which
are often offine. A widely applied approach is to reduce the
possible primitives space based on empirical observations
and domain specific assumptions, e.g., most work [7] [17]
[18] consider only hardware resources. However, this may
mislead the QoS modeling as it can ignore some highly
relevant features, e.g., the software configurations, which
can interplay with the hardware provision to influence QoS
[19] [8] [20]. In addition, ignoring QoS interference can
result in inaccurate models. Even though the offine and
manual selection is achieved at a good accuracy, the runtime
dynamics and uncertainties can become a problem as there
is no guarantee that the selected primitives are the best for
the entire service life time. Until recently, few techniques [9]
[8] have been proposed for self-adaptive primitives selection
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in the cloud. However, they implicitly tackle redundancy
and regard each primitive equally in the selection. We refer
these techniques as single-learner in the remaining of this
paper. In Section 4, we will show why these single-learner
based techniques tend to be limited in accuracy.

2) QoS Function Construction: Another important task in
modeling QoS and its sensitivity is to adaptively deter-
mine how the primitives correlate with QoS by means of
mathematical function. To show a simple example of the
dynamics and uncertainties in QoS function construction,
we use the above setup in Fig. 1. As we can see, from
the 18th interval onwards, the Response Time of the ser-
vice is becoming more sensitive to CPU till 30th where
the sensitivity is starting to decrease. This shows that the
Response Time is always sensitive to CPU for the period,
but the magnitude tends to be different depends on the
uncertain changes of workload from time to time. Again,
this becomes more complex in the cloud when it involves
changing workloads of neighbor services/VMs. All These
facts imply that the modeling needs to be able to handle
the dynamic and uncertain magnitude of primitives in the
correlation, which is a challenge. Consequently, the static
QoS modeling approaches tends to be insufficient, because
the effectiveness of these approaches is restricted by their
simplified and fixed assumptions on the environment and
service’s internal operations [7]. On the other hand, the
semi-dynamic approaches are capable to handle this chal-
lenge as they are grounded on sound machine learning
algorithms, which are dynamic and self-adaptive in nature.
These approaches are single-learner based as they rely on a
single learning algorithm. Nevertheless, in Section 5, we will
show that a single learning algorithm can be suitable only
for certain QoS trends. Consequently, a significant drawback
of these approaches is that, for any given scenarios, they
require the engineers to predetermine the suitable learning
algorithm. This can entail manual and intensive investi-
gation rendering it as an expensive process. Moreover, a
predetermined algorithm does not cater for unexpected or
envisioned changes in QoS at runtime. Now, the challenge
becomes how to efficiently and dynamically determine the
best learning algorithm for a scenario.

1.2 The Contributions and Organization
In this paper, we report on a set of integrations and exten-
sions to our prior work [21] [22]. To overcome the aforemen-
tioned challenges in the cloud, we present a QoS modeling
approach, which is fully dynamic, self-adaptive and capable
for online modeling. Since our modeling approach does not
rely on any assumptions of the software service’s internal
structure, the resulted model are agnostic to the type of
software service hosted within VM. Specifically, our novel
contributions can be summarized as the follows:

Firstly, we have described the unique challenges to the
online QoS modeling in the cloud (as in Section 1.1).

Secondly, we abstract a fine-grained and generic QoS
model to handle dynamic and uncertain QoS sensitivity; and
to incorporate information of the uncertain QoS interference
caused by the software services co-located on a VM and the
VMs co-hosted on a Physical Machine (PM).

Thirdly, we present an in-depth analysis on the correla-
tions of selected primitives to the model accuracy for prim-

itives selection in the cloud; in particular, we show how the
model accuracy can be affected by the cumulative changes
of the information relevance to QoS and the information
redundancy of the selected primitives. We discovered that,
without special treatment, these cumulative changes cannot
correctly quantify the effects of primitives to model accuracy
for the entire input space. Drawing from the observations
obtained on this analysis, we propose a self-adaptive and
online technique, namely hybrid dual-learners, to determine
which and when primitives correlates with the QoS on the
fly. The idea is that we aim to select the most significant set
of primitives which can improve accuracy in the modeling.
To avoid misleading caused by the cumulative changes, we
partition the possible primitives space into two sub-spaces;
the learner in each sub-space uses different primitives se-
lection techniques based on symmetric uncertainty [23] and
the selected sets of these two learners are combined. We
design four variations of our technique, each of which uses
different formulations to express the difference between
relevance and redundancy of the selected primitives.

Fourthly, we present a suitability analysis of differ-
ent learning algorithm for QoS function construction on
different QoS attributes. Particularly, we have examined
three widely used learning algorithms as exemplars, these
are: Artificial Neural Network (ANN) [24], Auto-Regressive
Moving Average with eXogenous inputs model (ARMAX)
[25] and Regression Tree (RT) [26]. We discovered that a
single learning algorithm can perform significantly different
depends on the case. Motivated by this fact, we develop a
self-adaptive and online solution, namely adaptive multi-
learners, to dynamically model how the primitives corre-
lates with the QoS. Precisely, multiple learners that apply
different learning algorithms are used to build a bucket of
models. By doing so, the proposed solution is not only able
to dynamically correlate the selected primitives to the QoS,
but also to adaptively select the best learning algorithm and
its resulted model during prediction in cloud.

Fifthly, we implement our modeling approach based on
an autonomic architecture in the cloud. We experimentally
evaluate the approach under four commonly used QoS at-
tributes, these are: Response Time, Throughput, Availability
and Reliability. In addition, we have used the well-known
RUBiS [27] benchmark and the FIFA 98 [28] workload to
assess various aspects of our approach, including accuracy,
stability, sensitivity to the online data size and efficiency. The
results reveal that our approach is overall more accurate,
more stable and reduce the error quicker than the other
approaches; while generating acceptable overhead.

The paper structure is organized as the follow: Section 2
decomposes the problem of QoS modeling and presents the
model. Section 3 describes our architecture and overview of
the approach. Section 4 specifies the hybrid dual-learners
approach for primitives selection; and the analysis about
how the relevance and redundancy of selected primitives
influence model accuracy, which drive our designs. Section 5
illustrates how different learning algorithms perform under
different QoS attributes and fluctuations; we then specify
the adaptive multi-learners technique for QoS function con-
struction. Subsequently, we report on the experiments and
evaluation in Section 6. Section 7, 8 and 9 present threats to
validity, related work and conclusion respectively.
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TABLE 1: The Basic Notations for QoS Modeling in Cloud.

Sij The jth service-instance of the ith concrete service.
QoSij

k
(t) The kth QoS attribute of Sij , and its value (e.g., mean

response time) at interval t.
f ij
k

The QoS function for the kth QoS attribute of Sij .
SP ij

k
(t) The selected primitives matrix of Sij at t, its column

contains the most relevant and significant inputs for
the QoS, including the primitives that tend to directly
influence the QoS (e.g., the threads of the correspond-
ing service-instance); and the primitives that belong to
the co-located service-instances and the co-hosted VMs.
The row indicates the number of order, denoted as q,
which represents how many historical data points need
to be used as inputs for improving model accuracy.

δ Any other inputs, e.g., historical time-series QoS points
and tuning variables etc., that improve model accuracy.

CPxy
a (t) The value of the ath control primitive for Sxy at interval

t, e.g., CPU, memory and thread etc.
EPmn

b (t-1) The value of the bth environmental primitive for Smn

at interval t-1, e.g., workload etc.

2 MODELS AND PROBLEM DESCRIPTION

2.1 Cloud System Model

We assume that cloud-based applications are composed of
services, each has different QoS requirements and external
environment changes (e.g., changes in workload). Often,
multi-tiers applications and services in the cloud can have
multiple replicas for various purposes, e.g., service differ-
entiation and load balancing etc. Therefore we assume that
each tier in a multi-tiers application, consisting of concrete
services S1, S2, ... Si, can have multiple replicas deployed
on different VMs even PMs. In this work, we refer to the
replicas of concrete services as service-instances: the jth
service-instance of the ith concrete service is denoted by Sij .
Multiple service-instances are deployed on a cloud software
stack running on VM, which can be setup using various
control knobs. These control knobs can be either shared
amongst the service-instances running on a VM (e.g., CPU
of the VM) or specific to one service-instance (e.g., threads of
a service-instance). The basic notations used in this section
are listed in Table 1.

Unlike existing work, which focus on modeling for the
entire application and VM, we aim to create fine-grained
QoS models for each service-instance. In particular, the
resulted models should cope with the QoS interferences
at both inter-VMs and inter-services level. In addition,
instead of modeling the effect of VM-level provisioning
(i.e. add/remove a VM), we focus on the effect of fine-
grained provisioning and configuration inside VM (e.g.,
CPU of a VM and/or thread of a service-instance). This
would provide more flexible use of the model, e.g., for
vertical scaling. It is wise to consider vertical scaling before
horizontal scaling (i.e., add, remove or migrate VMs) as the
former is often much more efficient than the later.

It is worth noting that, apart from the co-hosted services
and co-located VMs, QoS interference can also occur due
to contention on the functionally dependent services. For
instance, S11 and S31 (both running on different PMs) can
be both dependent on S21 (e.g., a database service). This
implies that S11 and S31 incur QoS interference. However,
we discovered that in such case, the primitives of S311 tend
to be insignificant in the QoS modeling of S11 as the same
information has already been expressed by the primitives
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Fig. 2: Overview of the cloud primitives.
of S21, which is also part of the invocation. As a result, we
consider the co-hosted services and co-located VMs as the
primary causes of QoS interference.

2.2 The Cloud Primitives for Building Models
The primitives in cloud serve as the fundamental inputs
of a QoS model. Without lose of generality, we decompose
the notion of primitives into two major domains: these are
Control Primitive (CP) and Environmental Primitive (EP).
Control Primitives are the internal control knobs and can
be either software or hardware, which can be managed
by the cloud providers to support QoS. Specifically, soft-
ware control primitives are software tactics and the key
configurations in cloud; such as the number of threads in
thread pool of service/application, the buffer size and load
balancing policies etc. Whereas, hardware control primitives
are computational resources, such as CPU and memory. As
shown in Fig. 2, software and hardware control primitives
rely on the PaaS and IaaS layers respectively. In particular, it
is non-trivial to consider software control primitives when
modeling QoS in the cloud as they have been shown to
be highly relevant features for QoS [19] [8] [20]. On the
other hand, Environmental Primitives refer to the external
stimulus that cause dynamics and uncertainties in the cloud;
for examples, workload and unpredictable incoming data
etc. If the cloud provider is able to control the presence of the
stimulus, then these can be considered as control primitives.

To improve accuracy and prevent noises, selecting the
right primitives as inputs is critical for QoS modeling in the
cloud. However, the difficulty is that the primitive inputs,
which are relevant and useful for modeling QoS, tend to be
dynamic. In such context, possible inputs of a QoS model
can be the primitives that tend to directly influence the QoS
(e.g., the threads of the corresponding service-instance); it
can also include the primitives that belong to the co-located
service-instances and the co-hosted VMs; Specifically, all
possible primitives inputs for modeling the QoS attributes
of a service-instance form a space, which is termed possible
relevant primitives space. This space can be defined by:

Rule 1. A primitive belongs to the possible relevant primitives
space for modeling the QoS of Sab if it can be classified into one
of the following groups:
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1) It is a software control or environmental primitive of Sab.
2) It is a hardware control primitive of the VM that runs Sab.
3) It is a software control or environmental primitive of Scd,

given that Sab has direct functional dependency on Scd.
4) It is a hardware control primitive of the VM that runs Scd,

given that Sab has direct functional dependency on Scd.
5) It is a software control or environmental primitive of Scd,

given that Scd is co-located with Sab on the same VM.
6) It is a hardware control primitive of a VM, which is co-hosted

with the VM that runs Sab.

The problem here is how to select on the fly a right subset
of primitives from the space as the inputs of QoS models.
The aim is to improve the model’s accuracy by taking
relevance and redundancy of the primitives into account.
In Section 4, we will present detailed analysis and solution
for selecting the right primitives.

Another important decision to mention is that, for each
control primitive, we need to decide on whether the con-
figuration value or the demand value should be used
in the modeling. By configuration value, we refer to the
upper/lower bound of control primitive. However, it is
generally impossible to guarantee that the configured value
(e.g., CPU cap) can be fully utilized. Such fact obfuscates the
sensitivity of QoS to its primitives as using the configuration
values to model QoS would take those idle proportions of
provisions into account. As a result, using configuration
values as inputs is ill-suited in our case. To cope with this
issue, we apply the demand values of control primitives
(e.g., real-time % usage of CPU) as inputs, which better
reveal QoS sensitivity. Moreover, modeling QoS with de-
mand values implies that our model is likely to determine
the minimal requirement of configurations for achieving
certain QoS objectives. This will potentially improve the
elasticity of software configuration and hardware provision
in cloud, when our modeling approach is used in cloud
management. It is worth noting that certain dimensions of
control primitives (e.g., thread) can be controlled for each
service-instance individually, whereas others (e.g., CPU and
memory) are shared on a VM, in which case an identical
value would be used for modeling the QoS of all service-
instances deployed on such VM.

Instead of using multiple metrics for each primitive
and QoS, e.g., CPU percentage and instructions-per-second
for measuring CPU of a VM, we follow the state-of-the-
art assumption [7] that only one metric is used for each
primitive and QoS in the modeling; the proper metric
can be chosen by the software/cloud engineers based on
certain constraints in the cloud environment, e.g., whether
it is supported by the hypervisor. We leave the study of
multidimensional metrics as future work.

2.3 Dynamic and Interference Aware QoS Model
To tackle the aforementioned challenges of QoS modeling
in the cloud, we define a generic QoS model. Formally, the
model at the tth sampling interval is expressed as:

QoS ij
k (t) = f ijk (SP ij

k (t), δ) (1)

where QoSijk (t) is the kth QoS attribute of Sij , and its value
that used in the modeling is represented by a given met-
ric(e.g., mean Response Time) at t. f ijk is the QoS function

for the kth QoS attribute of Sij , and it is changed at runtime
using learning algorithms, as we will see in Section 5. δ
refers to any other inputs (e.g., historical time-series QoS
points and tuning variables etc) required by the algorithm
to train apart from the cloud primitives. We denote the input
SP ijk (t) in (1) as the selected primitives matrix of QoSijk (t)
at t, formally depicted in (2).

SP ij
k (t) =

 CPxy
a (t) · · · EPmn

b (t− 1) · · ·
...

. . .
...

. . .
CPxy

a (t− q + 1) · · · EPmn
b (t− q) · · ·


(2)

This matrix contains the primitive inputs of QoSijk (t) which
are dynamically selected from the possible relevant prim-
itives space for the QoS attributes of Sij , as we will see
in Section 4. More concretely, the column entries indicate
the selected primitives for the QoS. CP xya (t) denotes the
ath control primitive of Sxy and EPmnb (t − 1) means the
bth environmental primitive of Smn respectively. The actual
values of CP xya (t) and EPmnb (t − 1) in the modeling are
measured by given metrics (e.g., expected CPU % usage and
mean request rate) at t and t− 1, respectively. q determines
the number of row entries, which indicates the use of how
many historical time-series points of the selected primitives
as inputs. We observed that the best value of q depends
on the learning algorithm that trains f ijk ; in particular, it is
better to set q as constant for certain algorithms (e.g., q = 1
for ANN and RT); however for the others (e.g., ARMAX),
we found that q should be determined during training via
hill-climbing optimization, which starts with q = 1, then
automatically increase the number of row entries one by one
during training till the accuracy cannot be further improved.
To improve numeric stability, we normalized all data values
to the range between 0 and 1 before the modeling.

It is easy to see that (1) and (2) provide generic and intu-
itive formulations for modeling QoS in the cloud. Precisely,
to model QoSijk (t), the objective of our fully dynamic, self-
adaptive and online modeling approach consists of two-
phases: (i) a primitives selection phase that determines
the content of SP ijk (t) at runtime; and (ii) a QoS function
construction phase that trains function f ijk on the fly.

3 OVERVIEW OF THE MODELING APPROACH IN
CLOUD

As shown in Fig. 3, the approach is realized as middleware
using autonomic architecture with a feedback loop. The
service-instances running on the VMs of a PM are managed
by a dedicated Middleware Instance (MI), which is attached
to the root domain (e.g., Dom0 [29]) of this PM. Each MI is
self-adaptive as the feedback loop runs continually to keep
the models updated.

Our approach is designed for online scenarios; the only
offine preparation is to define the current service-instances,
their QoS and classification of the primitives in the spaces
(i.e., using Rule 1). This preparation can be easily done
by the software/cloud engineers and it should be updated
accordingly if changes occur. The approach can be also
used offine in situations where conducting offine modeling
in advance can be beneficial to the online models. Within
the feedback loop, Data Collector continually monitors and
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Fig. 3: Overview of the modeling approach in the cloud.

stores data samples of QoS and primitives from the service-
instances/VMs running on a PM, and those from the other
PMs in the presence of functional dependency. This can be
achieved by accessing the cloud sensors or log files. It is
worth noting that the modeling interval can be longer than
the sampling interval; that is to say, the frequency of data
collection do not need to be the same as the frequency of
modeling, in which case the sampled data can be stored in
a history database and retrieved when needed.

Upon each modeling interval, for each QoS attribute of
a service-instance, all historical data is then passed to the
primitives selection phase for determining which and when
primitives correlate with QoS at runtime (step 1). Here, we
have used two learners to select primitives from two sub-
spaces as motivated by our analysis in Section 4. At step 2,
the selected sets of primitives are combined and sent to the
QoS function construction phase, where multiple learners
are used to model how the primitives correlate with QoS
online (step 3). At step 4, each QoS attribute is associated
with a bucket of models produced by candidate learners
and an evaluation function; in addition, the weights in the
evaluation function will be updated. This bucket can be then
used by, e.g., an Autoscaler for performing prediction at any
time (step 5). Upon prediction when given a set of inputs,
the evaluation function is used to select the best model in
the bucket (see Section 5).

4 PRIMITIVES SELECTION IN THE CLOUD

As shown in (1) and (2), to dynamically model QoSijk (t) at
runtime, we first determine which and when the underlying
primitives should be included as column entries in SP ijk (t)
for the QoS modeling.

One straightforward solution to the primitives selection
problem is to search the best set of primitives using a
given learning algorithm that guarantee to produce the best
accuracy for the said algorithm; this is regarded as the
wrapper approach [30]. Nevertheless, given that the learning
algorithm needs to be run many times during the selection
process, it is clear that such approach can introduce large
overheads in terms of both resource and latency. As a result,
the wrapper approach is ill-fit for online QoS modeling in
the cloud. In this work, we focus on an alternative approach
that is more efficient and capable to select primitives inde-
pendent of the learning algorithms, namely the filter [30].

Traditionally, selecting the primitives as model inputs
for QoS modeling in the cloud has been done using fixed

and manual sensitivity analysis (e..g, [7] [17]), or single-
learner based approach [8] as they consider all the possible
primitives in the space equally. However, there has been no
explicit definition of the objectives for primitives selection
process in the cloud; it has been implicitly known as to
select certain relevant primitives (e.g., the top 2 relevant
primitives) for modeling QoS without considering redun-
dancy. In addition, existing primitives selections in the cloud
are mostly driven by empirical observations and domain
specific assumptions—there has been no explicit or quan-
titative studies about the correlation of selected primitives
to the model accuracy. In particular, it is not clear how the
relevance and redundancy of selected primitives can affect
the accuracy when modeling QoS in the cloud.

In this section, we clearly define the objectives of prim-
itives selection for QoS modeling in the cloud. We also
present a set of experimental analysis on the relevance and
redundancy of selected cloud primitives in relation to model
accuracy. Driven by the observations from the conducted
analysis, we propose a self-adaptive and online solution for
primitives selection, namely hybrid dual-learners.

4.1 The Objectives in Primitives Selection
We define two main objectives for the primitives selection,
namely: selecting relevant primitives and selecting useful
primitives from the possible relevant primitives space. It is
well-known that one set of primitives can result in better
model accuracy than another set, given that both sets have
the same relevant primitives of the QoS and the former
has no or less irrelevant primitives (i.e., those that cannot
influence QoS) than the later [30]. Therefore the aim of
the first step in primitives selection is to select all relevant
primitives, we call this as the problem of relevant primitives
selection and it can be easily resolved by using relevance
measurement, as we will show. However, selecting only
the relevant primitives is likely to have rich redundancy
in the selected primitives, which can negatively affect the
model accuracy [15]. Therefore, the crucial challenge is how
to select an even better set after the irrelevant primitives
have been eliminated, considering each relevant primitive
can be good for providing relevance, but bad for having
redundancy with each others. We refer to this problem as
the useful primitives selection problem. In this problem, our
aim is to select a set of primitives that improve the model
accuracy. In particular, this can be achieved by reaching
a right balance between relevance and redundancy. It is
easy to see that a useful primitive is definitely a relevant
primitive, but the reverse is not always true.

4.2 Quantifying Relevance and Redundancy
To quantify the relevance of a primitive to the QoS and
the redundancy between a pair of primitives, we have
used Symmetric Uncertainty (SU), which is a fundamental
concept in information theory [23]. SU measures the degree
of relevance between two time series variables by producing
a value ranges from 0 to 1, where a greater value implies
higher relevance. At one extreme, the value between a QoS
attribute and a primitive is 1 indicating that all information
of the primitive is correlated with the QoS (and vice versa).
At the other extreme, the value of 0 implies that changes



JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 7

in the primitive’s behavior are independent of that of the
QoS (i.e., irrelevant primitive). Formally, the symmetric
uncertainty between two discrete, time-series variables is
calculated by:

U(X,Y ) =
2× I(X,Y )

H(X) +H(Y )
(3)

I(X,Y ) =
∑
y∈Y

∑
x∈X

p(x, y) log(
p(x, y)

p(x)× p(y)
) (4)

H(X) = −
∑
x∈X

p(x) log(p(x)) (5)

where X and Y are the value vectors of a primitive (e.g.,
CPU) and a QoS attribute (e.g., Throughput), respectively;
I(X,Y ) shows the formula for mutual information between
them and H(X) expresses entropy (we have used 2 as the
log base). x and y refer to a pair of primitive and QoS
value at the same sampling interval. p(x, y) is the joint
probability between the values in a pair; p(x) is the marginal
probability of a particular primitive (or QoS) value. In the
following, we call a primitive as relevant primitive to a QoS
attribute if it results in non-zero SU value to such QoS. By
using (3), it is straightforward to measure the relevance of a
primitive to QoS. As for redundancy, we consider it as the
relevance between a pair of primitives, which can be also
easily quantified using (3).

Bear in mind that a single SU value is very helpful for
filtering the primitives that have relevance below threshold
(e.g., filter irrelevant primitives), if it is known that these
primitives can cause downgrade of the model accuracy; it is
also useful for conducting pair-wised comparison on the rel-
evance of two individual primitives to the QoS; or for com-
paring the redundancy of two individual primitives to the
other same primitives. It is known that these comparisons
can provide correct information about the relative effects of
relevance and redundancy of two individual primitives to
the model accuracy [15]. That is to say, it is known that (i)
A can help to produce better model accuracy than B if B has
zero SU value to the QoS while A has non-zero value; or (ii)
A can provide better accuracy than B if A is more relevant
(greater SU value) to the QoS and both of them has the same
redundancy value to each selected primitives; or (iii) if there
is only one selected primitives C, then A can provide better
accuracy than B given that the redundancy between A and
C is less than that between B and C (i.e., smaller SU value),
in addition, A and B has the same relevance to the QoS.

Nevertheless, the single SU value and pair-wised com-
parison are insufficient for selecting useful primitives as
they cannot consider both relevance and redundancy simul-
taneously in the selection. In addition, it cannot properly
quantify the effects of combinatorial relevance and redun-
dancy to model accuracy for a whole set of selected relevant
primitives. This means given two sets of selected relevant
primitives, such comparison cannot determine which set
will produce better model accuracy during the selection.
Our problem requires a measurement that copes with those
issues. As a result, we need to study and select useful
primitives by comparing the cumulative representation of
relevance and redundancy for any possible sets of selected
relevant primitives.

There can be two forms of cumulative representation:
firstly we can consider multi-variable destiny function for a
given set of selected relevant primitives, in which case (3)
would be changed into the following formula:

U(X1,X2...Xn, Y ) =
2× I(X1,X2...Xn, Y )

H(X1,X2...Xn) +H(Y )
, Xn ∈ S

(6)
where [X1 ,X2 ...Xn ] denotes vectors of n different primi-
tives that has been selected; and S denotes the set of selected
primitives. (6) expresses both relevance and redundancy as
they can be handled by the multivariable destiny function.
However, this method has some serious drawbacks: (i)
the number of online data samples can be insufficient for
correctly calculating the probability and (ii) the multivariate
density estimation often involves computing the inverse
of the high-dimensional covariance matrix, which is com-
putationally expensive and thus it is an ill-suited solution
in our case. Alternatively, we can compute the cumulative
SU values of relevance and redundancy. By cumulative SU
values, we refer to the cumulative combination (i.e., total
or average) of the single SU values for the primitives in a
given set of selected relevant primitives [15]. An example of
relevance is shown below:

Relevance of a selected set =

n∑
X∈S

U(X,Y ) (7)

This cumulative combination involves a bi-variable destiny
function only and thus it is more appropriate for filtering at
runtime. In addition, it is highly intuitive and the nature of
cumulative combination implies its light computational ef-
forts. The cumulative representation for redundancy can be
similarly applied. In this work, we call these representations
as cumulative relevance and cumulative redundancy.

Recall that in selecting useful primitives, we aim to
improve the model accuracy by balancing the relevance and
redundancy of selected primitives. With this in mind, it is
easy to see that even if we incrementally select (add) the rel-
evant primitives one at a time, the validity and usefulness of
cumulative relevance and redundancy rely on the following
assumption (in the next subsection, we will experimentally
verify this assumption):

Assumption 1. For QoS modeling in the cloud, the model
accuracy, represented by error, is negative to the difference between
cumulative relevance and redundancy if the cumulative relevance
is bigger (i.e., the bigger the difference, the smaller error); or being
positive to such difference if the cumulative redundancy is bigger
(i.e., the bigger the difference, the bigger error).

Indeed, if this assumption does not hold, it means that
the cumulative SU values cannot correctly differentiate and
quantify the effects of some relevant primitives to the model
accuracy, and this will significantly mislead the selection
process. That is to say, given two sets of selected relevant
primitives A’ and B’; A’ should result in better accuracy than
B’ if the cumulative relevance of A’ is greater than that of
B’ while the cumulative redundancy in A’ is smaller than
that in B’. However, when Assumption 1 does not hold, B’
can actually result in better accuracy than A’. Consequently,
the situation can mislead the selection process as it may
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Fig. 4: The relevance of different primitives for the exam-
pled service-instance. X-axis plots different primitive di-
mensions; y-axis denotes their SU values

eliminates some highly useful primitives that help to im-
prove the model accuracy. In the following, we will analyze
the effects of selected primitives w.r.t. model accuracy and
verify Assumption 1 for QoS modeling in the cloud.

4.3 Relevance and Redundancy Analysis on Primitives
Selection
To study the correlation of selected primitives to the accu-
racy for modeling QoS in the cloud, we have conducted sev-
eral analysis on the relevance and redundancy of selected
primitives by means of experiments (see Section 6 for the
detailed setup). In particular, we have carefully analyzed
the relevance between possible primitives and QoS from
the experiments—we first select the relevant primitives and
then we rank them based on their relevance to the QoS. We
found that the only constant observation across many QoS
attributes and service-instances is that for each feature di-
mension (i.e., thread, CPU, Memory and Workload), certain
primitives are more relevant to the QoS than all or most
of the others. As an example, Fig. 4 shows the relevance
(measured by (3)) for Response Time of a service-instance
for different feature dimensions, calculated by averaging
the values from all 350 intervals in one run. We performed
Wilcoxon Signed-Rank test (two-tailed) for all comparisons.
The resulted p values are smaller than 0.05, which confirms
the statistical significance of the results. We discovered that
the more relevant primitives are the ones that can directly
influence the corresponding service (dark bars), e.g., the
thread of the service and CPU of the VM; on the other
hand, the less relevant primitives are the ones that can only
interfere the service and its QoS via contention (light bars),
e.g., the thread of co-located service and CPU of co-hosted
VM. Such observation indicates that the former is more
important to the QoS than the latter as QoS interference
can only occur when the contention is quite significant [13].
These facts motivate us to partition the possible relevant
primitives spaces into two sub-spaces, namely direct primi-
tives space and indirect primitives space. By leveraging the
classifications in Rule 1, the former is defined by:

Rule 2. A primitive belongs to the direct primitives space for
modeling the QoS of Sab if it is in group 1,2,3 or 4 from Rule 1.

It is clear to see that the direct primitive space contains
primitives that can directly influence the QoS, which means

they tend to provide different aspects of information. On the
other hand, the indirect primitives space contains informa-
tion about the QoS interference. Consequently, the indirect
primitive can be defined as:

Rule 3. A primitive belongs to the indirect primitives space for
modeling the QoS of Sab if it is in group 5 or 6 in Rule 1.

It is worth noting that the indirect primitives space
should generally be larger than the direct primitives space
as it is sensitive to the number of co-located service and co-
hosted VMs, which can be expended largely in the cloud.
It is possible that both direct and indirect primitives space
have irrelevant primitives, which can be easily eliminated.

Next, to verify whether the Assumption 1 is valid for the
case of QoS modeling in the cloud, we have conducted a
set of analytical experiments to evaluate how the accuracy
changes with respect to the changes of cumulative relevance
and redundancy. In particular, while keeping the total num-
ber of primitives and services unchanged, we gradually add
more relevant primitives as the selected inputs (from higher
relevance to lower relevance) to the modeling process. For
each set of selected primitives, the model accuracy and
cumulative values are calculated by averaging the results
from all 350 intervals in one run. We have used all the
three learning algorithms (i.e., ANN, ARMAX and RT) and
assessed the accuracy using SMAPE [31]. It has been shown
that SMAPE is intuitive, stable and more resilient to outliers
than the other metrics [32].

In summary of the experiments, we have obtained four
major observations: (i) within the direct primitives space,
Assumption 1 does not hold. This is due to the fact that
the direct primitives space contains different underlying
primitives that directly influence the QoS, hence they can
usually provide different aspects of information about a QoS
attribute, which cannot be correctly quantified by cumula-
tive SU value. Surprisingly, we also found that (ii) for inter
direct and indirect primitives space, Assumption 1 does
not hold either; (iii) however, within the indirect primitives
space, Assumption 1 is valid. We believe that the reason for
observations (ii) and (iii) is due to the fact that different
direct primitives provide different aspects of information
about the QoS and they influence the QoS directly. Whereas
all the indirect ones can only do so via interference and
contention; henceforth, they can only provide information
on contention which can be regarded as one aspect of
information that influences QoS. Obviously, this aspect of
information is different to those in the direct primitive
space. These observations also imply that the cumulative
SU values can only quantify the effects of primitives to
model accuracy, when they provide the same aspect of
information. The final observation (iv) is that, although
the overall relevance in direct primitives space is smaller
than that of the indirect primitives space (as the former is
smaller in size), the resulted model accuracy when using
direct primitives is generally better than the use of indirect
ones. This is a typical consequence of redundancy: the
overall redundancy in the indirect primitives space tends
to cause more negative effects on model accuracy than
that of the direct one. Such observation means that even
when redundancy is considered, the direct primitives can
be more important than the indirect ones in the modeling.
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Fig. 6: The fluctuation on cumulative average of relevance
and redundancy as the number of selected primitives in-
crease.

However, we observed that the best accuracy is achieved
by the combination of direct and indirect primitives. This
means consider proper information of QoS interference in
the modeling can be quite beneficial for accuracy.

We now explain the process of analysis in details by re-
ferring an example to simplify the exposition. In particular,
we report on the Response Time of a service-instance, but
similar results have been observed on many other instances.
To avoid noise caused by the irrelevant primitives, we have
considered only relevant primitives in the analysis. Fig. 5
shows how the accuracy tends to change with the cumu-
lative distribution of selected primitives in the modeling.
Fig. 6 expresses the changes of the cumulative average of
relevance (dashed blue line) and redundancy (solid red line)
as the number of selected primitives increases. Similarly, Fig.
7 shows the changes of the cumulative total of relevance
and redundancy with respect to the number of selected
primitives. It is worth noting that, it can be hard to interpret
the cumulative relevance and redundancy using cumulative
total, as they are on significantly different scales, especially
when the number of selected primitives increase. Therefore,
we have normalized the data in the way that the scales of
both values are in the range between 0 and 1.

We initiate the process by adding the direct primitives
before the indirect ones as the former can be relatively
smaller in size, which causing minimal noise when the
number of primitives increases. In Fig. 5, 6 and 7, the trend
between 0 and 10% of the x-axis shows the effects of adding
direct primitives while the remaining shows the effect of
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Fig. 7: The fluctuation on cumulative total of relevance and
redundancy as the number of selected primitives increase

adding indirect ones. From Fig. 6, we can see that the
increase of cumulative redundancy tends to be larger than
the increase of cumulative relevance, but they become close
again as they reach the 10%. We obtained similar results
from Fig. 7 for the cumulative total of relevance and redun-
dancy. This means that, if Assumption 1 is true from 0% to
10%, then the error is expected to increase gradually and
smoothly before it drops slightly toward 10%. Nevertheless,
we observed rather contradictory results on the accuracy
curve of Fig. 5—for all the three learning algorithms, the
error drops almost linearly from 0 to 10%, which means that
in the direct primitives space, Assumption 1 does not hold.

Next, we can see that similar result also occur at the ini-
tial stages when adding the indirect primitives, particularly
between 10% and 20% of the x-axis. Precisely, both Fig. 6 and
7 indicate that from around 13%, the cumulative relevance
increase almost linearly and the cumulative redundancy
increase following a logarithmic behavior. This means that
if Assumption 1 is true, the error is expected to become
larger from 13%. This is contradicted with what is shown in
Fig. 5—the error continues to drop till it reaches the best
point at around 13% to 17%, and the accuracy stabilizes
up to the 20% x-axis. Given that the number of primitives
from both the direct and indirect primitives spaces is close
(i.e., 10% of the total number of relevant primitives for
each space), theses observations reveal that for the inter
direct and indirect primitive spaces, Assumption 1 does
not hold either. In addition, the accuracy trend implies that
a combination of all direct primitives and some indirect
ones yields better accuracy as it is important to consider
interference in the modeling.

Finally at Fig. 6, we can see that from 20% and onwards,
the cumulative relevance increases slightly and linearly
whereas the cumulative redundancy tend to exhibit loga-
rithmic and nonlinear behavior in its increase it increases
from 20% and drops by 60%. Similar trend can be observed
from Fig. 7—at around 60%, the increasing slope of cu-
mulative redundancy becomes steeper towards the curve
of cumulative relevance, which keeps increasing linearly.
As a result, if Assumption 1 is true, then the error should
become larger from 20% to 60%; while from 60% onward,
the error should start to drop slightly and smoothly. This
is almost what we can observe from Fig. 5 for the three
learning algorithms. Since the effects of direct primitives
becomes weaker (after 20%) when more indirect primitives
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are involved in the modeling, the results indicate that in the
indirect primitives space, the Assumption 1 is indeed valid.
Another observation is that using the direct primitives tends
to lead to better accuracy than using of indirect primitives.

To summarize, we can conclude that Assumption 1 is
true for intra-indirect primitives space. However, for inter-
direct and indirect spaces, this assumption does not hold;
for intra-indirect primitives space, this assumption is invalid
either. We believe the reason being is that Assumption 1
can be easily violated when there are certain primitives
providing different aspects of information to the QoS. This
means a single-learner based technique (i.e., considering all
primitives equally) tends to be insufficient for the primitives
selection, because it can merely follow one of the three
patterns below: (i) select relevant primitives from one sub-
space(e.g., direct primitives space), which can lose highly
relevant information from other sub-spaces in the model-
ing; (ii) select relevant primitives from the entire possible
relevant primitives space and unavoidably introducing too
much unwanted redundancy; or (iii) select useful primitives
from the entire possible relevant primitives space, in which
the cumulative relevance and redundancy will mislead the
selection process. The observations also indicate that in
the fixed and manual primitives selection, one should be
extremely cautious to consider every possible combination
of the primitives in the analysis, which makes the process
extremely expensive and complicated. This is especially true
in situations where potential QoS interference needs to be
considered, in which case the number of possible primitives
increases dramatically. Further, even when such process
takes place, the validity of offine result cannot be guaranteed
due to dynamic and uncertain nature of cloud.

All these facts urge the need for a self-adaptive and
online primitives selection for modeling QoS in the cloud,
which we address in this paper. Given the cumulative
relevance and redundancy can mislead the selection when
Assumption 1 does not hold and the fact that it is very dif-
ficult to efficiently handle the selection without cumulative
representations, we have decided to avoid the misleading
selection by partitioning the space. To better tackle the prob-
lem of relevance and redundancy in primitives selection,
we intend to partition the primitives that provide different
aspects of information to the QoS into sub-spaces, and select
the useful primitives from each sub-space independently
using cumulative relevance and redundancy.

4.4 The Hybrid Dual-Learners for Primitives Selection
To adaptively and dynamically select primitives as the
model inputs online, we design a runtime filtering mech-
anism based on symmetric uncertainty, which has the ad-
vantage to assess the effects of selected primitives on model
accuracy without actually training a model. Based on the
analysis in Section 4.3, we use multi-learners in order to
avoid the aforementioned issues caused by single-learner
based technique. In particular, we partition the primitives
that provide different aspects of information on the QoS
into sub-spaces; this will result in k + 1 partitions, where
k is equal to the number of primitives in the direct prim-
itives space; while the remaining one partition refers to
the indirect primitive space. The objective is to select use-
ful primitives from each sub-space independently using

dedicated learners and then produce an ensemble results
as the selected inputs for modeling. By doing so, we aim
to produce a model with adequate model complexity and
improved accuracy.

Inspired by [15], for each sub-space, we formalize a
Maximal Relevance Minimal Redundancy (MRMR) learner
using cumulative relevance and redundancy. This learner
aims to continually select the primitives that maximize:

max Φ(S, Y ), s.t . U(X,Y ) > 0, X ∈ S (8)

where X corresponds to the value vector of a primitive
and Y to the value vector of QoS attribute. S denotes
the associated sub-space; U is the function of symmetric
uncertainty in (3). Mathematically, the objective function Φ
can have four possible variations, depends on whether we
use total or average to represent cumulative SU values; and
whether we apply multiplicative or additive formulation to
represent the difference between cumulative relevance and
redundancy. Specifically, we obtain several variations of the
objective function in (8):

Total and multiplicative:∑n
X∈S U(X,Y )

1 +
∑
X,X′∈S U(X,X ′)

(9)

Average and multiplicative:∑n
X∈S U(X,Y )× (n− 1)

n2 − n+ 2×
∑
X,X′∈S U(X,X ′)

(10)

Total and additive:
n∑

X∈S
U(X,Y )−

∑
X,X′∈S

U(X,X ′) (11)

Average and additive:∑n
X∈S U(X,Y )

n
−

2×
∑
X,X′∈S U(X,X ′)

n2 − n
(12)

where X ′ is the value vector of another primitive. n is the
number of primitives, which has been already selected. It is
clear to see that the constraint filters all the irrelevant prim-
itives and this can be done easily. In this work, we apply
incremental random search to optimize these functions for
simplicity; however, it can be easily replaced by more so-
phisticated algorithms. In Section 6, we will experimentally
compare these variations.

Given that the Assumption 1 does not hold indirect
primitive space, we apply dedicated MRMR learner for each
sub-space independently. However, because there is only
one primitive exist for each k sub-space, the objective here
is equivalent to select the relevant primitives from all k
sub-spaces, therefore these sub-spaces can be merged into
one and the multiple MRMR learners can be simplified to
a single Maximal Relevance (MR) learner, which aims to
continually select the primitives that maximize:

max Ψ(D,Y ),Ψ =

n∑
X∈D

U(X,Y ), s.t .U(X,Y ) > 0 (13)

where D denote the associated direct primitive space and
all other notations are the same as (8). Again, the constraint
filters all the irrelevant primitives.
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It is worth noting that in case of selecting relevant
primitives, certain forms of cumulative relevance are ap-
plicable as long as the cumulative relevance is positive to
the number of selected primitives. This is because irrelevant
primitives can benefit nothing but degrading accuracy [15]
[30]. As shown in (13), the problem of selecting relevant
primitives can be represented by maximizing the total SU
value of relevance, subject to a constraint that the rele-
vance of each selected primitive is greater than 0. This is
because the cumulative relevance does increase positively
with the increasing number of selected primitives. However,
if we replace the cumulative relevance function to maximize
average SU value, this can mislead the selection. In such
case the cumulative relevance to the number of selected
primitives can be negative. For example, if we have a two
primitives set with 0.5 and 0.3 relevance each, they will have
smaller cumulative average of relevance than that of a one
primitive set with 0.5 relevance, but greater than that of a
three primitives set with one 0.5 and two 0.3 relevance.

As for indirect primitives space, we use a MRMR learner
for this sub-space, given that the Assumption 1 is true and
the indirect primitive space tends to provide the same aspect
of information to the QoS.

Eventually, we only need to partition the possible rele-
vance primitives space into two sub-spaces, each of which
employs learners with different primitives selection tech-
niques (i.e., MR and MRMR learner). The final results are
combined to form the selected useful primitives. We call
this as the hybrid dual-learners technique. An algorithmic
description of the technique is illustrated in Algorithm 1.

Algorithm 1 Hybrid dual-learners for primitives selection
Inputs:
given the value vector Y of a QoS attribute QoS ij

k , the
associated direct primitives space D and indirect primitives
space ID
Declare:
Cdirect - the collection of selected direct primitives
Cindirect - the collection of selected indirect primitives
Outputs:
the column entries of the selected primitives matrix SP ij

k (t)
1: start primitives selection
2: Cdirect := ∅, Cindirect := ∅,
3: Cdirect := argmax Ψ(D ,Y ) via (13)
4: Cindirect := argmax Φ(S ,Y ) via one from (9) - (12)
5: end primitives selection

4.5 Comparing to State-of-the-art Feature Selection Al-
gorithms
Our symmetric uncertainty based hybrid dual-learners ap-
proach can be treated as similar to the Kolmogorov-Smirnov
based and Information Value Ranking algorithms for feature
selection. However, instead of following their specific algo-
rithmic steps (e.g., select the most relevant feature first and
then remove redundant based on that), we have formulated
the problem as general optimization functions which, in
turn, can be solved by many off-the-shelf optimization al-
gorithms. Here, we have used randomized optimization for
simplicity, but more sophisticated algorithms can be easily

adopted. This will provide better flexibility for tackling
primitives selection in cloud QoS modeling, which is an
important, yet often ignored problem in the literature. In
contrast to the other sensitivity analysis and tree-based
importance analysis, our approach is light-weighted and
intuitive, yet still effective without heavy human interven-
tion for analyzing and tuning. Our approach has also been
specifically tuned for QoS modeling in the cloud based on
our observations regarding the effects of direct and indirect
primitives in the modeling.

Although one could argue that specific regularization
algorithms (e.g., lasso and ridge), which shrinks the coef-
ficients of each input according to its importance instead
of the ”cutting-off” them, might be effective and accurate,
applying an universal feature selection can lead to the
following benefits:
• Since the dimensionality of inputs are reduced, it helps

to produce faster training and less computational cost
for the learning algorithms. This is important for effi-
cient and scalable online QoS modeling in the cloud.

• Our primitives selection method aims to ”cutting-off”
the useless and irrelevant inputs primitives (as iden-
tified by the symmetric uncertainty metric). This pro-
vides simpler and intuitive models, which in turn, helps
the cloud engineers to identify the dependent QoS
attributes, i.e., those that can be influenced by the same
inputs. This is also useful when using the QoS models
in the decision making process of cloud autoscaling.

• It is flexible to support many learning algo-
rithms/models, as opposed to the fixed model in regu-
larization driven algorithms (e.g., linear model or tree).
This can help to improve the accuracy for those learning
algorithms that lacks regularization (e.g., ANN).

5 QOS FUNCTION CONSTRUCTION IN THE CLOUD

Recall from (1), once the primitives in SP ij
k (t) have been

selected, our next goal is to determine how those primitives
correlate with QoS ij

k (t) in the QoS function f ij
k (t).

Existing work has considered variety of learning algo-
rithms for QoS function construction, ranging from simple
linear model [33] to complex nonlinear ones [7]. These
algorithms are self-adaptive and dynamic in nature thus
they are capable to deal with dynamic and uncertain mag-
nitude of primitives in the correlation. In this section and by
means of experiments, we study the accuracy of the most
widely used single learning algorithms (i.e., ANN, ARMAX
and RT.) for QoS modeling in the cloud. In particular, we
assess the accuracy of the learning algorithms over four
different QoS attributes—Response Time, Throughput, Re-
liability and Availability (see Section 6.2 for their detailed
definitions). Finally, we present a self-adaptive and online
solution for QoS function construction, namely adaptive
multi-learners, to address the issues discovered.

5.1 Suitability Analysis of Learning Algorithms On QoS
Function Construction

For simplicity of exposition, we illustrate the results for
a service-instance for the three learning algorithms over
the four QoS attributes. We have used the variation in (7)
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for primitives selection. To better interpret the result with
respect to different trends of QoS attributes, we apply Rel-
ative Standard Deviation (RSD) to measure the fluctuation
of the QoS in a relative manner, calculated as: RSD = σ/µ,
where σ is the standard deviation and µ is the mean of all
measured QoS values. We can observe from Table 2 that the
RSD value of the QoS attribute can be sorted by the follow-
ing ascending order: Availability, Reliability, Throughput
to Response Time; this means the trend of Response Time
being the most fluctuated one. At the other extreme, the
trend of Availability being the most stable one. As shown
in Table 2, we can clearly see that the accuracy achieved
by a learning algorithm differs significantly from case to
case—ANN is the best for Response Time and Throughput
while the ARMAX is the best for Reliability and Availability.
In particular, the results of ARMAX reduces the error to
0.03% for Reliability and Availability; while ANN tends to
be significantly better than ARMAX for Response Time and
RT for Throughput. Beside, even though RT perform the
worst for most of the cases, it can still largely reduce the
error in contrast to ARMAX at the case of Response Time.

An interesting discovery from Table 2 is that, if we
interpret the accuracy in conjunction to the RSD of different
QoS attributes, we can see that the ANN tends to perform
better than ARMAX on Throughput and Response Time
where the fluctuations of trend are relatively large; and
this improvement tends to increase from Throughput to
Response when the trend becomes more fluctuated. On the
other hand, ARMAX tends to produce better accuracy than
ANN on Reliability and Availability, where the fluctuations
of trend are relatively small; and this improvement tends
to increase from Reliability to Availability when the trend
becomes more stable. These observations reveal that non-
linear model like ANN can better handle the dynamic and
uncertain magnitude of primitives in the correlation leading
to better accuracy when the fluctuation of the QoS increases,
whereas the linear ARMAX produces less error as such
fluctuation decreases.

All these experimental results suggest that the learning
algorithms perform quite differently depending on the QoS
fluctuation trends and primitives combination; henceforth,
we cannot reach a conclusion that a certain algorithm is
generally the best learning algorithm for QoS modeling in
the cloud. This indicates that given the generality of the
proposed QoS model, the single learner is limited as it
is difficult to determine which learning algorithm to use
without expensive and intensive analysis. In addition, even
when such process is performed, the offine analysis can still
become invalid at runtime. Therefore, it is desirable to build
a self-adaptive mechanism that not only able to adaptively
model the magnitude of selected primitives to the QoS, but
also dynamically select the suitable algorithm based on the
runtime trend of a QoS attribute.

5.2 The Adaptive Multi-Learners for QoS Function Con-
struction
Given the fact that most machine learning algorithms are
self-adaptive and dynamic in nature, the crucial challenge
here is how to adaptively determine the best learning al-
gorithm for QoS function construction. To this end, we pro-
pose an adaptive multi-learners technique for updating QoS

TABLE 2: The SMAPE (%) of Learning Algorithms on Dif-
ferent QoS Attributes and Relative Standard Deviation.

QoS Attribute (RSD) ANN ARMAX RT
Response Time (4.197) 12.28 29.61 16.31

Throughput (0.663) 11.93 13.38 21.89
Reliability (0.012) 0.21 0.03 0.28

Availability (0.010) 0.37 0.03 0.43

function f ij
k (t) on the fly and predicting the QoS values, as

mentioned in Fig. 3. The technique has two main processes,
namely training and prediction. At the training process, we
simultaneously apply different learners to train the same
QoS function, but each of the learners uses different learning
algorithm to build a model. At the prediction process,
we evaluate these learning algorithms by comparing the
resulted models within the bucket on the fly; the model of
the best learning algorithm is used to predict QoS.

One of the most critical design decisions is to determine
the evaluation function that compares the models produced
by candidate learners. The basic method would be based
on global mean error of all historical samples. However,
as shown by Kundu et al. [7], given a set of primitive
values as inputs, the most accurate model using these inputs
might not be the one that has the best global error. This is
because the accuracy of a model can be sensitive to the local
construct of given input values, including the variation of
possible combination, scale and granularity, etc. As a result,
our evaluation function aims to compare both the local error
of a given inputs set produced by a model and the global
error of the said model. In this work, we have used SMAPE
for measuring the error, but other metrics can be used easily.

Algorithm 2 Training process in adaptive multi-learners
Inputs:
given the column entries of SP ij

k (t) from Algorithm 1 and a
set of candidate learning algorithms
Declare:〈
Mmain , Msub , L

〉
- a vector of main-model, sub-model and

the corresponding local error pattern
bucket - a collection of model vectors
Outputs:
a bucket of model vectors for a QoS attribute QoS ij

k

1: for each candidate learning algorithm simultaneously
do

2: find the optimal number of row entries, i.e., the value
of q in (2), for SP ij

k (t) if it has not been predefined
for this learning algorithm

3: train main-model Mmain and sub-model Msub based
on the required inputs defend by SP ij

k (t)
4: test the sub-model for building local error pattern L
5: bucket := bucket ∪

〈
Mmain , Msub , L

〉
6: end for

An algorithmic description of the training process has
been shown in Algorithm 2. At the training process, as the
collected online data increases, we continually train two
QoS models for each learner (line 2-5): (i) A main-model
that uses 100% of the collected online data; (ii) A sub-model,
which is trained based on 70% of the total collected data.
The sub-model is used to test local and global error for
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its main-model of a learner. In particular, it tests the QoS
prediction error on the remaining 30% testing data—the
split of training and testing data follows standard machine
learning approach for testing generalization errors. These
generalization errors and their corresponding samples (i.e.,
the observed values of all selected primitives and QoS at
each interval) within the testing data serve as the local error
patterns of the main-model. Finally, the main-model, sub-model
and local error patterns are put in a bucket.

Algorithm 3 Prediction process in adaptive multi-learners
Inputs:
given a set of inputs P and the bucket from Algorithm 2
Declare:
S - the current sample
Sselected - the most similar sample to P
d - the distance between P and the current sample
dsmallest - the smallest distance between P and a sample
Elocal - the local error of the current main-model
Eglobal - the global error of the current main-model
E - the final error of the current main-model
Esmallest - the smallest final error of a main-model
Mselected - the selected main-model for prediction
Outputs:
the predicted QoS value of QoS ij

k

1: start prediction
2: for each

〈
Mmain , Msub , L

〉
in the bucket of QoS ij

k (t) do
3: for each sample S in the local error pattern L of Msub

do
4: calculate distance d between P and S using (14)
5: if dsmallest >d then
6: dsmallest := d, Sselected := S
7: end if
8: end for
9: get the error of Sselected as the local error Elocal of

Mmain

10: get the global error Eglobal of Mmain

11: evaluate final error E of Mmain using (15)
12: if Esmallest >E then
13: Esmallest := E, Mselected := Mmain

14: end if
15: end for
16: predict(P) using the selected main-model Mselected

17: end prediction

An algorithmic description of the prediction process
has been shown in Algorithm 3. The prediction process
is triggered when there is need to perform prediction. In
particular, the best main-model in the bucket is used as the
final model to predict QoS. To calculate the local error of
a main-model, we leverage the prediction error of its sub-
model for each sample within the testing data, as recorded in
the local error patterns (line 3-9). When given a set of inputs
(i.e., new values of the selected primitives) for predicting
QoS, the local error of a main-model is determined by
extrapolating the similarity between the given set of inputs
and each sample from local error patterns; the error of the
most similar sample is used as the local error (line 4-7). To
this end, we apply symmetric uncertainty based Euclidean
Distance to measure the similarity. As shown in 14, d is the

distance of the given set of inputs against a sample in the
local error patterns.

d =

√∑
x∈X

(SU x × (px − p′x)2) (14)

px and p′x respectively denote the value of xth selected
primitive in the given set of inputs and the value of the
same primitive in a sample from local error patterns. SUx is
the symmetric uncertainty value between the xth primitive
and the QoS attribute. The sample results in the smallest d
is the one that we are seeking, then its corresponding error
is used as the local error of the main-model (line 9).

On the other hand, the global error of a main-model is
the mean errors of all samples within the 30% testing data
produced by its sub-model (line 10). Finally, the evaluation
function selects the best main-model for a given set of inputs
by examining on both the local and global error of all main-
models in the bucket, as formally depicted in (15) (line 11-14).

Ei = α× Eilocal + β × Eiglobal (15)

where Ei , Eilocal and Eiglobal denote the final, local and
global error of the ith main-model respectively. α and β are
two heuristics expressing the relative importance of local
and global errors. We have set the initial value of α and β
as 0.1, which means the local and global error are equally
important from the beginning. The selected main-model and
its learning algorithm for a given inputs is the one that has
the smallest (line 16). To capture the right weight of local
and global errors, α and β are updated via 16 when new
data is collected.

α = α+ ∆α, β = β + ∆β

s.t .

{
∆α = eα=0,β=1 − eα=1,β=0 if eα=1,β=0 < eα=0,β=1

∆β = eα=1,β=0 − eα=0,β=1 if eα=1,β=0 > eα=0,β=1

(16)
Specifically, eα=1 ,β=0 is the prediction error of new data

produced by the selected main-model when α = 1 and β = 0.
Similarly, eα=0 ,β=1 is the error produced by the selected
main-model when α = 0 and β = 1. In this way, the error
that is more useful in the selection will gradually gain more
importance. This updating process has been illustrated in
Algorithm 4.

Algorithm 4 Update α and β in the evaluation function
Inputs:
newly measured values vector Psample and QoS value y for
a QoS attribute of selected primitives QoS ij

k

1: start update when newly data is available
2: predict(Psample) using Algorithm 3 when α = 1, β = 0
3: predict(Psample) using Algorithm 3 when α = 0, β = 1
4: calculate the errors of the values from step 2 and 3 against

y
5: calculate ∆α and ∆β using (16)
6: update α and β using (16)
7: end update

As mentioned in Section 5.1, we employ three differ-
ent learning algorithms (i.e., ARMAX, ANN and RT) in
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the adaptive multi-learners. Our technique is flexible as
new algorithms can be added or old algorithms can be
removed/substituted if needed. The online training of these
learning algorithms follows standard procedure; in the fol-
lowing, we briefly explain the applied learning algorithms.

Auto-Regressive Moving Average with eXogenous in-
puts—ARMAX [25] models the correlation between QoS
and primitives as a linear relation and it captures the time-
series information into the model. In this work, we train the
ARMAX using linear Least Mean Square (LMS) approach
[34]; and the q in (2) is determined using hill-climbing
algorithm that starts with q = 1, then automatically increase
the number of row entries one by one during training till it
reaches good accuracy.

Artificial Neural Network—ANN [24] is a powerful
supervised learning algorithm, which is capable for mod-
eling complex nonlinear correlations. This is achieved by
weighting the inputs and transforming them using activa-
tion function to produce the output. In this work, we use
three layers and Sigmoid function in the network as this
setup tends to relief the issue of local minima. ANN is
trained using a well-known technique, namely the Resilient
backPROPagation (RPROP) [35]. We found that use q = 1
(i.e., no time series information) can produce the best result;
and the right number of hidden neurons is determined us-
ing hill-climbing algorithm during training till the accuracy
cannot be further improved.

Regression Tree—RT [26] is a learning algorithm that
maps the relation of primitives and QoS into a tree-
like structure, in which leaves represent class labels and
branches express conjunctions of features to reach these la-
bels. Training is completed via Classification and Regression
Trees (CART) technique [36] and we found that use q = 1
(i.e., no time series information) can produce the optimal
results.

5.3 Selected Model vs. Ensemble Model
One could argue that an ensemble method may yield better
accuracy than dynamic selected model. However, a single
ensemble method has been also shown to be quite sensitive
to the variance of performance of the candidate learning
algorithms, that is, its performance can drop significantly
when more candidate learning algorithms are used [37];
while dynamic selected model tends to be resilient to this
issue. Perhaps, instead of dynamically selecting from a set of
models, dynamically selecting one from a set of ensembles
may be a more promising way to the problem. However, this
will introduce extra overhead for the online QoS modeling
as the possible number of ensembles increases dramatically
w.r.t. the number of candidate learning algorithms. We plan
to systematically compare (single and multiple) ensemble
method and the dynamic selected model for cloud QoS
modeling in our future work.

6 EXPERIMENTS AND EVALUATIONS

To evaluate our modeling approach, we experimentally
benchmark our results against other single-learner and man-
ual techniques. Specifically, the primary intention of the ex-
periments is to validate the approach against the following
criteria:

• Accuracy: By comparing with various other state-of-
the-art modeling approaches, we intend to examine
whether the hybrid dual-learners and the adaptive
multi-learners can achieve better accuracy.

• Stability: We intend to assess the stability of the ac-
curacy achieved by our approach under different sce-
narios, i.e., different QoS attributes and learning algo-
rithms, in contrast to the other competitors.

• Sensitivity of accuracy to online data size: We examine
the sensitivity of accuracy of the proposed approach
to the available online data size. The purpose is to
evaluate how quick the model accuracy changes with
respect to the increase in data size.

• Overhead: We intend to evaluate the overhead of our
approach in terms of the latency in the modeling, for
both the primitives selection phase and the QoS func-
tion construction phase.

In addition to the assessment of accuracy under different
QoS attributes and/or learning algorithms using SMAPE,
we also intend to examine the overall accuracy and sta-
bility for all the considered scenarios. However, given the
assumption that the scenarios are equally important, simply
calculate the average or sum of all SMAPE can mislead
the results. This is because different QoS attributes produce
different scale of the prediction error, e.g., the error for
predicting Throughput tends to be much larger than that for
Reliability; therefore a technique/learning algorithm that
performs better for Throughput will more likely to dominate
the overall results. To cope with this issue, we use the
summation of normalized SMAPE to illustrate the overall
accuracy of a competitor, as shown below:

Overall Accuracy = 100×
n∑
i

ei
ei,mean

(17)

whereby ei is the SMAPE of a competitor for the ith QoS
attribute and/or learning algorithm and ei,mean is the mean
SMAPE of all competitors under such scenario; n is the total
number of QoS attribute and/or learning algorithm. In this
way, the errors under each scenario are formatted into the
same scale where smaller value indicates better overall accu-
racy. Similarly, we assess the stability of a competitor via the
summation of normalized distance to the best competitor
under each scenario, formally calculated by:

Stability = 100×
n∑
i

ei − ei,best
ei,worst − ei,best

(18)

where ei,best and ei,worst are the SMAPE produced by
the best and worst competitor respectively, under the ith
QoS attribute and/or learning algorithm. The remaining
notations are the same as 17. Again, smaller value indicates
better stability across different scenarios.

6.1 Experiments Setup
We conducted experiments on private cloud using a cluster
of PMs, each of which has Intel i7 2.8GHz Quad Cores and
4GB RAM. The PMs use Xen v3.0.3 [29] as the hypervisor
and the modeling process is running on Dom0. To eliminate
the interference caused by modeling, we allocated one CPU
core and 1.2GB RAM to Dom0, which tends to be sufficient.
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TABLE 3: The Examined QoS Attributes and Primitives.

QoS and Primitives Description

Output

Response
Time (ms)

The average leaped time between a service-
instance receives and replies a request.

Throughput
(req/min)

The average rate of completed requests.

Reliability
(%)

The percentage of requests that being com-
pleted less than a threshold. (30 ms)

Availability
(%)

The percentage of time that the average
response time above a threshold. (60 ms)

CP input
CPU (%) Observed average CPU utilization of a VM.
Memory

(MB)
Observed average Memory utilization of a
VM.

Thread
(no. of

req)

Observed maximum concurrent threads of
a service-instance. (a modified control knob
of Tomcat’s maxThread property)

EP
input

Workload
(req/min)

Observed average request rate of a service-
instance.

Our approach is implemented based on Encog [38] and
Apache Mathematics [39] using Java JDK 1.6. To simulate
QoS interference caused by the VMs while not exhausting
resources, we run three co-hosted VMs on each PM; the
remaining resources are evenly allocated to the co-hosted
VMs. All VMs run linux kernel v2.6.16.29.

Our experiments leverage RUBiS [27], which is a cloud-
based application consists of 26 co-located software services
using the eBay.com model. For simplicity, we have used three
RUBiS snapshots, each of which consists of a 2-tiers (i.e.,
application and database tiers) based RUBiS application;
the three RUBiS snapshots differ in terms of the database
volume size ranging from 1GB to 5GB data. Each RUBiS
snapshot is deployed with a software stack including Tom-
cat v6.0.28 and MySQL v3.23.58 on each co-hosted VM of a
master PM; and we have implemented sensors deployed
on each service-instance and VM for sending the online
data to Data Collector. For each RUBiS snapshot on the
master PM, the application tier is replicated to all other
servant PMs in the cloud; these replicas are connected to
the database on the master PM for handling any database
related requests. Finally, each of the three RUBiS snapshots
and its replicas are linked to its dedicated load balancer.
Three client emulators are used and they apply read/write
pattern to generate requests for each load balancer. Here, we
have considered two types of read/write pattern: a read-
intensive pattern where read to write ratio is around 9:1;
and a write-intensive one, i.e., read to write ratio is 1:1.

To simulate a realistic workload within the capacity of
our testbed, we vary the number of clients proportionally
according to the FIFA98 workload [28], which is compressed
in the way that the fluctuation of a day in the trend corre-
sponds to 200s in our case. This setup can generate up to
400 parallel requests, hence the compression is realistic and
large enough to simulate QoS interference in cloud.

6.2 The QoS Attributes, Primitives and Evaluation Pro-
cedure
The concrete QoS attributes and primitives depend on sce-
narios. For the simplicity of exposition, we have selected
commonly used QoS attributes and primitives in the eval-
uation, but it is worth noting that our approach is not
limited to these dimensions. As listed in Table 3, these QoS
attributes and primitives are per-service except for CPU and

QoS and CP values from 1 to t-1 for training model

EP values from 1 to t-2 for training model

1 2 tt-1t-2

EP values 
at t-1

CP values 
at t

predict QoS value at t

Fig. 8: The Timing in Evaluation of Accuracy.

memory as they are shared on a VM. For each service-
instance running on a VM of the master PM, a QoS model
can at most has:
• 4 direct primitives—CPU, memory, thread and work-

load of the corresponding service-instance and VM.
• 54 indirect primitives—2 (thread and workload)×25

(co-located service-instances)+4 (CPU and memory of
another two co-hosted VMs).

This combination gives us a maximum of 58 possible
relevant primitives for each service-instance.

At runtime, we examine the accuracy of one interval
ahead prediction for each experiment run: by the end of
interval t, the QoS models are trained based on historical
data up to t − 1 (up to t − 2 for environmental primitives),
and then we use the observed primitives values at t (at t−1
for environmental primitives) to predict the QoS value at
t, which is finally used to compared with the actual QoS
value via SMAPE. The timing regarding how the series
of data are used in our QoS modeling approach has been
illustrated in Figure 8. The sampling and modeling intervals
are both 120 secs with the total of 500 intervals, where the
first 150 intervals use a static and stable workload trend
aiming at providing some essential data for the modeling;
whereas the rear 350 intervals follow the FIFA98 trend.
This setup can generate one new sample per interval for
updating the model. For all accuracy related experiments,
we examine the SMAPE for the rear 350 out of 500 intervals
in one experiment run; we calculate the mean accuracy of
all service-instances on one VM of the master PM and the
reported results are computed by averaging 10 runs. We
have performed Wilcoxon Signed-Rank test (two-tailed) for
all comparisons. The resulted p values are smaller than 0.05,
which confirms the statistical significance of the results.

6.3 Accuracy of Hybrid Dual-Learners for Primitives
Selection

To assess the effectiveness of our hybrid dual-learners tech-
nique for primitives selection w.r.t. accuracy, stability and
model complexity. To start with, we first compare the four
variations of our hybrid dual-learners technique, as shown
in Table 4. We report the results by following the evaluation
procedure described in Section 6.2. Specifically, we apply
three widely used learning algorithms (i.e., ANN, ARMAX
and RT) for QoS function construction on all the QoS at-
tributes.

From Table 5, we can see that for both workload pat-
terns, HYBRID-V1 tends to produce the best accuracy over-
all, but it has marginal difference to HYBRID-V3 on the
write-intensive pattern. As for stability, it is clear that the
HYBRID-V1 achieves the best results. We observed that all
four variations produce the same model complexity. Table
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TABLE 4: The Compared Primitives Selection Techniques.

Primitive Space for MR Primitive Space for MRMR Description
HYBRID-V1 4 direct primitives 54 indirect primitives using (11) for MR and (7) for MRMR.
HYBRID-V2 4 direct primitives 54 indirect primitives using (11) for MR and (8) for MRMR.
HYBRID-V3 4 direct primitives 54 indirect primitives using (11) for MR and (9) for MRMR.
HYBRID-V4 4 direct primitives 54 indirect primitives using (11) for MR and (10) for MRMR.

HYBRID 4 direct primitives 54 indirect primitives using (11) for MR and (7) for MRMR.
SINGLE-MR all 58 primitives N/A using (11) for MR.

SINGLE-MRMR N/A all 58 primitives using (7) for MRMR.
MANUAL N/A N/A fixed and offine selection that statically uses certain prim-

itives (CPU and memory in our case) as inputs e.g., [7]
[33]—we modified the model from per-VM to per-service.

SINGLE-MR-DIRECT 4 direct primitives N/A using (11) for MR and consider direct primitives only.

TABLE 5: Comparing Variations of Hybrid Dual-Learners for Primitives Selection. (The Best is Highlighted)

Write-intensive workload Read-intensive workload
HYBRID-

V1
HYBRID-

V2
HYBRID-

V3
HYBRID-

V4
HYBRID-

V1
HYBRID-

V2
HYBRID-

V3
HYBRID-

V4

SM
A

PE
(%

)

Response Time
ANN 12.28 12.8 12.81 12.48 13.51 15.44 15.14 15.35

ARMAX 29.61 30.56 29.84 36.59 44.85 45.62 44.36 45.68
RT 16.31 18.1 16.39 16.37 17.42 21.19 20.26 21.58

Throughput
ANN 11.93 12.29 12.67 13.59 13.75 15.73 15.84 15.55

ARMAX 13.35 13.55 14.02 15.12 15.02 17.91 17.99 17.9
RT 21.89 21.8 21.14 24.2 22.07 24.74 25.87 26.22

Reliability
ANN 0.21 0.21 0.21 0.2 0.32 0.42 0.44 0.44

ARMAX 0.03 0.03 0.03 0.03 0.03 0.04 0.05 0.04
RT 0.28 0.26 0.29 0.27 0.38 0.3 0.43 0.33

Availability
ANN 0.37 0.36 0.36 0.43 0.61 0.69 0.7 0.7

ARMAX 0.03 0.02 0.03 0.03 0.05 0.06 0.06 0.06
RT 0.43 0.45 0.41 0.55 0.68 0.64 0.63 0.65

Overall Accuracy (%) 1170.2 1180.99 1170.66 1278.15 1083.95 1214.5 1264.87 1236.69
Stability (%) 321.7 466.83 357.4 787.52 198.02 884.78 940.97 996.03

Complexity (number of inputs) 6 to 8 6 to 8 6 to 8 6 to 8 5 to 8 5 to 8 5 to 8 5 to 8

5 also show the detailed accuracy results under each of the
12 scenarios. For both workload patterns, HYBRID-V1 pro-
duces the best results for most of the cases on Response Time
and Throughput; whereas for other two QoS attributes, the
best variation tends to be different.

Next, we use HYBRID-V1 (we refer to as HYBRID for
simplicity), as the representative of our hybrid dual-learner
technique, to compare against various other self-adaptive
and online selection techniques that are categorized as
single-learner based (i.e., SINGLE-MR, SINGLE-MRMR and
SINGLE-MR-DIRECT); and the manual selection technique,
denoted as MANUAL, that has been widely used in existing
static and semi-dynamic QoS modeling approaches (e.g., [7]
[33]). Their detailed explanations can be found in Table 4.

From Table 6, for the write-intensive workload, we can
see that the overall accuracy of all self-adaptive and online
techniques is better than that of the manual one, except
for the SINGLE-MR. This is because SINGLE-MR focuses
on information relevance only and can introduce too much
redundancy. This result indicates that even though the
dynamics and uncertainties in QoS function construction
can be captured by the considered learning algorithms, it
is still important to properly handle the runtime dynamics
and uncertainties in primitives selection. In particular, a
carefully designed self-adaptive and online selection tech-
nique can lead to better accuracy than the manual selection
technique; however an inappropriate one (i.e., the SINGLE-
MR) can only make the accuracy worse off. Among the
self-adaptive and online primitives selection techniques, we
also observe that although the SINGLE-MRMR ignores the
fact that Assumption 1 does not hold in some parts of the

space and hence mislead the selection, it tends to produce
better accuracy overall in contrast to that of SINGLE-MR
and SINGLE-MR-DIRECT. This is because they have been
affected by more serious issues: SINGLE-MR has too much
redundancy while SINGLE-MR-DIRECT does not explicitly
consider information about QoS interference. Finally, we can
see that our HYBRID produces the best accuracy overall.
Specifically, in contrast to those single-learner based tech-
niques, HYBRID has better overall accuracy than that of
SINGLE-MR-DIRECT because it considers extra information
about interference in the modeling, which tends to be impor-
tant for improving accuracy. In addition, it is also overall
more accurate than SINGLE-MR and SINGLE-MRMR, be-
cause it is capable to select useful primitives based on both
relevance and redundancy while still prevent misleading
the selection process. This is achieved by partitioning the
possible relevance primitives space.

As for the overall accuracy under read-intensive work-
load, SINGLE-MR and SINGLE-MRMR are less accurate
than SINGLE-MR-DIRECT; they are even much worse than
the manual technique. This implies that the rich redundancy
and the misleading selection cause more serious issues as
when compared to write-intensive workload pattern. For
our HYBRID technique, we can note that it again achieves
the best accuracy overall, which is a consistent result on both
workload patterns.

The stability of the techniques is also illustrated in Table
6; it is easy to see that our HYBRID technique produces
the best result for both workload patterns, meaning that
it is the most robust one under different scenarios. As for
complexity shown in the same Table, the HYBRID can be
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TABLE 6: Comparing Hybrid Dual-Learners with Single Learner for Primitives Selection. (The Best is Highlighted)

Write-intensive workload Read-intensive workload
HYBRID SINGLE-

MR
SINGLE-
MRMR

MANUAL SINGLE-
MR-

DIRECT

HYBRID SINGLE-
MR

SINGLE-
MRMR

MANUAL SINGLE-
MR-

DIRECT

SM
A

PE
(%

)

Response Time
ANN 12.28 16.12 13.03 17.8 12.92 13.51 15.9 21.84 30.73 15.49

ARMAX 29.61 37.56 29.77 33.81 32.36 44.85 51.44 56.47 53.46 48.52
RT 16.31 19.74 15.4 19.25 17.91 17.42 20.21 20.01 21.09 20.73

Throughput
ANN 11.93 13.45 16.82 14.26 12.55 13.75 16.59 30.18 18.56 15.75

ARMAX 13.35 15.29 17.53 14.17 13.6 15.02 17.04 17.31 17.87 17.66
RT 21.89 23.52 23.17 19.88 19.94 22.07 24.4 30.79 25.81 24.51

Reliability
ANN 0.21 0.55 0.35 0.16 0.17 0.32 1.2 0.45 0.36 0.55

ARMAX 0.03 0.05 0.02 0.02 0.02 0.03 0.04 0.05 0.06 0.06
RT 0.28 0.29 0.24 0.35 0.37 0.38 0.59 0.57 0.37 0.45

Availability
ANN 0.37 0.39 0.34 0.36 0.36 0.61 0.78 0.65 0.68 0.72

ARMAX 0.03 0.04 0.02 0.03 0.02 0.05 0.07 0.03 0.05 0.05
RT 0.43 0.43 0.43 0.55 0.56 0.68 0.64 1.32 0.83 0.77

Overall Accuracy (%) 1090.37 1452.81 1132.38 1185.85 1138.59 956.7 1308.6 1315.1 1231.0 1188.9
Stability (%) 246.73 882.85 357.44 547.75 420.97 60.3 690.4 786.1 656.4 575.4

Complexity (number of inputs) 6 to 8 40 to 44 2 to 3 2 to 2 4 to 4 5 to 8 30 to 44 2 to 3 2 to 2 4 to 4

TABLE 7: Comparing Adaptive Multi-Learners with Single Learning Algorithms for QoS Function Construction. (The Best
is Highlighted)

Write-intensive workload Read-intensive workload
ADAPTIVE ANN ARMAX RT ADAPTIVE ANN ARMAX RT

SM
A

PE
(%

)

Response Time 13.72 12.28 29.61 16.31 13.82 13.51 44.85 17.42
Throughput 12.72 11.93 13.35 21.89 14.16 13.75 15.02 22.07
Reliability 0.03 0.21 0.03 0.28 0.03 0.32 0.03 0.38

Availability 0.03 0.37 0.03 0.43 0.05 0.61 0.05 0.68
Overall Accuracy (%) 192.8 474.90 285.20 646.20 179.01 488.89 322.83 609.27

Stability (%) 101.51 156.17 114.32 323.25 94.81 171.75 115.26 312.48

slightly more complex than the others, except for SINGLE-
MR. However, the benefits here is that the model’s overall
accuracy is better and more stable than others with respect
to the QoS attributes and the learning algorithms.

Table 6 also show the detailed accuracy results for
each of the 12 scenarios. Again, we can see that for both
workload patterns, the HYBRID produces the best results
for most of the cases on Response Time and Throughput,
which are highly fluctuate; but the best for Reliability and
Availability tend to vary. This is because the Reliability
and Availability trends tend to fluctuate less than that of
Response Time and Throughput. Therefore, the sensitivity
of certain learning algorithms to the number of inputs are
amplified; this can easily lead to over-fitting when the model
complexity increases, which will significantly influence the
model accuracy. However for Reliability and Availability,
the differences of accuracy between HYBRID and the best
one ranges from 0.01% to 0.05%, which is marginal as when
compared to the improvement that HYBRID offers.

According to all these results, we can conclude that
although HYBRID does not constantly produce the best
accuracy for every learning algorithms and QoS attributes, it
tends to produce the best overall accuracy; it is also the most
robust and stable technique in the presence of variability
introduced by different learning algorithms and QoS trends.
In particular, HYBRID provides better accuracy when QoS
fluctuates, while leaving the model complexity adequate. It
is also worth noting that having a self-adaptive and online
primitives selection process promotes numerous other ben-
efits, e.g., reduce the needs for complex human analysis and
can be easily adapted to many learning algorithms etc.

6.4 Accuracy of Adaptive Multi-Learners for QoS Func-
tion Construction

To evaluate our adaptive multi-learners technique (denoted
as ADAPTIVE) for QoS function construction, we follow the
evaluation procedure described in Section 6.2. For different
QoS attributes, we compare the accuracy and stability of
ADAPTIVE with that of the other online learning algorithms
that assume single learner (i.e., ANN, ARMAX and RT),
which has been widely studied in existing semi-dynamic
QoS modeling approaches e.g., [7] [33]. In all the cases, we
have used HYBRID for primitives selection.

From Table 7, we can clearly see that ADAPTIVE pro-
duces the best accuracy overall for both workload patterns.
It is also the most stable and robust against different QoS
attributes. Detailed accuracy results for each scenario can be
also found on Table 7. Here, we observe similar results on
both workload patterns: for Response Time and Through-
put, the ANN is the best learning algorithm in contrast to
ARMAX and RT; We can see that ADAPTIVE is also much
better than ARMAX and RT, but being slightly worse than
ANN. These results indicate that although the ADAPTIVE
might occasionally produce false positive/negative for se-
lecting the best learning algorithm, it is still able to produce
very closed accuracy to the best learning algorithm for a QoS
attribute. In cases of Reliability and Availability, we can see
that the ADAPTIVE is able to produce the same prediction
error as the best learning algorithm, which is ARMAX. This
result means that the ADAPTIVE successfully determines
the best learning algorithm along the QoS trend.

In summary, we can note that although the algorithms
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(e) ARMAX for Response Time
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(f) ARMAX for Throughput
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(g) ARMAX for Reliability
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(h) ARMAX for Availability
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(j) ARMAX for Throughput
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Fig. 9: Sensitivity of model accuracy to online data size for each primitives selection technique. The y-axis denotes SMAPE
(%); x-axis expresses the online data size (%).
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Fig. 10: Sensitivity of model accuracy to online data size for each learning algorithm. The y-axis denotes SMAPE (%); x-axis
expresses the online data size (%).

behave differently depends on different QoS trends, our
adaptive technique can still continuously select the suited
one to predict QoS and result in good accuracy; it is also
the most stable on different QoS trends. Moreover, our self-
adaptive and online solution eliminates the need of heavy
human intervention for identifying the suitable learning
algorithm, reducing the errors caused by human analysis.

6.5 Sensitivity of Accuracy to Online Data Size
Next, we evaluate the sensitivity of accuracy to the online
data size for our approach. This sensitivity expresses how
quick accuracy changes as the available data samples in-
crease. Instead of doing one-interval-ahead prediction, we
sequentially split the data size of the entire 350 intervals
into training data set and testing data set containing 70%
and 30% of the original data respectively. The training data
set is then further divided into different portions based on
the order of time series: 20%, 40%, 60%, 80% and 100%.
These portions serve as the actual training data applied for
building the QoS models which are, in turn, used to make
prediction over the 30% testing data set. In the following, we
report on the results for the write-intensive pattern over 10
runs. Similar observation has been registered for the read-
intensive workload pattern.

Fig. 9 shows the sensitivity of accuracy to data size for
the HYBRID and other single learner-based and manual
selection techniques. We note that all primitives selection
techniques lead to better accuracy as the data size increases,
given the fact that all selected primitives are more or less
relevant to the QoS. In most of the cases, the sensitivity
of model accuracy to data size has been similar for all the
primitives selection techniques. In addition, the compara-
tive accuracy under limited data do not differ much as to
what had been reported in Section 6.3. However we found
that in certain cases (e.g., Fig. 9a and 9e), particularly for
fluctuated QoS trends, the accuracy produced by HYBRID
clearly has the greatest sensitivity to data size; or being
more sensitive than most of the other selection techniques.
We also discovered that in these cases, HYBRID tends to
produce better or similar accuracy in contrast to the other se-
lection techniques, even when the data size is limited. These
observations imply that, in contrast to the other approaches,
HYBRID can still further improve the accuracy quicker as
the data samples increase, while maintaining relatively less
or similar error under limited data size.

Figure 10 illustrates the sensitivity of accuracy to data
size for the ADAPTIVE and other single learner-based learn-
ing algorithms. Again, all learning algorithms gradually
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Fig. 11: Overhead for primitives selection on write-intensive
(top) and read-intensive workload (bottom).
improve on accuracy as the data size increase. The sensi-
tivity of ADAPTIVE has been similar to most of the others
for Response Time and Reliability (i.e., Fig. 10a and 10c).
However, for Throughput and Availability (i.e., Fig. 10b
and 10d), our ADAPTIVE and the best learning algorithms
(i.e., ANN and ARMAX) tends to improve accuracy slightly
quicker than the others while maintaining relatively less
error under limited data size. We can also observe that, in
contrast to the corresponding best single learning algorithm
for each QoS attribute, the accuracy of our ADAPTIVE has
the same or similar sensitivity to the online data size.

6.6 Efficiency
To assess the overhead of our approach, we compare the
latency of HYBRID to other single learner-based techniques,
which has been considered in the experiments for primitives
selection; we also examine the latency of ADAPTIVE to that
of ANN, ARMAX and RT for QoS function construction.
Because the latency can be varied depends on the char-
acteristics of the service and data size, we have used an
instance of the service named SearchItemsByCategory
as the example given that it exhibits the most fluctuated
workload. The experiments are performed using the rear 10
out of 500 intervals and we report on the average results of
all QoS attributes over 10 runs.

Fig. 11 shows the performance overhead for different
primitives selection techniques. We can see that under both
workload patterns, the HYBRID (0.68s and 0.65s) has rel-
atively bigger overhead as when compared to SINGLE-
MR and SINGLE-MR-DIRECT; but it is smaller to that of
SINGLE-MRMR. We have observed that this is due to the
majority of overhead is caused by the optimization process
of (6), which is not part of the process in SINGLE-MR
and SINGLE-MR-DIRECT. However, such extra overhead of
HYBRID is generally acceptable as it is still less than 1 sec.
For the case of QoS function construction, Fig. 12 illustrates
the best and worst cases for all learning algorithms. In par-
ticular, for both patterns, ANN generally produces bigger
overhead as when compared to ARMAX and RT. This is
because the ANN is fundamentally more complex than the
other two. For both the best and worst cases, the ADAPTIVE
has relatively similar overhead to that of ANN; this is
expected as the ADAPTIVE needs to wait for the completion
of all simultaneously running learning algorithms before
determine the best one to use. In conclusion, the overhead
of our modeling approach is acceptable under the sampling
and modeling interval of 120s, and thus it is efficient enough
to be performed online.
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Fig. 12: Overhead for QoS function construction on write-
intensive (top) and read-intensive workload (bottom).

6.7 Model Exploitations
As mentioned, the resulted QoS models can serve as power-
ful tools and foundation to achieve better self-adaptivity in
cloud computing, benefiting both the cloud providers and
consumers. Among others, the most significant exploitation
and benefits are:
• The models allow one to achieve more concise and

isolated decision making for elastic autoscaling, where
the independent QoS attributes (i.e., those that do not
sensitive to the same control primitives) can be rea-
soned about in separated local processes without affect-
ing each others. This will yield less overhead but still
guarantee the overall quality. We have quantitatively
evaluated such benefit in our other work [40].

• The models make identification of the sources of con-
tention and QoS interference easier. This is because the
primitives, which are selected as the input of most QoS
attributes, are likely to be the ones that cause serious
contention and QoS interference. Consequently, they
might need to be tuned more carefully than the others.

• The models create the foundation to reason about the
effects of the different amount of scaling on different
QoS attributes, the likely consequence of QoS inter-
ference and the possible trade-offs, i.e., answering the
related ”what-if” questions. This will, in turn, provide
better governance and assurance of the autoscaling
actions (e.g., vertical/horizontal scaling) that are subse-
quently performed. Interesting reader can refer to our
other work for details on this topic [41] [42].

7 THREATS TO VALIDITY

The main threats to validity of our approach are associated
with its scalability, which can be discussed in two folds: the
horizontal scalability w.r.t. the number of input dimensions;
and the vertical scalability, which is concerned with the
number of data samples associated with these inputs.
• Horizontal Scalability: the number of inputs dimensions

can directly influence the overhead of symmetric un-
certainty based optimization. However, one benefit of
our formulation of the primitives selection problem is
that it can be easily adopted with many optimization
algorithms, including those that capable to handle high
number of variables and those that provide approx-
imated result under NP-hard problem. At the stage
of the QoS function construction, our hybrid learners
approach has ensured a lower number of inputs, which
has proven to be effective and scaling the modeling
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process. As shown in the experiments, the learning
algorithms has to deal with only 6 to 8 out of 58 input
primitives. This is only around 10% of the original set
in the modeling process. Further, unlike many other
non-cloud related problems (e.g., DNA analysis) where
the number of features can be a million, the number of
inputs dimensions in the cloud environment is likely
to be much less, e.g., it might not exceed an hundred,
depending on how many VMs and services are co-
running and their functional dependencies. Thus, our
approach has acceptable scalability in such a context.

• Vertical Scalability: In the primitives selection phase, the
number of data samples can only influence the calcula-
tion of symmetric uncertainty. Given that we have used
a cumulative relevance and redundancy representation,
the overhead of such calculation is linear to the number
of data samples. In addition, we have observed that the
overhead is negligible in the primitive selection phase
when the number of data samples increases. However,
vertical scalability might suffer bottleneck at the QoS
function construction phase. Therefore a forgotten strat-
egy is desired when there is no need to take too much
data into account. To achieve such goal, one could set
a threshold to the maximum number of historical inter-
vals to be recorded. Once such threshold is exceeded,
the QoS function construction process can apply cross-
validation to examine if dropping data from the oldest
intervals would affect the model accuracy. For example,
if the reduction in accuracy is less than 1% error, then
such data can be removed.

8 RELATED WORK

8.1 Analytical Modeling
Analytical models have been widely used for QoS modeling
in the cloud, these models are built offine based on the-
oretical principles and assumptions. Among others, queu-
ing theory (e.g., queuing networks and layered queuing
networks) is one of the most popular technique used in
existing work. In this approach, QoS is usually modeled
as a mathematical function with respect to the CPU and
the likely distribution of workload [4] [43] [3]. For example,
[3] describe an approach to decompose QoS into hardware
CPs, where a multi-station queuing network is used to
analyze the correlation between demand and performance
related QoS. Their work is not specific for cloud comput-
ing however. [4] is cloud specific and focus on analyzing
QoS model for each tier of an application with respect to
the resources via queuing network. Dependability models
are another widely used techniques for modeling in the
cloud. This approach focus on the modeling of stable states
for QoS attributes. [44] utilize Stochastic Petri Net with
interacting sub-models to create the correlation between
availability and primitives in cloud (e.g., design parameters
and mean-time-to-failure etc). [45] apply Markov model
to correlate QoS with different deployment strategies, i.e.,
different configurations and resource provisions. Finally,
black-box models are also popular, in which the QoS is
modeled based on empirical knowledge or statistical data
of history [46] [19] [47]. For instance, Emeakaroha et al.
[46] propose a black-box framework to manage QoS in

the cloud. Their QoS models are static expressions, which
are formula constructed based on empirical knowledge.
All of the aforementioned analytical approaches are static,
closed-form QoS models and they often require in-depth
knowledge of the likely behaviors of the service that being
modeled. Consequently, their effectiveness is restricted to
the assumptions of system’s internal operations; such static
nature makes these approaches limited in coping with the
dynamic and uncertain QoS sensitivity in cloud. In addition,
the resulted models are coarse-grained and can be difficult
to incorporate additional information, such as QoS interfer-
ence and software control primitives.

8.2 Simulation based Modeling
Various simulators exist for creating QoS models; here,
the simulations are usually expensive and thus they are
used in an offine manner. Being the basis of many other
simulators, CloudSim [5] allows to simulate performance
with respect to the resources usage in cloud. CDOSim [48]
is an extension of CloudSim aiming to model the correlation
of QoS to hardware provision of VMs and the costs. It
relying on OMG model and reverse engineering techniques.
Likewise, GridSim [6] is another simulator that models the
relationship of QoS and environmental conditions, i.e., the
occurrences of events. Similar to the analytical approaches,
simulation based modeling is also static and restricted to
the assumptions made in the simulators, e.g., distribution
of workload, distribution of the expected QoS performance
and architecture of the hardware infrastructure. In addition,
it is difficult to simulate QoS interference as it is usually
hard to assume its distribution.

8.3 Machine Learning based Modeling
The increasing complexity of managing services in the cloud
makes the modeling difficulty far beyond the capability
of human analysis. To this end, recent works have been
leveraging on the advances of machine learning algorithms,
e.g., simple linear regression [12] [13], ARMAX [33] [49],
ANN [7] [17] [18], nonlinear regression [50], RT [16] and
change-point detection [51] etc. For example, [33] and [49]
apply linear ARMAX regression online to express corre-
lation between performance and primitives for VM-based
applications. Similarly, [7] and [18] leverage offine model
training of ANN while [17] rely on online ANN for QoS
modeling in the cloud. Nevertheless, they do not intend to
discuss dynamic and uncertain QoS sensitivity. Despite QoS
interference being core to the problem of QoS modeling
in the cloud, there has been very little attempts: feedback
control is often applied with Multiple-Input and Multiple-
Output (MIMO) model to handle the QoS interference for
QoS modeling in cloud [12] [13] [14]. Notably, the research
discussed in [13] focuses on linear MIMO modeling of per-
formance and interference in the cloud. Zhu and Tung [14]
also intend to model QoS interference using fuzzy rules and
Support Vector Machine (SVM). These approaches consider
VM-level interference whereas our approach takes dynamic
service-level interference into account. Hybrid solutions are
also exist: [52] adapt Kalman-flter with linear regression to
model QoS and they cluster the resulted models. Unlike
the others, which are targeting per VM/application models,
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[53] propose a hybrid, fine-grained performance modeling
where linear AR is used to predict demand of primitives and
Kalman-flter is applied to tune the actual model. However,
all those approaches are semi-dynamic as the primitives
selection has been manual and fixed, as a result, they require
extensive human analysis and investigation. Often, these
approaches ignore the importance of primitives selection
and QoS interference (for both service level and VM level).
In addition, they do not take software control primitives
from the PaaS into account.

To cope with the issue of primitives selection, [9] de-
scribe an online primitives selection technique using the
combination of wrapper and filter for modeling QoS in
cloud; the models are application specific. However, as
mentioned, the wrapper can introduce large overhead and
it is highly dependent to the learning algorithm applied.
In addition, they have ignored QoS interference. Similar
attempt has been conducted by Bu, Rao and Xu [8], in
which the QoS is modeled for each VM. They consider
software control primitives and use Simplex Reduction to
do dynamic primitives selection online, the QoS function
construction is handled by reinforcement learning. Both [9]
and [8] are regarded as single-learner based because they
consider each primitive equally in the space. In contrast,
our approach works on a finer model.

A single learning algorithm is usually applied for QoS
function construction when modeling QoS in the cloud,
which can be limited under certain QoS trends. Alterna-
tively, [54] propose a way to predict the utilization of hard-
ware control primitive using an ensemble solution where
the results from different learning algorithms are combined
in a weighted sum relation. However, their approach is
highly sensitive to the similarity of candidate learners [37].
Our work on the other hand, dynamically select the best
algorithm for predicting the correlation between QoS and
its primitives.

9 CONCLUSION AND FUTURE WORK

In this paper, we propose a self-adaptive and online ap-
proach for QoS modeling in the cloud. To tackle the dynam-
ics and uncertainties related to QoS sensitivity and interfer-
ence, we use hybrid dual-learners technique for primitives
selection. We have presented a detailed study on how the
relevance and redundancy of selected primitives influences
the model accuracy, which drives our designs. On the other
hand, we have showed that different learning algorithms
perform significantly different depends on QoS attributes
and their fluctuations. Therefore, we use an adaptive multi-
learners technique for QoS function construction. In this
way, we aim to dynamically select the best learning algo-
rithms at runtime. The experiment results suggest that, in
contrast to state-of-the-art QoS modelings, our approach
produces better overall accuracy while having acceptable
overhead; and it is more stable against the variability
introduced by different scenarios. More importantly, the
proposed approach eliminates the need for heavy human
intervention, which can be complex and error-prone.

The implication of QoS modeling and its dynamic analy-
sis to intelligent adaptation in the cloud are vast: the model
can assist autonomic software agents in predicting causes

of probable risks leading to QoS violations; reasoning about
appropriate mitigation strategies and/or even planning for
optimal QoS design and online adaptation strategies. More-
over, it can assist problems related to QoS self-management,
self-adaptation, resource utilization and elastic autoscaling.
In future papers, we will report on novel applications bene-
fiting from the proposed modeling approach. We hope that
these insights can help to influence the agenda for more
intelligent engineering in future cloud computing.
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