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Abstract The competition between crack penetration
and crack kinking is addressed for a mode I macro-
scopic crack in an orthotropic elastic solid. Cohesive
zones of finite peak strength and finite toughness are
placed directly ahead of and orthogonal to the plane
of the parent crack. The cohesive zone ahead of the
crack tip is tensile in nature and leads to crack pene-
tration, whereas the inclined zones slide without open-
ing under a combined shear and normal traction, and
give crack kinking. Thereby, the competition between
continued crack growth by penetration ahead of the
crack tip versus kinking is determined as a function
of the relative strength and relative toughness of the
cohesive zones. This competition is plotted in the form
of a failure mechanism map, with the role of mate-
rial orthotropy emphasized. Synergistic toughening is
observed, whereby the parent crack tip is shielded
by the activation of both the tensile and shear (kink-
ing) cohesive zones, and the macroscopic toughness
is elevated. The study is used to assess the degree to
which various classes of composite have the tendency
to undergo kinking.
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1 Introduction

Consider crack advance in an anisotropic solid such
as pine wood. Mode I crack growth along the grain
occurs at a fracture toughness of 0.3MPa

√
m; this

is much lower than the fracture toughness for crack
growth across the grain (3.6MPa

√
m). Consequently,

pine wood has the tendency to split along the grain
(Ashby et al. 1985). The correlation between crack
deflection and the macroscopic toughness is attributed
to the strong anisotropy of toughness and of elastic
properties of pine wood, and this feature is common to
most modern composites such as the fibre/matrix lami-
nates.A literature has developed on kinking in isotropic
elastic solids, with an emphasis on the sensitivity of
kinking direction to relative toughness along differ-
ent directions (He and Hutchinson 1989; Martinez and
Gupta 1994; He et al. 1994b). The case of kinking in
a solid with anisotropic elastic properties has not been
addressed and this is the main purpose of the present
study. Consider the prototypical problem of crack kink-
ing from the tip of a parent crack of length a, as shown
in Fig. 1a. The parent crack is subjected tomacroscopic
mixed-mode loading, as dictated by a combined remote
mode I stress intensity factor K∞

I and a mode II stress
intensity K∞

I I . In order to determine the direction of
kinking, we place a daughter crack of length c at an
orientation ψ to the main cracking plane, and a cohe-
sive zone of length � at the tip of the daughter crack.
In general, the traction versus crack opening law of the
cohesive zone can have both opening and shear compo-
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nents, and we can assume that the traction drops to zero
when a critical displacement jump across the cohesive
zone is attained. The challenge is to determine the kink-
ing orientation ψ and the critical values of (K∞

I , K∞
I I )

for kink crack growth due to attainment of the critical
displacement jump across the cohesive zone.

The problem stated above contains many geometric
and material parameters and has been tackled so far
for various limiting cases. Hutchinson and co-workers
(He and Hutchinson 1989; He et al. 1994a, b; Suo
1990) have considered the case where �/c → 0, such
that a finite toughness exists at the tip of the daughter
crack. Alternatively, we can consider the case where
c/� → 0 such that a cohesive zone exists at the tip of
the main crack. This has been analysed by Parmigiani
and Thouless (2006) for the case of a crack in a coat-
ing on a dissimilar elastic substrate. They supposed
that three cohesive zones can exist simultaneously at
ψ = 0,±π/2 and assumed that the inclined cohesive
zones (at ψ = ±π/2) carry both shear and normal
traction. A similar analysis for c = 0 was performed
more recently by Noselli et al. (2013) for the case of a
semi-infinite crack (a = ∞) subjected to remote mode
I loading and cohesive zones placed at ψ = 0,±π/2,
see Fig. 1b. The associated kinking criteria, as devel-
oped by Hutchinson and co-workers and by the more
recent contributions (Parmigiani and Thouless 2006;
Noselli et al. 2013), differ due to the fact that different
physical cases are under consideration; the former is
more relevant to kinking in brittle ceramic composites,
whereas the latter is more relevant to ductile materials
where strength and toughness both play a role in crack
initiation and growth. A brief review of kinking criteria
is now presented.

1.1 Kinking criterion based on the energetics of a
small kink at the main crack tip

Consider two special cases of the general problem in
Fig. 1a: (1) the daughter crack is colinear with the par-
ent crack (ψ = 0) and (2) the daughter crack is orthogo-
nal to the main cracking plane ψ = ±90◦, see Fig. 1c.
He and Hutchinson (1989) and Martinez and Gupta
(1994) obtained the energy release rates G for these
two alternative configurations. Write GP as the energy
release rate for crack penetration and GK as the energy
release rate at the tip of each kink crack atψ = ±90◦ to
the main cracking plane. And, denote the work of frac-

ture for crack penetration and kinking by �P and �K,
respectively. Then, the energy criteria for crack kinking
reads (He and Hutchinson 1989)

�P

�K
>

GP

GK
(1)

Elastic stress analysis predicts that the ratio GP/GK =
3.8 for a crack in a homogeneous and isotropic solid.
Accordingly, (1) gives the condition for crack kinking
at an interface in an isotropic solid as: �P/�K > 3.8.
Subsequently, Suo et al. (1991) and Wang (1994) con-
sidered crack kinking in elastic-brittle, fibre-reinforced
composites with a weak fibre/matrix interface. They
obtained the values of GP/GK for a homogeneous but
orthotropic solid in terms of the two elastic parameters
λ and ρ (which are functions of the orthotropic elas-
tic constants, and are defined in a later section of the
current paper) as

GP

GK
= c(ρ)λ1/4 (2)

where c(ρ) is a non-dimensional function of ρ. In the
limiting case of an isotropic solid (λ = ρ = 1), the He
and Hutchinson (1989) solution is recovered.

1.2 Kinking criterion based on cohesive zones at the
main crack tip

Parmigiani and Thouless (2006) and Noselli et al.
(2013) have used finite element simulations to explore
crack path selection in an elastic, isotropic solid by
assuming the co-existence of cohesive zones directly
ahead of the main crack tip (ψ = 0) and in the kinking
direction (ψ = ±π/2), as depicted in Fig. 1b. While
Parmigiani and Thouless (2006) studied the preferred
direction of crack growth of a crack in the surface coat-
ing of an elastic solid subjected to remote uniform ten-
sile strain orthogonal to the main crack, Noselli et al.
(2013) considered the asymptotic boundary value prob-
lem of a semi-infinite parent crack subjected to remote
mode I loading as shown in Fig. 2a. A number of dif-
ferent approaches can be adopted for modelling the
behaviour of a cohesive zone in the kinking direction
under mixed-mode loading. For example, the normal
and shear displacements can be combined into a sin-
gle parameter that is used in a traction-separation law
to indicate overall load-bearing capacity. In contrast,
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(a)

(c)

(b)

Fig. 1 Crack kinking in isotropic solids. a General case as considered by He and Hutchinson (1989), b c = 0 and ψ = 0,±π/2 as
considered by Noselli et al. (2013) and c penetration along ψ = 0 and kinking along ψ = ±π/2 of the parent crack at the interface

Parmigiani and Thouless (2006) used separate inde-
pendent laws in mode I and mode II. Their mode I
toughness�I,K is the area under the tensile traction ver-
sus opening curve, and their mode II toughness �II,K

is the area under the shear traction versus shear dis-
placement curve. Since the traction-separation laws are
prescribed independently in modes I and II, they are
coupled only through a mixed-mode failure criterion.

Parmigiani and Thouless (2006) defined the mode I
energy release rate GI,K as the area under the tensile
traction versus opening curve up to the current time,
and likewise the mode II energy release rate GII,K as
the area under the shear traction versus sliding dis-
placement curve up to the current time. Crack growth
occurs when the following linear fracture criterion is
satisfied:
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(a)

(d)

(b) (c)

Fig. 2 Asymptotic K-field with ductile interfaces at the crack
tip. a Geometry of the crack and co-ordinate reference frame.
Constitutive laws for, b shear band and, c tensile band. d Crack
path selection map as obtained from the analyses of Noselli et al.

(2013) andParmigiani andThouless (2006) for the isotropic case;
the inset illustrates the mode of initial crack growth and the rel-
ative extent of the active tensile and shear cohesive zones for 3
points A, B, C as predicted by Noselli et al. (2013)

GI,K

�I,K
+ GII,K

�II,K
= 1 (3)

Parmigiani and Thouless (2006) further assumed that
the magnitudes of strength and toughness in modes
I and II are identical such that σKY = τKY = τY

and �I,K = �II,K = �K. In contrast, Noselli et al.
(2013) assumed a pure mode II sliding response for the
shear bands along ψ = ±π/2 such that (σKY, τKY) =
(∞, τY) and (�I,K, �II,K) = (∞, �K). The traction
versus separation law for the shear bands along ψ =
±π/2 is depicted in Fig. 2b. Additionally, a tensile
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band of strength σY and toughness �P exists directly
ahead of the parent crack along ψ = 0; this is shown
in Fig. 2c. Both Parmigiani and Thouless (2006) and
Noselli et al. (2013) explored crack penetration ver-
sus crack kinking as a function of the relative strength
and relative toughness of the two interfaces. Figure2d
shows amap of penetration versus kinking with axes of
interface strength ratio σY/τYand interface toughness
ratio �P/�K from both studies.

1.3 Comparison of the two kinking criteria

The crack kinking criterion prescribed by He and
Hutchinson (1989) is included inFig. 2d for the purpose
of comparison. The following differences are noted
between the two approaches discussed in Sects. 1.1
and 1.2:

(1) The crack path selection criterion by He and
Hutchinson (1989) is purely energetic in nature;
it is obtained by calculating the energy release
rate at the tip of a small 90◦ kink of a main
crack. In contrast, the cohesive zone approach of
Parmigiani and Thouless (2006) and Noselli et al.
(2013) includes both the fracture strength and frac-
ture energy of the two interfaces in determining
the active fracture path, and it assumes the co-
existence of damage ahead of the main crack and
in kinking direction.

(2) According to the energy-based criterion of He and
Hutchinson (1989), crack kinking occurs when
�P/�K > 3.8, see Fig. 2d. In contrast, the pre-
dictions from the cohesive zone models of Parmi-
giani and Thouless (2006) andNoselli et al. (2013)
indicate that the crack path for a given �P/�K

also depends on the interface strength ratio σY/τY.
Consider, for example, �P/�K = 3.8. For σY/τY<

6.3, such as σY/τY= 2.5 (labelled A in Fig. 2d),
crack growth occurs via penetration into the ten-
sile band. For σY/τY> 6.3, such as σY/τY= 15
(labelledC), the crack-tip will kink. For the choice
of (�P/�K , σY/τY)= (3.8, 6.3), simultaneous
crack penetration and kinking occur (labelled B)
in the prediction of Noselli et al. (2013).

(3) Thefinitemode I toughness of the kinkbands along
ψ = ±π/2 in the Parmigiani and Thouless (2006)
study enlarges the zone of kinking compared to the
prediction of Noselli et al. (2013).

In the current study, we shall re-visit the regimes of
crack path selection for the casewhen the solidmaterial
is elastic and orthotropic.

1.4 Scope of study

Themain objective of this study is to predict themacro-
scopic mode I toughness of an orthotropic composite
when two forms of damage co-exist: (1) a tensile cohe-
sive zone directly ahead of the main crack-tip, and (2)
a shear cohesive zone along a kinking direction orthog-
onal to the plane of parent crack, see Fig. 2a.

The cohesive zone approach is used to obtain: (1) a
criterion for crack path selection between crack pene-
tration and kinking in terms of the relative strength and
relative toughness along each direction, (2) the degree
of macroscopic mode I toughening associated with the
two fracture paths viz., penetration and kinking, and (3)
the extent of the damage zones at failure, for selected
values of material orthotropy.

2 An orthotropic 2D solid

For a general anisotropic material, the elastic constitu-
tive relation, in the Cartesian frame (x, y, z) of Fig. 2a,
has the following vector-matrix form

εi =
6∑

j=1

Si jσ j , i = 1 to 6 (4)

where {εi } = {εx , εy, εz, γyz, γxz, γxy}T , {σi } =
{σx , σy, σz, τyz, τxz, τxy}T , and

[
Si j

]
is a 6 × 6 com-

pliance matrix with 12 independent constants. When
the material has an elastic symmetry plane normal to
z−axis, the stress versus strain relation for deformation
in the (x, y) plane can be reduced to (Lekhnitskii et al.
1968)

εi =
∑

j=1,2,6

Ai jσ j , i = 1, 2, 6 (5)

where

Ai j =
⎧
⎨

⎩

Si j , for plane stress

Si j − Si3S j3

S33
, for plane strain, i, j = 1, 2, 6

(6)
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Further, if the material is orthotropic with x and y axes
coincident with the principal axes of the material, there
are only four independent constants A11, A12 = A21,
A22 and A66, but A16 = A26 = 0. In this case, the
non-zero compliances Si j are related to the engineering
constants by

S11 = 1

Ex
, S22 = 1

Ey
, S33 = 1

Ez

S12 = −νxy

Ex
= S21 = −νyx

Ey

S13 = −νxz

Ex
= S31 = −νzx

Ez

S23 = −νyz

Ey
= S32 = −νzy

Ez

S66 = 1

Gxy
(7)

The plane strain mode I displacement field (u1, u2)
in a small annulus surrounding the tip of a semi-infinite
crack depends on the polar co-ordinates (r, θ) accord-
ing to Sih et al. (1965)

u1 = K∞
I

√
2r

π
�e

[
1

μ1 − μ2

(
μ1 p2

√
cos θ + μ2 sin θ − μ2 p1

√
cos θ + μ1 sin θ

)]

u2 = K∞
I

√
2r

π
�e

[
1

μ1 − μ2

(
μ1q2

√
cos θ + μ2 sin θ − μ2q1

√
cos θ + μ1 sin θ

)]

(8)

where K∞
I is the mode I stress intensity factor and the

constants (μi , pi , qi ) for i = 1, 2 are related to the
components Ai j of the orthotropic solid as given by
Sih et al. (1965).

Suo (1990) has shown that the stress state within
an orthotropic solid under plane strain deformation
depends only on two non-dimensional elastic parame-
ters λ and ρ as given by

λ = A11

A22
and ρ = 2A12 + A66

2
√
A11A22

(9)

The parameters λ and ρ quantify the anisotropy of
the solid. For example, λ = ρ =1 denotes isotropy
and λ = 1, ρ �= 1 denotes transverse isotropy. Posi-
tive definiteness of the strain energy density function
implies λ >0 and ρ > −1. In order to highlight the
effect of orthotropy on crack kinking, we show results

for selected values of λ and ρ that suitably represent
three classes of composites:

(1) An orthotropic solid with (λ, ρ) = (20, 5) repre-
sents unidirectional laminate made from carbon
fibres and an epoxy matrix, such as IM7/8552,
with lamina properties E1 = Ex = Ez = 8.9
GPa, E2 = Ey = 162GPa, G12 = Gxy = 4GPa,
ν21 = νyx = νyz = 0.3 and ν13 = νxz = 0.5, as
taken from Tan et al. (2016).

(2) An orthotropic solid with (λ, ρ) = (1, 10) repre-
sents a cross-ply laminate, again made from car-
bon fibres and an epoxy matrix.

(3) An isotropic solid is given by (λ, ρ) = (1, 1).

3 Numerical method

The sensitivity of crack kinking to elastic anisotropy
and to the degree of anisotropy in strength and tough-
ness is explored for the orthotropic solid with crack
tip cohesive zones as defined in Fig. 2b, c. A bound-
ary layer formulation is adopted such that an outer
mode I K-field is applied to a pre-cracked specimen,
see Fig. 2a. The parent crack has (1) a tensile cohe-
sive zone directly ahead of it (ψ = 0) and (2) a shear
cohesive zone emanating symmetrically at ψ = ±90◦.

Consider first the shear band at ψ = ±90◦. We fol-
low the approach of Noselli et al. (2013) and assume
that the shear band has a strength τY and a failure dis-
placement ufK, see Fig. 2b. A high value of stiffness is
specified in the opening mode of the shear band so that
the material on either side of the shear band can only
slide. The shear band thus acts as a bridged pure mode
II crackwith a strength τY and a toughness�K = τYufK.
Likewise, we represent the tensile damage zone ahead
of themain crack tip by an ideally-plastic cohesive zone
of finite yield strength σY and failure displacement ufP,
as shown in Fig. 2c. Symmetry dictates that the shear
stress in the tensile band vanishes so that it behaves as
a bridged pure mode I crack. The characteristic quan-
tities of the tensile band are the cohesive strength σY
and toughness �P = σYufP.

3.1 The finite element formulation

Themacroscopic toughness of the orthotropic compos-
ite is calculated from the asymptotic K-field boundary
valueproblemusing the commercial finite element (FE)
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(a) (b)

Fig. 3 Schematic of the FE implementation: a boundary conditions and b crack tip parameters

package ABAQUS v6.14. For each choice of material
orthotropy as listed in Sect. 2, displacement field (8)
associated with a mode I K is applied to the boundary
of a rectangular mesh. The mesh comprises 8-noded
linear elements and is constrained in the out-of-plane
direction to simulate plane strain (ε33 = 0). Figure3a
illustrates the FE boundary value problem, and Fig. 3b
depicts the crack-tip parameters uP and uK of the ten-
sile and shear bands, respectively.

The tensile band and the shear bands are modelled
as zero thickness cohesive elements (type COH3D8 in
ABAQUS). The elastic, ideally plastic cohesive zone
laws are implemented by means of a user subroutine
UMAT. Define the length of the active tensile cohesive
zone as �fP at the onset of the crack growth, and the cor-
responding shear zone length as �fk. An extensive mesh
sensitivity study was performed such that the active
cohesive zones extended over at least 10 elements, and
the finite element mesh extended a distance of at least
10 times the active cohesive zone length to ensure small
scale yielding.

3.2 Criterion for crack path selection

The parent crack of Fig. 2a is loaded by a remote mode
I stress intensity factor K∞

I or by the equivalent energy
release rate G∞, where G∞ is related to K∞

I via (13)
as defined later in the paper. In the absence of the shear
bands, the macroscopic fracture toughness G∞

f for

crack penetration (or self-similar extension) is given by
G∞

f = �P. But, when tensile and shear bands co-exist,
the macroscopic toughness is dictated by the cohesive
zone that fails first.

We shall show below that remote mode I loading
always activates the yield of tensile cohesive zone but
does not trigger shear yielding along the kink zones if
τY/σY exceeds a critical value (which depends upon
the degree of orthotropy). Consider the case where
remote mode I loading activates both the tensile and
shear cohesive zones. The opening at the mouth of the
tensile cohesive zone uP scales linearly with G∞ and
is of the form

uP = G∞

σY f1
(10)

where the non-dimensional function f1 depends upon
(σY/τY, λ, ρ) and is obtained from the FE simulation.
Likewise, the maximum value of the shear displace-
ment for the inclined shear bands is

uK = G∞

τY f2
(11)

where f2 = f2(σY/τY, λ, ρ) is also determined by the
FE simulation.

Crack penetration occurs when uP = ufP and uK <

ufK; alternatively, kinking occurs when uK = ufK and
uP < ufP. The boundary between penetration and
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Fig. 4 Regimes of dominance of crack penetration versus 90o

crack kinking on a map of relative toughness versus relative
strength. The insets illustrate the mode of initial crack growth at

the point markedX on themap for the three choices of orthotropy
and show the relative extent of the plastic zones in each case

kinking occurs by setting uP = ufP = �P/σY and
uK = ufK = �K/τY to give

�P

�K
= f2

f1
(12)

upon making use of (10) and (11).

4 Predictions

The following results from the FE simulations are pre-
sented in turn: (1) failuremechanismmaps showing the
regimes of dominance of crack growth by penetration
or kinking, (2) the degree of toughening associatedwith
crack penetration versus crack kinking, and (3) the size
of the tensile and shear plastic zones at failure.

4.1 Failure mechanism maps

The boundary between crack penetration and kinking
is shown in Fig. 4 for the isotropic case (λ, ρ) = (1, 1)
and for the two orthotropic cases (λ, ρ) = (1, 10) and
(20, 5). The following observations are drawn from
Fig. 4:

(1) There exists a lower bound for the strength ratio
σY/τY below which the only mode of failure is
crack penetration: σY/τY ≈ 3 for (λ, ρ) = (1, 1),
σY/τY ≈ 5 for (λ, ρ) = (1, 10), and σY/τY ≈ 8
for (λ, ρ) = (20, 5).

(2) For σY/τY greater than this lower bound value,
both crack penetration and kinking are possible
dependingupon thevalue of�P/�K and thedegree
of orthotropy. Consider for example, cohesive
zones of strength ratio σY/τY = 12.5, and tough-
ness ratio�P/�K = 12.5, such that ufP = ufK. This
point is labelled X in Fig. 4. The insert of Fig. 4
gives the mode of initial crack growth for this
point, and assuming the 3 choices of orthotropy.
The extent of the cohesive zones are contrasted in
the insert. The main crack kinks by 90o along the
shear band if the bulk solid is isotropic. In contrast,
the crack extends straight-ahead in a penetrative
mode when the bulk material has high orthotropy
such as (λ, ρ) = (20, 5). Crack growth in a solid
of mild orthotropy, with (λ, ρ) = (1, 10), occurs
by simultaneous penetration andkinking. For com-
parison, the energetic criterion (2) is included in
Fig. 4 by making use of the results by Suo et al.
(1991). This energetic kinking criterion is inde-
pendent of the value of σY/τY, and in agreement
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Crack kinking at the tip of a mode 189

Fig. 5 The predicted
toughness of each
composite as a function of
σY/τY for, a failure by
penetration, f1 = G∞

f /�P
and, b failure by kinking,
f2 = G∞

f /�K

(a) (b)

with the analysis of the present study it predicts
that the zone of kinking shrinks with increasing λ

and ρ.

4.2 Toughening due to simultaneous activation of
cohesive zones

Recall from Sect. 3.2 that the macroscopic toughness
of the composite of Fig. 2a depends on whether pene-
tration occurs first or kinking occurs first. When pen-
etration is the active failure mechanism, the macro-
scopic toughness is given by (10) and when kinking is
the active failure mechanism, the macroscopic tough-
ness is given by (11). The non-dimensional functions
f1 = G∞

f /�P and f2 = G∞
f /�K, as obtained from the

FE simulations, are plotted in Fig. 5a, b respectively, for
the three cases of orthotropy. In each of these plots, the
applied K∞

I is rewritten in terms of the energy quantity
G∞ by making use of the relation (Suo et al. 1991):

G∞ =
√
1 + ρ

2
λ

1
4 A22K

∞2
I (13)

For a given set of material properties (σY/τY, ufP/u
f
K,

λ, ρ), the macroscopic toughness G∞
f is obtained as

follows:

Step 1. Determine from Fig. 4 if the active mode of
failure is penetration or kinking.

Step 2. If the critical mechanism of failure is pene-
tration, then the macroscopic toughness G∞

f

is obtained from Fig. 5a in terms of �P and
(σY/τY, λ, ρ). If kinking occurs first, thenG∞

f
is obtained from Fig. 5b in terms of �K and
(σY/τY, λ, ρ).

Note from Fig. 5a that, for all choices of orthotropy,
G∞

f equals �P for σY/τY below a threshold, as previ-
ously identified in Sect. 4.1. For these low values of
σY/τY, crack growth is by penetration i.e., by self-
similar extension. When σY/τY exceeds the threshold
value, the degree of toughening for crack penetration,
G∞

f /�P , increases with σY/τY due to shielding of the
crack-tip by both the tensile and shear plastic zones.
For example, G∞

f /�P exceeds 100 for σY/τY > 50,
see Fig. 5a. The macroscopic toughness from kinking,
G∞

f /�K, attains an asymptotic value for large σY/τY.
At highσY/τY, the tensile plastic zone becomes vanish-
ingly small, and the asymptotic value is in agreement
with that obtained by Suo et al. (1991) for a kinked
crack in an elastic orthotropic solid, see Fig. 5b.

The following example demonstrates the combined
utility of Figs. 4, 5. Consider again cohesive zones
of strength ratio σY/τY = 12.5, and toughness ratio
�P/�K = 12.5. The crack-tip kinks if the bulkmaterial
is isotropic, and the macroscopic toughness for kinking
reads from Fig. 5b asG∞

f = 6.7�K. If instead, the bulk
material is orthotropicwith (λ, ρ) = (20, 5), the parent
crack extends in a self-similar manner and the macro-
scopic toughness for penetration reads from Fig. 5a as
G∞

f = 1.4�P = 17.5�K. For this example, orthotropy
results in an enhancement of the macroscopic tough-
ness by a factor of 2.6.
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Fig. 6 The predicted
lengths of the tensile and
shear plastic zones at failure
as a function of σY/τY for
each composite for, a failure
by penetration, b failure by
kinking

(a) (b)

4.3 Extent of yielded cohesive zones at failure

The enhancement of the macroscopic toughness, as
given by (10) and (11), is a direct consequence of the
extent of simultaneous yielding within the cohesive
zones in the tensile and shear bands. It is instructive
to plot the plastic zones at failure for each mode of fail-
ure. As previously stated, the tensile plastic zone �P is
the distance from the crack-tip over which the tensile
traction attains the value σY whereas the shear plastic
zone �K is given by the total height overwhich the shear
traction attains the value τY. Dimensional arguments
and linearity of the problem dictate that the extent of
plastic zones at failure, �fP and �fK are given in terms
of the four functions g1 through g4 , such that

�fPA22σY

ufP
= g1

(
σY

τY
, λ, ρ

)
and

�fKA22σY

ufP
= g2

(
σY

τY
, λ, ρ

) (14)

when penetration is the critical failure mechanism, and

�fPA22τY

ufK
= g3

(
σY

τY
, λ, ρ

)
and

�fKA22τY

ufK
= g4

(
σY

τY
, λ, ρ

) (15)

when kinking occurs first. The non-dimensional func-
tions g1 through g4 follow directly from the FE simula-
tions. InFig. 6,weplot �fP and �fK in termsof the normal-

ized values g1 through g4, as defined in (14) and (15).
Figure6a gives the plastic zone lengths (�fP, �

f
K) at fail-

ure when penetration is the active mode of failure, and
Fig. 6b gives (�fP, �

f
K) when kinking is the active mode

of failure. The predictions for �fK are terminated at the
value of σY/τY below which no shear yielding occurs.
We note that this is the minimum value of σY/τY (as
marked in Fig. 6a for the λ = ρ = 1 case) below which
the tensile and shear cohesive zones are not simultane-
ously activated.

5 Concluding discussion

It is seen from Fig. 6 that there exists a minimum
value of σY/τY for the simultaneous yielding of ten-
sile and shear cohesive zones, and this value depends
on the orthotropic properties of the solid (λ, ρ). The
value of σY/τY that gives rise to the activation of
the shear bands is obtained by considering the clas-
sical Dugdale problem of a tensile cohesive zone of
strength, σY, in a remote KI field. However, there is no
straightforward analytical solution for the anisotropic
Dugdale problem and hence we have used finite ele-
ment simulations to obtain the level of shear stress τL
at the location of a putative shear band. The result-
ing value of σY/τL is plotted in Fig. 7 as a function
of ρ for selected values λ in the range of 1–20. For
the 3 cases of composite considered in this study, we
find from Fig. 7 that σY/τL = π for (λ, ρ) = (1, 1),
σY/τL = 5.1 for (λ, ρ) = (1, 10), and σY/τL = 8.5
for (λ, ρ) = (20, 5). The value for the isotropic case
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Fig. 7 Estimate of the minimum value of σY/τY for simultane-
ous yielding in tensile and shear bands

is in agreement with the Westergaard solution for the
Dugdale problem as given by Tada et al. (1985) and
the results of Fig. 7 are consistent with the anisotropic
predictions of Fig. 6.

The present study highlights the sensitivity of crack
path to the level of elastic orthotropy and to the degree
of anisotropy in strength and toughness of a composite.
It is generally observed that unidirectional composites
such as carbon fibre/epoxy orwoods (such as pine) split
along the fibre direction. It is clear from Fig. 4 that this
tendency to kink/split along the stiff fibre direction is
not a consequence of the high stiffness along the fibre
direction. Rather, it is a consequence of a large value of
�P/�K and/or large values of σY/τY. Our study thus
highlights the competition between the effect of elastic
anisotropy and toughness/strength anisotropy.
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