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Tilings and other combinatorial results

Vytautas Gruslys

ABSTRACT

In this dissertation we treat three tiling problems and three problems in combina-
torial geometry, extremal graph theory and sparse Ramsey theory.

We first consider tilings of Zn. In this setting a tile is just a finite subset of Zn.
We say that a given tile T tiles Zn if we can use isometric copies of T to form a
partition of Zn. Obviously, some tiles tile Zn and some do not. Chalcraft observed
that some tiles of the latter kind do tile Zn+1 or at least Zd for some d > n. He
conjectured that, in fact, such d exists for any given tile. We prove this conjecture
in Chapter 2. We begin this chapter by analysing a key first case (an interval in
the line, with one point removed) which serves as an introduction to some of the
important ideas that recur in all three of our tiling results.

Next, we present a related problem concerning the Boolean lattice 2[n]. We prove
a conjecture of Lonc, which states that for any poset P of size a power of 2, if P
has a greatest and a least element, then there is a positive integer k such that 2[k]

can be partitioned into isomorphic copies of P . We present this result in Chapter 3.
In the same chapter we prove a more general theorem that can be useful in other
scenarios where a product space is being partitioned into copies of a given set. This
is the most technically complicated chapter of this dissertation.

The third tiling problem is about vertex-partitions of the hypercube graph Qn.
Offner asked the following question: if G is a subgraph of Qn such that the order of
G is a power of 2, must it be possible to partition the vertex set of Qd, for some d,
into isomorphic copies of G? In Chapter 4 we answer this question in the affirmative.
Our proof makes use of the machinery set up for the previous result and also includes
some new ideas.

We follow up with a question in combinatorial geometry. For a set P ⊂ R2,
a line in P is a maximal collinear subset of P . Pór and Wood considered what
happens if a finite set P ⊂ R2 with no large lines is coloured with a fixed number
of colours. In particular, they wanted to know whether monochromatic lines can
always be found in such colourings, provided that |P | is large. They conjectured
that for all k, l ≥ 2 there exists an n ≥ 2 with the following property: if |P | ≥ n
and if P does not contain a line of cardinality larger than l, then every colouring of
P with k colours produces a monochromatic line. Their conjecture is obviously true
for l = 2 and in the case k = 2 it is an immediate corollary of the Motzkin–Rabin
theorem. We construct arbitrarily large counterexamples for the case k = l = 3,
disproving the conjecture for all k, l ≥ 3. Our construction is short, and it is based
on simple properties of cubic curves. It is presented in Chapter 5.

We move on to a problem in extremal graph theory. For any graph, we say that a
given edge is triangular if it forms a triangle with two other edges. A natural question
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arises: how few triangular edges can there be in a graph with a given number of
vertices and edges? For graphs of sufficiently large order we prove a conjecture of
Füredi and Maleki that gives an exact formula for this minimum. Our proof, which
is given in Chapter 6, is fairly long and it consists of a repeated application of two
main ideas.

Finally, Chapter 7 is concerned with a question about degrees of vertices in
directed hypergraphs. One natural way to prescribe an orientation to an r-uniform
graph H is to assign for each of its edges one of the r! possible orderings of its
elements. Then, similarly to the in-degree and out-degree in graphs, for any vertex
v ∈ V (H) and any index i ∈ [r], we define the i-degree of v to be the number of
edges that have v in the i-th position of their ordering. More generally, for any
set of p vertices A and any set of p indices I ⊂ [r], we define the I-degree of A to
be the number of edges that contain vertices A in precisely the positions labelled
by I. Motivated by an old theorem of Hakimi, Caro and Hansberg were interested
in determining whether a given r-uniform hypergraph admits an orientation where
every set of p vertices has some I-degree equal to 0. They conjectured that a certain
obvious Hall-type necessary condition is sufficient. We show that this is true for
r large (for given p), but false in general. Our counterexample is based on a new
technique in sparse Ramsey theory that may be of independent interest.
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CHAPTER 1

Introduction

This dissertation focuses on several topics in combinatorics. About half of it is

devoted to tiling problems and the rest covers three questions in combinatorial

geometry, extremal graph theory and sparse Ramsey theory. In this chapter we

introduce these topics and give an overview of our results.

1 Tilings

We discuss three tiling problems coming from different areas of combinatorics. All

three problems concern partitions of some product structure Sd of arbitrarily large

dimension d into copies of a fixed set.

The first problem is motivated by the following fundamental question: how can

we determine if a given polyomino P tessellates the plane, meaning that the plane

can be covered by isometric copies of P overlapping only at the boundaries? Despite

its appeal as a recreational mathematics problem, this question might be extremely

hard or even impossible to solve. Indeed, following Berger’s work on Wang tiles [2],

Golomb [19] proved in 1970 that the problem of determining whether a finite set of

polyominoes P1, . . . , Pn tessellates the plane is undecidable. It is not known whether

this problem for single polyominoes is decidable.

We consider a variation of this question due to Chalcraft. Any polyomino can be

seen as a finite connected subset of Z2. We generalise this definition to any number

of dimensions by saying that a tile in Zn is any non-empty finite subset of Zn; note

that a tile does not have to be connected. Just as any polyomino can be made into

a three-dimensional figure by giving it unit depth, any tile in Zn can be naturally

embedded into Zm for any m ≥ n. Now, even if a tile in Zn does not tile Zn, it

may still tile Zm for some m > n (we say that T tiles Zm if Zm can be partitioned

into isometric copies of T ); in fact, it is easy to construct one-dimensional tiles that

tile Z2 but not Z. Quite remarkably, Chalcraft conjectured that any tile tiles Zm
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for sufficiently large m. According to its author, this conjecture dates back to at

least 1992, but the earliest surviving record of it seems to be from 2008 [46,47]. We

prove this conjecture in Chapter 2. To make the presentation easier to follow, we

first examine a key first case where the tile T is one-dimensional and has very simple

structure: it is an interval with one element missing. Chapter 2 is based on a joint

paper with Leader and Tan [28].

In Chapter 3, which contains joint work with Leader and Tomon [29], we discuss

a tiling problem in the context of partially ordered sets (posets). Given a finite

poset P , we wish to determine whether there exists some m for which the Boolean

lattice 2[m] can be partitioned into isomorphic copies of P . Of course, for such an

m to exist, P must have a minimal and a maximal element, and its order must be

a power of 2. We prove that these conditions are in fact sufficient, thus resolving a

conjecture of Lonc [42] from 1991.

The third tiling problem is about vertex-partitions of the hypercube graph Qn.

There is a rich background of problems concerning vertex-partitions of dense graphs

(see, for example, [5, 11, 12, 32, 40]), but our result is closer in flavour to the work

of Hamming [35] from the late 1940s on perfect error correcting codes. Indeed, a

perfect k-error correcting code is a partition of the vertices of Qn into Hamming

balls of radius k. We prove the following theorem, which resolves a conjecture of

Offner [53] from 2014. For any graph H, if H is a subgraph of Qd for some d and if

the order of H is a power of 2, then, for all sufficiently large n, the hypercube Qn

admits an H-factor. This proof is presented in Chapter 4 and it also appears in [27].

In the three tiling problems that we have presented our aim is to partition a

product space. As a result, our proofs follow a similar structure. In particular, one

idea is essential for all three proofs: we show that, for some r and m, the relevant

product space Sm admits coverings of two following types by copies of the tile:

• A covering of the first type covers every element of Sm exactly r times.

• A covering of the second type covers every element x ∈ Sm exactly 1 + axr

times, where ax ∈ N ∪ {0} is allowed to vary with x.

Crucially, we prove that the existence of such coverings implies the existence of

the desired partition of Sm
′

for some m′ ≥ m. Therefore, our task reduces to

constructing coverings of these two types. In the three proofs we obtain them by

using different methods:

• It is easy to construct the two coverings of Zm, but Zm being infinite makes it

slightly harder to use them to obtain the desired partition.
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• We use a somewhat technical averaging argument to construct a covering of

the Boolean lattice 2[m] of the first type. A covering of the second type is more

difficult to obtain. The key idea here is that two coverings can ‘cancel each

other out’ when working modulo r.

• Obtaining a covering of Qm of the first type is trivial. We construct a covering

of the second type by induction on the dimension m. We combine the ‘can-

cellation’ idea from above with the observation that, if we split a subgraph

H ⊂ Qd into two halves H−, H+ ⊂ Qd−1, then certain coverings of Qm−1 by

copies of H− extend to coverings of Qm by copies of H.

2 Multicoloured lines in the plane

In Chapter 5 we consider a problem about finite sets of points in the plane. We define

a line in P ⊂ R2 to be a maximal set of collinear points in P and we try to find a line

that is ‘small’ in some sense. A very natural notion is that of ordinary lines, which

are lines containing exactly two points of P . The Sylvester-Gallai theorem [17, 59]

from 1944 asserts that if P is finite and if not all of its points lie on one line then P

has at least one ordinary line. In 2013, Green and Tao [21] proved a much stronger

result: they showed that, in fact, P must have at least |P |/2 ordinary lines, provided

that |P | is sufficiently large, thus resolving a longstanding conjecture of Dirac and

Motzkin [6].

We examine a different notion of a ‘small’ line. Instead of thinking about the

cardinality of lines, we seek monochromatic lines in finite colourings of P . The

Motzkin–Rabin theorem [49] from the 1960s says that, if P is finite and not contained

in a single line, then every colouring of P with two colours produces a monochromatic

line. In an attempt to generalise this result, Pór and Wood [54] conjectured in 2010

that for any fixed integers k, l ≥ 1, every sufficiently large finite set P ⊂ R2 either

contains a line on at least l + 1 points or is such that every colouring of P with k

colours produces a monochromatic line. We disprove this conjecture by constructing

a counterexample, which makes use of simple properties of cubic curves. The results

of this chapter appear in [25].

3 Minimising the number of triangular edges

Chapter 6, which is based on a joint paper with Letzter [30], contains a result

in extremal graph theory. We study the following question: what is the smallest
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possible number of edges contained in triangles in a graph of fixed order n and size

e? For brevity, we call edges contained in triangles triangular.

If instead of minimising the number of triangular edges we were trying to min-

imise the number of triangles, we would arrive at another question which is fairly

well understood by now. Here the story begins in 1941 with an observation of

Rademacher [55] that an n-vertex graph with bn2/4c + 1 edges must have at least

bn2/4c triangles. This bound is realised by a balanced bipartite graph with an edge

added to one of the vertex classes. In 1955, Erdös [9] conjectured that a similar

bound holds for any n-vertex graph with bn2/4c + l edges, where 1 ≤ l ≤ bn/2c,
that is, any such graph should have at least lbn2/4c triangles. This conjecture was

proved by Lovász and Simonovits [43] in 1975. More recently, in 2008, Razborov [57]

asymptotically determined the minimal possible number of triangles in an n-vertex

graph with bn2/4c+ l edges where l = Ω(n2).

Returning to the number of triangular edges, Erdös, Faudree and Rousseau [13]

proved in 1992 that any n-vertex graph with bn2/4c+1 edges has at least 2bn/2c+1

triangular edges. This bound is best possible. What if the graph has more edges?

A natural example comes to mind: we take suitably chosen integers a, b, c ≥ 0

and define the graph G(a, b, c), which consists of a clique A of order a and two

independent sets B,C of sizes b, c respectively, such that all edges between B and

A∪C are present, while all possible between A and C are missing (see Figure 1.1).

In 2014 Füredi and Maleki [16] conjectured that, for any fixed n and e, the smallest

A
C

B

Figure 1.1: The graph G(a, b, c) (here a = 5, b = 6, c = 5).

number of triangular edges is achieved by (a subgraph of) G(a, b, c) for some a, b, c.

They proved their conjecture approximately, with an additive error term of order

O(n). We resolve the conjecture of Füredi and Maleki for sufficiently large n. Our

bound on n does not depend on e, that is, we establish a constant n0 such that the

conjecture holds for all n ≥ n0 and all e such that bn2/4c+ 1 ≤ e ≤
(
n
2

)
.

Our proof does not directly build on the approximate result of Füredi and Maleki,

but it incorporates some of their key ideas. In particular, we treat the given graph

as being weighted and we keep shifting the weights of its vertices in a manner that
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does not decrease the total weight of the triangular edges, until we obtain a weighted

graph of a relatively simple structure. However, in contrast to the approximate

result, we need our final graph to correspond to a blow-up of a non-weighted graph,

and so all weights have to be integral. One of our main new ideas is a trick that

replaces a large independent set of vertices by a much smaller set of vertices of

larger, but still integral, weights. However, this trick only somewhat simplifies the

structure of the given graph, and we keep modifying it in various ways until it takes

the desired form.

4 Directed hypergraphs and sparse Ramsey

theory

In the final chapter of this dissertation, Chapter 7, we study a question of Caro

and Hansberg [3] from 2012 about degrees of sets of vertices in directed hyper-

graphs. There is more than one natural way to define an orientation of an edge

of a hypergraph; Caro and Hansberg considers the notion where an orientation of

e = {v1, . . . , vr} is a choice of one of the possible r! orderings of v1, . . . , vr. We say

that a hypergraph is directed if its edges have orientations. The notions of in-degree

and out-degree extend to this context: given a directed r-uniform hypergraph H,

for any vertex v ∈ V (H) and any index i ∈ [r] we define the i-degree of v to be

the number of edges that have vertex v in the i-th position of their orientation.

Moreover, a similar definition can be made for sets of multiple vertices: for dis-

tinct v1, . . . , vp ∈ V (H) and distinct i1, . . . , ip ∈ [r] we define the {i1, . . . , ip}-degree

of {v1, . . . , vp} to be the number of edges whose orientation contains precisely the

vertices v1, . . . , vp, in some order, in positions i1, . . . , ip.

Caro and Hansberg considered r-uniform hypergraphs H that admit an orienta-

tion such that for every set A ⊂ V (H) of p vertices there exists a set I ⊂ [r] of p

indices such that the I-degree of A is 0. They derived a condition on the density

of certain subhypergraphs of H, which is necessary for such an orientation to exist,

and asked whether it is sufficient. We answer their question in the negative, showing

that the condition is not sufficient for r = 4, p = 2. However, we prove that it is

sufficient for any fixed p and sufficiently large r.

We attack this problem by relating it to a question about set mappings. We make

a general conjecture, of which we are able to prove enough to show that the question

of Caro and Hansberg has a positive answer if p is fixed and r is large. Conversely,

the case r = 4, p = 2 is a sparse-Ramsey-type problem for graphs: we seek a graph G
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that admits a 6-colouring avoiding a monochromatic 4-clique but whose every such

colouring produces a non-monochromatic 4-clique whose colouring follows a certain

pattern. Our construction of such G is inspired by the amalgamation method, which

was introduced by Nešetřil and Rödl [50–52] in the 1970s.

The results of this chapter appear in [26].

6



CHAPTER 2

Tilings of Zn

1 Introduction

Let T be a tile, by which we mean a finite non-empty subset of Zn for some n. It is

natural to ask if Zn can be partitioned into copies of T , that is, into subsets each of

which is isometric to T . If such a partition exists, we say that T tiles Zn.

For instance, consider the following tiling of Z2 by copies of the C-shaped pen-

tomino.

Figure 2.1: The C-shaped pentomino tiles Z2.

As another example, the one-dimensional tile X.X (to be understood as {1, 3})
tiles Z, and so does XX.X . On the other hand, XX.XX is a one-dimensional tile that

does not tile Z. Does it tile some space of higher dimension? The following diagram

shows that XX.XX does tile Z2.
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Figure 2.2: This pattern is formed from disjoint copies of XX.XX;
copies of the pattern may be stacked vertically to tile Z2.

A similar pattern works for XXX.XX in Z2. However, one can check by hand that

XXX.XXX does not tile Z2. Does it tile Z3, or Zd for some d? What about more

complicated one-dimensional tiles?

Let us now consider a couple of two-dimensional examples. Let T denote the

3 × 3 square with the central point removed. Clearly T does not tile Z2, since the

hole in a copy of T cannot be filled. However, in Z3 there is enough space for one

copy of T to fill the hole of another. (Of course, this in no way implies that T does

tile Z3.)

For a ‘worse’ example, consider the 5× 5 square with the central point removed.

Two copies of such tile cannot be interlinked in Z3. However, there is, of course,

enough space in Z4 to fill the hole, as demonstrated in the following diagram.

Figure 2.3: The diagram on the right is four-dimensional and shows
a 5 × 5 × 5 × 5 region of Z4. Let x1, x2, x3, x4 be the directions of
Z4. Each of the five 5 × 5 × 5 cubes corresponds to a fixed value
of x1. Increasing the value of x1 by 1 means jumping from a cube
to the cube on its right. This four-dimensional diagram contains
two copies of the two-dimensional tile depicted on the left side.
One copy is horizontal and can be found in the top left part of the
diagram. The second copy is formed by the vertical columns.

Chalcraft [46,47] made a rather daring conjecture that every tile T ⊂ Z, or even

T ⊂ Zn, does tile Zd for some d.
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Conjecture 2.1 (Chalcraft [46, 47]). Let T ⊂ Zn be a tile. Then T tiles Zd for

some d.

It is not important if reflections are allowed when forming copies of a tile. Indeed,

any reflection of an n-dimensional tile can be obtained by rotating it in n + 1

dimensions. It is also not important if only connected tiles are considered, as it is

an easy exercise to show that any disconnected tile in Zn tiles a connected tile in

Z2n.

In this chapter we prove Chalcraft’s conjecture.

Theorem 2.2. Let T ⊂ Zn be a tile. Then T tiles Zd for some d.

Interestingly, the problem is not any easier for tiles T ⊂ Z. Indeed, the proof for

one-dimensional tiles seems to us to be as hard as the general problem.

The plan of the chapter is as follows. In Section 2 we prove a special case of the

theorem, namely when T is an interval in Z with one point removed. The aim of

this section is to demonstrate some of the key ideas in a simple setting. The proof

of the general case builds on these ideas and on several additional ingredients. We

give a proof of Theorem 2.2 in Section 3. Finally, in Section 4 we give some open

problems.

We end the section with some general background. A lot of work has been

done about tiling Z2 by polyominoes (a polyomino being a connected tile in Z2).

Golomb [18] proved that every polyomino of size at most 6 tiles Z2. In [19] he also

proved that there is no algorithm which decides, given a finite set of polyominoes, if

Z2 can be tiled with their copies – this is based on the work of Berger [2], who showed

a similar undecidability result for Wang tiles (which are certain coloured squares).

However, it is not known if such an algorithm exists for single polyominoes. A

related unsolved problem is to determine whether there is a polyomino which tiles

Z2 but such that every tiling is non-periodic. On the other hand, Wijshoff and

van Leeuwen [63] found an algorithm which determines if disjoint translates (rather

than translates, rotations and reflections) of a single given polyomino tile Z2. A vast

number of results and questions regarding tilings of Z2 by polyominoes and other

shapes are compiled in Grünbaum and Shephard [24].

One may also wish to know if a given polyomino tiles some finite region of Z2, say

a rectangle. This class of questions has also received significant attention, producing

many beautiful techniques and invariants – see, for example, [4,20,39]. In the context

of this chapter, we observe that there are tiles which cannot tile any (finite) cuboid

of any dimension. For example, consider the plus-shaped tile of size 5 in Z2: this

9



tile cannot cover the corners of any cuboid. In fact, there are one-dimensional such

tiles. For example, let T ⊂ N, where N = {1, 2, . . . }, be a symmetric tile (meaning

that −T is a translate of T ) whose associated polynomial p(x) =
∑

t∈T x
t does not

have all of its non-zero roots on the unit circle – it turns out that such T cannot tile

a cuboid (see [47]). On the other hand, the situation turns out to be different if we

switch from Euclidean to `1 metric. We will discuss this variant of the problem in

Chapter 4.

2 Tiling Zd by an interval minus a single point

2.1 Overview

Before starting the proof of Theorem 2.2, we demonstrate some of the key ideas in a

simple setting, where the tile is a one-dimensional interval with one point removed.

We give a self-contained proof of the general case in Section 3, but it will build on

the ideas in this section.

We write [k] = {1, . . . , k}.

Theorem 2.3. Fix integers k ≥ 3 and i ∈ {2, . . . , k − 1} and let T be the tile

[k] \ {i}. Then T tiles Zd for some d.

The tile T = [k] \ {i} will remain fixed throughout this section.

The proof is driven by two key ideas. A first natural idea is to use strings, where

a string is a one-dimensional infinite line in Zd with every k-th point removed. Note

that any string is a union of disjoint copies of T . An obvious way to use strings would

be to partition Zd into them. Although this is an attractive idea, it is not possible,

for the following simple reason: if we consider just the fixed cuboid [k]d ⊂ Zd, then

every string intersects it in exactly 0 or k − 1 points, but the order of [k]d is not

divisible by k − 1.

This suggests a refinement of the idea. We will try to use strings parallel to d−1

of the d directions, while the remaining direction will be special and copies of T

parallel to it will be used even without forming strings. In other words, we will view

Zd as Z×Zd−1, that is, as being partitioned into (d−1)-dimensional slices according

to the value of the first coordinate. We will first put down some tiles parallel to

the first direction (each such tile intersects multiple slices), and then complete the

tilings in each slice separately by strings.

To do this we need another idea. What subsets of Zd−1 can be tiled by strings?

Note that a partial tiling of Zd−1 by strings can be identified with a partial tiling
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of the discrete torus Zd−1
k (where Zk denotes the integers modulo k), where a tile

in Zd−1
k means any line with one point removed. The size of Zd−1

k is kd−1 ≡ 1

(mod k− 1), so any such partial tiling of Zd−1
k must leave out 1 (mod k− 1) points.

Of course, it is far from true that any subset of Zd−1
k of size a multiple of k− 1 may

be partitioned into tiles. However, our plan is to find a large supply of sets that

do have this property. In particular, it turns out that a key idea will be to find a

large set C ⊂ Zd−1
k such that for any choice of distinct elements x1, . . . , xm ∈ C with

m ≡ 1 (mod k − 1), T does tile Zd−1
k \ {x1, . . . , xm}.

Z5

Z5

Figure 2.4: A partial tiling of Z2
k (here k = 5) corresponds to a

partial tiling of Z2 by strings.

These ideas work together as follows (see Figure 2.5). First, in Z × Zd−1
k (for

large d) we find a subset X which is a disjoint union of translates of T ×{0}d−1 and

has the property that for any n ∈ Z the set {x ∈ Zd−1
k : (n, x) ∈ X} is a subset of C

of size congruent to 1 modulo k − 1. Then T tiles ({n} × Zd−1
k ) \X. This holds for

all n ∈ Z, so in fact T tiles Z×Zd−1
k , and hence it tiles Zd, establishing Theorem 2.3.

Zk

Zk

Z

Figure 2.5: The aim is to put down tiles parallel to one of the
directions so that the remainder of each slice could be tiled by
strings. This diagram only symbolically visualises this principle. In
particular, the slices here are two-dimensional, while in the proof
they can have much higher dimension.

The rest of this section is organised as follows. In Section 2.2 we consider partial
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tilings by strings. In Section 2.3 we consider the special direction. Both ideas are

combined in Section 2.4, where a full proof of Theorem 2.3 is given.

2.2 Tiling Zd
k with some elements removed

For any 1 ≤ j ≤ d, define the j-th corner of Zdk to be cj,d where

cj,d = (0, . . . , 0,

j-th coordinate

↓
k − 1, 0, . . . , 0︸ ︷︷ ︸

d coordinates

) ∈ Zdk.

Write Cd = {cj,d : j = 1, . . . , d} for the set of corners.

c2,4

c3,4

c4,4c1,4

Figure 2.6: The set of corners C4 when k = 6. In this diagram the
space Z4

6 = {(x1, x2, x3, x4) : xi ∈ {0, . . . , 5}} is split from left to
right, according to the value of x4, into 6 three-dimensional slices.

Looking ahead, our aim later will be to provide some copies of T in the x1-

direction in Z×Zdk, at heights corresponding to points of Cd, and in such a way that

what remains in each Zdk can be partitioned into lines with one point removed. But

first we need to create a useful supply of such subsets of Zdk.
Recall that |Zdk| ≡ 1 (mod k− 1), so if T tiles some set X ⊂ Zdk (here and in the

remainder of this section T is identified with its image under the projection Z→ Zk,
so its copies in Zdk are lines with one point removed), then |Zdk \X| ≡ 1 (mod k−1).

In this section we will prove Lemma 2.4, which is an approximate converse of this

statement.

Lemma 2.4. Let d ≥ 1 and suppose that S ⊂ Cd is such that |S| ≡ 1 (mod k − 1)

and |S| ≤ d− logk d. Then T tiles Zdk \ S.

In fact, this lemma holds even without the assumption that |S| ≤ d− logk d, but

we keep it for the sake of simpler presentation.

We will prove Lemma 2.4 at the end of this section. Meanwhile, we collect the

tools needed for the proof. In fact, there are several ways to prove Lemma 2.4. The

method outlined here is quite general, and we will build on it in Section 3.

We start with a simple proposition.
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Proposition 2.5. Let d ≥ 1 and x ∈ Zdk. Then T tiles Zdk \ {x}.

Proof (see Figure 2.7). Use induction on d. If d = 1, then Zk\{x} is itself a translate

of T . Now suppose that d ≥ 2 and write x = (x1, . . . , xd), x̂ = (x1, . . . , xd−1). By

the induction hypothesis, for each j ∈ Zk, (Zd−1
k \{x̂})×{j} can be tiled with copies

of T . It remains to tile {x̂} × (Zk \ {xd}), but this is itself a copy of T .

Figure 2.7: The induction step in the proof of Proposition 2.5. The
grey cube represents x. The vertical column in which x lies, without
x itself, is a copy of T . Each horizontal slice minus the point in this
column can be tiled by the induction hypothesis.

Let X ⊂ Zdk (for any d ≥ 1) be such that T tiles Zdk \X. We will say that such

X is a hole in Zdk. The intuition for X is that it is a set that remains uncovered

after an attempt to tile Zdk by copies of T .

We can identify X with a higher-dimensional set X ′ = X × {0} ⊂ Zd+1
k . One

can easily verify that X ′ is a hole in Zd+1
k . More importantly, we will show in the

following proposition that a single additional point of X ′ can be covered in exchange

for leaving the (d+ 1)-st corner of Zd+1
k uncovered (see Figure 2.9). This is why, for

any S ⊂ Zdk, we define

S† = (S × {0}) ∪ {cd+1,d+1} ⊂ Zd+1
k .

Note that the definition of S† and the definition of S being a hole depend not only

on S, but also on the dimension of the underlying discrete torus Zdk. For m ≥ 1, we

will use the shorthand S†(m) to denote the result of m consecutive applications of

the † operation to S, that is,

S†(m) = S †...†︸︷︷︸
m

⊂ Zd+m
k .
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S ⊂ Z2
k S† ⊂ Z3

k S†(2) ⊂ Z4
k

Figure 2.8: Suppose S is the subset of Z2
k given in the diagram on

the left (here k = 6). The diagram in the middle depicts S†, and
the diagram on the right depicts S†(2). Observe that S is a hole in
Z2
k, but S† and S†(2) are not holes in Z3

k and Z4
k, respectively.

Proposition 2.6. Let d ≥ 1 and let X ⊂ Zdk be a hole. Then for each x ∈ X the

set (X \ {x})† is a hole in Zd+1
k .

x

x ∈ X ⊂ Zdk (X \ {x})† ⊂ Zd+1
k

Figure 2.9: An illustration of the statement of Proposition 2.6. The
aim is to show that T tiles Zd+1

k \ (X \ {x})†.

Proof (see Figure 2.10). Use (i) a tiling of Zdk\X for (Zdk\X)×{0}, and (ii) one copy

of T to cover {x}×(Zk\{k−1}). By Proposition 2.5, (iii) (Zdk\{(0, . . . , 0)})×{k−1}
and (iv) (Zdk \ {x})× {i}, i ∈ {1, . . . , k − 2}, can each be tiled by copies of T .

(iv)

(iii)

(i)

(ii)

Figure 2.10: The bottom horizontal piece (i) is tilable because X is
a hole, and the other horizontal pieces (iii) and (iv) are tilable by
Proposition 2.5. The remaining vertical column (ii) is a copy of T .
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We will apply Proposition 2.6 inductively, that is, in the form of the following

corollary.

Corollary 2.7. Let d ≥ 1 and let X ⊂ Zdk be a hole. Then for any distinct elements

x1, . . . xm ∈ X, the set (X \ {x1, . . . , xm})†(m) is a hole in Zd+m
k .

We are now ready to prove Lemma 2.4.

Proof of Lemma 2.4. Write |S| = m and r = d−m. By symmetry, we can assume

that

S = {cj,d : j = r + 1, . . . , d} .

Our aim is to prove that S is a hole in Zdk. Note that S = ∅†(m), where the empty

set ∅ is considered as a subset of Zrk. Therefore by Corollary 2.7 it suffices to find a

hole X ⊂ Zrk with |X| = m.

This can be done by partitioning Zrk into a singleton {x} and copies of T (this can

be done by Proposition 2.5), and letting X be the union of {x} and the appropriate

number of copies of T . By assumption, m ≡ 1 (mod k − 1) so the only potential

problem with this construction of X is if |Zrk| < m. However, this is ruled out by

the assumption that m ≤ d− logk d.

2.3 Using one special direction to get T -tilable slices

The purpose of this section is to demonstrate that tiles in the first direction in

Z×Zd−1
k (that is, translates of T ×{0}d−1) can be combined in such a way that the

uncovered part of each slice can be tiled by copies of T using Lemma 2.4. The exact

claim is as follows.

Lemma 2.8. There exists a number ` ≥ 1 such that for any d ≥ 1 and any set

C ⊂ Zd−1
k of order |C| ≥ ` there is a set X ⊂ Z× C, satisfying:

(a) X is a union of disjoint sets of the form (T +n)×{c} with n ∈ Z and c ∈ C;

(b) |({n} × C) ∩X| ≡ 1 (mod k − 1) for every n ∈ Z;

(c) |({n} × C) ∩X| ≤ ` for every n ∈ Z.
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Z

C

Figure 2.11: A possible construction of X. In this example the aim
is to have 1 modulo 6 elements covered in each column.

We start with the following trivial proposition.

Proposition 2.9. There is a function f : Z → {0, . . . , k − 2} such that for each

x ∈ Z ∑

y∈T
f(x− y) ≡ 1 (mod k − 1).

Proof. Start by defining f(n) = 0 for −k + 1 ≤ n ≤ −1. Now define f(n) for n ≥ 0

as follows. Suppose that for some n ≥ 0 the values of f(j) are already defined for

all j such that −k + 1 ≤ j ≤ n− 1. Then the value of f(n) is uniquely defined by

f(n) ≡ 1 −
∑

y∈T\{1}
f(n+ 1− y) (mod k − 1).

Define f(n) for all n ≤ −k in a similar way.

Now Lemma 2.8 can be proved quickly.

Proof of Lemma 2.8. Write ` = 2k(k − 2) and suppose that |C| = `. Let f : Z →
{0, . . . , k−2} be as given by Proposition 2.9. The aim is to choose subsets Sn ⊂ C for

every n ∈ Z, with orders satisfying |Sn| = f(n), and such that Sm∩Sn = ∅ whenever

m 6= n and (T +m) ∩ (T + n) 6= ∅. Then X can be taken to be
⋃
n∈Z(T + n)× Sn.

Fix any enumeration of Z, and define the sets Sn one by one in that order. When

defining Sn, there can be at most 2k − 1 choices of m with Sm already defined and

m− n ∈ T − T . Moreover, |Sm| ≤ k− 2 for each m. Therefore to be able to find Sn

it is enough to have |C| − (2k− 1)(k− 2) ≥ f(n). Finally, this condition is ensured

by the choice of `, completing the proof in the case when |C| = `. If |C| > `, we are

done by restricting to a subset of C of size exactly `.
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2.4 Completing the proof of Theorem 2.3

It was noted in Section 2.1 that Lemmas 2.4 and 2.8 together imply that for some

d ≥ 1

T tiles Z× Zd−1
k , (2.1)

and therefore

T tiles Zd, (2.2)

implying Theorem 2.3. However, some abuse of notation is already present in the

statement of (2.1). In this section we will carefully explain what is meant by (2.1),

why it follows from the two lemmas and how it implies (2.2). In doing so, we will

complete the proof of Theorem 2.3.

To avoid confusion, within this section we use quite precise language. Although

this might seem pedantic here, for later it will be very important to have precise

notation available. We denote the elements of Zk by x for x ∈ Z (instead of iden-

tifying them with x, which was our preferred notation in the rest of the section),

and we will denote the image of T under the natural projection π : Z→ Zk by π(T )

rather than simply by T .

Theorem 2.3. Fix integers k ≥ 3 and i ∈ {2, . . . , k − 1} and let T be the tile

[k] \ {i}. Then T tiles Zd for some d.

Proof. Fix a large d (more precisely, first let ` be as given by Lemma 2.8 and then

fix d such that d− 1− logk(d− 1) ≥ `).

Denote the projection map Z → Zk by π, and consider the following subsets of

Z× Zd−1
k :

T1 = T ×
{

0
}
×
{

0
}
× · · · ×

{
0
}
,

T2 =
{

0
}
× π(T ) ×

{
0
}
× · · · ×

{
0
}
,

...

Td =
{

0
}
×
{

0
}
×
{

0
}
× · · · × π(T ).

Recall from Section 2.2 the definition of

Cd−1 =





( 0 , . . . , 0 ,

j-th coordinate

↓
k − 1 , 0 , . . . , 0︸ ︷︷ ︸

d−1 coordinates

) : j = 1, . . . , d− 1




⊂ Zd−1

k .
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By Lemma 2.8, there is a set X ⊂ Z× Cd−1, which is a union of disjoint translates

of T1 and for each n ∈ Z satisfies |({n} × Cd−1) ∩ X| ≤ d − 1 − logk(d − 1) and

|({n} × Cd−1) ∩ X| ≡ 1 (mod k − 1). Hence, by Lemma 2.4, ({n} × Zd−1
k ) \ X is

a union of disjoint translates of T2, . . . ,Td for each n ∈ Z. Therefore Z× Zd−1
k is a

union of disjoint translates of T1, . . . ,Td (this is exactly what is meant by (2.1)).

More explicitly, there are integers 1 ≤ t(α) ≤ d and x1(α), . . . , xd(α) ∈ Z,

indexed by α ∈ A, such that Z× Zd−1
k is the disjoint union

Z× Zd−1
k =

⊔

α∈A

[
Tt(α) +

(
x1(α), x2(α) , . . . , xd(α)

)]
.

From this it follows that, in fact, Zd is T -tilable. Indeed, consider the following

subsets of Zd:

T′1 = T × {0} × {0} × · · · × {0},
T′2 = {0} × T × {0} × · · · × {0},

...

T′d = {0} × {0} × {0} × · · · × T.

Then we can express Zd as the disjoint union

Zd =
⊔

α∈A
c2,...,cd∈Z

[
T′t(α) +

(
x1(α), x2(α) + kc2 , . . . , xd(α) + kcd

)]
.

3 The general case

Recall the statement of the main theorem.

Theorem 2.2. Let T ⊂ Zn be a tile. Then T tiles Zd for some d.

In this section we prove the main theorem by generalising the approach demon-

strated in Section 2. We have to account for two ways in which Theorem 2.3 is

a special case: firstly, the tile can be multidimensional; secondly, even in the one-

dimensional case the tile can have more complicated structure than in Section 2.

It turns out that dealing with the first issue does not add significant extra dif-

ficulty to the proof, provided that the right setting is chosen. Namely, most of

the intermediate results will be stated in terms of abelian groups rather than inte-

ger lattices. This way a multidimensional tile T ⊂ Zb can be considered as being
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one-dimensional, if Zb (rather than Z) is chosen as the underlying abelian group.

Moreover, this point of view is vital for comparing periodic tilings of an integer

lattice with tilings of a discrete torus, already an important idea in the proof of the

special case.

On the other hand, dealing with the second issue requires significant effort. It

involves finding the right way to generalise the two key ideas from Section 2, as well

as introducing a new ingredient that allows the argument to be applied iteratively.

We now introduce some definitions. Given an abelian group G, we call any non-

empty subset T ⊂ G a tile in G. Given abelian groups G1, . . . , Gd and corresponding

tiles Ti ⊂ Gi, consider the following subsets of G1 × · · · ×Gd:

T1 = T1 × {0} × · · · × {0},
T2 = {0} × T2 × · · · × {0},

...

Td = {0} × {0} × · · · × Td.

Any translate of such Ti (that is, a set of the form Ti + x for x ∈ G1 × · · · ×Gd) is

called a copy of Ti. We say that a subset X ⊂ G1 × · · · × Gd is (T1, . . . , Td)-tilable

if X is a disjoint union of copies of T1, . . . , Td.

It will often be the case that (G1, T1) = · · · = (Gd, Td) = (G, T ). Then we will

use the term T -tilable as a shorthand for (T, . . . , T )-tilable.

More generally, we may consider subsets of Gd1
1 × · · · × Gdm

m where G1, . . . , Gm

are abelian groups with tiles Ti ⊂ Gi. In this setting we would say that a subset is

(d1 · T1, . . . , dm · Tm)-tilable. In other words, each di · Ti replaces

Ti, . . . , Ti︸ ︷︷ ︸
di

.

However, we suppress “1·” in the notation. So, for example, we could say that a

subset of G7
1 ×G2 ×G10

3 is (7 · T1, T2, 10 · T3)-tilable.

3.1 A summary of the proof

Let T be a fixed finite tile in Zb. Without loss of generality assume that T ⊂ [k]b

for some k ≥ 1. Then, writing π : Zb → Zbk for the projection map, π(T ) is a tile in

G = Zbk.
In the light of the argument from Section 2, one might hope to find a positive
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integer d and a large family F of disjoint subsets of Gd with the property that

whenever a subfamily S ⊂ F with |S| ≡ 1 (mod |T |) is chosen, the set Gd\(⋃S∈S S)

is π(T )-tilable. However, this seems to be achievable only in the case when π(T ) is

in a certain sense a ‘dense’ subset of G.

If π(T ) is sparse, we achieve a weaker aim. Namely, we find a certain set X ⊂ Gd

which has sufficiently nice structure and is a denser subset of Gd than π(T ) is of

G. Also, we find a large family F of disjoint subsets of X such that for any S ⊂ F
of appropriate size X \ (

⋃
S∈S S) is π(T )-tilable. Taking copies of T in the special

direction, we can now tile Zb ×X.

Repeating this process, we can use copies of T and Zb ×X to tile Zp × Y for an

even denser subset Y ⊂ Gl. After finitely many iterations of this procedure we tile

the whole of Zq × Gm for some possibly large q and m. From this it follows that

Zq+bm is T -tilable.

The rest of this section is organised as follows. In Section 3.2 we show how any

tile in a (finite) abelian group H can be used to almost tile a sufficiently nice denser

subset of Hd for some d. This is the most complicated part of the proof, but it

shares a similar structure with the simpler argument in Section 2.2.

In Section 3.3 we show how one special dimension can be used to cover the gaps

in every slice. The argument is almost identical to the one in Section 2.3.

In Section 3.4 we observe some simple transitivity properties of tilings. They

enable the iterative application of the process. The ideas in this section are fairly

straightforward.

Finally, in Section 3.5 we compile the tools together and complete the proof of

Theorem 2.2.

3.2 Almost tiling denser multidimensional sets

Our goal is to prove the following lemma.

Lemma 2.10. Let T ( G be a tile in a finite abelian group G. Then there is a set

A ⊂ G, with T ( A, having the following property. Given any d0 ≥ 1, there is some

d ≥ d0 and a family F consisting of at least d0 pairwise disjoint subsets of Ad such

that

G×
(
Ad \

⋃

S∈S
S

)
⊂ Gd+1

is T -tilable whenever S ⊂ F satisfies |S| ≡ 1 (mod |T |).

Before presenting the proof, we make a few definitions that will hold throughout
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this section. First, let G and T be fixed as in the statement of Lemma 2.10. Since

T 6= G, we can fix an x ∈ G such that T + x 6= T . Define

T up = T + x,

Cup = T up \ T,
Cdown = T \ T up,

A = T ∪ T up

(see Figures 2.12 and 2.13).

G

T

T up

A

Cup

Cdown

Figure 2.12: An illustration of the definitions.

A

Cdown

Cup

A

A

ACdown

Cup

Figure 2.13: A four-dimensional diagram of A4. The sets Cdown

and Cup are marked on two of the axes. In this example |A| = 5
and |Cdown| = |Cup| = 2. This and the following four-dimensional
diagrams in this section should be understood more generally as
depicting Ad for any d, the three-dimensional slices representing
copies of Ad−1.

We will use A from this definition in the proof of Lemma 2.10. For the family
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F we will take all sets of the following form. For any integers 1 ≤ i ≤ d, write

Ci,d = Cdown × · · · × Cdown ×
i-th component

↓
Cup × Cdown × · · · × Cdown︸ ︷︷ ︸

d components

⊂ Ad

(see Figure 2.14). Also write C0,d = (Cdown)d. Note that if i 6= j, then Ci,d∩Cj,d = ∅.
Finally, as T is fixed, we can simply say tilable instead of T -tilable.

C3,4

C4,4

Figure 2.14: A four-dimensional diagram, which extends the pre-
vious diagram. Note that C3,4 and C4,4 both intersect two three-
dimensional slices, because in this example |Cdown| = |Cup| = 2.

One of the reasons why these definitions are useful is that they allow the following

analogue of Proposition 2.5.

Proposition 2.11. For any integers d ≥ 1 and 0 ≤ i ≤ d, the set Ad \Ci,d is tilable.

Proof (see Figure 2.15). Use induction on d. If d = 1, observe that A = Cup t T =

Cdown t T up, and so A \ Ci,1 (= A \ Cup or A \ Cdown) is a translate of T .

Now suppose that d ≥ 2 and without loss of generality assume that i 6= d. By the

induction hypothesis, for each g ∈ A, the slice (Ad−1 \ Ci,d−1)× {g} can be T -tiled.

It remains to tile the set Ci,d−1× (A \Cdown) = Ci,d−1× T up, but this is obviously a

union of disjoint copies of T .

We now make a series of definitions that are useful for lifting subsets of lower-

dimensional spaces to higher-dimensional spaces.

A basic set is a set of the form Ad, G× Ad or {g} × Ad for some g ∈ G, with d

any positive integer. Let X be a subset of a basic set Ω and write Ω = W ×Ad (so

W = A0, G or {g} for some g ∈ G). We define

X† = (X × Cdown) ∪ (W × Cd+1,d+1) ⊂ W × Ad+1

(see Figure 2.16).

22



Ci,d
Ci,d−1 × T up

Figure 2.15: The induction step in the proof of Proposition 2.11.
The set Ci,d−1 × T up is a union of copies of T up. In each slice it
remains to tile a copy of Ad−1 \ Ci,d−1. This can be done by the
induction hypothesis.

W

X ⊂W ×Ad

X† ⊂W ×Ad+1

Figure 2.16: An illustration of the definition of X†, building on
Figure 2.13. The diagram on the left is four-dimensional and rep-
resents a generic set X ⊂ W × Ad. The diagram on the right is
five-dimensional and represents the corresponding X†. We stress
that this is an abstract illustration. In particular, here |A| = 5
and |W | = 3, while in fact we always have either |W | = 1 or
|W | = |G| ≥ |A|.

Moreover, for any m ≥ 1 we use the shorthand X†(m) to denote the result of m

consecutive applications of the † operation to X, that is,

X†(m) = X †...†
︸︷︷︸
m

=
(
X × C0,m

)
∪ (W × Cd+1,d+m) ∪ · · · ∪ (W × Cd+m,d+m)

⊂ W × Ad+m.

For the final definition, we say that X is a hole in Ω if Ω \ X is tilable. Note

that these definitions depend not only on X, but also on the underlying basic set

Ω. Therefore we will only use them when the underlying set is explicitly stated or

clear from the context.

Proposition 2.12. Let d ≥ 1 and let X be a hole in Ad. Suppose that Ci,d ⊂ X for

23



some 0 ≤ i ≤ d. Then (X \ Ci,d)† is a hole in Ad+1.

Proof (see Figure 2.17). Partition Ad+1 \ (X \ Ci,d)† into four sets

(i) Ci,d × (A \ Cup) — tilable, because A \ Cup = T ;

(ii) (Ad \X)× Cdown — tilable, because Ad \X is tilable;

(iii) (Ad \ Ci,d)× (A \ (Cup ∪ Cdown)) — tilable by Proposition 2.11;

(iv) (Ad \ C0,d)× Cup — tilable by Proposition 2.11.

(i)

(ii)
(iii)

(iv)

Figure 2.17: An illustration of the proof of Proposition 2.12. The
three-dimensional diagram on the left represents a hole X ⊂ Ad

which contains Ci,d. The four-dimensional diagram on the right

represents (X \ Ci,d)† and demonstrates why it is a hole in Ad+1.

This proposition is the most useful for us in the form of the following corollary.

Corollary 2.13. Let d ≥ 1 and suppose that 0 ≤ i1, . . . , im ≤ d are distinct integers.

Then (
Ad \ (Ci1,d ∪ · · · ∪ Cim,d)

)†(m)

is a hole in Ad+m.
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Proof. Use induction onm. The base casem = 1 is a special case of Proposition 2.12,

so suppose that m ≥ 2. Note that

(
Ad \ (Ci1,d ∪ · · · ∪ Cim,d)

)†(m)

=
((
Ad \ (Ci1,d ∪ · · · ∪ Cim−1,d)

)†(m−1) \ Cim,d+m−1

)†

so it is a hole in Ad+m−1 by the induction hypothesis and Proposition 2.12.

Now we have the tools needed for the proof of Lemma 2.10.

Proof of Lemma 2.10. Fix any d ≥ (1 + |G|/|T |)d0 and write F = {Ci,d : i =

1, . . . , d}. By symmetry, it is enough to find a tiling for the set

Mm = G×
(
Ad \ (Cd−m+1,d ∪ · · · ∪ Cd,d)

)

for every choice of m ≤ d0 with m ≡ 1 (mod |T |). Fix one such value of m, and let

M = Mm be the corresponding set that we have to tile.

Define r = d−m and Ω = G×Ar. We will construct a partition B of the set Ω,

satisfying:

• B consists of the set Y0 = G× C0,r and copies of the tile T ;

• for each 1 ≤ i ≤ r, there is some yi ∈ G such that the set Yi = (T + yi)× Ci,r
is exactly the union of some copies of T in B;

• each y ∈ G appears at least t = (m− 1)/|T | times in the list y1, . . . , yr.

T+
y
1

T+
y
2

T+
y
3

T+
y
4

. . .C0,r C1,r C2,r C3,r C4,r

G

Ar

Figure 2.18: By constructing the partition B we show that the set⋃r
i=0 Yi (grey in this diagram) is a hole in Ω = G × Ar. In fact,⋃
i∈I∪{0} Yi is a hole for any I ⊂ [r].

We start the construction by fixing any list y1, . . . , yr such that each member of

G appears exactly t times in y1, . . . , yt|G| (in particular, this list satisfies the final

condition displayed above). Note that such a list exists since r ≥ t|G|.
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Now we use induction to construct, for each 0 ≤ j ≤ r, a partition Bj of G×Aj
such that the first two conditions are satisfied when B and r are replaced by Bj and

j.

Let B0 = {G}. Having defined Bj−1, let Bj consist of the following sets (see

Figure 2.19):

(i) G× C0,j,

(ii) X × {b} for each X ∈ Bj−1 that is a copy of T and each b ∈ Cdown,

(iii) {g} × {a} × T up for each g ∈ G \ (T + yj) and each a ∈ Aj−1,

(iv) (T + yj)× {a} × {b} for each a ∈ Aj−1 and each b ∈ T up = A \ Cdown.

One can easily check that Bj is a partition of G×Aj with the required properties. In

particular, the sets of the first two types cover G×Aj−1×Cdown, and the remaining

sets cover G× Aj−1 × (A \ Cdown).

This concludes the construction of B.

Bj(i) and (ii)

Cdown

(iv)

T + yj

(iii)

T up

A

G

Aj−1

Bj−1

G

Aj−1

Figure 2.19: The induction step in the construction of the partition
B.

Define (recalling that Y0 = G× C0,r and Yi = (T + yi)× Ci,r for 1 ≤ i ≤ t|G|)

S = Ω \



t|G|⋃

i=0

Yi


 .

The point is that S is tilable by the restriction of B, and hence S × C0,m is also

tilable. Therefore it only remains to prove that M \ (S × C0,m) is tilable, because
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this would imply that M is tilable. Observe that M \ (S × C0,m) = (G×Ad)\S†(m),

so it remains to prove that S†(m) is a hole.

To prove this, fix any g ∈ G and write Ωg = {g} × Ar. Then Ωg intersects Y0

and exactly t|T | = m− 1 of the Y1, . . . , Yt|G|. In other words,

Ωg ∩ S = {g} ×
(
Ar \

m⋃

k=1

Cjk,r

)

for some 0 = j1 < j2 < · · · < jm ≤ r. By Corollary 2.13, (Ωg ∩ S)†(m) is a hole in

{g} × Ad. This holds for any g ∈ G, so in fact S†(m) =
⋃
g∈G (Ωg ∩ S)†(m) is a hole

in G× Ad, completing the proof.

3.3 Using one special dimension to cover certain subsets in

slices

In this section we show how one special dimension can be used to lay foundations for

a tiling so that the tiling can be completed in each slice separately using Lemma 2.10.

Here is the main result of this section. Its statement and proof are very similar

to Lemma 2.8 from Section 2.

Lemma 2.14. Let t, b ≥ 1 be integers and T a finite tile in Zb. Further, let S be a

set and let F be a family consisting of at least (t − 1)|T |2 pairwise disjoint subsets

of S. Then there is a set X ⊂ Zb × S, satisfying:

• X is a union of disjoint sets of the form (T + x)×A with x ∈ Zb and A ∈ F ,

and

• for each x ∈ Zb there is some m ≡ 1 (mod t) such that {y ∈ S : (x, y) ∈ X}
is a union of m distinct members of F .

We will deduce Lemma 2.14 from the following simple deconvolution type state-

ment.

Proposition 2.15. Let t ≥ 1 and b ≥ 0 be integers, T a finite tile in Zb, and

f : Zb → Z a function. Then there is a function g : Zb → {0, . . . , t − 1} such that

for each x ∈ Zb ∑

y∈T
g(x− y) ≡ f(x) (mod t).
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Proof. Use induction on b. The base case b = 0 is trivial (Z0 being the trivial group),

so suppose that b ≥ 1. For any n ∈ Z, write

Tn = {x ∈ Zb−1 : (x, n) ∈ T}.

Without loss of generality, assume that T0 6= ∅ and Tn = ∅ for all n < 0. Write

k for the greatest integer such that Tk 6= ∅. In other words, [0, k] is the minimal

interval containing the projection of T in the last coordinate.

Set g(x, n) = 0 for all x ∈ Zb−1 and all n ∈ Z such that −k ≤ n ≤ −1. The next

step is to define g(x, n) for all n ≥ 0 and x ∈ Zb−1. Consider N = 0, 1, . . . in turn,

at each step having defined g(x, n) whenever −k ≤ n ≤ N − 1 and x ∈ Zb−1. By

the induction hypothesis, we can define g(x,N) so that for all x ∈ Zb−1

∑

y∈T0
g(x− y,N) ≡ f(x,N)−

∑

1≤j≤k
z∈Tj

g(x− z,N − j) (mod t).

The final step is to define g(x, n) when n ≤ −k − 1. The argument is similar.

Consider N = −k − 1,−k − 2, . . . in turn, at each step having defined f(x, n)

whenever n ≥ N + 1. By the induction hypothesis, we can define g(x,N) so that

for each x ∈ Zb−1

∑

y∈Tk
g(x− y,N) ≡ f(x,N + k)−

∑

0≤j≤k−1
z∈Tj

g(x− z,N + k − j) (mod t).

These three steps together define g completely, and it is easy to see that g satisfies

the required condition.

We get Lemma 2.14 as a quick corollary. In its proof we write N for {1, 2, . . . }.

Proof of Lemma 2.14. Let g : Zb → {0, . . . , t− 1} be such that for each x ∈ Zb

∑

y∈T
g(x− y) ≡ 1 (mod t).

Let z1, z2, . . . be any enumeration of the elements of Zb. We will define sets

F1, F2, . . . ⊂ F such that |Fn| = g(zn) for any n ∈ N, and Fm ∩ Fn = ∅ for any

distinct m,n ∈ N with (T + zm) ∩ (T + zn) 6= ∅. Then we will be done by taking

X =
⋃

n∈N
A∈Fn

[
(T + zn)× A

]
.
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The Fn can be defined inductively. Indeed, suppose that for some N ∈ N the sets

F1, . . . , FN−1 are already defined. Then we can define FN to consist of exactly g(zN)

elements of F that are not contained in Fn for any n ≤ N−1 with (T+zn)∩(T+zN) 6=
∅. This is possible, because we have at most |T |2 − 1 choices for such n, and

g(zN) + (|T |2 − 1) max
n≤N−1

|Fn| ≤ (t− 1)|T |2 ≤ |F|.

3.4 General properties of tilings

In this section we prove some transitivity results for tilings. The underlying theme

is, expressed very roughly, ‘if B is A-tilable with the help of k extra dimensions, and

C is B-tilable with the help of ` extra dimensions, then C is A-tilable with the help

of k + ` extra dimensions’.

To avoid making the notation, which is already somewhat cumbersome, even

more complicated we allow ourselves to abuse it in places where this is unlikely to

create ambiguity. For example, given a tiling X =
⊔
Xα we may refer to the sets

Xα as tiles (technically, they are not tiles, but copies of tiles). Otherwise, the proofs

in this section are fairly straightforward.

Proposition 2.16. Let G, G1, . . . , Gm and H1, . . . , Hn be abelian groups with tiles

A ⊂ B ⊂ C ⊂ G, Ti ⊂ Bi ⊂ Gi and Ui ⊂ Ci ⊂ Hi. Suppose that

B1 × · · · ×Bm ×B is (T1, . . . , Tm, A)-tilable (2.3)

and that

C1 × · · · × Cn × Cd is (U1, . . . , Un, d ·B)-tilable. (2.4)

Then

B1 × · · · ×Bm × C1 × · · · × Cn × Cd is (T1, . . . , Tm, U1, . . . , Un, d · A)-tilable.

Let us unravel the statement of this proposition. Intuitively, condition (2.3)

asserts that ‘B is almost A-tilable’ – the extra dimensions B1, . . . , Bm are used to

fill the gaps. Similarly, condition (2.4) asserts that ‘Cd is almost B-tilable’ – here

we use the extra dimensions C1, . . . , Cn. Finally, the conclusion states that ‘Cd is

almost A-tilable’ – we use all the extra dimensions, B1, . . . , Bm and C1, . . . , Cn, to

complete this tiling.

Proof. For each tile X in the (U1, . . . , Un, d ·B)-tiling of C1×· · ·×Cn×Cd, partition

the set B1 × · · · ×Bm ×X in one of the two following ways:
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• if X is a copy of B, then partition B1× . . .×Bm×X into its (T1, . . . , Tm, A)-

tiling;

• otherwise (that is, if X is a copy of one of the U1, . . . , Un), partition the set

into copies of X, namely {b} ×X for each b ∈ B1 × . . .×Bn.

This produces a (T1, . . . , Tm, U1, . . . , Un, d ·A)-tiling of B1×· · ·×Bm×C1×· · ·×
Cn × Cd.

In the proof of the main theorem, we will apply this result in the following more

compact form.

Corollary 2.17. Let G and H be abelian groups with tiles T ⊂ G and A ⊂ B ⊂ H.

Suppose that

Gk ×H` ×Bd is (k · T, (`+ d) · A)-tilable (2.5)

and that

Gu ×Hv is (u · T, v ·B)-tilable. (2.6)

Then

Gdu+k ×Hdv+` is ((du+ k) · T, (dv + l) · A)-tilable.

Proof. Use induction on d. The base case d = 0 is trivial, so suppose that d ≥ 1.

Rewrite (2.5) to state that

Gk ×H l ×Bd−1 ×B is (k · T, (`+ d− 1) · A,A)-tilable.

Now Proposition 2.16 applied to this and (2.6) implies that

Gk ×H l ×Bd−1 ×Gu ×Hv is (k · T, (`+ d− 1) · A, u · T, v · A)-tilable,

which after reordering and combining terms becomes the statement that

Gu+k ×Hv+l ×Bd−1 is ((u+ k) · T, (v + l + d− 1) · A)-tilable.

Finally, apply the induction hypothesis to this and (2.6) to conclude the proof.

The following straightforward proposition allows tilings to be lifted via surjective

homomorphisms.

Proposition 2.18. Let G,H and G1, . . . , Gn be abelian groups with tiles T ⊂ G

and Ui ⊂ Gi, and let ρ : G→ H be a surjective homomorphism that is injective on
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T . If G1 × · · · × Gn × H is (U1, . . . , Un, ρ(T ))-tilable, then G1 × · · · × Gn × G is

(U1, . . . , Un, T )-tilable.

Proof. For any tile X in the (U1, . . . , Un, ρ(T ))-tiling of G1 × · · · × Gn × H, let X̂

denote the set

X̂ = {(x1, . . . , xn, x) ∈ G1 × · · · ×Gn ×G : (x1, . . . , xn, ρ(x)) ∈ X}.

For every X, partition X̂ in one of the two following ways:

• if X is a copy of Ui for some 1 ≤ i ≤ n, then partition X̂ into copies of Ui in

the obvious way;

• if X is a copy of ρ(T ), then X = {(x1, . . . , xn)} × ρ(T + x) for some xi ∈ Gi

and x ∈ G. Hence X̂ = {(x1, . . . , xn)}× (T + x+ ker(ρ)), and as ρ is injective

on T , this can be partitioned into copies of T .

Since the sets X̂ partition G1×· · ·×Gn×G, this produces a (U1, . . . , Un, T )-tiling

for it.

An inductive application of this proposition gives the following result, which we

will use in the proof of the main theorem.

Corollary 2.19. Let G and H be abelian groups, and let T ⊂ G be a tile. Moreover,

suppose that a surjective homomorphism ρ : G → H is injective on T . If Gk ×H`

is (k · T, ` · ρ(T ))-tilable, then Gk+` is T -tilable.

3.5 Proof of the main theorem

The tools needed for the proof Theorem 2.2 are now available.

Theorem 2.2. Let T ⊂ Zn be a tile. Then T tiles Zd for some d.

Proof. Without loss of generality assume that T ⊂ [k]b, where k ∈ N. Write G = Zbk
and let π : Zb → G be the projection map. In particular, π(T ) is a tile in G.

Claim 2.20. Suppose that A ⊂ G is a tile. Then there exist integers p ≥ 0 and

q ≥ 1 such that (Zb)p ×Gq is (p · T, q · A)-tilable.

Proof of claim. Use reverse induction on |A|. If |A| = |G| then in fact A = G, and

the claim holds with p = 0, q = 1. So suppose that |A| ≤ |G| − 1.

Applying Lemma 2.10 to the tile A with fixed large d0 produces a number d1 ≥ d0,

a set B such that A ( B ⊂ G and a family F (|F| ≥ d0) of pairwise disjoint subsets
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of Bd1 with the property that for any subfamily S ⊂ F of size satisfying |S| ≡ 1

(mod |A|), the set

G×
(
Bd1 \

⋃

S∈S
S

)

is A-tilable.

Since d0 is large, Lemma 2.14 gives a set X ⊂ Zb×G×Bd1 that is a disjoint union

of copies of T , and such that for every x ∈ Zb the slice {y ∈ G× Bd1 : (x, y) ∈ X}
is a hole in G×Bd1 . Therefore Zb ×G×Bd1 is (T, (d1 + 1) · A)-tilable.

By the induction hypothesis, there exist u ≥ 0 and v ≥ 1 such that (Zb)u × Gv

is (u · T, v ·B)-tilable. Now apply Corollary 2.17 to conclude that the claim holds

with p = d1u+ 1 and q = d1v + 1. This proves the claim. �

To finish the proof of the theorem, apply the claim to the tile π(T ). This gives p ≥
0 and q ≥ 1 such that (Zb)p×Gq is (p ·T, q ·π(T ))-tilable. Hence, by Corollary 2.19,

(Zb)p+q is T -tilable.

4 Concluding remarks and open problems

We mention in passing that all our tilings are (or can be made to be) periodic. Also,

our copies of T arise only from translations and permutations of the coordinates –

in particular, ‘positive directions stay positive’.

We have made no attempt to optimise the dimension d in Theorem 2.2. What

can be read out of the proof is the following.

Theorem 2.2’. Let T ⊂ Zn be a tile and suppose that T ⊂ [k]n. Then T tiles Zd,
where d = dexp(100(n log k)2)e.

Thus our upper bound on d is superpolynomial in the variable kn. We believe

that there should be an upper bound on d in terms only of the size and dimension

of T . Even in the case n = 1 this seems to be a highly non-trivial question.

Conjecture 2.21. For any positive integer t there is a number d such that any tile

T ⊂ Z with |T | ≤ t tiles Zd.

On the other hand, it is easy to see that there cannot be a bound just in terms of

the dimension of the tile. Indeed, given any d it is possible to find a one-dimensional

tile that does not tile Zd. Such a tile T can be constructed by fixing an integer k

and taking two intervals of length k, distance k2 − 1 apart, where in between the
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intervals only every k-th point is present in the tile. For example, if k = 4 then the

resulting tile would be

XXXX...X...X...X...XXXX

Suppose that T tiles Zd. Choose a large integer N and consider the cuboid [N ]d.

Fix one of the d directions and only consider the copies of T in this direction that

intersect [N ]d. Since tiles do not overlap, there are at most O(Nd/k2) such tiles and

they cover at most O(Nd/k) elements of [N ]d. Since there are d directions, at most

O(dNd/k) elements of the cuboid can be covered with tiles, but this number is less

than Nd for large k. Therefore, if k is large enough, then T does not tile Zd.
Finally, apart from examples where tiles are sparse and do not stack, we do not

have any tools for establishing reasonable lower bounds on the dimension d. It would

be interesting to find a family of dense one-dimensional tiles which require arbitrarily

large dimension. We expected that intervals with the central point removed would

have this property. However, shockingly to us, Metrebian showed that this is not

the case. In fact, he proved that for any k the tile XXXXX︸ ︷︷ ︸
k

. XXXXX︸ ︷︷ ︸
k

tiles Z4. His work

is very recent and has not yet been published. It is not known whether the same

holds for intervals with an arbitrary point removed.
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CHAPTER 3

Decompositions of the Boolean lattice

1 Introduction

Let 2[n] denote the Boolean lattice of dimension n, that is, the poset (partially ordered

set) whose elements are the subsets of [n] = {1, . . . , n}, ordered by inclusion.

An important property of the Boolean lattice is that any finite poset P can be

embedded into 2[n] for sufficiently large n. Here by an embedding of a poset P into

a poset Q we mean an injection f : P → Q such that f(x) ≤Q f(y) if and only if

x ≤P y. For any embedding f : P → Q, we call the image f(P ) a copy of P in Q.

Now, if P is fixed and n is large, then 2[n] contains many copies of P . So a

natural question arises: can 2[n] be partitioned into copies of P? Of course, for

such a partition to exist, the size of P must divide the size of 2[n], that is, |P | must

be a power of 2 (we would like to emphasise that we denote by |P | the number of

elements of P and not the number of relations). Moreover, P must have a greatest

and a least element. Lonc [42] conjectured that these obvious necessary conditions

are in fact sufficient.

Conjecture 3.1 (Lonc [42]). Let P be a poset of size 2k with a greatest and a least

element. Then, for sufficiently large n, the Boolean lattice 2[n] can be partitioned

into copies of P .

The case where P is a chain of size 2k was originally conjecture by Sands [58].

Griggs [22] proposed a slightly stronger conjecture that, for any positive integer c

and for sufficiently large n, it is possible to partition 2[n] into chains of length c and

at most one other chain. Both conjectures were proved by Lonc [42]. The question

of minimising the dimension n in Griggs’ conjecture in terms of the length of the

chain c has received attention from several authors, including Elzobi and Lonc [7]

and Griggs, Yeh and Grinstead [23]. Recently, Tomon [61] proved that the smallest

sufficient n is of order Θ(c2). Related questions on partitioning 2[n] into chains of
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almost equal lengths have also been examined, by Füredi [14], Hsu, Logan, Shahriari

and Towse [36,37] and Tomon [60].

As we mentioned in the previous paragraph, Lonc himself verified Conjecture 3.1

in the case where P is a chain. Furthermore, it is easy to extend this result to

products of chains. In fact, for any two posets P,Q, if 2[n] can be partitioned

into copies of P and 2[m] can be partitioned into copies of Q, then 2[n+m] can be

partitioned into copies of P × Q. However, apart from some small cases that can

be checked by hand, chains and their products were the only two cases for which

Lonc’s conjecture had been confirmed.

In this chapter we resolve the conjecture in full generality.

Theorem 3.2. Let P be a poset of size 2k with a greatest and a least element. Then,

for sufficiently large n, the Boolean lattice 2[n] can be partitioned into copies of P .

The plan of the chapter is as follows. In Section 2 we give the most important

definitions and outline the structure of the proof of Theorem 3.2. We give the actual

proof in Sections 3 and 4: Section 3 contains a general argument, which works in

various settings where a partition of a product set into smaller sets is sought, and

might be of independent interest; Section 4 contains ideas that are particular to

partitioning 2[n] into copies of a fixed poset. Finally, in Section 5 we give some open

problems.

2 Overview of the proof

2.1 Weak partitions

A key idea in the proof will be the interplay between partitions and two weaker

notions, called r-partitions and (1 mod r)-partitions, which we now describe.

Let P be a poset. Recall that a set A ⊂ 2[n] is a copy of P if the poset induced

on A by 2[n] is isomorphic to P . We define Fn(P ) to be the family of all copies of

P in 2[n].

Let X be a set, and let F be any family of subsets of X. A Z+-valued weight

function (or simply a weight function) on F is an assignment of non-negative integer

weights to the members of F . For an element x ∈ X, the multiplicity of x for a

weight function is the total weight of those members of F that contain x. So, for

example, X can be partitioned into members of F if and only if there exists a

Z+-valued weight function on F for which every element of X has multiplicity 1.

For a positive integer r, we say that

36



• F contains an r-partition of X if there is a weight function on F for which

every element of X has multiplicity r ;

• F contains a (1 mod r)-partition of X if there is a weight function on F for

which every x ∈ X has multiplicity 1+rkx, where kx ∈ {0, 1, . . . } may depend

on x.

Our strategy revolves around establishing a close relation between r-partitions,

(1 mod r)-partitions and actual partitions of sets. Obviously, if F contains a parti-

tion of X, then F contains an r-partition and a (1 mod r)-partition of X for every

r. Our aim is to go in the opposite direction. Namely, our strategy consists of

two steps: firstly, we will show that if there exists an r such that F contains an

r-partition and a (1 mod r)-partition of X, then we can use these weak partitions

to get an actual partition of Xm for some m; secondly, we will show that, for some

n and r, Fn(P ) does contain an r-partition and a (1 mod r)-partition of 2[n].

It is not immediately obvious that this strategy should work. For instance, it is

not clear that finding weak partitions of 2[n] is easier than finding an actual partition.

However, this will turn out to be the case in Section 4, where we prove the following

lemmas.

Lemma 3.3. Let P be a finite poset with a greatest and a least element. Then there

exist positive integers n and r such that the family of copies of P in 2[n] contains an

r-partition of 2[n].

Lemma 3.4. Let P be a finite poset of size 2k that has a greatest and a least element,

and let r be a positive integer. Then there exists a positive integer n such that the

family of copies of P in 2[n] contains a (1 mod r)-partition of 2[n].

A key part of the argument will be to see how to use these seemingly much

weaker results can be used to find an actual partition of 2[n]. We will discuss this in

the following subsection.

2.2 Product systems

We will prove a very general theorem, which, applied to Lemmas 3.3 and 3.4, will

imply our main result.

Let S be a set. For two sets A ⊂ Sm, B ⊂ Sn with m ≤ n, we say that B is a copy

of A if B can be obtained by taking a product of A with a singleton set in Sn−m and

permuting the coordinates. More precisely, for a permutation π of {1, . . . , n} and
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x = (x1, . . . , xn) ∈ Sn, we define π(x) = (xπ(1), . . . , xπ(n)). Moreover, for any X ⊂
Sn, we define π(X) = {π(x) : x ∈ X}. Finally, for any X ⊂ Sm and Y ⊂ Sn−m, we

define X × Y = {(x1, . . . , xm, y1, . . . , yn−m) : (x1, . . . , xm) ∈ X, (y1, . . . , yn−m) ∈ Y }.
Note that we abuse the notation slightly and identify Sm × Sn−m with Sn, which

allows us to consider X × Y as a subset of Sn. With these definitions, B is a copy

of A if B = π(A× {y}) for some permutation π of {1, . . . , n} and some y ∈ Sn−m.

Note that this definition does not exactly agree with the definition of a copy of a

poset, which we made in Section 1. Indeed, there may exist two sets A,B ⊂ 2[n] such

that 2[n] induces the same poset on A and B, but such that B cannot be obtained

from A by permuting the coordinates. However, we think that this abuse of notation

is not harmful, because it will always be clear from the context which definition of

a copy should be used. Moreover, if sets A ⊂ 2[n] and B ⊂ 2[m] are copies in the

new sense, then they are also copies when considered as posets. Therefore, the two

definitions are in fact closely related.

The following theorem is vital for our strategy.

Theorem 3.5. Let S be a finite set and let F be a family of subsets of S. Sup-

pose that there exists a positive integer r such that F contains an r-partition and a

(1 mod r)-partition of S. Then there exists a positive integer n such that Sn can be

partitioned into copies of members of F .

It is straightforward to deduce our main theorem from Lemmas 3.3 and 3.4

and Theorem 3.5. Indeed, let P be a poset of size 2k with a greatest and a least

element. Lemma 3.3 implies that there are positive integers r and u such that Fu(P )

contains an r-partition of 2[u]. Now Lemma 3.4 implies that there is a positive integer

v such that Fv(P ) contains a (1 mod r)-partition of 2[v]. Setting m = max{u, v},
Fm(P ) contains both an r-partition and a (1 mod r)-partition of 2[m]. We can now

apply Theorem 3.5 with F = Fm(P ) and S = 2[m] to finish the proof. (Note that if

B ⊂ 2[mn] is a copy of some A ∈ Fm(P ), then the poset that 2[mn] induces on B is

isomorphic to P , and hence B ∈ Fmn(P ).)

3 Partitions in product systems

Our aim in this section is to prove Theorem 3.5.

As in the statement of the theorem, we let F be a family of subsets of a finite set

S and we suppose that r is a natural number such that F contains an r-partition

and (1 mod r)-partition of S. The set S, family F and number r will remain fixed

throughout this section.
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Lemma 3.6. For any sets A,B ⊂ S, there exists a positive integer n such that

S2 × (A ∪B)n can be partitioned into copies of members of F ∪ {A,B}.

The proof of Lemma 3.6 is by far the most complicated part of this chapter. We

will prove Lemma 3.6 in the next subsection. Now, with Lemma 3.6 at our disposal,

we will prove Theorem 3.5.

Proposition 3.7. Let A,B ⊂ S and suppose that there exist positive integers p, q

such that

• Sp can be partitioned into copies of members of F ∪ {A}, and

• S2 × Aq can be partitioned into copies of members of F ∪ {B}.

Then Spq+2 can be partitioned into copies of members of F ∪ {B}.

Proof. Partition Sp into sets X1, . . . , Xu, Y1, . . . , Yv, where every Xi is a copy of A

and every Yj is a copy of a member of F . We denote X = {X1, . . . , Xu} and Y =

{Y1, . . . , Yv}. Then Spq+2 = S2× (Sp)q is the disjoint union of sets S2×Z1×· · ·×Zq
with Zi ∈ X ∪ Y for all i. We separate these sets into two families, namely,

A =
{
S2 × Z1 × · · · × Zq : Zi ∈ X for all i

}
,

B =
{
S2 × Z1 × · · · × Zq : Zi ∈ X ∪ Y for all i and Zj ∈ Y for some j

}
.

Each member of A is a copy of S2 × Aq, so it can be partitioned into copies of

members of F ∪ {B}. Moreover, each member of B can be partitioned into copies

of some member of F in an obvious way. Since together these sets form a partition

of Spq+2, we are done.

Proof of Theorem 3.5 (assuming Lemma 3.6). Since F contains an r-partition of S

with r ≥ 1, and since S is finite, we can find finitely many sets B1, . . . , Bk ∈ F that

cover S. We define Ai = B1∪· · ·∪Bi for every 1 ≤ i ≤ k. So, in particular, Ak = S.

We will use reverse induction on i to prove that there exist positive integers

p1, . . . , pk such that, for every 1 ≤ i ≤ k, Spi can be partitioned into copies of

members of F ∪ {Ai}. If i = k, then Ak = S, and the statement is trivially true

with, say, pk = 1. So we may assume that 1 ≤ i ≤ k− 1. Since Ai+1 = Ai ∪Bi+1, it

follows from Lemma 3.6 that there exists a positive integer q such that S × (Ai+1)q

can be partitioned into copies of members of F ∪ {Ai, Bi+1}. However, Bi+1 is a

member of F , so F ∪ {Ai, Bi+1} = F ∪ {Ai}. Combining this with the induction

hypothesis for i+ 1 and Proposition 3.7, we see that Spi , where pi = pi+1q + 2, can

be partitioned into copies of members of F ∪ {Ai}.
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In particular, the statement holds for i = 1. Since A1 = B1 ∈ F , it says that Sp1

can be partitioned into copies of members of F , as required.

3.1 Proof of Lemma 3.6

Here we will prove Lemma 3.6.

Lemma 3.6. For any sets A,B ⊂ S, there exists a positive integer n such that

S2 × (A ∪B)n can be partitioned into copies of members of F ∪ {A,B}.

We start by picking two sets A,B ⊂ S; these sets will be fixed throughout the

subsection. We define U = A ∪ B, Ā = U \ A and B̄ = U \ B. Moreover, for any

integers 1 ≤ i ≤ d, we define

Ci,d = Ā× · · · × Ā×
i-th component

↓
B̄ × Ā× · · · × Ā︸ ︷︷ ︸

d components

.

We also define C0,d = Ād. Our aim is to prove that there exists a positive integer n

such that S × Un can be partitioned into copies of members of F ∪ {A,B}.
At certain points in the proof we will be conjuring up extra elbow space by

‘blowing up’ Sk, for some k, into Sk+1. It turns out that sometimes a set X ⊂ Sk

can be usefully identified with a larger set X × Ā ⊂ Sk+1. The following simple

proposition is an example of this idea.

Proposition 3.8. Let k ≥ 1 and let X ⊂ Uk be such that Uk \X can be partitioned

into copies of A and B. Then Uk+1 \
(
X × Ā

)
can be partitioned into copies of A

and B.

Proof. Partition Uk+1 \
(
X × Ā

)
into sets

(
Uk \X

)
× Ā and Uk × A; the first of

these sets can be partitioned into copies of Uk \X, and the second – into copies of

A.

If we could prove that Uk, for some k, can be partitioned into copies of A and B

(that is, without using F), then we would be done. Of course, this is not possible

in general. However, we can partition Uk with one Ci,k removed.

Proposition 3.9. For any integers k ≥ 1 and 0 ≤ i ≤ k, the set Uk \ Ci,k can be

partitioned into copies of A and B.

Proof. We use induction on k. If k = 1, then, depending on the value of i, U \ Ci,1
is either A or B. If k ≥ 2, we may assume that i 6= k (in fact, there are only two
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distinct cases: i = 0 and i 6= 0). By the induction hypothesis, Uk−1 \ Ci,k−1 can be

partitioned into copies of A and B. However, Ci,k = Ci,k−1 × Ā, so we are done by

Proposition 3.8.

Proposition 3.8 says that if we can partition a subset of Uk, then we can also

partition an ‘equivalent’ subset of Uk+1. The following proposition allows us to use

the extra space in Uk+1 to slightly modify this subset.

Proposition 3.10. Let X ⊂ Uk be such that Uk \X can be partitioned into copies

of A and B. Suppose that X contains the set Ci,k for some 0 ≤ i ≤ k. Then the set

Uk+1 \ Y , where

Y =
(
X × Ā

)
∪ Ck+1,k+1 \ Ci,k+1,

can also be partitioned into copies of A and B.

Proof. Partition Uk+1 \ Y into four sets Z1, Z2, Z3, Z4, where

Z1 = (Uk \ C0,k)× B̄,
Z2 = (Uk \ Ci,k)× (A ∩B),

Z3 = Ci,k ×B,
Z4 = (Uk \X)× Ā.

It is evident from Figure 3.1 that these four sets do partition Uk+1 \ Y . The sets Z1

Z1

Z2 Z2

Z3

Z4 Z4

C0,k

Ci,k

X

Ā

B̄

Uk

U

Figure 3.1: The set Y ⊂ Uk+1 is shaded. The four sets Z1, Z2, Z3, Z4

partition Uk+1 \ Y .

and Z2 can be partitioned into copies of A and B by Proposition 3.9. The set Z3
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is obviously a union of disjoint copies of B. Finally, Z4 is a union of disjoint copies

of Uk \ X, so it can be partitioned into copies of A and B by the assumption on

X.

The previous proposition enables us to make one change to the set X when we

go one dimension up, that is, from Uk to Uk+1. To make multiple changes, we apply

this proposition multiple times. This is exactly the content of Corollary 3.11.

Corollary 3.11. Let k, l be non-negative integers and let I ⊂ {0, . . . , k}, J ⊂ {k +

1, . . . , k + l} be sets such that |J | = |I|. Then the set Uk+l \ Y , where

Y =
(
Uk × Āl

)
∪
(⋃

j∈J
Cj,k+l

)
\
(⋃

i∈I
Ci,k+l

)
,

can be partitioned into copies of A and B.

Proof. We shall apply induction on l. If l = 0, then |J | = |I| = 0, so Uk \ Y = ∅,
and hence the conclusion trivially holds.

Now suppose that l ≥ 1. We will split the argument into two cases, depending

on whether or not k + l ∈ J . If k + l ∈ J , then we write j∗ = k + l and we pick any

i∗ ∈ I. We define I∗ = I \ {i∗} and J∗ = J \ {j∗}. Finally, we define

Y ∗ =
(
Uk × Āl−1

)
∪
(⋃

j∈J∗
Cj,k+l−1

)
\
(⋃

i∈I∗
Ci,k+l−1

)
.

By the induction hypothesis, Uk+l−1 can be partitioned into copies of A and B.

Moreover, Y =
(
Y ∗ × Ā

)
∪ Ck+l,k+l \ Ci∗,k+l, so we can apply Proposition 3.10 to

finish the proof in this case.

On the other hand, if k + l 6∈ J , then we define

Y ′ =
(
Uk × Āl−1

)
∪
(⋃

j∈J
Cj,k+l−1

)
\
(⋃

i∈I
Ci,k+l−1

)

and observe that Y = Y ′ × Ā. Moreover, Uk+l−1 \ Y ′ can be partitioned into copies

of A and B by the induction hypothesis, and hence it follows from Proposition 3.8

that the same holds for Uk+l \ Y .

Recall that our ultimate goal in this subsection is to partition S2×Un, for some

n ≥ 1, into copies of members of F ∪ {A,B}. We cannot achieve this goal just yet,

but we have already provided ourselves with tools, in the form of Propositions 3.8
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to 3.10 and Corollary 3.11, that allow us to partition Uk\X, for various k and various

setsX, into copies of A and B. Our strategy now can be roughly described as follows.

We will take a large n and we will slice S2 × Un up into copies of S × Un. We will

partition big parts of these slices into copies of members of F ∪ {A,B}, leaving out

gaps that we can control. Then we will combine the gaps across all slices, and we

will fill them in with copies of members of F . The following proposition will tell us

what gaps we should leave in the slices so that their union could be filled in later

on.

Proposition 3.12. Let t be a positive integer and take not necessarily distinct sets

P1, . . . , Pt ∈ F . Define Q0, . . . , Qt ⊂ S × U t by setting

Qi =




Pi × Ci,t if 1 ≤ i ≤ t,

S × C0,t if i = 0.

Then the set (S ×U t) \ (Q0 ∪ · · · ∪Qt) can be partitioned into copies of members of

F ∪ {A ∪B}.

Proof. We use induction on t. We take t = 0 to be the base case. Although the set

C0,0 had not been defined, we may interpret S ×C0,0 and S ×U0 as both being the

set S, in which case the conclusion says that the empty set can be partitioned into

copies of members of F ∪ {A,B}, which is trivially true.

Now suppose that t ≥ 1. We write X = Q0 ∪ · · · ∪Qt and X∗ = (S × C0,t−1) ∪
(P1×C1,t−1)∪ · · · ∪ (Pt−1×Ct−1,t−1). By the induction hypothesis, (S ×U t−1) \X∗
can be partitioned into copies of F ∪ {A,B}. Moreover, using the fact that X =

(X∗ × Ā) ∪Qt, we can partition (S × U t) \X into three sets Y1, Y2, Y3, where

Y1 =
(
(S × U t−1) \X∗

)
× Ā,

Y2 =
(
(S × U t−1) \ (Pt × C0,t−1)

)
× A),

Y3 = Pt × U t−1 × (A ∩B).

It is clear from Figure 3.2 that these sets do partition (S×U t)\X. Moreover, Y1 can

be partitioned into copies of members of F ∪ {A,B} (by the induction hypothesis);

Y2 is trivially a disjoint union of copies of A; Y3 is a disjoint union of copies of Pt,

which is a member of F .

We recall that, for some positive integer r, F contains an r-partition of S. In

other words, there exist not necessarily distinct sets P1, . . . , Pm ∈ F such that every
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Y1

Y2 Y2

Y3

Pt × C0,t−1

X∗

Ā

B̄

S × U t−1

U

Figure 3.2: The set X is shaded; Y1, Y2, Y3 partition (S×U t−1)\X.

element of S is contained in precisely r of them. We will use the sets P1, . . . , Pm to

prove the following proposition.

Proposition 3.13. Let r be as above. For any positive integer k there exists an

integer l ≥ k with the following property. For any distinct numbers j1, . . . , jt ∈
{1, . . . , l}, if t ≤ k and t ≡ 1 (mod r), then the set S ×

(
U l \⋃t

u=1Cju,l
)

can be

partitioned into copies of members of F ∪ {A,B}.

Proof (see Figure 3.3). Given k, fix any l ≥ k+(k−1)m/r. Given distinct j1, . . . , jt ∈
{1, . . . , l}, we may assume (after a permutation of coordinates, if necessary), that

{j1, . . . , jt} = {l − t + 1, . . . , l}. We denote this set by J . Since t ≤ k and t ≡ 1

(mod r) by assumption, we may write t = ar+1 for some integer 0 ≤ a ≤ (k−1)/r.

We will prove that the set

Y = S ×
(
U l \

⋃

j∈J
Cj,l

)

can be partitioned into copies of members of F ∪ {A,B}.
Extend P1, . . . , Pm to a longer list P1, . . . , Pam by setting Pi+m = Pi for every

m+ 1 ≤ i ≤ am. The only important property of this new list is that every member

of the original list is repeated exactly a times. Moreover, set P0 = S. Then every

element of S is contained in exactly ar+ 1 = t members of the list P0, . . . , Pam. We

define

X = (S × Uam × Āl−am) \
(
am⋃

i=0

Pi × Ci,l
)
.
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Since X = ((S × Uam) \ (
⋃am
i=0 Pi × Ci,am))× Āl−am, it follows from Proposition 3.12

that X can be partitioned into copies of members of F ∪ {A,B}. Since min J >

l − k ≥ am, the set X is disjoint from S × Cj,l for any j ∈ I, and hence X ⊂ Y .

Therefore, it only remains to prove that Y \ X can be partitioned into copies of

members of F ∪ {A,B}.
For any z ∈ S, we denote by Sz the cross-section of Y \X at z, that is,

Yz = {y ∈ U l : (z, y) ∈ Y \X}.

For the moment, let us focus on one fixed z ∈ S. By construction of P0, . . . , Pam,

there are exactly t values of i for which z ∈ Pi. Let I be the set of these values.

Then

Yz = U l \
(
(
Uam × Āl−am

)
∪
(⋃

j∈J
Cj,l

)
\
(⋃

i∈I
Ci,l

))
.

Since |I| = |J | = t, I ⊂ {0, . . . , am} and J ⊂ {am+1, . . . , l}, Corollary 3.11 implies

that Yz can be partitioned into copies of members of F ∪ {A,B}.
Now we are done: Y = X ∪

(⋃
z∈S{z} × Yz

)
, and we have proved that X and

every Yz can be partitioned into copies of members of F ∪ {A,B}.

· · · · · · · · ·C0,l C1,l Cm,l Cam,l Cl,lCl−1,lCl−t+1,l

S

U l

Yz

Figure 3.3: The set X is shaded, a slice Yz is hatched diagonally.
Proposition 3.12 and Corollary 3.11, respectively, imply that X and
Yz can be partitioned into copies of members of F ∪ {A,B}.
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We are now ready to prove Lemma 3.6.

Proof of Lemma 3.6. We begin by recalling that F contains a (1 mod r)-partition of

S. In other words, there exists a family of not necessarily distinct sets R1, . . . , Rk ∈
F such that every x ∈ S is contained in exactly 1 + rax members of this family,

where ax is an integer. Furthermore, Proposition 3.13 provides us with a positive

integer n ≥ k such that, for any set I ⊂ {1, . . . n} that satisfies |I| ≡ 1 (mod r) and

|I| ≤ k, the set S ×
(
Un \⋃i∈I Ci,n

)
can be partitioned into copies of members of

F ∪ {A,B}. We will show that S × Un can be partitioned into copies of members

of F ∪ {A,B}.
We define

X = (S × Un) \
(

k⋃

i=1

Rk × Ci,n
)

and, for any y ∈ S, we let Xy denote the cross-section of X at y, that is, Xy =

{x ∈ Un : (y, x) ∈ X}. Any y ∈ S is contained in 1 + ray members of the family

R1, . . . , Rk. Therefore, if we write Jy = {j ∈ [k] : y ∈ Rj}, then |Jy| ≡ 1 (mod r)

and |Jy| ≤ k. Moreover, it is easy to see that

Xy = Un \


⋃

j∈Jy
Cj,n


 .

By Proposition 3.13, S×Xy can be partitioned into copies of members of F∪{A,B}.
Therefore, so can be S×X, which is the disjoint union of sets S×{y}×Xy, y ∈ S.

Finally, observe that S2×Un is the disjoint union of S×X and sets S×Ri×Ci,n,

1 ≤ i ≤ k. Each set S ×Ri ×Ci,n is trivially a union of disjoint copies of Ri, which

is a member of F . Therefore, S2×Un can be partitioned into copies of members of

F ∪ {A,B}, as required.

4 Weak partitions

4.1 Constructing an r-partition of 2[n]

Our aim in this subsection is to prove Lemma 3.3, which asserts the existence of an

r-partition of 2[n] into copies of P for some n, r. Our proof is somewhat technical,

but not very difficult.

Recall that by our earlier definition a weight function is an assignment of non-

negative integer weights to sets from some selected family. We now extend this
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definition to allow more general weights. Namely, given a set V ⊂ R and a set

family F , a V -valued weight function on F is a function w : F → V . Usually, we

will take V to be Z, Z+ or Q+, where S+ is defined to be S ∩ [0,∞) for any S ⊂ R.

We note that a weight function in the old sense is precisely a Z+-valued weight

function in the new sense.

Moreover, if F is a family of subsets of some set X, for any x ∈ X we define

the multiplicity of x for w, denoted Nw(x), to be the total weight assigned to the

members of F that contain x. That is,

Nw(x) =
∑

A∈F
x∈A

w(A).

Moreover, for any Y ⊂ X, we set Nw(Y ) =
∑

y∈Y Nw(y). With these definition at

hand, we can restate Lemma 3.3 in a form that is slightly more convenient for the

proof.

Lemma 3.3’. Let P be a finite poset with a greatest and a least element. Then

there exist a positive integer n and a Q+-valued weight function w on the copies of

P in 2[n] such that Nw(x) = 1 for all x ∈ 2[n].

To see why Lemma 3.3’ is equivalent to Lemma 3.3, observe that a Q+-valued

weight function w on a finite set family F can be made into a Z+-valued weight

function by multiplying it by the least common multiple of the denominators of the

w(A) for A ∈ F . Moreover, if Nw(x) = 1 for all x, then the resulting Z+-valued

weight function rw satisfies Nrw(x) = r for all x.

The main idea in the proof is to look for a weight function that is symmetric

with respect to all permutations of the ground set {1, . . . , n}. Such a weight function

can be obtained by averaging any another weight function over all permutations of

{1, . . . , n}. This idea essentially removes the need to consider the structure of the

poset P , and converts Lemma 3.3’ into a question about finding a certain weight

function on the power set of {0, . . . , n}. This is reflected in the following definition.

Let P be a poset and n a positive integer. Moreover, let w be a Q+-valued weight

function on the copies of P in 2[n]. We define a new Q+-valued weight function wsym,

also on the copies of P in 2[n], by setting

wsym(A) =
1

n!

∑

π∈Perm(n)

w
(
π(A)

)

for all A that are copies of P in 2[n]. Here Perm(n) denotes the set of permutations
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of {1, . . . , n} and we recall that π(A) denotes the image of A after permuting the

coordinates of 2[n] according to π.

Since elements of 2[n] are subsets of {1, . . . , n}, it makes sense to write |x| for

x ∈ 2[n] to denote the size of x. We partition 2[n] into levels L0, . . . , Ln, where

Lk = {x ∈ 2[n] : |x| = k}. Then, for any x ∈ Lk,

Nwsym(x) =
1(
n
k

)Nw(Lk).

Therefore, our task is reduced to finding w such that Nw(Lk) =
(
n
k

)
for all k. To this

aim, we would like to have a tool for embedding P into 2[n] while keeping control

on levels into which we map the elements of P . The following proposition provides

us with such a tool.

We say that a set A ⊂ Z is d-scattered if, for any distinct i, j ∈ A, we have

|i− j| ≥ d.

Proposition 3.14. Let P be a finite poset with a greatest and a least element. Then

there exists a positive integer d such that, for any integer n ≥ (|P | − 1)d and any

d-scattered set A ⊂ {0, . . . , n} of size |P |, there exists an embedding φ : P → 2[n]

satisfying

{|φ(x)| : x ∈ P} = A.

In other words, for any 0 ≤ k ≤ n,

|Lk ∩ φ(P )| =
{

1 if k ∈ A,

0 otherwise.

Proof. We start by recalling that, since P is finite, it can be embedded into 2[k] for

some k. Let ψ : P → 2[k] be an embedding which maps the greatest element of P

to the greatest element of 2[k] and the least element of P to the least element of

2[k]. We write s = |P | and list the elements of P as p1, . . . , ps in the order where

0 = |ψ(p1)| ≤ · · · ≤ |ψ(ps)| = k.

We will prove that d = k works. Indeed, take any integer n ≥ (s − 1)k and

let A ⊂ {0, . . . , n} be a k-scattered set of size s. Then A = {a1, . . . , as}, where

0 ≤ a1 < · · · < as ≤ n and ai+1 ≥ ai + k for all 0 ≤ i ≤ s− 1. For every 1 ≤ i ≤ s,

we set

φ(pi) = ψ(pi) ∪ {k + 1, . . . , k + ai − |ψ(pi)|}.

To prove that φ : P → 2[n] is a well-defined embedding, we have to check that

0 ≤ a1 − |ψ(p1)| ≤ · · · ≤ as − |ψ(ps)| ≤ n− k. However, if we prove this, then it is
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trivial to see that |φ(pi)| = ai for all i, as required.

First, we observe that a1 − |ψ(p1)| = a1 ≥ 0 and as − |ψ(ps)| = as − k ≤ n− k.

Furthermore, for any 1 ≤ i ≤ s − 1, we have ai+1 − |ψ(pi+1)| ≥ ai + k − k = ai ≥
ai − |ψ(pi)|, and so we are done.

Proposition 3.15. Let X be a finite set and t a positive integer. If f : X → Q+ is

a function such that

tmax
x∈X

f(x) ≤
∑

x∈X
f(x),

then there exists a Q+-valued weight function w on the family of t-element subsets

of X, such that Nw(x) = f(x) for all x ∈ X.

Proof. Let r be the least common multiple of the denominators of the f(x) over

all x ∈ X. After multiplying f by tr, we may assume that f takes values in Z+

and that
∑

x∈X f(x) is divisible by t. We denote
∑

x∈X f(x) = Nt and we will use

induction on N .

If f(x) = 0 for all x ∈ X, then the result is trivial. Therefore, we may assume

that N ≥ 1. Let S = {x ∈ X : f(x) > 0} and T = {x ∈ X : f(x) = N}. Since

tmax
x∈X

f(x) ≤
∑

x∈X
f(x) ≤ |S|max

x∈X
f(x),

it follows that |S| ≥ t. Moreover, N |T | ≤ ∑x∈X f(x) = Nt, and hence |T | ≤ t.

Therefore, there exists a set A such that T ⊂ A ⊂ S and |A| = t.

We define g : X → Z+ by setting

g(x) =

{
f(x)− 1 if x ∈ A,

f(x) otherwise.
.

Then
∑

x∈X g(x) = (N − 1)t is non-negative and divisible by t. Moreover, since

T ⊂ A, we have g(x) ≤ N−1 for all x ∈ X. Therefore, by the induction hypothesis,

there exists a Q+-valued weight function w′ on the t-element subsets of X, such that

Nw′(x) = g(x) for all x ∈ X. We define

w(B) =

{
w′(A) + 1 if B = A,

w′(B) if B ⊂ X, |B| = t and B 6= A.

This w satisfies the required conditions.

It is easy to deduce Lemma 3.3’ from Propositions 3.14 and 3.15.
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Proof of Lemma 3.3’. Let P be a finite poset with a greatest and a least element.

Recall that our aim is to find, for some positive integer n, a Q+-valued weight

function w on the copies of P in 2[n], such that Nw(Li) =
(
n
i

)
for all 0 ≤ i ≤ n.

Indeed, then Nwsym(x) = 1 for all x ∈ 2[n].

Let d be such that, for any n ≥ (|P |−1)d and any d-scattered set A ⊂ {0, . . . , n}
of size |P |, there exists a copy of P in 2[n], say C, such that {|x| : x ∈ C} = A. The

existence of such a number d is guaranteed by Proposition 3.14. Set k = |P |d.

Choose n large enough to satisfy the inequality k
(

n
dn/2e

)
≤ 2n. Then Proposi-

tion 3.15 gives a Q+-valued weight function w′ on the k-element subsets of {0, . . . , n}
that satisfies Nw′(i) =

(
n
i

)
for all 0 ≤ i ≤ n.

Let B be a k-element subset of {0, . . . , n}. If we consider the elements of B in

increasing order and take every dth element, we obtain a d-scattered set. In this

way we can partition B into d-scattered sets B1, . . . , Bd, each of size k/d = |P |. We

say that B splits into sets B1, . . . , Bd.

By splitting k-element sets we obtain a Q+-valued weight function w′′ on d-

scattered |P |-element subsets of {0, . . . , n}. More precisely, we define w′′(A) =∑
w′(B), summing over all k-element sets B ⊂ {0, . . . , n} with the property that A

is one of the sets into which B splits. Note that we have Nw′′(i) = Nw′(i) =
(
n
i

)
for

all 0 ≤ i ≤ n.

Finally, for any d-scattered |P |-element set A ⊂ {0, . . . , n} we choose one copy

of P in 2[n], denoted CA, such that {|x| : x ∈ CA} = A. We define a Q+-valued

weight function w on the copies of P in 2[n] by setting

w(C) =

{
w′′(A) if C = CA for some d-scattered |P |-element set A ⊂ {0, . . . , n},
0 otherwise.

We note that every d-scattered |P |-element set A ⊂ {0, . . . , n} contributes w′′(A)

towards both Nw′′(i) and Nw(Li) for every i ∈ A, and 0 towards both Nw′′(j) and

Nw(Lj) for every j 6∈ A. Therefore, Nw(Li) = Nw′′(i) =
(
n
i

)
for all 0 ≤ i ≤ n, as

required.

4.2 Constructing a (1 mod r)-partition of 2[n]

Here we prove Lemma 3.4, which asserts the existence of an (1 mod r)-partition of

2[n] into copies of P for some n. This proof is shorter, but slightly trickier than that

of Lemma 3.3. We begin by recasting Lemma 3.4 in a form which is stronger, but

more convenient to work with.
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Lemma 3.4’. Let P be a poset of size 2k with a greatest and a least element. Then

there exist a positive integer n and a Z-valued weight function w on the copies of P

in 2[n] satisfying Nw(x) = 1 for all x ∈ 2[n].

We remark that Lemma 3.4’ does imply Lemma 3.4, because the Z-valued weight

function w can be converted into a suitable Z+-valued weight function w′ by choosing

w′(A) ∈ {0, . . . , r − 1} such that w′(A) ≡ w(A) (mod r), for all A.

Proof of Lemma 3.4’. Since P is finite, it can be embedded into 2[d], for some d, by

an embedding which maps the greatest and the least elements of P to the corre-

sponding elements of 2[d]. We will show that n = 2d− 1 works.

We say that a function f : 2[n] → Z is realisable if there exists a Z-valued weight

function w on the copies of P in 2[n], such that Nw(x) = f(x) for all x ∈ 2[n]. We

note that if f, g are realisable functions, then so are f + g and f − g. Our aim is to

show that the constant 1 function on 2[n] is realisable.

For any A ⊂ 2[n], we define 1A : 2[n] → {0, 1} to be the indicator function of A.

Clearly, if A is a copy of P , then 1A is realisable.

We denote the greatest and the least elements of 2[n] by x+, x−. Let x ∈ 2[n]. If

|x| ≥ d, then there exists an embedding 2[d] → 2[n] which maps the greatest element

of 2[d] to x. Therefore, in 2[n], we can find a copy of P whose greatest element is x.

We denote this copy by A. Moreover, if we denote B = A \ {x}, then B ∪ {x} and

B ∪ {x+} are copies of P . Therefore, the function 1{x} − 1{x+} = 1B∪{x} − 1B∪{x+}

is realisable.

Similarly, if |x| ≤ d, then there exists an embedding 2[d] → 2[n] which maps the

least element of 2[d] to x. Then we can find a copy of P in 2[n], which we denote

by A, with the property that x is the least element of A. We write B = A \ {x}
and observe that A ∪ {x} and A ∪ {x−} are copies of P . Therefore, the function

1{x} − 1{x−} = 1B∪{x} − 1B∪{x−} is realisable.

In particular, for any x ∈ 2[n], at least one of the functions 1{x} − 1{x+} and

1{x} − 1{x−} is realisable. Moreover, if |x| = d, then both of them are. Therefore,

by choosing any x0 ∈ 2[n] with |x0| = d, we can see that 1{x+} − 1{x−} = (1{x0} −
1{x−}) − (1{x0} − 1{x+}) is realisable. We conclude that, in fact, for any x, y ∈ 2[n],

the function 1{x} − 1{y} is realisable.

Let f, g : 2[n] → Z be two functions that satisfy
∑

x∈2[n] f(x) =
∑

x∈2[n] g(x).

Then the difference f−g can be expressed as a sum of functions of the form 1{x}−1{y}

with x, y ∈ 2[n], so f − g is realisable. Hence, f is realisable if and only if g is

realisable. Therefore, to prove that the constant 1 function is realisable, it is enough

to find one realisable function f such that
∑

x∈2[n] f(x) = 2n. However, we know
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that |P | = 2k and, trivially, k ≤ n, so we can take f = 2n−k · 1A for any A ⊂ 2[n]

which is a copy of P .

5 Concluding remarks and open problems

In the proof of Theorem 3.2 we do not explicitly keep track of a value of n that

would be sufficient. This is to make the proof more readable. Moreover, we did

not put any serious effort into finding a good bound. The following bound can be

extracted from the proof.

Theorem 3.2’. There exists an absolute constant C > 0 with the following property.

Let P be a poset of size 2k with a greatest and a least element. Then, for any integer

n ≥ 2|P |
C

, the Boolean lattice 2[n] can be partitioned into copies of P .

It is interesting to ask what happens if P does not satisfy the conditions required

by Theorem 3.2. Of course, then it is impossible to partition 2[n] into copies of

P . However, what if we are allowed to leave a small number of elements of 2[n]

uncovered? For example, if P does not have a greatest and/or a least element,

then the greatest and/or the least element of 2[n] are the only ones that obviously

cannot be covered by copies of P . Lonc [42] conjectured that, if n is large and if an

obvious divisibility condition is satisfied, then 2[n] with its greatest and least element

removed can be partitioned into copies of P .

Conjecture 3.16 (Lonc [42]). Let P be a finite poset. If n is sufficiently large and

if |P | divides 2n − 2, then it is possible to partition 2[n], with its greatest and least

element removed, into copies of P .

In the spirit of Griggs’ conjecture it is reasonable to hope that, even if we do

not impose any divisibility conditions for |P |, for sufficiently large n, 2[n] can be

partitioned into copies of P and a set of size c, where c < |P |. Or perhaps one can

bound c by a weaker constant which depends on P .

Question 3.17. Let P be a finite poset. Must there exist a constant c = c(P ) such

that, for any n, it is possible to cover all but at most c elements of 2[n] by disjoint

copies of P?

We remark that Conjecture 3.16 would give a positive answer to Question 3.17

in the case where |P | is not a multiple of 4.
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CHAPTER 4

Partitions of the hypercube

1 Introduction

A famous theorem of Wilson [64] states that, for any finite graph H and for any

sufficiently large integer n which satisfies certain divisibility conditions, the edges

of the complete graph Kn can be covered by disjoint copies of H. Such a cover is

called an H-decomposition of Kn. The divisibility conditions required by Wilson’s

theorem are obviously necessary for an H-decomposition of Kn to exist:
(
n
2

)
must

be divisible by e(H) and n − 1 must be divisible by the highest common factor of

the degrees of the vertices of H. Therefore, as long as we are only interested in large

n, Wilson’s theorem tells us exactly when Kn admits an H-decomposition. On the

other hand, the general question of determining whether an arbitrary graph G has

a H-decomposition is very difficult, and various special cases of this question have

attracted significant attention.

In this chapter we examine a related question: we are concerned with partitioning

the vertices – not edges – of a given graph G into copies of H. More precisely,

for finite graphs G,H, we say that a set A ⊂ V (G) is an H-set if the induced

subgraph G[A] is isomorphic to H. We consider the following question: can V (G)

be partitioned into H-sets?

In contrast to Wilson’s theorem, this question is not interesting in the case where

G is a complete graph: obviously, V (Kn) can be partitioned into H-sets if and only if

H = Km where m divides n. Instead, we focus on the case where G is the hypercube

Qn, that is, the graph with vertex set {0, 1}n where two n-tuples are adjacent if and

only if they differ in precisely one entry.

Let H be a finite graph and let n be large. Can we quickly determine whether

V (Qn) can be partitioned into H-sets? Of course, there is an obvious necessary

divisibility condition: |H| must be a power of 2. Moreover, this condition alone is
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not sufficient because H may not be isomorphic to any induced subgraph of any

hypercube Qn. For example, H could be a non-bipartite graph or, say, it could be

a bipartite graph, of size a power of 2, that contains K3,2 as a subgraph. Note K3,2

is not a subgraph of any Qn since any two vertices that are distance 2 apart in Qn

are joined by precisely two paths of length 2. Therefore, we should require H to

be an induced subgraph of some hypercube. Offner [53] considered this problem

in connection with coding theory. He asked if this condition together with the

divisibility condition is sufficient.

Question 4.1 (Offner [53]). Let H be an induced subgraph of Qk for some k and

suppose that |H| is a power of 2. Must it be true that, for any sufficiently large n,

V (Qn) can be partitioned into H-sets?

This question bears resemblance to the celebrated work of Hamming [35] on

error-correcting codes. Indeed, a perfect single-error-correcting code is a partition

of V (Qn) into K1,n-sets. Hamming showed that such a partition exists if and only if

a natural divisibility condition is satisfied, namely, if n = 2r − 1 for some r. Much

later, Rogers (see [56]) asked if it is possible to partition the vertices of Qn into

antipodal paths, subject to the same divisibility condition. Here an antipodal path

is a path of length n which starts and ends at two diagonally opposite vertices of

Qn. Rogers’ question was answered by Ramras [56], who proved the following more

general result: if n = 2r − 1 and if T is a tree on n+ 1 vertices which is an induced

subgraph of Qn, then V (Qn) can be partitioned into isometric copies of T .

Moreover, there is a clear connection between Offner’s question and conjectures

of Chalcraft [46, 47] and of Lonc [42], which were presented in Chapters 2 and 3.

In this chapter we combine new ideas with tools developed in Chapter 3 to answer

Offner’s question.

Theorem 4.2. Let H be an induced subgraph of Qk for some k. If |H| is a power of

2, then there exists a positive integer n such that the vertices of Qn can be partitioned

into H-sets.

Of course, if the result holds for n, then it holds for all n′ ≥ n. Therefore,

Theorem 4.2 answers Question 4.1.

2 Overview of the proof

It turns out that, in order to prove Theorem 4.2, it is convenient to view the hy-

percube Qn as the metric space {0, 1}n where the distance between any two points
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x, y ∈ {0, 1}n, denoted d(x, y), is equal to the number of entries where x and y are

different. With this definition, d(x, y) equals 1 if and only if x and y are adjacent

vertices of Qn. If H is an induced subgraph of Qk, then we can identify H with

a subset of {0, 1}k. For any n ≥ k, we say that a set X ⊂ {0, 1}n is an isometric

copy of H if there exists an isometry φ : {0, 1}k → {0, 1}n which maps H to X.

Clearly, any isometric copy of H in {0, 1}n is an H-set, but an H-set need not be

an isometric copy of H.

We deduce Theorem 4.2 from the following slightly stronger result.

Theorem 4.3. Let X be a subset of {0, 1}k for some k. If |X| is a power of 2, then

there exists a positive integer n such that {0, 1}m can be partitioned into isometric

copies of X.

Our proof will rely on Theorem 3.5 from the previous chapter. We recall this

result for reader’s convenience.

Theorem 3.5. Let S be a finite set and let F be a family of subsets of S. Sup-

pose that there exists a positive integer r such that F contains an r-partition and a

(1 mod r)-partition of S. Then there exists a positive integer n such that Sn can be

partitioned into copies of members of F .

Recall that F contains an r-partition of S if there exists a collection of members

of F (allowing repetitions) that covers every element of S exactly r times. Similarly,

F contains a (1 mod r)-partition of S if it contains a collection covering every element

of S 1 (mod r) times. For any subset A ∈ F , a copy of A in Sn is the image of

A× {b}, for any b ∈ Sn−1, under any permutation of the coordinates.

To apply Theorem 3.5, we let S = {0, 1}m for some large m and we take F to

be the family of isometric copies of X in S. It turns out that the right choice for r

is r = |X|.

Observation 4.4. Let X be a non-empty subset of {0, 1}k for some positive integer

k. Then, for any m ≥ k, the family of isometric copies of X in {0, 1}m contains a

|X|-partition of {0, 1}m.

Proof. Let m ≥ k be given. We fix one isometric copy of X in {0, 1}m, which we

denote by Y . Under addition modulo 2, for any p ∈ {0, 1}m, the set Y +p = {y+p :

y ∈ Y } is a subset of {0, 1}m. Moreover, it is an isometric copy of X.

By symmetry, all elements of {0, 1}m are contained in Y +p for the same number

of choices of p. By double counting, this number must equal 2m|Y |/2m = |X|.
Therefore, the sets Y + p, where p ∈ {0, 1}m, form a |X|-partition of {0, 1}m.
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Constructing a (1 mod |X|)-partition is rather more difficult, but also possible.

Lemma 4.5. Let X be a non-empty subset of {0, 1}k for some positive integer k,

and let r be a power of 2. Then there exists an integer m ≥ k such that the family

of all isometric copies of X in {0, 1}m contains a (1 mod r)-partition of {0, 1}m.

Although we are only going to use this lemma with r = |X|, we state it with r

being any power of 2. This small detail allows us to prove this lemma by induction,

which we do in Section 3.

We will now explain how Observation 4.4, Lemma 4.5, and Theorem 3.5 imply

Theorem 4.3.

Proof of Theorem 4.3. Let X be a subset of {0, 1}k such that |X| is a power of 2.

It follows from Lemma 4.5 that there exists a positive integer m ≥ k such that the

family of isometric copies ofX in {0, 1}m contains a (1 mod |X|)-partition of {0, 1}m.

By Observation 4.4, the family of isometric copies of X in {0, 1}m also contains a

|X|-partition of {0, 1}m. Therefore, it follows from Theorem 3.5 with S = {0, 1}m
that there exists a positive integer n such that {0, 1}mn can be partitioned into

copies of sets which are isometric copies of X in {0, 1}m. However, a copy of an

isometric copy of X is itself an isometric copy of X, so we are done.

3 Constructing a (1 mod r)-partition of {0, 1}n

Here we prove Lemma 4.5. This section is is the heart of the chapter: it is the key

new ingredient beyond the ideas presented in Chapter 3. First, we introduce some

convenient notation. For any set A ⊂ {0, 1}n, we define

A+ =
{
a ∈ {0, 1}n−1 : (a, 1) ∈ A

}
,

A− =
{
a ∈ {0, 1}n−1 : (a, 0) ∈ A

}
.

Proof of Lemma 4.5. Fix r = 2d. We will use induction on k. If k = 1, then X is

either a single point or the whole {0, 1}, and so the conclusion holds with n = 1.

We now suppose that k ≥ 2. At least one of the sets X+ and X− is not empty,

so we may assume without loss of generality that X− 6= ∅. Since X− is a subset of

{0, 1}k−1, the induction hypothesis implies the existence of a positive integer m such

that the family of isometric copies of X− in {0, 1}m contains a (1 mod r)-partition

of {0, 1}m. Moreover, we note that, for every set A ⊂ {0, 1}m which is an isometric

copy of X−, there exists a set B ⊂ {0, 1}m+1 which is an isometric copy of X and
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which satisfies B− = A. Therefore, it is possible to define a weight function on the

family of isometric copies of X in {0, 1}m+1 in such a way that the multiplicity of

every element of {0, 1}m × {0} is congruent to 1 (mod r). We do not impose any

conditions on the multiplicities of elements of {0, 1}m × {1}. For convenience, we

denote that the multiplicity of any x ∈ {0, 1}m×{1} is congruent to f(x) (mod r).

We will prove that the conclusion of Lemma 4.5 holds with n = m+ d+ 1. Let

x, y ∈ {0, 1}d+1 be two elements that differ in exactly two entries. There exists an

element z ∈ {0, 1}d+1 that differs from both x and y in exactly one entry. Then

{0, 1}m×{x, z} is an isometric copy of {0, 1}m+1, while {0, 1}m×{x} and {0, 1}m×
{z} are isometric copies of {0, 1}m. Therefore, there exists an isometry φ : {0, 1}m×
{x, z} → {0, 1}m+1 which maps {0, 1}m×{x} to {0, 1}m×{0} and {0, 1}m×{z} to

{0, 1}m × {1}. Hence, it is possible to assign integer weights to the isometric copies

of X in {0, 1}m×{x, z} so that the multiplicity of every element of {0, 1}m×{x} is

congruent to 1 (mod r), and the multiplicity of any p ∈ {0, 1}m × {z} is congruent

to f(φ(p)) (mod r). We denote the resulting weight function by w′.

The restriction of φ to {0, 1}m×{z}maps this set isometrically onto {0, 1}m×{1}.
This map extends to an isometry {0, 1}m × {y, z} → {0, 1}m+1. Therefore, we can

assign integer weights to the isometric copies of X in {0, 1}m×{y, z} in such a way

that every element of {0, 1}m × {y} has multiplicity congruent to 1 (mod r), and

any p ∈ {0, 1}k×{z} has multiplicity congruent to f(φ(p)) (mod r). We denote the

resulting weight function by w′′.

Although, technically, the weight functions w′, w′′ are only defined on isometric

copies of X in, respectively, {0, 1}m × {x, z} and {0, 1}m × {y, z}, we may suppose

that they are defined and equal to 0 on the other isometric copies of X in {0, 1}n.

Then w′+ (r− 1)w′′, which we denote by wx,y, is a weight function on the family of

all isometric copies of X in {0, 1}n. Moreover, for any p ∈ {0, 1}n, the multiplicity

of p for wx,y is congruent to





1 (mod r) if p ∈ {0, 1}m × {x},
−1 (mod r) if p ∈ {0, 1}m × {y},
0 (mod r) otherwise.

The existence of the weight functions wx,y simplifies our problem in the following

way. Let us view {0, 1}n as the product set {0, 1}m×{0, 1}d+1. Given two elements

x, y ∈ {0, 1}d+1 with d(x, y) = 2, we identify the pair (x, y) with both the directed

edge −→xy on {0, 1}d+1 and the weight function wx,y. Now, our aim is to find a family
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(allowing repetitions) of directed edges on {0, 1}d+1, whose every member joins two

elements of {0, 1}d+1 that are distance 2 apart, and such that for any v ∈ {0, 1}d+1

the difference between the in-degree and out-degree of v is congruent to 1 (mod p).

Indeed, such a family of directed edges corresponds to a weight function for which

every element of {0, 1}n has multiplicity congruent to 1 (mod r).

We will now construct a family of directed edges with the desired properties. Fix

vertices x∗ = (0, . . . , 0) ∈ {0, 1}d+1 and y∗ = (1, 0, . . . , 0) ∈ {0, 1}d+1. Note that,

for any vertex v ∈ {0, 1}d+1, there exists a directed path starting from x∗ or y∗ and

ending at v with the property that any two consecutive vertices on this path differ in

exactly two entries. Such a path increases the difference between the in-degree and

the out-degree of v by 1, decreases this parameter of its starting point (x∗ or y∗) by

1 and does not change the value of this parameter for any other vertex. Now, for any

vertex v ∈ {0, 1}d+1 \ {x∗} with an even number of 1’s, select one such path from x∗

to v. Similarly, for any v ∈ {0, 1}d+1\{y∗} with an odd number of 1’s, select one such

path from y∗ to v. Let us combine all of these paths together to obtain a family of

directed edges. It is clear that for any v ∈ {0, 1}d+1 \{x∗, y∗} the difference between

the in-degree and the out-degree of v is equal to 1. Moreover, excluding x∗, there

are 2d− 1 vertices in {0, 1}d+1 with an even number of 1’s. Therefore, the difference

between the in-degree and the out-degree of x∗ is −(2d− 1) ≡ 1 (mod r). Similarly,

the difference between the in-degree and the out-degree of y∗ is also congruent to 1

(mod r). This finishes the proof.

4 Concluding remarks and open problems

The statement of Theorem 4.3 is very similar to that of Chalcraft’s conjecture.

Indeed, the only difference is that, instead of an infinite space Zn, here we are

dealing with a finite hypercube {0, 1}n. However, the results are, in fact, significantly

different.

To illustrate this claim, we note that not every sensible finite version of Chal-

craft’s conjecture is true. First, there is the issue of choosing which metric to use.

In Zn or in any hypercube [`]n there are at least two natural choices of a metric:

the Euclidean metric d((x1, . . . , xn), (y1, . . . , yn)) =
√∑n

i=1(xi − yi)2 and the graph

metric
∑n

i=1 |xi − yi|. Chalcraft’s conjecture (for Zn) is true for both metrics. The-

orem 4.3 (for [2]n) is independent of the choice of the metric, since if X, Y ⊂ {0, 1}n
are isometric copies with respect to one of the metrics then they are also isometric

copies with respect to the other. However, the situation is different in [`]n for ` ≥ 3:
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the obvious version of Chalcraft’s conjecture is false for [`]n with the Euclidean met-

ric. For example, take ` = 5 and let T ⊂ [5]2 be a plus-shaped set of size 5, as shown

in Figure 4.1. Then, no matter what n we choose, it is impossible to partition [5]n

into isometric copies of T because the corners of [5]n cannot be covered. Similar

counterexamples exist for all ` ≥ 3.

Figure 4.1: The plus-shaped set T .

Second, the situation does not become trivial even if we choose the graph metric.

It turns out that, with this metric, the obvious version of Chalcraft’s conjecture is

true for [`]n where ` ≥ 2 is even. This fact can be verified in a similar way to

Theorem 4.3; essentially, the only difference is that we have to partition [`]n into

copies of [2]n before we can apply Observation 4.4 (it is also important to note that

[`]n can be isometrically embedded into [2]m for sufficiently large m). However, the

corresponding conjecture would be false for [`]n where ` ≥ 3 is odd. Indeed, we will

demonstrate that even the corresponding version of the weaker Theorem 4.2 is false.

We define P n
` to be the graph with vertex set [`]n where two vertices (x1, . . . , xn),

(y1, . . . , yn) are adjacent if
∑n

i=1 |xi − yi| = 1. We say that a vertex is odd if the

sum of its entries is odd; otherwise, that vertex is even.

Proposition 4.6. Let ` ≥ 3 be an odd integer. Then there exists a graph H satis-

fying

• H is isomorphic to an induced subgraph of Pm
` for some m

• |H| is a power of `

• for any n, it is impossible to partition the vertices of P n
` into induced copies

of H.

Proof. Fix an odd integer ` ≥ 3 and write An and Bn for the number of even and

odd vertices in P n
` , respectively. For any n the graph P n

` contains a Hamiltonian

path, which visits vertices of alternating parity, so we have |An−Bn| ≤ 1. However,

An+Bn = |P n
` | = `n is odd, so in fact |An−Bn| = 1. In particular, An 6≡ 0 (mod `).

Now, choose m sufficiently large so that Pm
` contains an induced connected

subgraph on ` even and `2 − ` odd vertices. Denote this subgraph by H. We

claim that, for any n, it is impossible to partition the vertices of P n
` into induced

copies of H. Indeed, each induced copy of H in P n
` contains ` or `2− ` even vertices.
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Therefore, the total number of even vertices covered by such a partition would be

divisible by `. However, as we saw previously, the number of even vertices in P n
` is

not.

It would be interesting to know if Theorem 4.2 is particular to the hypercubes

Qn or if it holds for powers of other graphs as well. More specifically, let G,H be

finite graphs. For any n, we define Gn to be the graph with vertex set V (G)n, where

(u1, . . . , un) and (v1, . . . , vn) are adjacent if and only if there exists an index i′ ∈ [n]

such that ui = vi for all i 6= i′ and ui′ , vi′ are adjacent vertices of G. We remark that,

with this definition, Qn is the nth power of the path P2 consisting of a single edge.

What are the natural conditions on H that would make it reasonable to believe that,

for some n, Gn can be partitioned into H-sets? Obviously, |H| has to divide |G|n,

so we should assume that every prime factor of |G| also divides |H|. We should

also require H to be isomorphic to an induced subgraph of Gk for some k; in fact,

we may assume that H is isomorphic to an induced subgraph of G itself. However,

this is not enough. First, it may still not be possible to cover Gn with copies of H.

Moreover, Proposition 4.6 tells us that even the extra assumption that G can be

covered by copies of H would not be enough. After examining why G = Qn works

and G = P n
3 does not, we see that Observation 4.4 breaks down because P n

3 is not

vertex-transitive. We conjecture that Theorem 4.2 holds whenever we replace Qn

by another vertex-transitive graph.

Conjecture 4.7. Let G be a finite vertex-transitive graph and let H be an induced

subgraph of G. If every prime factor of |H| divides |G|, then there exists a positive

integer n such that Gn can be partitioned into induced copies of H.

What happens if instead of partitioning the vertices ofQn we attempt to partition

the edges? If we want to partition the edge set of Qn into copies of a fixed graph

H, then the obvious necessary divisibility condition is e(H)|2n−1n, which is satisfied

whenever n is a multiple of e(H). Therefore, as long asH is isomorphic to a subgraph

of Qk for some k, we may expect that such a partition exists for some n. Along with

I. Leader and T.S. Tan we make the following conjecture.

Conjecture 4.8. Let H be a non-empty subgraph of Qk for some k. Then there

exists a positive integer n such that the edges of Qn can be covered by edge-disjoint

copies of H (the copies of H are not required to be induced).

It seems to be difficult to prove Conjecture 4.8 even in very special cases, when

we choose H to be a fairly simple graph. For example, we do not know if the

conjecture is true when H is Qk with one edge removed.
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On the other hand, the case when H is a path is well understood. Indeed, the

edges of Qn can be partitioned into antipodal paths of the form (x1, x2, . . . , xn) →
(1−x1, x2, . . . , xn)→ (1−x1, 1−x2, . . . , xn)→ · · · → (1−x1, 1−x2, . . . , 1−xn) with

x1 + · · ·+xn even. Therefore, E(Qn) can be partitioned into copies of Pk+1 whenever

n is a multiple of k. Moreover, for odd n, Erde [8] and Anick and Ramras [1]

independently determined exactly when E(Qn) can be partitioned into copies of

Pk+1: this can be done if and only if k ≤ n and k|2n−1n. For even n not everything

is known yet. Erde conjectured that in this case the obviously necessary conditions

k ≤ 2n and k|2n−1n are sufficient.
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CHAPTER 5

Multicoloured lines in the plane

1 Introduction

In this chapter we consider colourings of finite sets in the plane. For a finite set

S ⊂ R2, a line in S is a maximal set of collinear points of S. Pór and Wood posed

the following conjecture about monochromatic lines.

Conjecture 5.1 (Pór and Wood [54]). For all integers k ≥ 1 and l ≥ 2 there exists

an integer n such that the following statement holds for all finite sets S ⊂ R2 of size

at least n. If S does not contain a line on at least l+ 1 points, then every colouring

of S with k colours produces a monochromatic line.

The motivation for this conjecture comes from the Hales-Jewett theorem. By a

combinatorial line in the grid [l]n (where [l] stands for the set {1, 2, . . . , l}) we mean

a set of the form

{(x1, . . . , xn) ∈ [l]n : xi = xj for all i, j ∈ I and xi = ai for all i 6∈ I}

for fixed I ⊂ [n], I 6= ∅ and fixed ai for all i ∈ [n]\ I. Now the Hales-Jewett theorem

can be stated as follows.

Theorem 5.2 (Hales and Jewett). For all integers k, l ≥ 1, there exists an in-

teger n such that every colouring of [l]n with k colours produces a monochromatic

combinatorial line.

Conjecture 5.1 is a natural geometric version of this theorem, where the lines are

not necessarily parallel to a fixed set of axes, and the ambient set can be any set

without many collinear points.

For l = 2 the result is trivial: we may take n = k + 1 and by the pigeonhole

principle there exists a line containing two points of the same colour. The case k = 2
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is a special case of the Motzkin-Rabin theorem [49]. In this chapter we demonstrate

by a counter-example that the conjecture is false in the next smallest case k = l = 3,

and hence it is false whenever k, l ≥ 3.

Theorem 5.3. For any n ≥ 2, there exists a set S ⊂ R2 of size n satisfying:

• no four points of S are collinear, and

• S can be coloured with three colours without creating a monochromatic line.

2 Proof of Theorem 5.3

It is sufficient to find a set with the required properties in the projective plane RP2,

because given a finite set S ⊂ RP2 one can choose a projective line ` ⊂ RP2 that

does not meet S and apply a projective transformation that sends ` to the line at

infinity. The image of S under this transformation is contained in the affine plane

R2 while the collinearity relations of the original set S are preserved.

Our counterexample is a finite subset of the irreducible cubic curve y2 = x3−x2.

More precisely, we use a suitable subset of Γ where Γ is the set of non-singular

points of this curve, that is, Γ = {(x, y) ∈ R2 : y2 = x3 − x2, x 6= 0} ∪ {O} ⊂ RP2

where O is the point at infinity contained in all lines parallel to the y-axis. It

follows from Bézout theorem, or from thinking directly about equations of the form

(ax+ b)2 = x3−x2, that Γ does not contain a set of four collinear points. Moreover,

it is a well-known fact in algebraic geometry that Γ forms an abelian group with the

property that distinct points P,Q,R ∈ Γ are collinear if and only if P +Q+R = 0,

and that Γ is isomorphic to the circle group R/Z (see [38], p. 19–20).

In fact, there is nothing very special about the curve y2 = x3 − x2: any elliptic

curve whose group is isomorphic to R/Z would do. However, we choose this par-

ticular cubic curve (which is, in fact, not an elliptic curve as it contains a singular

point (0, 0)) because it admits a simple explicit group isomorphism φ : R/Z → Γ,

given by

φ(x) =





(cot(πx)2 + 1, cot(πx)(cot(πx)2 + 1)) if x 6= 0,

O if x = 0.

This enables us to give a self-contained proof of the theorem without referring to any

results from algebraic geometry. However, the reader familiar with elliptic curves

can skip the proof of the following proposition.
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Proposition 5.4. Let x, y and z be distinct elements of R/Z. Then the points

φ(x), φ(y) and φ(z) are collinear if and only if x+y+z = 0. Moreover, φ : R/Z→ Γ

is a well-defined bijection.

Proof. The fact that φ is a well-defined bijection follows from the basic properties

of the cotangent function. To prove the equivalence of the geometric and algebraic

relations, we will use the identity

cot(x+ y) =
cot(x) cot(y)− 1

cot(x) + cot(y)
, (5.1)

which holds whenever x+ y, x, y are not multiples of π. For any r ∈ R \Z we define

cr = cot(πr).

Let us first examine what happens if one of x, y, z ∈ R/Z is 0. Say, x = 0. In

this case φ(z) is collinear with φ(x) = O and φ(y) if and only if φ(z) is the reflection

of φ(y) in the x-axis, that is, z = −y. Similarly, if two of the numbers (say, x and y)

sum to 0, then the three points are collinear if and only if φ(z) = O, that is, z = 0.

We may now assume that x, y, z are all non-zero and that no two of them sum to 0.

In this case the points φ(x), φ(y) and φ(z) are collinear if and only if

cz(c
2
z + 1)− cx(c2

x + 1)

(c2
z + 1)− (c2

x + 1)
=
cz(c

2
z + 1)− cy(c2

y + 1)

(c2
z + 1)− (c2

y + 1)
,

which after rearrangement becomes

cz = −cxcy − 1

cx + cy
.

It now suffices to observe that z = −x−y is a solution by (5.1), and that it is unique

in R/Z since cot is injective on (0, π).

Now we are ready to finish the proof of the theorem.

Proof of Theorem 5.3. As noted before, it is enough to construct a set S ′ ⊂ RP2

with the two required properties. We take S ′ = {φ(i/n) : i = 0, . . . , n− 1}. If there

were four collinear points φ(x), φ(y), φ(z), φ(w) with x, y, z, w ∈ R/Z distinct, then

we would know from Proposition 5.4 that z = w = −x− y, giving a contradiction.

Therefore there are no four collinear points in S ′.
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We colour the points of S ′ by the following rule:

φ

(
i

n

)
is





red if 0 ≤ i < n
3

green if n
3
≤ i < 2n

3

blue if 2n
3
≤ i < n.

It remains to check that this colouring does not create a monochromatic line in S ′.

Suppose that ` ⊂ S ′ is a monochromatic line. Since S ′ contains at least two points,

` must also contain at two distinct points φ(i/n), φ(j/n) with 0 ≤ i, j < n. There

exists an integer k satisfying 0 ≤ k < n and k ≡ −i− j (mod n), possibly k = i or

k = j. Since i/n+ j/n+ k/n = 0 in R/Z, either φ(i/n), φ(j/n), φ(k/n) are distinct

collinear points or φ(k/n) coincides with one of the other two points. In either

case, ` passes through all of them and so they have the same colour. Therefore,

we can write i/n = x + α, j/n = x + β, k/n = x + γ where x ∈ {0, 1/3, 2/3}
and 0 ≤ α, β, γ < 1/3. Now, 3x and i/n + j/n + k/n = 3x + α + β + γ are

integers, and hence α + β + γ is also an integer. However, this is only possible

if α = β = γ = 0, which in particular implies that i/n = j/n, contradicting the

assumption that φ(i/n) 6= φ(j/n).

This finishes the proof.

3 Concluding remarks and open problems

It seems plausible that our counter-example to Conjecture 5.1 is essentially unique,

by which we mean that, possibly, every counter-example is contained in a cubic curve

except for at most a bounded number of points. Also, cubic curves do not contain

lines on more than four points. Therefore, the following question seems interesting.

Question 5.5. Let k ≥ 3 and l ≥ 4 be integers. Must there exist a number m such

that for any finite set S ⊂ R2, if S contains at least m lines on exactly l points but no

lines on l+1 or more points, then every k-colouring of S produces a monochromatic

line?

Note that, if k ≥ 4, then it is not enough to ask for one long line (even if S

has to be arbitrarily large): indeed, a counter-example to such a question could be

obtained by taking our original cubic curve construction and extending one of the

lines to length l by adding points of a fourth colour. However, for three colours

there exists a cleaner version of the question.
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Question 5.6. Does there exist a number n such that for any finite set S ⊂ R2 of

size at least n, if S contains a line on exactly four points and no lines on five or

more points, then every colouring of S with three colours produces a monochromatic

line?
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CHAPTER 6

Minimising the number of triangular

edges

1 Introduction

Mantel [45] proved that a triangle-free graph on n vertices has at most bn2/4c
edges. In other words, a graph on n vertices with at least bn2/4c+ 1 edges contains

a triangle. A natural question arises from this classical result: how many triangles

must such a graph have? And, indeed, Rademacher (see [10]) extended Mantel’s

result by showing that any graph on n vertices with bn2/4c + 1 edges contains at

least bn/2c triangles, a bound that can readily be seen to be best possible (see

Figure 6.1).

Figure 6.1: An n-vertex graph with bn2/4c + 1 edges and bn/2c
triangles.

Erdős [9] conjectured that a further generalisation holds: any graph on n vertices

with at least bn2/4c + l edges contains at least lbn/2c triangles, for every 1 ≤ l <

bn/2c. Erdős [9, 10] proved his conjecture for l ≤ cn for some constant c > 0. It is

not hard to see that the bound on the number of triangles is best possible. Indeed,

this bound can be achieved by adding l edges that do not span a triangle to the

larger part of the complete bipartite graph Kbn/2c,dn/2e (see Figure 6.2). The bound

on l can also be easily seen to be best possible.
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l edges

Figure 6.2: An n-vertex graph with bn2/4c + l edges and lbn/2c
triangles.

Erdős’s conjecture was resolved by Lovász and Simonovits [43], who also char-

acterised [44] the n-vertex graphs with bn2/4c + l edges that minimise the number

of triangles, for every l ≤ cn2 and some fixed c > 0. Razborov [57] asymptotically

determined the minimal possible number of triangles in an n-vertex graph with

bn2/4c+ l edges where l = Ω(n2).

In this chapter we consider a similar problem, concerning the number of edges

that are contained in a triangle (we shall call such edges triangular edges), rather

than the number of triangles. The first result in this direction was obtained by Erdős,

Faudree and Rousseau [13] who proved that any n-vertex graph with bn2/4c+1 edges

has at least 2bn/2c+1 triangular edges. This bound is best possible (see Figure 6.1).

It is very natural, similarly to the question about the number of triangles, to ask

how many triangular edges an n-vertex graph with e edges must have, where e is an

integer satisfying bn2/4c < e ≤
(
n
2

)
. After some thought, a natural example comes

to mind. Given integers a, b, c, we denote by G(a, b, c) the graph on n = a + b + c

vertices, which consists of a clique A of size a and two independent sets B and C

of sizes b and c respectively, such that all edges between B and A ∪ C are present,

and there are no edges between A and C (see Figure 6.3).

A
C

B

Figure 6.3: The graph G(a, b, c) (here a = 5, b = 6, c = 5).

Note that the graph G(a, b, c) has
(
a
2

)
+ b(a + c) edges and, as long as a ≥ 2

and b ≥ 1, precisely bc of them are non-triangular. We remark that the extremal

example (depicted in Figure 6.1) for the aforementioned result by Erdős, Faudree
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and Rousseau [13] is isomorphic to G(2, bn/2c, dn/2e − 2).

Füredi and Maleki [16] conjectured that the minimisers of the number of trian-

gular edges are graphs of the form G(a, b, c), or subgraphs of such graphs.

Conjecture 6.1 (Füredi and Maleki [16]). Let n and e > bn2/4c be integers and let

G be an n-vertex graph with e edges that minimises the number of triangular edges.

Then G is isomorphic to a subgraph of a graph G(a, b, c) for some a, b, c.

The condition that G is isomorphic to a subgraph of a graph G(a, b, c) (rather

than to G(a, b, c) itself) is due to the fact that we specify the exact number of edges,

so the minimiser may be isomorphic to G(a, b, c) with a few edges removed from

A ∪B.

The conjecture implies, in particular, that every n-vertex graph with e edges has

at least g(n, e) triangular edges, where g(n, e) is defined by

g(n, e) = min

{
e− bc : a+ b+ c = n,

(
a

2

)
+ b(a+ c) ≥ e

}
.

Füredi and Maleki [16] proved an approximate version of the latter statement, which

reads as follows.

Theorem 6.2 (Füredi and Maleki [16]). Every n-vertex graph with e edges has at

least g(n, e)− 3n/2 triangular edges.

It is worth noting that, if e ≥ (1/4 + Ω(1))n2 and e ≤ (1/2 − Ω(1))n2, then

g(n, e) = Ω(n2) and
(
n
2

)
−g(n, e) = Ω(n2). Therefore, Theorem 6.2 is asymptotically

sharp in the range where the edge density is bounded away from 1/2 and 1 by small

positive constants.

Our main result is an exact version of Theorem 6.2: we shall prove that an n-

vertex graph with e edges has at least g(n, e) triangular edges, provided that n is

large enough. However, the bound on n does not depend on e, that is, as long as

n ≥ n0 for some n0, our theorem holds for any e such that bn2/4c ≤ e ≤
(
n
2

)
.

Before we precisely state our result, we make a few remarks. Firstly, it turns out

to be more convenient to consider the clearly equivalent problem of maximising the

number of non-triangular edges among n-vertex graphs with e edges. Thus, given

a graph G, we denote by t(G) the number of non-triangular edges in G. Secondly,

given n and e, instead of restricting our attention to n-vertex graphs with exactly

e edges, we consider n-vertex graphs with at least e edges. Since the removal of

a triangular edge cannot decrease the number of non-triangular edges, this slight
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reformulation does not change the problem, and yet it allows us to concentrate on

graphs G(a, b, c) without having to consider their subgraphs.

We are now ready to state our main result.

Theorem 6.3. There exists n0 such that, for any graph G on at least n0 vertices,

there exists a graph H = G(a, b, c) (for some integers a, b, c) such that |H| = |G|,
e(H) ≥ e(G) and t(H) ≥ t(G).

We note that Theorem 6.3 comes close to proving Conjecture 6.1 (for sufficiently

large n) as it shows that the minimum number of triangular edges is attained by

a graph G(a, b, c) or a subgraph of G(a, b, c). However, we do not prove that such

graphs are the only minimisers.

1.1 Structure of the chapter

The proof of our main result, Theorem 6.3, is divided into three parts, according to

the number of edges in the graph G. We treat separately graphs that are close to

being bipartite, that is, whose number of edges is close to n2/4; graphs that are close

to being complete, that is, whose number of edges is close to
(
n
2

)
; and the middle

range, where the number of edges is bounded away from both n2/4 and
(
n
2

)
by a

constant factor of n2.

We state Theorems 6.4 to 6.6, which are the theorems corresponding to the

aforementioned three ranges, in Section 2, and give an overview of their proofs. In

Section 3 we introduce some notation and describe the tools that we shall use to

prove these theorems. We prove the theorems in Sections 4 to 6. Theorem 6.4,

which deals with graphs with about n2/4 edges, is proved in Section 4; the proof of

Theorem 6.5, for the middle range, which is the most difficult of the three and is the

heart of this chapter, is given in Section 5; and Theorem 6.6 is proved in Section 6.

We conclude the chapter with Section 7 where we make a few remarks and mention

some open problems.

2 Overview

We split the proof of Theorem 6.3 into three parts, according to the number of edges

in the graph. We state the theorems corresponding to these three parts here.

The following theorem deals with e that is close to n2/4, that is, e ≤ (1/4+δ)n2,

where δ is a sufficiently small constant.

72



Theorem 6.4. There exist n0 and δ > 0 such that the following holds. Let G be a

graph with n ≥ n0 vertices and e edges, where n2/4 ≤ e ≤ (1/4 + δ)n2. Then there

exists a graph H = G(a, b, c) such that |H| = n, e(H) ≥ e and t(H) ≥ t(G).

The next theorem considers the case where e is bounded away from n2/4 and(
n
2

)
, namely, where (1/4 + δ)n2 ≤ e ≤ (1/2− δ)n2 for a constant δ > 0.

Theorem 6.5. For every δ > 0 there exists n0 such that the following holds. Let G be

a graph with n ≥ n0 vertices and e edges, where (1/4+δ)n2 ≤ e ≤ (1/2−δ)n2. Then

there exists a graph H = G(a, b, c) such that |H| = n, e(H) ≥ e and t(H) ≥ t(G).

Finally, we consider the remaining case, where e is close to
(
n
2

)
, that is, e ≥

(1/2− δ)n2 for a sufficiently small constant δ > 0.

Theorem 6.6. There exist n0 and δ > 0 such that the following holds. Let G be a

graph with n ≥ n0 vertices and e edges, where e ≥ (1/2− δ)n2. Then there exists a

graph H = G(a, b, c) such that |H| = n, e(H) ≥ e and t(H) ≥ t(G).

It is clear that Theorems 6.4 to 6.6 imply Theorem 6.3: we first take a small

δ > 0 that works for Theorems 6.4 and 6.6 and then we choose a sufficiently large

n0 that works for all three theorems.

We now give some insight into our proofs. The rough plan for the proof of each

of the theorems is the same. Assuming that G is an n-vertex graph with at least

e edges that maximises the number of non-triangular edges, we first obtain rough

information about the structure of the graph. In each of the cases, we partition the

vertices of G into parts A,B,C, which relate to the three parts in a graph G(a, b, c),

in a way that will be explained in the proofs. In the next stage we use lower bounds

on the number of non-triangular edges (coming from examples G(a, b, c)) to estimate

the sizes of the sets A,B,C. The final stage uses the estimates on the sizes and some

case specific arguments to conclude that G has the required structure, namely, that

it is isomorphic to the graph G(|A|, |B|, |C|).
The proofs of the two extremal cases, where e is close to either n2/4 or

(
n
2

)
,

are considerably easier than that of the middle range. The main reason for this

is that in the extremal cases it is fairly easy to show that the graph G should be

close to a graph G(a, b, c), whereas in the middle range getting any handle on the

structure of the graph is hard, and the initial structural properties that we find are

less restrictive than in the two extremal cases.

We introduce two tools, which will be helpful in the proof of the middle range.

The first one is a process of ‘compression’ that allows us to ‘simplify’ a graph without
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decreasing the number of edges or non-triangular edges. The second is the ‘exchange

lemma’, which allows us to ‘exchange’ edges to non-triangular edges and vice versa.

In other words, it allows us to replace a graph by another graph with (somewhat)

fewer edges, but more non-triangular edges and vice versa. Both of these tools will

be presented and explained in greater detail in Section 3.

3 Tools

In this section we introduce the tools that we will use throughout the chapter. We

start by describing some notation and simple definitions in Subsection 3.1. We

introduce the notion of weighted graphs in Subsection 3.2 and list some results by

Füredi and Maleki [16] that involve weighted graphs. An important tool in the

proof of the middle range is the so-called Exchange Lemma, Lemma 6.13. We prove

Lemma 6.13 and explain its importance in Subsection 3.3. Our last tool is the

notion of compressed graphs which is a class of graphs with somewhat restrictive

structure. In Subsection 3.4, we give our definition of a compressed graph and prove

Lemma 6.16, which shows that, in order to prove Theorem 6.3, it suffices to prove

it for compressed graphs.

3.1 Notation

The following notation is standard. Write |G| for the order of a graph G and e(G)

for the number of edges in G. We denote the degree of a vertex u of G by degG(u),

or deg(u) if G is clear from the context. Given a set U of vertices of G, we denote

by G[U ] the graph induced by G on U .

We now turn to notation that is more specific to our context. An edge e ∈ E(G)

is called triangular if it is an edge of at least one triangle in G. Similarly, we say

that e is non-triangular if it is not an edge of any triangle. We denote by t(G) the

number of non-triangular edges of G.

Given a vertex u, a vertex v is a triangular neighbour of u, if uv is a triangular

edge. Similarly, the triangular neighbourhood of u is the set of triangular neighbours

of u, and the triangular degree of u is the number of triangular edges adjacent to

u. The notions of a non-triangular neighbour, non-triangular neighbourhood and

non-triangular degree are defined similarly. We denote the non-triangular degree of

u in G by degNon-∆(u). A vertex u is called triangular if degNon-∆(u) = 0, that is, if

all edges adjacent to u are triangular.

We say that a set of vertices U ⊆ V (G) is a set of clones if any two vertices in U
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have the same neighbourhood in G. In particular, a set of clones is an independent

set. For example, in G(a, b, c) the sets B and C are sets of clones. We remark that

the notion of clones will play an important role in the definition of a compressed

graph (which is given in Subsection 3.4).

We now introduce the natural notion of an optimal graph.

Definition 6.7. A graph G on n vertices is called optimal if there does not exist a

graph H on n vertices such that either t(H) > t(G) and e(H) ≥ e(G) or e(H) > e(G)

and t(H) ≥ t(G).

In other words, G is optimal if it maximises t(G) among graphs with n vertices

and at least e(G) edges and, in addition, it maximises e(G) among graphs with n

vertices and at least t(G) non-triangular edges.

It clearly suffices to prove the main result, Theorem 6.3, for optimal graphs. The

following observation is a simple property of optimal graphs.

Observation 6.8. Let G be an optimal graph and let u, v be vertices of G. Then at

least one of deg(u) ≥ deg(v)− 1 and degNon-∆(u) ≥ degNon-∆(v)− 1 holds.

Proof. Suppose that deg(u) ≤ deg(v)− 2 and degNon-∆(u) ≤ degNon-∆(v)− 2. Con-

sider the graph G′ obtained by removing the edges incident with u and adding the

edges between u and the neighbours of v (do not add the loop uu if u, v are adjacent

in G). Then e(G′) ≥ e(G)−deg(u)+deg(v)−1 > e(G) and, similarly, t(G′) > t(G),

contradicting the assumption that G is optimal.

We shall use big-O notation extensively throughout this chapter, so, for the sake

of clarity, we briefly explain how we interpret the symbols O, o and Ω. First of all,

we always assume that n is large, so, whenever we write down a statement or an in-

equality, we only suppose it to hold for sufficiently large n. We write f(n) = O(g(n))

if there exists an absolute constant C > 0 such that |f(n)| ≤ Cg(n). In particu-

lar, the expression f(n) = g(n) + O(h(n)) consists of the following inequalities:

g(n) − Ch(n) ≤ f(n) ≤ g(n) + Ch(n). Similarly, f(n) = o(g(n)) means that

limn→∞ |f(n)|/g(n) = 0. Finally, we write f(n) = Ω(g(n)) if f(n) ≥ Cg(n) for an

absolute constant C > 0. To ensure that this notation makes sense, we will only

write O(g(n)), o(g(n)),Ω(g(n)) for functions g(n) which are positive for sufficiently

large n. We remark that Ω(g(n)) always denotes a positive quantity, while O(g(n))

and o(g(n)) may denote positive and negative quantities.

Throughout this chapter, we omit integer parts whenever they do not affect the

argument.
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3.2 Weighted graphs

Our most basic tool is the concept of a weighted graph, which is a graph whose

vertices have been assigned non-negative real weights. The total weight of a weighted

graph G is the sum of the weights of its vertices and is denoted by |G|. For technical

reasons, throughout this chapter we require that the number of vertices of a weighted

graph does not exceed its total weight. Equivalently, we require that the average

weight of a vertex in a weighted graph is at least 1.

For containment purposes, we identify weighted graphs with their underlying

graphs. For instance, given weighted graphs G and H, we say that H is a weighted

subgraph of G if, as graphs, H is an induced subgraph of G. Note that this definition

does not impose any conditions on the weight function of H. In particular, if H is

a weighted subgraph of G then the weight in H of a vertex in H may be larger, or

smaller, than its weight in G. Similarly, an edge of a weighted graph is triangular

(non-triangular) if it is a triangular (non-triangular) edge of the underlying graph.

We remark that, unless explicitly stated otherwise, vertices of zero weight are taken

into account when switching to the underlying graph.

Given a weighted graph G with weight function w : V (G)→ R≥0 we define e(G)

to be the sum of w(u)w(v) over all edges uv of G. Similarly, we define t(G) to be

the same sum over the non-triangular edges of G. Note that any graph G can be

seen either as a graph or as a weighted graph whose every vertex has weight 1, and

the definitions of |G|, e(G) and t(G) are independent of the point of view.

The notions of degree and non-triangular degree of a vertex may be similarly

generalised to weighted graphs. For instance, the degree of a vertex u of a weighted

graph is the sum of weights of the neighbours of u. Note that the degree and non-

triangular degree of a vertex do not depend on the weight of that vertex itself. We

use the notation deg(u) and degNon-∆(u) for the degree and the non-triangular degree

of a vertex u in a weighted graph.

We now define good weighted graphs (see Figure 6.4), which are weighted equiv-

alents of the graphs G(a, b, c) (see Figure 6.3).

Definition 6.9. We call a weighted graph G good if its vertex set can be partitioned

into a set K, which induces a clique, and a pair (u, v) of adjacent vertices such that

uv is the only non-triangular edge in G.

Moreover, if there are no edges between v and K, and if u is adjacent to all

vertices in K, then we say that G is a very good weighted graph. We remark that,

according to this definition, if K consists of a single vertex, then G cannot be very

good. Also, in this case G is good if and only if uv is the only edge in G, which
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v

K

Figure 6.4: A good weighted graph.

gives e(G) ≤ |G|2/4.

Let G be a good graph with e(G) > |G|2/4 and let {K, {u, v}} be the partition

of V (G) as described above. We know that in this case K contains at least two

vertices. Moreover, we may assume that the weight of v does not exceed the weight

of u. Since uv is a non-triangular edge, u and v do not have common neighbours

in K. Therefore, by removing the edges between v and K and adding all possible

edges between u and K, we obtain a very good graph G′ such that |G′| = |G|,
e(G′) ≥ e(G) and t(G′) = t(G) = w(u)w(v).

We observe that, provided that a ≥ 2, a graph G(a, b, c) can be represented by

a very good weighted graph, by replacing the independent parts of sizes b and c

by vertices of weight b and c respectively. This is an example of the correspon-

dence between an independent set of clones I and a vertex of weight |I| with the

same neighbourhood, which we shall use on multiple occasions. We remark that, in

general, good and very good weighted graphs may have non-integer weights.

Motzkin and Straus [48] used weighted graphs to give an alternative proof of

Turán’s theorem [62]. They pointed out that Turán’s theorem for weighted graphs

is very easy: given a weighted graph G, there exists a weighted graph H that

satisfies |H| = |G| and e(H) ≥ e(G), and, as a graph, is a complete subgraph of

G. Therefore, among Kr+1-free weighted graphs with total weight α ≥ r, e(G)

is maximised when G is a complete graph with r vertices whose every vertex has

weight α/r. If α/r is an integer, then this corresponds to a complete r-partite graph,

implying Turán’s theorem. However, if α/r is not an integer, then this argument

gives only an approximate form of Turán’s theorem, and Motzkin and Straus needed

an additional argument to recover the full theorem.

Füredi and Maleki [16] modified the aforementioned observation of Motzkin and

Straus to also give t(H) ≥ t(G) at the cost of making the structure of H more

complicated.

Lemma 6.10 (Füredi and Maleki [16]). Let G be a weighted graph with t(G) > 0.

Then G contains a weighted subgraph H which is a good weighted graph and satisfies

|H| = |G|, e(H) ≥ e(G) and t(H) ≥ t(G).
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We will use both this result and the key observation that leads to its proof. We

state and prove this observation next, but we do not present the careful analysis

that Füredi and Maleki perform to complete the proof of Lemma 6.10.

Lemma 6.11 (Füredi and Maleki [16]). Let G be a weighted graph and suppose that

I is an independent set of three vertices. Then there exists a weighted graph H,

which can be obtained from G by removing one of the vertices in I and, possibly,

changing the weights of the other two vertices in I, such that |H| = |G|, e(H) ≥ e(G)

and t(H) ≥ t(G).

Proof. Denote I = {u1, u2, u3}, di = deg(ui) and ti = degNon-∆(ui). It is not hard

to see that there exist reals s1, s2, s3, not all 0, such that s1d1 + s2d2 + s3d3 ≥ 0,

s1t1 + s2t2 + s3t3 ≥ 0 and s1 + s2 + s3 = 0. For real λ we denote by Gλ the weighted

graph obtained by adding λsi to the weight w(ui) of ui for each i ∈ [3]; this definition

is valid for the values of λ for which w(ui) + λsi ≥ 0 for all i ∈ [3]. Pick λ > 0 such

that w(ui) + λsi ≥ 0 for i ∈ [3] with equality for at least one value, say 1. Then

|Gλ| = |G|, e(Gλ) ≥ e(G) and t(Gλ) ≥ e(G), so the weighted graph H = Gλ \ {u1}
satisfies the requirements of the lemma.

Füredi and Maleki deduce their main result from Lemma 6.10. We present their

theorem with minor modifications, which make it more suitable for our application.

Corollary 6.12 (Füredi and Maleki [16]). Let G be a weighted graph G with |G| = n.

Then there exists a graph H = G(a, b, c) satisfying |H| = n, e(H) ≥ e(G) and

t(H) ≥ t(G)− 5n.

Proof. We begin by recalling that, according to our definition of a weighted graph,

G has at most n vertices. The parameter e(G) is maximised when the underly-

ing graph of G is complete, in which case 2e(G) =
∑

u∈V (G)w(u)(n − w(u)) =

n2 −∑u∈V (G) w
2(u). By the arithmetic-quadratic mean inequality, the right hand

side is maximised when w(u) = 1 for all u. Therefore, e(G) ≤
(
n
2

)
. As a result,

we may assume that t(G) > 5n because otherwise the complete graph Kn satis-

fies the requirements. We may also assume that e(G) > n2/4 because otherwise

G(2, bn/2c, dn/2e − 2) works.

Let H be a good weighted graph that satisfies |H| = n, e(H) ≥ e(G) and

t(H) ≥ t(G), whose existence is ensured by Lemma 6.10. There exists a partition

{K, {u, v}} of V (H) such that K induces a clique and uv is the only non-triangular

edge in G. Denote the sum of weights (in H) of the vertices in K by α and the

weights of u and v by β and γ; we may assume that β ≥ γ. Trivially, we have
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t(G) = βγ. Moreover, since no vertex in K is adjacent to both u and v, we also

have e(G) ≤ α2/2 + αβ + βγ.

We now show that for some integers a, b, c ≥ 0 the graph G′ = G(a, b, c) has the

desired properties. It is enough to choose a, b, c so that

a+ b+ c = n, (6.1)
(
a

2

)
+ (n− b)b ≥ α

2

2
+ (n− β)β, (6.2)

bc ≥ βγ − 5n. (6.3)

Of course, the plan is to set a ≈ α, b ≈ β, c ≈ γ, but there are some tedious

details to check. We set a = dαe + 2 and, depending on whether β ≥ n/2 or

β < n/2, either b = bβc or b = dβe. Finally, we set c = n − a − b. Note that from

the assumption that t(G) ≥ 5n it follows that β, γ > 5. In particular, since c ≥ γ−4,

c is positive. Now, (6.1) is immediate from the definition; (6.3) is immediate from

the fact that b ≥ β − 1 > 0 and c ≥ γ − 4 > 0; and the only case when (6.2) is not

immediate is when (n− 1)/2 ≤ β ≤ (n+ 1)/2. However, in this case the difference

between (n− β)β and (n− b)b is at most 1, and it is compensated by the difference

between
(
a
2

)
and α2/2.

3.3 Exchange lemma

The following lemma, Lemma 6.13, will be very useful in the proof of our main

result in the middle range. Roughly speaking, it says that there exists a positive

number ζ, which we informally call the ‘exchange rate’, with the following property.

For any graph G, not too dense and not too sparse, and any number x, not too

big and not too small, we can exchange x edges of G for at least ζx non-triangular

edges. That is, there exists a graph H such that |H| = |G|, e(H) ≥ e(G) − x and

t(H) ≥ t(G) + ζx. Similarly, we can exchange x non-triangular edges for at least ζx

edges.

This tool is very useful to us, because now we can arrive at a contradiction

by finding a graph G whose either parameter e(G) or t(G) is too large, even if

the other parameter is slightly smaller than what would normally be needed for a

contradiction.

For any positive integer n and real e ≤
(
n
2

)
, we denote by t(n, e) the maximum

number of non-triangular edges among n-vertex graphs with at least e edges. Note

that if e ≤ bn2/4c, then t(n, e) = bn2/4c. Moreover, for any n, the function t(n, e)
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is a non-increasing function of e.

Lemma 6.13. For any δ > 0 there exist ζ, ε, C > 0 and n0 such that the following

holds for any weighted graph G on n ≥ n0 vertices and for any real x satisfying

Cn ≤ x ≤ εn2.

1. If e(G) ≥ e + x for some real e satisfying n2/4 ≤ e ≤ (1/2 − δ)n2, then

t(G) ≤ t(n, e)− ζx.

2. If t(G) ≥ t(n, e) + x for some real e ≥ (1/4 + δ)n2, then e(G) ≤ e− ζx.

Here is a brief overview of the proof of Lemma 6.13. To prove the first statement,

we note that by Lemma 6.10, we may assume that G is good. We shift the weights

of the vertices in G so as to increase t(G) while decreasing e(G) only slightly. An

upper bound on t(G) then follows from Corollary 6.12. The second statement is

proved in a similar way.

Proof of Lemma 6.13. Let δ ∈ (0, 1/10). To prove the first statement, suppose that

n, e, x satisfy e ≤ (1/2− δ)n2 and Cn ≤ x ≤ εn2 for constants C and ε that will be

determined later. Let G be a weighted graph such that |G| = n and e(G) ≥ e + x.

We note that t(n, e) ≥ δ3/2

2
n2. Indeed, the graph G(a, b, c) where c = δ

2
n, b =

√
δ n

and a = n − b − c has at least (1/2 − δ)n2 edges and δ3/2

2
n2 non-triangular edges.

By taking ε, ζ to satisfy εζ ≤ δ3/2

4
, we may assume that

t(G) ≥ δ3/2

4
n2, (6.4)

because otherwise we get t(G) ≤ t(n, e) − ζx for free. By Lemma 6.10, we may

assume that G is a good weighted graph, so V (G) can be partitioned into a clique

K and two adjacent vertices u and v such that uv is the only non-triangular edge.

Denote by α the sum of weights of vertices in K and let β and γ be the weights

of u and v respectively. By Inequality (6.4), we have β, γ ≥ δ3/2

4
n. Moreover, the

removal of the edges spanned by K would make G bipartite, so we have e(G) ≤
n2/4 + α2/2 ≤ n2/4 + αn/2. Recall that e(G) ≥ e + x ≥ n2/4 + x, and hence

α ≥ 2x/n.

Let G′ be a weighted graph obtained by increasing the weight of u by x/n and

decreasing the weights of the vertices in K so that the new sum of their weights is

α − x/n. Trivially, e(G′) ≥ e(G) − x ≥ e and t(G′) = (β + x/n)γ ≥ t(G) + δ3/2

4
x.

Furthermore, it follows from Corollary 6.12 that t(G′) ≤ t(n, e) + 5n, and hence

t(G) ≤ t(n, e) + 5n− δ3/2

4
x ≤ t(n, e)−

(
δ3/2

4
− 5

C

)
x. By taking C large and ζ small

with respect to δ, we can ensure that t(G) ≤ t(n, e)− ζx.
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To prove the second statement, suppose that n, e, x satisfy e ≥ (1/4 + δ)n2 and

10n < x ≤ εn2 for a sufficiently small constant ε > 0. Let G be a weighted graph

such that |G| = n and t(G) ≥ t(n, e)+x. Note that by taking ε, ζ to satisfy εζ ≤ δ/2,

we may assume that

e(G) ≥
(

1

4
+
δ

2

)
n2, (6.5)

because otherwise we can conclude immediately that e(G) ≤ e − ζx. Furthermore,

by Lemma 6.10, we may assume that G is a good weighted graph. In fact, since

e(G) > n2/4, we may assume that G is very good. Let {K, {u, v}} be a partition of

V (G) into a clique K and two vertices u, v such that uv is the only non-triangular

edge in G, u is adjacent to all vertices of K and there are no edges between v and K.

Moreover, let α be the total weight of vertices in K and let β and γ be the weights

of u and v. As before, it follows from Inequality (6.5) that α ≥
√
δ n. Moreover, K

contains at least two vertices, so in particular a vertex w ∈ K whose weight does

not exceed α/2. Let G′ be the weighted graph obtained by reducing the weight of v

by x/2n (note that βγ = t(G) ≥ x, so γ ≥ x/n) and increasing the weight of w by

the same amount. Then, since x > 10n,

t(G′) = β(γ − x/2n) ≥ t(G)− x/2 ≥ t(n, e) + x/2 > t(n, e) + 5n. (6.6)

Furthermore, since α ≥
√
δ n,

e(G′) ≥ e(G) +
x

2n
· α

2
≥ e(G) +

√
δ

4
x.

By Corollary 6.12 and Inequality (6.6), e(G′) < e, because otherwise there exists a

graph H with n vertices, at least e edges and more than t(n, e) non-triangular edges,

which contradicts the definition of t(n, e). Thus, e(G) ≤ e− ζx for any ζ ≤
√
δ

4
.

3.4 Compressed graphs

We now present the notion of compressed graphs. Many proofs of Turán’s theorem,

including the one given by Motzkin and Straus [48], first show that, among Kr+1-free

graphs on a given number of vertices, the greatest number of edges is achieved by

a complete r-partite graph. As a result, it is enough to solve the problem for

complete r-partite graphs. In this chapter the class of compressed graphs will play

a role similar to that of complete r-partite graphs in the proof of Motzkin and

Straus. Compressed graphs have fairly simple structure (though not quite as simple

as complete r-partite graphs) and we shall see from Lemma 6.16 that it suffices to
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prove Theorem 6.3 for compressed graphs.

In the following definition, as well as the rest of the chapter, the logarithm is

taken in base 2.

Definition 6.14. A graph G on n vertices is called compressed if the following

assertions hold.

1. Any independent set I ⊂ V (G) can be partitioned into at most 3 log n sets of

clones. Moreover, this can be done in such a way that at most four of the sets

of clones into which I is partitioned have size larger than 3n1/3.

2. The set of triangular vertices in G, which we denote by U , induces a clique in

G. Furthermore, the vertices of U all have the same neighbourhood outside of

U .

To demonstrate how compressed graphs may be of use to us, we mention the

following observation.

Observation 6.15. Let G be a compressed graph on n vertices and let I be an

independent set of size at least 45n1/3 log n. Then I contains a set of clones of size

at least |I|/5.

Indeed, let m be the size of the largest set of clones in I. Then Condition 1 of

Definition 6.14 implies that |I| ≤ 4m+ 9n1/3 log n ≤ 4m+ |I|/5, so m ≥ |I|/5.

The following lemma shows that, for the purpose of proving Theorem 6.3, we

may assume without loss of generality that the given graph is compressed.

Lemma 6.16. Let G be a graph on n vertices. Then there exists a compressed graph

H such that |H| = n, e(H) ≥ e(G) and t(H) ≥ t(G).

Proof. Given a graph G on n vertices, we let H be a weighted graph with the

following properties.

• |H| = n, e(H) ≥ e(G) and t(H) ≥ t(G).

• All vertices of H have integer weights.

• The number of vertices of H is minimal under the first two conditions.

• The number of vertices of weight at least 3n1/3 is minimal under the first three

conditions.
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We shall show that the graph, obtained by replacing each vertex of H by a set

of clones of size equal to the weight of the vertex, is compressed. To that end, we

show that H has no independent set of size larger than 3 log n, and that the vertices

with weight larger than 3n1/3 do not contain an independent set of size at least five.

We first show that every independent set of H contains at most 3 log n vertices.

Suppose to the contrary that H contains an independent set I of size m ≥ 3 log n.

For any set A ⊆ I we denote SA =
∑

x∈A deg(x) and TA =
∑

x∈A degNon-∆(x).

Trivially, SA ≤ n2 for every A ⊆ I. Since
(
m
m/2

)
≥ 2m/

√
2m ≥ n3/

√
2n > n2, it

follows from considering sets of size m/2 that there exist distinct sets A,B ⊆ I such

that |A| = |B| and SA = SB. By replacing A and B by A \ B and B \ A, we may

assume that A ∩B = ∅. Also, without loss of generality, TA ≥ TB.

Let w be the minimum weight of a vertex in B. Consider the weighted graph H ′,

obtained by increasing the weight of each vertex in A by w and decreasing the weight

of each vertex in B by w (and removing vertices whose weight becomes 0). Then

|H ′| = |H|, e(H ′) = e(H) +w(SA−SB) = e(H), t(H ′) = t(H) +w(TA−TB) ≥ t(H)

and the number of vertices in H ′ is smaller than the number of vertices in H,

contradicting the choice of H. It follows that every independent set of H contains

at most 3 log n vertices.

We now show that, given an independent set of five vertices {u1, . . . , u5} in H,

at least one of the vertices ui has weight at most 3n1/3. Indeed, suppose that the

weight of each of the vertices exceeds 3n1/3. For any quintuple of non-negative

integers k = (k1, . . . , k5), we denote Sk = k1 deg(u1) + . . . + k5 deg(u5) and Tk =

k1 degNon-∆(u1) + . . . + k5 degNon-∆(u5). Consider only the quintuples k that satisfy

k1 + . . . + k5 = 3n1/3: there are
(

3n1/3+4
4

)
≥ 81

24
n4/3 such quintuples and for each of

them we have Sk ≤ 3n4/3. Thus, there exist distinct quintuples k and l, each of

whose coordinates are non-negative integers summing to 3n1/3, such that Sk = Sl.

Without loss of generality, we may assume that Tk ≥ Tl.

Consider the weighted graph H ′, obtained by repeatedly adding ki − li to the

weight of each vertex ui, as long as all weights remain non-negative (note that this

process will end because ki < li for some i ∈ [5]). The resulting weighted graph H ′

has the same number of vertices as H and satisfies |H ′| = |H|, e(H ′) = e(H) and

t(H ′) ≥ t(H). Furthermore, since |ki − li| ≤ 3n1/3, for some i ∈ [5] the weight of ui

in H ′ is smaller than 3n1/3. In particular, H ′ has fewer vertices with weight at least

3n1/3 than H. This is, again, a contradiction to the choice of H. It follows that

every independent set in H has at most four vertices with weight at least 3n1/3.

Recall that H has integer weights, so we may view it as a graph where a vertex

of weight w represents a set of clones of size w. The graph H satisfies Condition 1
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of Definition 6.14. Denote by U the set of triangular vertices in H. Adding all

edges missing from H[U ] would not form triangles with edges that were previously

non-triangular, so we may assume that U induces a clique in H. Let u ∈ U be

a vertex of maximum degree in H. For every v ∈ U \ {u}, we remove the edges

between v and V (H)\U and add the edges between v and the neighbourhood of u in

V (H) \U . This process does not decrease the total number of edges and, moreover,

all edges that were previously non-triangular remain non-triangular. We denote

the resulting graph by H ′ and note that it satisfies Condition 2. Furthermore, if

I ⊂ V (H) \ U and v ∈ U are such that I ∪ {v} is an independent set in H ′, then

I ∪ {u} is an independent set in H. Therefore, H ′ retains Condition 1, and hence

H ′ is compressed.

4 Almost bipartite

In this section we prove Theorem 6.4.

Theorem 6.4. There exist n0 and δ > 0 such that the following holds. Let G be a

graph with n ≥ n0 vertices and e edges, where n2/4 ≤ e ≤ (1/4 + δ)n2. Then there

exists a graph H = G(a, b, c) such that |H| = n, e(H) ≥ e and t(H) ≥ t(G).

Once again, some of the statements and inequalities that we write down only

hold for sufficiently large n. Whenever this happens, we assume that n is, indeed,

large enough to satisfy them.

Throughout this section we assume that G is a graph with n vertices and e =

(1/4 + ε)n2 edges, where 0 < ε ≤ δ for a small positive constant δ which we will

(implicitly) determine later. Moreover, we assume that G is optimal (this means

that increasing the number of edges reduces the number of non-triangular edges

and vice versa, see Definition 6.7) and compressed (see Definition 6.14). In fact, for

this proof we only need Condition 2 of Definition 6.14, which is much simpler than

Condition 1.

However, to be able to make the assumptions described above, we have to deal

with a small technicality regarding the condition e(G) ≤ (1/4 + δ)n2. Indeed, it

is true that given G it is always possible to find an optimal and compressed graph

G′ satisfying |G′| = n, e(G′) ≥ e and t(G′) ≥ t(G), but we cannot guarantee that

e(G′) ≤ (1/4 + δ)n2 holds. To deal with this issue, we use the Exchange Lemma

(Lemma 6.13). Indeed, if e(G′) ≥ e+ Ω(n2), then Lemma 6.13 implies that t(G) ≤
t(G′) ≤ t(n, e)−Ω(n2). If this happens, then we take a graph H with n vertices and

at least e edges, satisfying t(H) = t(n, e). By Corollary 6.12 there exists a graph
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H ′ = G(a, b, c) such that |H ′| = n, e(H ′) ≥ e and t(H ′) ≥ t(n, e) − 5n ≥ t(G), so

we are done in this case. Therefore, we may assume that e(G′) ≤ e+ o(n2), and so

e(G′) ≤ (1/4 + δ)n2 holds for a relaxed value of δ.

To get a rough idea about how large t(G) is, we derive the following lower

bound. Consider the graph G(a, b, c) where a = d
√

2ε ne + 1, b = dn/2e and c =

n− a− b = bn/2c − d
√

2ε ne − 1. Then e(G(a, b, c)) =
(
a
2

)
+ (n− b)b ≥ (1/4 + ε)n2

and t(G(a, b, c)) = bc ≥
(

1/4−
√
ε/2 −O(1/n)

)
n2. Since G is optimal, it follows

that

t(G) ≥
(

1

4
−
√
ε

2
−O

(
1

n

))
n2. (6.7)

Moreover, we have e ≥ bn2/4c+1, so in fact εn2 ≥ 1/2 and therefore 1/n = O(
√
ε ).

It follows that

t(G) ≥
(

1

4
−O

(√
ε
))

n2. (6.8)

We would like to make a brief comment regarding the use of big-O notation in

Inequalities (6.7),(6.8) and other similar inequalities. According to our definition,

O(g(n)) stands for a positive or negative quantity, so −O(g(n)) is exactly the same

as +O(g(n)). We usually choose the sign before the big-O which looks more natural.

However, we do not assume that −O(g(n)) is necessarily negative nor that +O(g(n))

is necessarily positive.

We divide the proof of Theorem 6.4 into four parts, represented by the following

four propositions. In the first of these propositions we prove that G has the following

structure (see Figure 6.5), which resembles a graph G(a, b, c).

Proposition 6.17. There exists a partition {A,B,C,D} of V (G) satisfying the

following assertions.

1. All possible edges between B and C are present in G and are non-triangular.

Moreover, |B|, |C| ≥ (1/2−O(
√
ε ))n. In particular, B and C are independent

sets.

2. There are no edges between A and C nor between B and D.

3. The induced subgraphs G[A] and G[D] do not have isolated vertices.

4. Every vertex in A ∪D is incident with at most O(
√
ε n) non-triangular edges

of G. Moreover, the sets A and D do not span non-triangular edges (but there

may be non-triangular edges between A and D).
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A

D

B

C

Figure 6.5: The partition {A,B,C,D}.

Here the proof of Theorem 6.4 splits into two cases: ε ≤ κ/n and ε ≥ κ/n, where

κ is a small absolute positive constant that will be (implicitly) determined later. If

ε is small, then we complete the proof directly.

Proposition 6.18. There exists a constant κ > 0 with the property that if ε ≤ κ/n,

then G ∼= G(a, b, c) for some a, b, c.

If ε is large, then we first obtain sharp estimates for the sizes of the setsA,B,C,D.

Proposition 6.19. Let G and A,B,C,D satisfy the conclusions of Proposition 6.17

and suppose that |B| ≥ |C| and that ε ≥ κ/n for some constant κ > 0. Then

|A ∪D| =
(√

2ε +Oκ(ε)
)
n,

|B| =
(

1

2
−Oκ(ε

3/4)

)
n,

|C| =
(

1

2
−
√

2ε +Oκ(ε
3/4)

)
n.

Here f(n) = Oκ(g(n)) means that there exists a constant Cκ > 0, which depends

on κ, such that |f(n)| ≤ Cκg(n).

We can now complete the proof of Theorem 6.4 in the case where ε is large.

Proposition 6.20. Let κ > 0 be a constant. If ε ≥ κ/n, then G ∼= G(a, b, c) for

some a, b, c.

Proposition 6.20 is a typical example of a statement that holds for sufficiently

large n.

Proof of Theorem 6.4. Theorem 6.4 immediately follows from Propositions 6.18 and

6.20.

The rest of this section is devoted to the proofs of Propositions 6.17 to 6.20,

which are presented in separate subsections.
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4.1 Structure of an optimal graph

In this subsection, we prove Proposition 6.17 (see also Figure 6.5). Recall that G is

a fixed optimal graph with n vertices and e = (1/4 + ε)n2 edges, where 0 < ε ≤ δ

for a fixed small constant δ > 0.

Proposition 6.17. There exists a partition {A,B,C,D} of V (G) satisfying the

following assertions.

1. All possible edges between B and C are present in G and are non-triangular.

Moreover, |B|, |C| ≥ (1/2−O(
√
ε ))n. In particular, B and C are independent

sets.

2. There are no edges between A and C nor between B and D.

3. The induced subgraphs G[A] and G[D] do not have isolated vertices.

4. Every vertex in A ∪D is incident with at most O(
√
ε n) non-triangular edges

of G. Moreover, the sets A and D do not span non-triangular edges (but there

may be non-triangular edges between A and D).

The first assertion follows fairly easily from the fact that the number of non-

triangular edges is almost n2/4. To complete the proof we use basic properties of

optimal graphs.

Proof of Proposition 6.17. Let H be the spanning subgraph of G whose edges are

the non-triangular edges of G. We note that H is a triangle-free graph with close to

n2/4 edges, which implies that H is close to being a complete bipartite graph. This

enables us to find independent (with respect to G) sets U and W of size almost n/2

each, such that H contains almost all of the possible edges between them. This idea

is rigorously implemented in the following claim.

Claim 6.21. There exist disjoint non-empty independent sets U,W ⊆ V (G) such

that every vertex in U has at least (1/2−O(ε1/4))n non-triangular neighbours in W

and vice versa. In particular, |U |, |W | ≥ (1/2−O(ε1/4))n.

Proof. Inequality (6.8) states that e(H) = t(G) ≥ (1/4− c√ε )n2 for some absolute

constant c > 0. From this we deduce that, writing d =
√
c , there are at most 2dε1/4

vertices in H of degree smaller than (1/2−dε1/4)n. Indeed, suppose that we can find
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a set S consisting of exactly 2dε1/4n vertices of degree smaller than (1/2− dε1/4)n

in H. Since H is triangle-free, e(H \ S) ≤ (n− |S|)2/4. Hence,

e(H) <
(n− |S|)2

4
+ |S|

(
1

2
− dε1/4

)
n

=
n2

4
− |S|

(
dε1/4n− |S|

4

)

=

(
1

4
− d2
√
ε

)
n2

=

(
1

4
− c√ε

)
n2,

a contradiction.

Let u ∈ V (G) be any vertex with degH(u) ≥ (1/2 − dε1/4)n. Denote by U the

set of vertices in NH(u) that have at least (1/2−dε1/4)n neighbours in H. Since the

edges of H are non-triangular in G, it follows that U is independent in G. Moreover,

|U | ≥ degH(u)− 2dε1/4n ≥ (1/2−O(ε1/4))n.

Now let v ∈ U and denote by W the set of vertices in NH(v) whose degree in H

is at least (1/2 − dε1/4)n. As before, W is independent in G and has size at least

(1/2−O(ε1/4))n. Finally, every vertex in U has at least (1/2− dε1/4)n− (n− |U | −
|W |) ≥ (1/2−O(ε1/4))n non-triangular neighbours in W , and vice versa.

Let U and W be the disjoint independent sets given by Claim 6.21. The following

similar claim allows us to enlarge U and W to obtain sets B and C which will be

shown to satisfy the requirements of Proposition 6.17.

Claim 6.22. There exist disjoint independent sets B,C ⊆ V (G), satisfying U ⊆ B

and W ⊆ C and |B ∪ C| ≥ (1− O(
√
ε ))n, such that every vertex in B has at least

2n/5 non-triangular neighbours in C and vice versa.

Proof. We first show that there are at most O(
√
ε n) vertices of degree at most

21n/50 in H (where H, the graph of non-triangular edges of G, was defined in the

proof of the previous claim). To this end we recall Inequality (6.8), which states

that e(H) = t(G) ≥ (1/4 − c√ε )n for some absolute constant c. Importantly, this

constant does not depend on δ, so we may choose δ to satisfy c
√
δ ≤ 1/100. Recall

that δ is an upper bound for ε, so we have c
√
ε ≤ 1/100.

Suppose that S is a set consisting of exactly 25c
√
ε n vertices of degree at most
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21n/50 in H. Then, similarly to the previous claim,

e(H) ≤ (n− |S|)2

4
+ |S|21n

50

=
n2

4
− |S|

(
4n

25
− |S|

4

)

<

(
1

4
− 2c
√
ε

)
n2,

a contradiction to Inequality (6.8). Therefore, there are at most O(
√
ε n) vertices

with degree at most 21n/50 in H.

Recall that every vertex in U has at least (1/2−O(ε1/4))n ≥ 2n/5 non-triangular

neighbours in W and vice versa. Here we implicitly assume that δ is small enough

to make this inequality true, and we shall do so throughout this proof.

Denote by X the set of vertices in V (G) \ (U ∪W ) whose degree in H is at least

21n/50. We note that no vertex in X has neighbours in both U and W . Indeed,

suppose that v ∈ X is adjacent to u ∈ U and w ∈ W . Since v is not adjacent to

any non-triangular neighbour of either u or w, it has at most O(ε1/4n) neighbours

in U and at most O(ε1/4n) neighbours in W , implying that degH(v) ≤ O(ε1/4n), a

contradiction to the assumption that degH(v) ≥ 21n/50.

Let Y be the set of vertices in X that are adjacent to vertices in U and, similarly,

let Z be the set of vertices in X that have neighbours in W . Then every vertex in

Y has at least 21/50n − O(ε1/4n) ≥ 2n/5 non-triangular neighbours in U and no

neighbours in W . In particular, since |U | ≤ n − |W | < 4n/5, any two vertices in

Y share a non-triangular neighbour in U , and hence Y is an independent set in G.

Denote B = Y ∪W and C = Z ∪U . Then B and C are independent sets such that

every vertex in B has at least 2n/5 non-triangular neighbours in C, and vice versa.

Furthermore, V (G)\(B∪C) is the set of vertices with fewer than 21n/50 neighbours

in H, so |V (G) \ (B ∪ C)| = O(
√
ε n), finishing the proof of Claim 6.22.

We can now finish the proof of Proposition 6.17. Let B and C be as in Claim 6.22.

Since every vertex in B ∪ C has at least 2n/5 non-triangular neighbours, it follows

from Observation 6.8 and the assumption that G is optimal that every vertex in G

has degree at least 2n/5 − 1. We conclude (similarly to the proof of Claim 6.22)

that no vertex in G has neighbours in both B and C. Indeed, suppose that some

v ∈ V (G) is adjacent to some u ∈ B and w ∈ C. Since u has at least 2n/5 non-

triangular neighbours in C, v is adjacent to at most |C| − 2n/5 vertices in C and,

similarly, to at most |B| − 2n/5 vertices in B. It follows that v has degree at most
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n/5, a contradiction.

Since no vertex in G is adjacent to a vertex in B and a vertex in C, we may add

all missing edges between B and C without creating new triangles. However, G is

an optimal graph, so in fact all edges between B and C are present in G. Again,

since vertices in B and C do not have common neighbours, all edges between B and

C are non-triangular.

We may assume that |B| ≥ |C|. Then |B| ≥ (1/2 − O(
√
ε ))n and hence ev-

ery vertex in C has non-triangular degree at least (1/2 − O(
√
ε ))n. Again, by

Observation 6.8, every vertex in G has degree at least (1/2 − O(
√
ε ))n. Since

B is an independent set, it follows that n − |B| ≥ (1/2 − O(
√
ε ))n. Therefore

|C| = |B ∪ C| − |B| ≥ (1/2−O(
√
ε ))n.

We are now done with the first assertion of Proposition 6.17, and the remaining

ones follow easily. Let A be the set of vertices outside of B ∪ C that are adjacent

to a vertex in B and, similarly, let D be the set of vertices outside of B ∪ C that

have a neighbour in C. Then {A,B,C,D} forms a partition of G, because a vertex

without neighbours in B ∪ C would have too small a degree. This establishes the

second assertion.

To prove the third assertion, we may assume that every vertex in A has a neigh-

bour in A: if some u ∈ A has no neighbours in A, then we may add all edges between

u and the vertices in B without creating new triangles and then reassign u to C.

Similarly, we may assume that every vertex in D has a neighbour in D.

By inspecting the degrees, any two vertices in A have a common neighbour in

B. Therefore, there cannot be any non-triangular edges with both ends in A or,

similarly, with both ends in D. It remains to check that every vertex in A ∪ D is

incident with at most O(
√
ε n) non-triangular edges. Let u ∈ A and let v ∈ A by a

neighbour of u. Since u and v have neighbours only in A∪D∪B and the degree of v is

at least (1/2−O(
√
ε ))n, it follows that u has at most |A∪D∪B|−(1/2−O(

√
ε ))n =

O(
√
ε n) non-triangular neighbours. The same holds for any vertex in D. This

establishes the fourth assertion and completes the proof of Proposition 6.17.

4.2 Completing the proof if ε is small

We now prove Proposition 6.18, which completes the proof of Theorem 6.4 in the

case where ε is small.

Proposition 6.18. There exists a constant κ > 0 with the property that if ε ≤ κ/n,

then G ∼= G(a, b, c) for some a, b, c.
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Proof. It follows from the assumptions on the sets A,B,C,D that |A∪D| = O(
√
ε n)

and that each vertex in A ∪ D is incident with at most O(
√
ε n) non-triangular

edges. Therefore the number of non-triangular edges with an end in A ∪ D is

O(εn2) = O(κn). We show that, in fact, there are no such edges.

Suppose that uv is a non-triangular edge with u ∈ A ∪ D. Without loss of

generality, we may assume that u ∈ A and v ∈ B ∪D. Observe that the neighbours

of u are not adjacent to v. Let G′ be the graph obtained by adding the edges

between v and the neighbours of u in A, removing the edges between u and A \ {u}
and also adding all missing edges between u and B. Then e(G′) ≥ e(G) and t(G′) ≥
t(G) + |B| −O(κn) > t(G), where the last inequality holds provided that we choose

κ small enough. However, this contradicts the optimality of G, so there cannot be

such an edge uv.

It is now easy to finish the proof. By what we have just proved, all the missing

edges with both ends in A∪D may be added without causing a non-triangular edge

to become triangular, and hence, since G is optimal, G[A∪D] is a clique. Similarly,

all possible edges between A and B and between D and C are present in G. We may

assume that |B| ≥ |C|. Remove the edges between D and C and add all possible

edges between D and B. The result graph G′ is isomorphic to G(|A ∪D|, |B|, |C|)
and satisfies |G′| = n, e(G′) ≥ e(G) and t(G′) ≥ t(G). However, G is optimal, so

we must have e(G′) = e(G) and t(G′) = t(G). Therefore, it must be the case that

D = ∅ or |B| = |C|. If D is empty, then G = G′ and we are done. Let us suppose

that |B| = |C|. Since e(G′) > n2/4, G′ is not bipartite, and hence |A ∪ D| ≥ 2.

Take any vertex w ∈ A ∪D. If we remove all edges between w and B, but add all

possible edges between w and C, then we obtain a new graph which has the same

number of edges, but more non-triangular edges than G. However, this contradicts

the assumption that G is optimal. Therefore, it must be the case that |B| > |C|,
and so we are done.

4.3 Sizes of A,B,C,D

In this subsection we prepare for the proof of Theorem 6.4 in the case where ε is

large. In particular, we obtain good bounds for the sizes of the sets A ∪D, B and

C.

Proposition 6.19. Let G and A,B,C,D satisfy the conclusions of Proposition 6.17
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and suppose that |B| ≥ |C| and that ε ≥ κ/n for some constant κ > 0. Then

|A ∪D| =
(√

2ε +Oκ(ε)
)
n,

|B| =
(

1

2
−Oκ(ε

3/4)

)
n,

|C| =
(

1

2
−
√

2ε +Oκ(ε
3/4)

)
n.

The proof is just a technical calculation, in which the main tool is the lower

bound on t(G) given by Inequality (6.7).

Proof. Denote a = |A ∪D|, b = |B| and c = |C| and write

a =
(√

2ε + α
)
n,

b =

(
1

2
− β

)
n,

c =

(
1

2
−
√

2ε + β − α
)
n,

where the quantities α and β are defined by these identities. We cannot assume that

α and β are positive, but we have −
√

2ε ≤ α ≤ O(
√
ε ), where the second inequality

comes from Proposition 6.17. Since there are at most O(εn2) non-triangular edges

with an end in A ∪D, we have

t(G) ≤ bc+O(εn2)

≤ (n− a)2

4
+O(εn2)

≤ n2

4
− an

2
+O(εn2).

Combining this with Inequality (6.7), which states that t(G) ≥
(

1/4−
√
ε/2 −O(1/n)

)
n2

, we get
1

4
−
√
ε

2
−Oκ(ε) ≤

t(G)

n2
≤ 1

4
− (
√

2ε + α)

2
+O(ε).

Therefore, α ≤ Oκ(ε). Using the fact that b ≥ c and that any vertex in A∪D sends

edges to only one of B and C, we obtain the following upper bound on the number

of edges in G:

e(G) ≤ b(n− b) +
a2

2
.
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Combining this with the definition e(G) = (1/4 + ε)n2, we get

1

4
+ ε ≤

(
1

2
− β

)(
1

2
+ β

)
+

(√
2ε + α

)2

2

=
1

4
− β2 + ε+ α

(√
2ε +

α

2

)
.

It follows that β2 ≤ α(
√

2ε +α/2). In particular, α ≥ 0 and β = Oκ(ε
3/4), implying

the assertions of Proposition 6.19.

4.4 Completing the proof if ε is large

We are now able to complete the proof of Theorem 6.4 under the assumption that

ε ≥ κ/n for some constant κ > 0. Here we will use the assumption that G is a

compressed graph.

Proposition 6.20. Let κ > 0 be a constant. If ε ≥ κ/n, then G ∼= G(a, b, c) for

some a, b, c.

The proof consists of two stages. In the first stage we use the bounds from

Proposition 6.19 to conclude that D is very small and that very few vertices in A

are incident with non-triangular edges. In the second stage we show that if D is non-

empty or if there exists a vertex in A with a non-triangular neighbour, then G can

be manipulated to obtain a graph with more edges and more non-triangular edges,

contradicting the assumption that G is optimal. It follows that G is isomorphic to

a graph G(a, b, c).

Proof of Proposition 6.20. We start by showing that the edges between B ∪D and

A∪C form an almost complete bipartite subgraph. We shall be using the estimates

on the size of the sets A ∪ D, B and C from Proposition 6.19. To be able to use

Proposition 6.19, we assume, without loss of generality, that |B| ≥ |C|. Note that κ

is an absolute constant (implicitly determined in Proposition 6.18). Thus, we may

remove the dependence on κ in the estimates of these sizes.

Claim 6.23. Every vertex in B∪D is adjacent to all but O(ε3/4n) vertices in A∪C.

Furthermore, |D| = O(ε3/4n).

Proof. The non-triangular degree of any vertex in C is at least |B|. Hence, by

Observation 6.8, every vertex in G has degree at least |B|−1. The vertices in B∪D
are not adjacent to any vertex in B. Since |B| ≥ (1/2 − O(ε3/4))n, it follows that
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every vertex in B∪D is adjacent to all but O(ε3/4n) vertices in V (G)\B = A∪C∪D.

Since there are no edges between B and D, |D| = O(ε3/4n).

Denote by T the set of triangular vertices in A (recall that a triangular vertex is

incident only with triangular edges) and let S = A \ T . We show that the vertices

in S have few neighbours in A.

Claim 6.24. Every vertex in S has O(ε3/4n) neighbours in A.

Proof. Let u ∈ S and let v be a non-triangular neighbour of u. Then v ∈ B ∪ D,

because there are no edges between A and C, and there are no non-triangular edges

with both ends in A. Recall that, by Claim 6.23, v is adjacent to all but O(ε3/4n)

vertices in A. Since uv is non-triangular, u and v have no common neighbours,

implying that u has O(ε3/4n) neighbours in A.

We conclude that almost all of the vertices in A are triangular.

Claim 6.25. |T | ≥ (
√

2ε −O(ε3/4))n2.

Proof. By removing the edges with both ends in A or both ends in D from G, we

remain with a bipartite graph, so (1/4 + ε)n2 = e(G) ≤ n2/4 + e(G[A]) + e(G[D]).

Since |D| = O(ε3/4n), we have e(G[D]) = O(ε3/2n2), and hence e(G[A]) ≥ (ε −
O(ε3/2))n2.

Claim 6.24 implies that e(G[A]) − e(G[T ]) ≤ O(|S|ε3/4n) ≤ O(|A|ε3/4n) ≤
O(ε5/4n2), where the rightmost inequality is a consequence of Proposition 6.19.

Therefore, e(G[T ]) ≥ (ε − O(ε5/4))n2, and so |T | ≥ (
√

2ε − O(ε3/4))n, as re-

quired.

Since G is compressed, T induces a clique and any two vertices in T have the

same neighbourhood outside of T . In particular, if a vertex v ∈ S is adjacent to a

vertex in T , then v is adjacent to all vertices in T . However, this cannot happen

since, by Claim 6.24, v has at most O(ε3/4n) neighbours in A, while, by Claim 6.25,

there are at least Ω(
√
ε n) vertices in T . Therefore, there are no edges between T

and S.

In the following claim we deduce that, in fact, all vertices in A are triangular.

The key observation is that a pair of adjacent vertices in S can be replaced by one

vertex in C and one in T , increasing both the number of edges and the number of

non-triangular edges.

Claim 6.26. The set S is empty.
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Proof. Suppose that S contains a vertex u. By Proposition 6.17, u has a neighbour

v ∈ A. Since there are no edges between T and S, we conclude that v ∈ S. In

particular, u and v have no neighbours in T . Now let H be the graph obtained from

G by removing the vertices u and v and adding new vertices x and y, where x is

joined by edges to all of B and y is joined to all of B∪T . It follows from Claim 6.23

to 6.25 that e(H) ≥ e(G) − O(ε3/4n) + (
√

2ε − O(ε3/4))n > e(G). Recall that, by

Proposition 6.17, the non-triangular degree of any vertex in A is at most O(
√
ε n),

implying that t(H) ≥ t(G) − O(
√
ε n) + |B| > t(G). Therefore, H has more edges

and more non-triangular edges than G, contradicting the optimality of G. Thus, S

is empty.

Similarly, we prove that D is empty. The trick here is to replace two adjacent

vertices in D by one vertex in C and one in A.

Claim 6.27. The set D is empty.

Proof. Suppose that D is non-empty, so we may pick adjacent vertices u, v ∈ D.

Consider the graph H, obtained by removing the vertices u and v and adding new

vertices x and y with x joined to all of B and y joined to all of A ∪ B. It follows

from the bounds given by Proposition 6.19 and Claim 6.23 that e(H) ≥ e(G) +

(
√

2ε − O(ε3/4))n > e(G). Moreover, since A = T is a clique of triangular vertices,

the addition of x and y does not destroy any non-triangular edges in G \ {u, v}.
Since u and v have at most O(

√
ε n) non-triangular neighbours, we have t(H) ≥

t(G)+(1/2−O(
√
ε ))n > t(G), contradicting the assumption that G is optimal.

Now the proof of Proposition 6.20 is complete. Indeed, we know from Claim 6.26

that A = T . This means that A induces a clique and that every vertex in A is

adjacent to every vertex in B. Therefore, G = G(|A|, |B|, |C|).

5 Middle range

In this section we prove Theorem 6.5, in which we consider the case where the graph

is neither close to being complete nor close to being complete bipartite. Out of the

three ranges, the middle range turns out to be the hardest to prove. One of the

main difficulties that arises here is that, unlike in the other two ranges, we cannot

directly conclude that the graph G has structure similar to that of G(a, b, c).

Theorem 6.5. For every δ > 0 there exists n0 such that the following holds. Let G be

a graph with n ≥ n0 vertices and e edges, where (1/4+δ)n2 ≤ e ≤ (1/2−δ)n2. Then

there exists a graph H = G(a, b, c) such that |H| = n, e(H) ≥ e and t(H) ≥ t(G).
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Fix δ > 0. Throughout this section we assume that G is a compressed and

optimal graph with n vertices and e edges, where (1/4 + δ)n2 ≤ e ≤ (1/2− δ)n2. As

in the rest of the chapter, the statements that we write down hold for sufficiently

large n. Moreover, since δ is fixed, the constants implied by big-O notation may

depend on δ.

We split the proof of Theorem 6.5 into four stages, as described by the four

following propositions. In the first stage we show that G has many triangular vertices

(that is, vertices that are incident only with triangular edges).

Proposition 6.28. G has Ω(n) triangular vertices.

In the second stage we conclude that G admits the following structure (see Fig-

ure 6.6). Although Proposition 6.29 gives much less information than Proposi-

tion 6.17 from Section 4, it still shows that G vaguely resembles a graph G(a, b, c).

Proposition 6.29. There exists a partition {A,B,C} of V (G) such that all parts

have size Ω(n) and the following properties are satisfied.

1. A is the set of triangular vertices in G, it spans a clique and its vertices are

adjacent to all of B and none of C.

2. B may be partitioned into O(1) sets of clones and a remainder consisting of

at most O(
√
n log n) vertices.

3. C may be partitioned into O(1) sets of clones, each having Ω(n) non-triangular

neighbours in B, and a remainder of size O(n1/3 log n).

In the third stage we show that the number of edges (and non-triangular edges)

in G is close to the number of edges (and non-triangular edges) in G(|A|, |B|, |C|).

Proposition 6.30. Let A,B,C be as in Proposition 6.29 and denote a = |A|, b =

|B|, c = |C|. Then e(G) = a2/2 + ab + bc + O(n7/4
√

log n ) and t(G) = bc +

O(n7/4
√

log n ).

In the final fourth stage we complete the proof of Theorem 6.5.

Proposition 6.31. G ∼= G(a, b, c) for some a, b, c.

Proof of Theorem 6.5. The proof is immediate from Propositions 6.28 to 6.31. The

only slight technicality is that when we replace a graph with at most (1/2 − δ)n2

edges by an optimal and compressed graph, the number of edges may increase and

exceed this bound. However, Lemma 6.13 implies that this condition is still satisfied

for a relaxed value of δ.
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Figure 6.6: The partition {A,B,C}

We now turn to the proofs of Propositions 6.28 to 6.31. We present them in

separate subsections.

5.1 Many triangular vertices

In this subsection we prove Proposition 6.28.

Proposition 6.28. G has Ω(n) triangular vertices.

The main ingredients of this proof are a somewhat unexpected application of

Lemma 6.13 and the assumption that G is compressed. First, we conclude from

Lemma 6.10 that G has a large clique. Then, we partition the graph into fairly

large independent sets of clones and a very dense part, using the fact that G is

compressed. It is then possible to conclude that only few of the vertices of the

clique are incident with non-triangular edges.

Proof of Proposition 6.28. Our first aim is to show that G has a clique of size at

least Ω(n). This can be done fairly easily, as shown in the proof of the following

claim.

Claim 6.32. G has a clique of size Ω(n).

Proof. By Lemma 6.10, there exists a good weighted subgraph H of G satisfying

|H| = |G| = n, e(H) ≥ e(G), t(H) ≥ t(G) (see Definition 6.9 for the definition of a
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good weighted graph). Let {K, {u, v}} be a partition of V (H) into a clique K and

an edge uv, which is the only non-triangular edge of H.

Let α be the sum of the weights of vertices in K and let m be the number of

vertices in K. Let β and γ be the weights of u and v and suppose that β ≥ γ. Note

that α + β + γ = n. By the Cauchy-Schwarz inequality, the contribution of the

vertices in K towards e(H) is maximised if all of these vertices have weight α/m.

Therefore this contribution does not exceed (α/m)2
(
m
2

)
= (1−1/m)α2/2. Moreover,

since no vertex is adjacent to both u and v, the contribution of the edges between

K and {u, v} towards e(H) is maximised when every vertex in K is adjacent to u,

but not v. Hence,

e(G) ≤ e(H) ≤
(

1− 1

m

)
α2

2
+ αβ + βγ. (6.9)

In particular, since βγ ≤ n2/4, we have e(G) ≤ n2/4 + αn. Recall that e(G) ≥
(1/4 + δ)n2. It follows that α ≥ δn.

Denote b = dβe, c = dγe and a = n−b−c and consider the graph F = G(a, b, c).

Note that t(G) ≤ t(H) = βγ ≤ bc = t(F ). Since G is optimal, it follows that

e(G) ≥ e(F ). Therefore,

e(G) ≥ e(F ) =

(
a

2

)
+ ab+ bc

≥ (α− 2)(α− 3)

2
+ (α− 2)β + βγ

≥ α2

2
+ αβ + βγ − 2.5n

=

(
1− 5n

α2

)
α2

2
+ αβ + βγ.

Comparing this with (6.9), we have m ≥ α2/(5n) ≥ δ2n/5. It follows that G has

a clique of size at least δ2n/5.

Recall that G is compressed. Hence, by Observation 6.15, every independent set

of size 5
√
n in G contains a set of clones of size

√
n .

We construct a set U ⊆ V (G) as follows. We start with U = ∅. At each stage,

if the complement U c = V (G) \ U contains an independent set I of size 5
√
n , then

I contains a set of clones of size at least
√
n . We add this set of clones to U and

continue until U c has no independent set of size 5
√
n . Observe that the resulting set

U is a disjoint union of sets of clones each of size at least
√
n , while the complement

U c has no independent set of size 5
√
n (see Figure 6.7).
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Figure 6.7: The sets U , W and K ′.

In the following claim we deduce from Lemma 6.13 that G[U c] is very dense.

Claim 6.33. G[U c] has O(n3/2) non-edges.

Proof. Since G[U c] has no independent set of size at least 5
√
n , every vertex in G

has at most 5
√
n non-triangular neighbours in U c. It follows that there are at most

5n3/2 non-triangular edges with at least one end in U c.

Let m denote the number of non-edges in G[U c]. By adding these edges to G we

obtain a graph G′ with n vertices and e(G)+m edges such that t(G′) ≥ t(G)−5n3/2.

It follows from Lemma 6.13 that m = O(n3/2).

Let K be a largest clique in G, so |K| = Ω(n) by Claim 6.32. Let K ′ = K \ U
and denote W = U c \K ′ (see Figure 6.7). Note that, since U contains no clique of

size greater than
√
n , we have |K ′| ≥ |K| − √n = Ω(n). In the following claim we

use the structure of U and Claim 6.33 to deduce that almost all vertices in K ′ are

triangular.

Claim 6.34. All but O(
√
n ) vertices in K ′ are triangular.

Proof. Since K ′ is a clique, any vertex in the complement V (G) \K ′ sends at most

one non-triangular edge to K ′. In fact, if u ∈ V (G) \ K ′ has a non-triangular

neighbour in K ′, then u has no other neighbours in K ′.

Denote by m the number of vertices in W that have a non-triangular neighbour

in K ′. Then the number of missing edges in G[U c] is at least m(|K ′| − 1) = Ω(mn).

From Claim 6.33 we conclude that m = O(
√
n ). Therefore, there are O(

√
n )

vertices in K ′ with a non-triangular neighbour in U c.

Finally, U is a union of at most
√
n sets of clones, and any one set of clones can

send non-triangular edges to at most one vertex in K ′. Therefore, there are at most
√
n vertices in K ′ that have a non-triangular neighbour in U .
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The proof of Proposition 6.28 is complete. Indeed, K ′ consists of Ω(n) vertices

and all but O(
√
n ) of them are triangular.

5.2 Structure

In this subsection we build on the fact that G has Ω(n) triangular vertices and

prove that, in terms of structure, G has some similarities with a graph G(a, b, c).

In particular, we prove that the vertices of G can be partitioned into three linearly

sized sets A,B,C such that A is a clique and all edges between A and B are present

in G, while all edges between A and C are missing. We do not yet prove that the

sets B,C are independent, but we show that both of them can be partitioned into a

small number of independent sets (see Figure 6.6). Our main tool in this subsection

is the assumption that G is compressed, and we also use Lemma 6.13.

Proposition 6.29. There exists a partition {A,B,C} of V (G) such that all parts

have size Ω(n) and the following properties are satisfied.

1. A is the set of triangular vertices in G, it spans a clique and its vertices are

adjacent to all of B and none of C.

2. B may be partitioned into O(1) sets of clones and a remainder consisting of

at most O(
√
n log n) vertices.

3. C may be partitioned into O(1) sets of clones, each having Ω(n) non-triangular

neighbours in B, and a remainder of size O(n1/3 log n).

Proof. Denote by A the set of triangular vertices in G. Since G is compressed, A

induces a clique and the vertices of A have the same neighbourhood outside of A.

Denote this neighbourhood by B and let C = V (G) \ (A ∪B). Property 1 follows.

Note that the graph G(a, b, c), where c = δn/2, b =
√
δ n and a = n − b − c,

has at least (1/2− δ)n2 edges and δ3/2n2/2 non-triangular edges. Hence, since G is

optimal and e(G) ≤ (1/2− δ)n2, it follows that t(G) = Ω(n2).

By Proposition 6.28 we have |A| = Ω(n). Note that there are no non-triangular

edges with both ends in A ∪ B, and so the number of non-triangular edges in G

is at most |C|n. Since t(G) = Ω(n2), it follows that |C| = Ω(n). We will deduce

that |B| = Ω(n) from a stronger statement that almost all vertices in C have Ω(n)

non-triangular neighbours in B.

Claim 6.35. All but O(1) vertices of C have Ω(n) non-triangular neighbours in B.
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Proof. Let c > 0 and k ∈ N be constants. Suppose that there is a set Z ⊆ C of size

k whose every vertex has at most cn non-triangular neighbours in B. Our aim is to

show that if c is sufficiently small and k is sufficiently large, then the existence of

such a set Z would lead to a contradiction.

Consider the graph G′, obtained from G by adding the edges between Z and A.

Then e(G′) = e(G) + k|A| and t(G′) ≥ t(G) − ckn −
(
k
2

)
≥ t(G) − 2ckn. Provided

that k is sufficiently large, Lemma 6.13 implies that t(G′) ≤ t(G)− ζk|A| for some

constant ζ > 0 that does not depend on c or k. Therefore, ζ|A| ≤ 2cn must

hold. However, we may choose c small enough to make this false, thus obtaining a

contradiction.

The previous claim provides us with a set C ′ ⊆ C such that |C \C ′| = O(1) and

every vertex in C ′ has Ω(n) non-triangular neighbours in B. The following claim

implies that C ′ may be partitioned into O(1) independent sets.

Claim 6.36. There exists a set S ⊆ B of size O(1) such that every vertex in C ′ has

a non-triangular neighbour in S.

Proof. We construct S = {u1, . . . , uk} by choosing the elements u1, . . . , uk ∈ B and

certain corresponding subsets I1, . . . , Ik ⊆ B in the following way. Suppose that

u1, . . . , uj and I1, . . . , Ij have been chosen, where j ≥ 0. Let Uj be the set of vertices

in C ′ that have a non-triangular neighbour in {u1, . . . , uj} (so, in particular, U0 = ∅).
If Uj = C ′, we stop the process. Otherwise, pick a vertex v ∈ C ′ \ Uj and consider

the set N consisting of the non-triangular neighbours of v in B. By the definition

of C ′, we have |N | = Ω(n). Moreover, since N is independent and G is compressed,

N contains a set of clones of size at least |N |/5. Denote this set of clones by Ij+1

and pick uj+1 ∈ Ij+1 arbitrarily.

It is clear that when the process terminates, every vertex in C ′ has a non-

triangular neighbour in the resulting set S. It remains to check that the process

stops after O(1) steps. Indeed, suppose that it ran for k steps. The sets I1, . . . , Ik

are pairwise disjoint and have size at least Ω(n) each, whence k = O(1).

The non-triangular neighbourhoods of the vertices in S cover C ′. Therefore,

C ′ can be partitioned into O(1) independent sets. Since G is compressed, each

independent set can be partitioned into O(log n) sets of clones, all but at most four

of which have size O(n1/3). By combining the sets of clones of size O(n1/3) into

one set, we get a partition of C ′ into O(1) sets of clones and a remainder of size

O(n1/3 log n). Note that, by definition, every vertex in C ′ has Ω(n) non-triangular
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neighbours in B. Now, throw all of the O(1) vertices of C \ C ′ into the remainder

to get a partition of C that satisfies Property 3.

It remains to prove Property 2. Partition C into sets Z,C ′′ where |Z| = O(n1/3 log n)

and C ′′ is a union of O(1) sets of clones. Let Y be the set of vertices in B that do not

have non-triangular neighbours in C ′′ and denote B′ = B \ Y . First, we will show

that B′ can be partitioned into O(1) independent sets. Indeed, B′ is covered by the

non-triangular neighbourhoods of vertices in C ′′, and each of them is an independent

set. Moreover, C ′′ is a union of O(1) sets of clones, and so there are O(1) distinct

such neighbourhoods. Second, we will prove that |Y | = O(
√
n log n).

Claim 6.37. |Y | = O(
√
n log n).

Proof. Recall that A is the set of triangular vertices in G. Since Y is disjoint from

A, every vertex in Y has a non-triangular neighbour, and that neighbour must be

in Z. That is, the non-triangular neighbourhoods of vertices in Z cover Y . Since Z

is a union of O(log n) sets of clones, Y can be partitioned into O(log n) independent

sets. In particular, Y contains an independent set I of size Ω(|Y |/ log n).

Let G′ be the graph obtained from G by adding all possible edges spanned by

|I|. Then e(G′) = e(G) +
(|I|

2

)
and t(G′) ≥ t(G) − |I||Z| ≥ t(G) − O(|I|n1/3 log n).

This is a contradiction to Lemma 6.13 unless
(|I|

2

)
= O(n) or

(|I|
2

)
= O(|I|n1/3 log n).

In either case |I| = O(
√
n ), and so |Y | = O(

√
n log n), as required.

The proof of Proposition 6.29 is now complete. We have already proved Proper-

ties 1 and 3 and that A,B,C are all of size Ω(n). To prove Property 2, recall that

B is partitioned into a set Y of size O(
√
n log n) and a set B′ which is a union of

O(1) independent sets. It follows from a similar argument as earlier that B′ can be

partitioned into O(1) sets of clones and a remainder of size O(n1/3 log n). Assigning

Y to this remainder gives the desired partition of B.

5.3 Sizes

In the previous subsection we proved that V (G) can be partitioned into sets A,B,C

that correspond to the three parts of the graph G(|A|, |B|, |C|). In this subsection

we consider the sizes of the sets A,B,C. We show that the number of edges (and

non-triangular edges) of G is very close to the number of edges (and non-triangular

edges) of G(|A|, |B|, |C|).

Proposition 6.30. Let A,B,C be as in Proposition 6.29 and denote a = |A|, b =

|B|, c = |C|. Then e(G) = a2/2 + ab + bc + O(n7/4
√

log n ) and t(G) = bc +

O(n7/4
√

log n ).
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In the proof of this proposition we revisit Füredi and Maleki’s [16] proof of

Theorem 6.2 which is an approximate version of our main theorem. In their proof,

Füredi and Maleki repeatedly apply Lemma 6.11, which eliminates one vertex at a

time from any independent set of size 3. Here, we will do the same thing, but we

will keep tight control on the independent sets to which we apply this lemma.

Proof of Proposition 6.30. Recall that by Proposition 6.29 both sets B and C can be

partitioned into O(1) sets of clones and a remainder of size O(
√
n log n). Let G′ be

the graph obtained by removing the edges incident with vertices in this remainder.

Then e(G′) ≥ e(G)−O(n3/2 log n) and t(G′) ≥ t(G)−O(n3/2 log n).

The following claim is a variation of Lemma 6.10. It allows us to approximate

G′ by a weighted subgraph whose intersection with C induces a clique.

Claim 6.38. There is a weighted subgraph H of G′ such that |H| = n, e(H) ≥ e(G′)

and t(H) ≥ t(G′), which has the following properties.

• At least two vertices in A are present in H. Moreover, with at most one

exception, the vertices in A that are present in H have weight 1.

• All vertices in B are present in H and have weight 1.

• The vertices in C that are present in H induce a clique.

Proof. We perform the following process to obtain the weighted graph H. Initially,

we set H to be G′ with every vertex having weight 1. Then we perform multiple

steps, during which we modify the weights of the vertices in A∪C (and remove some

of these vertices) so that, at any given time, A has at most one vertex with weight

not equal to 1. At each step we select vertices u ∈ A and v, w ∈ C. We take u to

be the unique vertex in A of weight not equal to 1, and if there is no such vertex,

then we take it to be an arbitrary vertex remaining in A. We take v and w to be

any pair of non-adjacent (in G′) vertices in C. If choosing u, v, w according to these

rules is impossible, then we terminate the process.

Suppose that we successfully selected the vertices u, v, w. They form an inde-

pendent set, and so by Lemma 6.11 it is possible to remove one or two of these

vertices and redistribute their weight on the remaining ones so that the new weights

are positive, the total weight does not change and e(H), t(H) do not decrease.

It is clear that this process terminates, because each step decreases the number

of vertices remaining in H. Let us consider the resulting weighted graph H. Since

the process terminated, either no vertices of A are present in H, or the remaining
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vertices of C induce a clique. We show that, in fact, at least two vertices remain in

A, and so the latter condition must hold.

Suppose that fewer than two vertices in A remain in H. Denote by m the size of

the largest clique that can be formed from vertices remaining in H. Since the vertex

set of G′ can be partitioned into A and O(1) independent sets, we have m = O(1).

Apply Lemma 6.10 to obtain a good weighted subgraph F of H, with xy being its

only non-triangular edge, such that |F | = n, e(F ) ≥ e(G′) and t(F ) ≥ t(G′). Let β

and γ be the weights of x and y in F and suppose that β ≥ γ. Then α = n− β − γ
is the sum of the weights of the other vertices in F . We have t(F ) = βγ and, as in

Inequality (6.9) from Claim 6.32, e(F ) ≤ (1− 1/m)α2/2 + αβ + βγ. It follows that

t(G) ≤ βγ +O(n3/2 log n) and e(G) ≤ α2/2 +αβ + βγ −Ω(n2). Consider the graph

G′′ = G(n−dβe−dγe, dβe, dγe). It is easy to check that t(G′′) ≥ t(G)−O(n3/2 log n)

and e(G′′) ≥ e(G)+Ω(n2). This is a contradiction to Lemma 6.13, since G is optimal.

Therefore, at least two vertices in A are present in H.

It follows that the set of vertices in C that are present in H induces a clique.

Hence, the weighted graph H satisfies the requirements of Claim 6.38.

Let H be a weighted graph as given by Claim 6.38, so in particular, e(H) ≥
e(G) − O(n3/2 log n) and t(H) ≥ t(G) − O(n3/2 log n). By Lemma 6.13, since G is

optimal,

e(H) = e(G) +O
(
n3/2 log n

)
,

t(H) = t(G) +O
(
n3/2 log n

)
.

(6.10)

We remark that these two lines express both upper and lower bounds for the quan-

tities e(H) and t(H). In the following claim we prove that, in fact, only one vertex

of C is present in H.

Claim 6.39. Exactly one vertex of C is present in H. Moreover, all but at most

O(n3/4
√

log n ) vertices in B are non-triangular neighbours of that vertex.

Proof. Write u1, . . . , um for the vertices of C that appear in H, and let N1, . . . , Nm

be their non-triangular neighbourhoods in B. Since the set {u1, . . . , um} forms a

clique, there are no edges between ui and Nj for i 6= j. In particular, the sets

N1, . . . , Nm are pairwise disjoint.

Let Z = B \ (N1∪ · · ·∪Nm). Since the intersection of H with A induces a clique

on at least two vertices and since all edges between B and the intersection of H

with A are present in H, the vertices in Z are not incident with any non-triangular

edges in H. We will show that |Z| = O(n3/4
√

log n ). Indeed, recall that B is
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the union of O(1) independent sets and a remainder of size at most O(
√
n log n).

Thus, provided that |Z| ≥ C
√
n log n for a sufficiently large constant C, there

exists an independent set I ⊆ Z of size Ω(|Z|). Consider the weighted graph H ′

obtained from H by adding the edges spanned by I. Then e(H ′) = e(H)+Ω(|Z|2) ≥
e(G) − O(n3/2 log n) + Ω(|Z|2) and t(H ′) = t(H) ≥ t(G) − O(n3/2 log n). It follows

from Lemma 6.13 that |Z| = O(n3/4
√

log n ).

Our aim is to prove that m = 1. We assume for contradiction that m ≥ 2. In

particular, since by Proposition 6.29 and the definition of G′, in G′ every vertex in C

is either isolated or has Ω(n) non-triangular neighbours in B, the vertices u1, . . . , um

have the latter property. In other words, |Ni| = Ω(n) for every i.

For each i, let γi denote the weight of ui in H. We will show that γi = Ω(n)

for every i. Indeed, fix any i. Denote by Hi the weighted graph obtained from H

by adding all edges spanned by Ni. Since Ni is an independent set in H, we have

e(Hi) ≥ e(G) + Ω(n2) and t(Hi) ≥ t(G) − |Ni|γi − O(n3/2 log n). By Lemma 6.13,

γi = Ω(n).

Write βi = |Ni|. Construct a weighted graph F , starting from H and carrying

out the following steps. Firstly, remove all edges with an end in Z. Secondly,

replace each set Ni by a vertex vi of weight βi. Finally, connect each vertex vi to

all of the vertices in A (that are present in H) as well as to ui and vj for every

j 6= i (see Figure 6.8). We have e(F ) ≥ e(H) − |Z|n ≥ e(G) − O(n7/4
√

log n ) and

t(F ) ≥ t(H) ≥ t(G)−O(n3/2 log n).

A

C

B
v1

u1

v2

u2

v3

u3

v4

u4

+λ

+λ

−λ

−λ

Z

O(n3/4
√

logn )

O(
√
n logn)

Figure 6.8: The graph F .

Pick any real λ such that |λ| ≤ min{β1, β2, γ1, γ2}. Let Fλ be the weighted graph

obtained from F by adding λ to the weights of u1 and v1 and subtracting λ from

the weights of u2 and v2. Clearly, |Fλ| = |F | = n and it is easy to check that

e(Fλ) = e(F ).
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If m ≥ 3, then the only non-triangular edges in F are uivi. Hence, in this case,

t(Fλ) = t(F )− (β1γ1 + β2γ2) + (β1 + λ)(γ1 + λ) + (β2 − λ)(γ2 − λ)

= t(F ) + (β1 + γ1 − β2 − γ2)λ+ 2λ2.

If β1 + γ1 ≥ β2 + γ2, then take λ = min{β1, γ1, β2, γ2}. Otherwise, take λ =

−min{β1, γ1, β2, γ2}. In either case, |λ| = Ω(n) and t(Fλ) ≥ t(F ) + Ω(n2) ≥ t(G) +

Ω(n2), contradicting Lemma 6.13.

This calculation is slightly different in the case when m = 2, because then we

have to account for the edge u1u2, which is also non-triangular. In this case

t(Fλ) = t(F )− (β1γ1 + β2γ2 + γ1γ2) + (β1 + λ)(γ1 + λ) + (β2 − λ)(γ2 − λ)

+ (γ1 + λ)(γ2 − λ)

= t(F ) + (β1 − β2)λ+ λ2.

We may reach a contradiction to Lemma 6.13 by choosing λ of the same sign as

β1− β2 and with |λ| = min{β1, β2, γ1, γ2}. We conclude that m = 1, completing the

proof of the claim.

Recall that, among the vertices in A that are present in H, at most one has

weight not equal to 1. In the following claim we show that this weight cannot be

very large.

Claim 6.40. The weight in H of any vertex in A is O(n3/4
√

log n ).

Proof. Let u be a vertex of A of maximal weight in H, and let ω be its weight.

Suppose that ω > 1, in which case all other vertices in A have weight 1 in H.

Replace the vertex u by a clique of size bωc whose vertices have weight ω/bωc
and are adjacent to all of (A \ {u})∪B and denote the resulting weighted graph by

H ′. We have to check the technical condition that the average weight of a vertex in

H ′ is at least 1. However, this can be easily verified, since the total weight of H ′ is

an integer and H ′ has at most one vertex whose weight is smaller than 1 (namely,

the only vertex of C that remains in H ′).

By replacing u with a clique, we create new edges inside the clique, and these

edges contribute
(bωc

2

)
(ω/bωc)2 = Ω(ω2) towards e(H ′). Therefore, we have t(H ′) =

t(H) ≥ t(G)−O(n3/2 log n) and e(H ′) = e(H)+Ω(ω2) ≥ e(G)−O(n3/2 log n)+Ω(ω2).

It follows from Lemma 6.13 that ω = O(n3/4
√

log n ).

106



Recall that a, b, c are the sizes of the sets A,B,C in the original graph G. Let

α, β, γ be the sums of weights (in H) of the vertices in these sets, summing over

vertices present in H. So, for example, β = b and γ is the weight of the single vertex

in C that is present in H. Clearly, α + γ = a + c, because both sides are equal to

n− b. Now, we use the properties of H that we have proved to get good bounds on

e(H) and t(H) in terms of α, β, γ.

Recall that the set A induces a clique in G, so its remainder induces a clique

in H. Combined with Claim 6.40, this implies that the contribution of the edges

within A to e(H) is α2/2 − O(n3/2 log n). By Claim 6.39, the set B contains an

independent set of size at least |B| −O(n3/4
√

log n ). Therefore, the contribution of

the edges within B to e(H) (and in particular to t(H)) is O(n7/4
√

log n ). Moreover,

Claim 6.39 implies that the edges between B and C contribute βγ−O(n7/4
√

log n )

to both e(H) and t(H). Putting this together, we get

e(H) = α2/2 + αβ + βγ +O
(
n7/4

√
log n

)

t(H) = βγ +O
(
n7/4

√
log n

)
.

(6.11)

Again, we remark that these are both upper and lower bounds for the quantities

e(H) and t(H). We deduce that α almost equals a and γ almost equals c.

Claim 6.41. α = a+O(n3/4
√

log n ) and γ = c+O(n3/4
√

log n ).

Proof. We can read the inequality α ≤ a + O(n3/4
√

log n ) off Claim 6.40. To get

the corresponding lower bound on α, we consider the quantity e(H)− t(H). On one

hand, the inequalities in (6.11) give

e(H)− t(H) = α2/2 + αβ +O
(
n7/4

√
log n

)
.

On the other hand, we can use the inequalities in (6.10) to get

e(H)− t(H) = e(G)− t(G) +O(n3/2 log n)

≥ a2/2 + ab+O(n3/2 log n),

where the latter inequality comes from the fact that the quantity e(G)− t(G) counts

the triangular edges in G, and all vertices in A are triangular. Recall that b = β.

Combining the two inequalities for e(H)− t(H) we get α ≥ a− O(n3/4
√

log n ), so

α = a + O(n3/4
√

log n ). To complete the proof of the claim, note that a + c =

α + γ.
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Proposition 6.30 follows from the last claim and the bounds given by (6.10) and

(6.11).

5.4 End of the proof

We are now ready to complete the proof of Theorem 6.5.

Proposition 6.31. G ∼= G(a, b, c) for some a, b, c.

We gradually get closer to proving that G ∼= G(a, b, c). We start by showing

that b is much bigger than c, which leads to the conclusion that C spans no non-

triangular edges. This implies that almost all possible edges between B and C are

present in G and are non-triangular, by Proposition 6.30. In fact, using the fact that

G is compressed, we deduce that there are large subsets of B and of C that span a

complete bipartite graph consisting of non-triangular edges. With some more effort,

using the optimality of G, we conclude that B and C themselves induce a complete

bipartite graph, thus completing the proof.

Proof of Proposition 6.31. Let {A,B,C} be the partition of V (G) given by Propo-

sition 6.29. As in the statement of Proposition 6.30, write a = |A|, b = |B|, c = |C|.
We start by showing that b is significantly larger than c.

Claim 6.42. We have b ≥ c+ Ω(n).

Proof. Suppose to the contrary that b ≤ c + o(n). Then we have n = a + b + c ≥
2b + a − o(n), and hence b ≤ (n − a + o(n))/2. Since a = Ω(n), we can conclude

that b ≤ n/2− Ω(n).

Consider the graph H = G(a, b, c). Proposition 6.30 implies that e(H) = e(G) +

O(n7/4
√

log n ) and t(H) = t(G) + O(n7/4
√

log n ). Consider also the graph H ′ =

G(a, b+d, c−d), where d = n1.999. Note that b+d ≤ n/2−Ω(n). Therefore, from the

expression e(H) =
(
a
2

)
+(n− b)b and the corresponding expression for e(H ′), we can

see that e(H ′) ≥ e(H) + Ω(dn) = e(G) + Ω(dn). Similarly, t(H ′) = (b+ d)(c− d) ≥
bc− o(dn), and so t(H ′) ≥ t(H)− o(dn) = t(G)− o(dn). However, this contradicts

Lemma 6.13. Therefore, b ≥ c+ Ω(n).

In the following claim we conclude that C spans no non-triangular edges.

Claim 6.43. There are no non-triangular edges with both ends in C.

Proof. By Proposition 6.30 there are bc+ o(n2) non-triangular edges in G, and each

one of them is incident with a vertex in C. Therefore, some vertex in C has at least
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b − o(n) non-triangular neighbours. Thus, by Observation 6.8, every vertex in C

has degree at least b− o(n), and so the sum of the degrees of any two vertices in C

is at least 2b − o(n) > b + c = |B ∪ C|, where the latter inequality comes from the

previous claim. Since the vertices in C have neighbours only in B ∪ C, it follows

that any pair of vertices in C have a common neighbour, and hence they cannot be

joined by a non-triangular edge.

Recall that by Proposition 6.29 both sets B and C can be partitioned into O(1)

sets of clones and a remainder of size O(
√
n log n). In such a partition of B consider

the sets of clones of size at least n9/10 and let B′ be their union. Similarly, let C ′

be the union of the sets of clones in the partition of C that have size at least n9/10

and denote Z = C \ C ′ and Y = B \ B′. Then |Y | = O(n9/10) and |Z| = O(n9/10).

We show that all possible edges between B′ and C ′ are present in G and are non-

triangular.

Claim 6.44. All possible edges between B′ and C ′ are present in G and are non-

triangular. In particular, B′ and C ′ are independent sets.

Proof. From the previous claim we know that every non-triangular edge in G has

one end in B and one end in C. Suppose that there exists a pair of vertices, one in

B′ and one in C ′, that are not joined by a non-triangular edge. Then there are two

sets of clones of size at least n9/10, one contained in B′ and the other in C ′, between

which there are no non-triangular edges. But then t(G) ≤ bc − n9/5, contradicting

Proposition 6.30.

In the following claim we obtain additional information about Y and Z, which

brings us closer to showing that B and C induce a complete bipartite graph.

Claim 6.45. There are no edges between B′ and Y and between C ′ and Z. Moreover,

every vertex in B has at least c− o(n) neighbours in C, and every vertex in C has

at least b− o(n) neighbours in B.

Proof. Any vertex in C ′ has at least |B′| = b − o(n) non-triangular neighbours,

so Observation 6.8 implies that every vertex in G has degree at least b − o(n).

Claim 6.42 implies that |C| + |B \ B′|, which does not exceed c + o(n), is smaller

than this quantity, and hence every vertex in C has a neighbour in B′. Therefore,

because all possible edges between B′ and C ′ are present in G and are non-triangular

(by Claim 6.44), there are no edges between C ′ and Z. In particular, every vertex

in C has at most o(n) neighbours in C, so it has at least b− o(n) neighbours in B.
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Pick any vertex u ∈ Y . Since u is not in A, u has a non-triangular neighbour

v ∈ C. We have just proved that v has at least b−o(n) neighbours in B′. Therefore,

u has at most o(n) neighbours in B. Now suppose that u is adjacent to a vertex

in B′. Then u has no neighbours in C ′. Hence, u has at most a + o(n) neighbours,

of which at most o(n) are non-triangular. However, any vertex of B′ has at least

a + c − o(n) neighbours and at least c − o(n) of them are non-triangular. This

contradicts Observation 6.8. Therefore, u has no neighbours in B′.

It remains to verify that every vertex in Y has at least c − o(n) neighbours in

C. Let us again consider u ∈ Y and denote by d the number of its neighbours in

C. Then the degree of u is at most a + d + o(n) and its non-triangular degree is

at most d. By Observation 6.8, applied to u and any vertex in B′, we know that

a+ d ≥ a+ c− o(n) or d ≥ c− o(n). In either case d ≥ c− o(n).

In the following claim we prove that no edges are spanned by Z. We use a

trick that we have used several times before, replacing a pair of adjacent vertices

in Z by copies of vertices in A and B′, increasing the number of both edges and

non-triangular edges.

Claim 6.46. The set Z is independent.

Proof. Suppose to the contrary that Z contains a pair of adjacent vertices u, v.

Then the non-triangular neighbours of u are all in B and they are not adjacent to

v. By Claim 6.45, v has b − o(n) neighbours in B, and hence u has at most o(n)

non-triangular neighbours. Likewise, v has at most o(n) non-triangular neighbours.

Consider the graph G′ obtained from G by removing u, v and adding new vertices

x and y, where x is joined by edges to all vertices in A ∪ B, and y is joined to all

vertices in B′. We have e(G′) ≥ e(G) + a− o(n) and t(G′) ≥ t(G) + b− o(n). This

contradicts the optimality of G, because a = Ω(n) and b = Ω(n).

A similar trick enables us to conclude that Y spans no edges. Here we replace

two adjacent vertices in Y by copies of vertices in A and B′.

Claim 6.47. The set Y is independent.

Proof. Suppose that there exists a pair of adjacent vertices u, v ∈ Y . Let G′ be the

graph obtained from G by removing u, v and adding new vertices x, y with x joined

to all of A ∪B′ and y joined to all of A ∪ C ′.
Let us compare e(G′) and t(G′) with e(G) and t(G). By Claim 6.44, there are no

edges in G between {u, v} and B′. Therefore, the removal of u, v removes at most

2(a+c+o(n)) edges. On the other hand, the addition of x, y creates 2a+b+c−o(n)
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new edges. Therefore, e(G′) ≥ e(G) + b− c− o(n) > e(G). Furthermore, since u, v

have at least c − o(n) neighbours in C each, there are at most o(n) vertices in C

that are adjacent to precisely one of u, v. As a result, u, v are incident with at

most o(n) non-triangular edges in G. Since the addition of x, y creates c− o(n) new

non-triangular edges, we have t(G′) ≥ t(G) + c− o(n) > t(G). This contradicts the

optimality of G, because c = Ω(n).

Proposition 6.31 easily follows from Claim 6.44 to 6.47. Indeed, these claims

together imply that B and C are independent sets in G. Therefore, if there were

any missing edges between B and C, we could add them to G without creating new

triangles. Since G is an optimal graph, all possible edges between B and C are

present. It follows that G ∼= G(|A|, |B|, |C|).

6 Almost complete

In this section we prove Theorem 6.6.

Theorem 6.6. There exist n0 and δ > 0 such that the following holds. Let G be a

graph with n ≥ n0 vertices and e edges, where e ≥ (1/2− δ)n2. Then there exists a

graph H = G(a, b, c) such that |H| = n, e(H) ≥ e and t(H) ≥ t(G).

The proof in this range is easier than in the other two ranges, though far from

immediate. We start by making the usual assumption that G is an optimal and com-

pressed graph, even though we do not use the full strength of the latter assumption:

we only need Condition 2 from Definition 6.14.

If very few (namely, 2n− 8 or fewer) edges are missing from G, then we directly

prove that G ∼= G(a, b, c) for some a, b, c. For the remaining range, we partition the

vertices of G, according to their degrees, into sets A,B,C with the aim of showing

that G ∼= G(|A|, |B|, |C|). We first prove that the sets have the correct orders of

magnitude using a rough lower bound on t(G). We are then able to prove better

estimates for the sizes of the sets, and, finally, we deduce that G has the required

structure.

Proof of Theorem 6.6. Fix a sufficiently small constant δ > 0 (whose value can be

determined from the proof) and let G be an optimal and compressed graph with

n vertices and
(
n
2

)
− εn2 edges, where 0 ≤ ε ≤ δ. We first consider the case

e(G) ≥
(
n
2

)
− (2n− 9).

Claim 6.48. If e(G) ≥
(
n
2

)
− (2n− 9), then G ∼= G(a, b, c) for some a, b, c.
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Proof. If G has no non-triangular edges, then it is a clique by optimality, so we

are done. We claim that G does not have two independent non-triangular edges.

Indeed, if uv and xy are such edges, then for any other vertex w one of the two

possible edges uw and vw is missing, as well as one of xw and yw. Therefore, G

has at least 2n − 8 missing edges, contradicting our assumption. Therefore, since

the triangle-free edges cannot form a triangle, they form a star. Let uv1, . . . , uvk

be the non-triangular edges. Then the set A = V (G) \ {u, v1, . . . , vk} is the set

of triangular vertices in G, so A induces a clique and all of the vertices in A have

the same neighbourhood in V (G) \ A. Now, there are two possibilities: either u is

adjacent to all of A, or u is not adjacent to any vertex in A. In the former case,

there are no edges between A and {u1, . . . , uk}, and so G ∼= G(|A|, 1, k). In the latter

case, optimality of G implies that all possible edges between A and {u1, . . . , uk} are

present in G, and so G ∼= G(|A|, k, 1).

From this point onwards we assume that e(G) ≤
(
n
2

)
− (2n − 8). In particular,

ε ≥ (2 − o(1))/n. We wish to prove that G is isomorphic to the graph G(a, b, c)

for some parameters a, b, c. To get some idea on how large these parameters should

be, we observe that a ≈ n, because the number of missing edges is small. Now,

the number of missing edges, ac +
(
b
2

)
+
(
c
2

)
, can be reasonably approximated by

cn + b2/2. Subject to b, c being non-negative reals such that cn + b2/2 ≥ εn, the

quantity bc is maximised when b =
√

2ε/3 n, c = (2ε/3)n. Therefore, we expect G

to be isomorphic to G(a, b, c) with b ≈
√

2ε/3 n and c ≈ (2ε/3)n. We can use this

conclusion to get a lower bound on t(G).

Claim 6.49. t(G) = Ω(ε3/2n2).

Proof. Let G′ = G(a, b, c), where b = b
√

2ε/3 nc, c = b(2ε/3)nc and a = n− b− c.
There at most cn+ b2/2 ≤ εn edges missing from G′, so t(G′) ≥ t(G). We now find

a lower bound for t(G′) by a simple computation, but we have to be careful with

rounding errors.

We have εn2 ≥ 2n − 9, implying that (2ε/3)n > 1, and hence c = b(2ε/3)nc =

Ω(εn). Similarly, b = Ω(
√
ε n). It follows that t(G′) = bc = Ω(ε3/2n2). Since G is

optimal, we have t(G) ≥ t(G′) = Ω(ε3/2n2).

We now define three sets A,B,C ⊆ V (G) that correspond to the three parts of

a graph G(a, b, c). Let C be the set of vertices of degree at most 3n/4, let B be

the set of vertices in V (G) \ C that have a non-triangular neighbour in C, and let

A = V (G) \ (B ∪ C). Since any two vertices in A ∪ B have at least n/2 common

neighbours, there are no non-triangular edges with both ends in A ∪ B. Therefore,
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all vertices in A are triangular, so A induces a clique and its vertices have the same

neighbourhood in V (G) \ A.

The next step is to obtain tight bounds for the sizes of A,B,C. First, we

determine the order of magnitude of |B| and |C|.

Claim 6.50. |B| = Θ(
√
ε n) and |C| = Θ(εn). Moreover, every vertex of B is an

end of Ω(
√
ε n) missing edges.

Proof. By definition, every vertex in C is an end of at least n/4 non-edges. Since

there are εn2 non-edges in total, we have |C| = O(εn). We know from the previous

claim that there are at least Ω(ε3/2n2) non-triangular edges. All of these edges have

at least one end in C, and so some vertex in C has at least Ω(
√
ε n) non-triangular

neighbours. Therefore, by Observation 6.8, every vertex in G has at least Ω(
√
ε n)

neighbours.

Pick any v ∈ B. By the definition of B, v has a non-triangular neighbour

u ∈ C. This means that v is not adjacent to any neighbours of u, and so v is an

end of at least Ω(
√
ε n) non-edges. Therefore, |B| = O(

√
ε n). Moreover, since

every non-triangular edge has both ends in C, or one in B and one in C, we have

|B||C|+|C|2/2 ≥ Ω(ε3/2n2), which implies that |B| = Ω(
√
ε n) and |C| = Ω(εn).

An immediate consequence of the previous claim is that |A| = (1 − O(
√
ε ))n.

Recall that all vertices in A have the same neighbourhood in V (G)\A. In particular,

each vertex in B ∪C is adjacent either to all vertices in A or to none of them. Since

the vertices in B have degree at least 3n/4, they are all adjacent to all of A, and,

similarly, there are no edges between A and C. We can use this fact to give a better

upper bound on |C|.

Claim 6.51. There exists a constant ξ > 0 such that |C| ≤ (1− ξ)εn.

Proof. Every vertex in B is an end of Ω(
√
ε n) missing edges and |B| = Θ(

√
ε n),

so there are Ω(εn2) missing edges with an end in B. Since all edges between A

and C are missing, we have (1 − O(
√
ε ))n|C| + Ω(εn2) ≤ εn2. Therefore, |C| ≤

(1 − Ω(1))εn/(1 − O(
√
ε )), and the claim follows provided that ε is sufficiently

small.

It is now possible to accurately relate the sizes of B and C. Write |C| = γεn,

where Ω(1) = γ ≤ 1− ξ. Define β =
√

2(1− γ) and note that β = Θ(1).

Claim 6.52. |B| = β
√
ε n + O(εn). Moreover, there are at least |B||C| − O(ε2n2)

non-triangular edges between B and C.
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Proof. Let G′ be the graph G(a, b, c), where c = |C|, b = bβ√ε nc and a = n− b− c.
It is easy to see that b2/2+cn ≤ εn2. In particular, we have e(G′) ≥

(
n
2

)
−εn2 = e(G).

Therefore, since G is optimal, t(G) ≥ t(G′) = bc.

Let us come back to the graph G. Since every non-triangular edge has an end

in C, some vertex in C has at least b non-triangular neighbours. It follows from

Observation 6.8 that every vertex in G has degree at least b − 1. Moreover, since

vertices in C are adjacent only to vertices inB∪C, we have |B| ≥ b−c−1 = b−O(εn).

Every vertex in B has a non-triangular neighbour, and therefore is an end of at

least b− 1 missing edges. Hence, there are at least |B|(b− 1)/2 missing edges with

an end in B. Since there are no edges between A and C, we have

1

2
|B|(b− 1) +

(
1−O(

√
ε )
)
cn ≤ εn2 ≤ 1

2
b2 + cn+O(

√
ε n),

where the latter inequality follows from the definition of b. It follows that |B|b ≤
b2 + O(

√
ε cn), and hence |B| ≤ b + O(εn). To finish the proof, observe that

t(G) ≥ bc = |B||C| − O(ε2n2) and recall that the non-triangular edges of G are

either spanned by C (there are O(ε2n2) such edges) or they have one end in B and

the other in C.

A standard trick of replacing two vertices by copies of other vertices, which

we have been using throughout the chapter, allows us to conclude that C is an

independent set.

Claim 6.53. The set C is independent. Moreover, every vertex in C is adjacent to

all but at most O(εn) vertices in B.

Proof. The second conclusion of Claim 6.52 implies that some vertex in C has at

least |B| −O(εn) non-triangular neighbours in B. As a consequence, B contains an

independent set I of size |B|−O(εn). Moreover, Observation 6.8 implies that every

vertex in C is adjacent to all but at most O(εn) vertices in B ∪ C.

Suppose that C contains a pair of adjacent vertices u, v. Let G′ be the graph

obtained from G by removing the vertices u and v and adding new vertices x and

y where x is adjacent to all of A ∪ B, and y is adjacent to all of I. The removal

of u and v decreases the total number of edges by at most 2(|B|+ |C|) = O(
√
ε n),

while the addition of x and y increases this number by at least |A| = (1−O(
√
ε ))n.

Therefore, e(G′) > e(G). Moreover, since u and v are adjacent, they do not form

non-triangular edges with their common neighbours. Hence, u and v have at most

O(εn) non-triangular neighbours in total. On the other hand, the addition of x and
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y adds |I| = Ω(
√
ε n) non-triangular edges. Therefore, t(G′) > t(G), a contradiction

to the optimality of G.

Finally, we prove that B is an independent set.

Claim 6.54. The set B is independent.

Proof. Suppose that u, v ∈ B are adjacent. There are at most |C| non-triangular

edges with an end in {u, v}, because every vertex can only be a non-triangular

neighbour of at most one of u and v. Moreover, by definition, every vertex in B

has a non-triangular neighbour. Let w ∈ C be a non-triangular neighbour of u.

Since the edge uw is non-triangular, it follows that u is not adjacent to any of the

neighbours of w. By Claim 6.53, w is adjacent to all but at most O(εn) vertices in

B. Therefore, u has at most O(εn) neighbours in B and, likewise, so does v.

Let G′ be the graph obtained by replacing u and v with new vertices x and y

where x is adjacent to all of A ∪ C and y is adjacent to all of (A ∪ B) \ {u, v}. We

have t(G′) ≥ t(G) and e(G′) ≥ e(G) + |B| − 2− 2|C| −O(εn) > e(G), contradicting

the optimality of G. Therefore,

We have proved that B and C are independent, A is complete, and its vertices

are adjacent to all of B and none of C. We may add any missing edges between B

and C without creating new triangles, so by the optimality of G, there are in fact

no missing edges between B and C. Therefore, G is isomorphic to G(|A|, |B|, |C|),
completing the proof of Theorem 6.6.

7 Concluding remarks

We note that we have not fully resolved Conjecture 6.1.

Conjecture 6.1 (Füredi and Maleki [16]). Let n and e > bn2/4c be integers and let

G be an n-vertex graph with e edges that minimises the number of triangular edges.

Then G is isomorphic to a subgraph of a graph G(a, b, c) for some a, b, c.

Theorem 6.3 shows that the minimum number of triangular edges among n-

vertex graphs with e is attained by (a subgraph of) a graph G(a, b, c). However, we

have not shown that such graphs are the only minimisers. Nevertheless, we believe

that this fact can be proved (for sufficiently large n) by retracing our proofs. In any

case, we are only able to prove the conjecture for sufficiently large n, and it would

be interesting to extend our result to work for all n.
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We have not specified explicitly how large n should be in order for our proof to

work, mainly because, due to the complexity of the proof, it is quite hard to find

such an explicit bound. Nevertheless, we expect this bound to be ‘reasonably small’:

say, much smaller than a bound that may arise from the use of the regularity lemma,

because the inequalities we need to hold are polynomial in n.

The following question arises from Conjecture 6.1, by considering edges on Kr

for r ≥ 4. To simplify the notation, for any graph H and an edge e of some other

graph G, we say that e is an H-edge if it is contained in a subgraph of G isomorphic

to H.

Question 6.55. What is the smallest number of Kr-edges that a graph with n ver-

tices and e edges may have? Which graphs with n vertices and e edges minimise this

quantity?

It seems reasonable to believe that the extremal examples are analogues of graphs

G(a, b, c), namely, they may be formed by adding a clique to one of the parts of a

complete (r − 1)-partite graph with n vertices.

There is another natural generalisation, where we consider odd cycles instead of

cliques.

Question 6.56. What is the smallest number of C2k+1-edges that a graph with n

vertices and e edges may have? Which graphs minimise this quantity?

It turns out that the case k ≥ 2 is quite different from k = 1 (that is, where

the odd cycle is a triangle). Erdős, Faudree and Rousseau [13] proved that, for

any fixed k ≥ 2, any graph with n vertices and bn2/4c + 1 edges has at least

11n2/144 +O(n) C2k+1-edges. In contrast, the number of triangular edges can be as

small as 2bn/2c+ 1, as mentioned in the introduction. So, the jump in the number

of C2k+1-edges (for k ≥ 2) is very sharp, while the jump in the number of triangular

edges is much smoother.

In the same paper, Erdős, Faudree and Rousseau conjectured a stronger state-

ment: they conjectured that, for any fixed k = 2, any graph with n vertices and

bn2/4c+1 edges has at least 2n2/9+O(n) C2k+1-edges. This bound can be attained

by (a subgraph of) the union of a complete graph on roughly 2n/3 vertices and a

balanced complete bipartite graph on the remaining vertices. However, an example

by Füredi and Maleki [16] shows that the conjecture is false: they constructed n-

vertex graphs with bn2/4c+ 1 edges and (0.213 . . .+o(1))n2 C5-edges. The example

is somewhat similar to a graph G(a, b, c): here we have four sets A,B,C,D such that

A induces a clique and all possible A−B, B−C and C−D edges are present. The
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C −D edges are not C5-edges, but all other edges are. The aforementioned bound

is obtained by optimising the sizes of A,B,C,D. Füredi and Maleki also calculated,

asymptotically, the minimum possible number of C2k+1-edges (for k ≥ 2) in n-vertex

graphs with e edges, where e = γn2 for any fixed constant 1/4 < γ < 1/2. Their

findings provided supporting evidence that the conjecture of Erdős, Faudree and

Rousseau should be true for k ≥ 3.

Very recently, more progress on Question 6.56 was made by Grzesik, Hu and

Volec [31]. For any fixed k ≥ 2, they obtained asymptotically sharp bounds for

the smallest possible number of C2k+1-edges in a graph with n vertices and at least

bn2/4c + 1 edges, using the method of flag algebras. In particular, they almost

confirmed the conjecture of Erdős, Faudree and Rousseau for k ≥ 3 (with an error

term of o(n2) instead of O(n)) and proved that the construction of Füredi and Maleki

is asymptotically best for k = 2.

We believe that the method of Grzesik, Hu and Volec should be sufficient to give

the exact smallest number of C2k+1-edges in a graph with n vertices and e edges, for

any fixed k ≥ 2, provided that n is sufficiently large. Furthermore, their stability

result should be sufficient to establish that, for sufficiently large n, the construction

described earlier is the unique extremal construction. However, Grzesik, Hu and

Volec do not claim these results in their paper and many technical details would have

to be checked to make sure that these results could indeed be proved. Answering

these questions without the assumption that n is large is an interesting problem,

which is still open.

Finally, all aforementioned problems are special cases of the following very gen-

eral question.

Question 6.57. Fix any graph F . What is the smallest possible number of F -edges

in a graph with n vertices and e edges? What are the extremal examples?

Füredi and Maleki [15] calculated this minimum, asymptotically, for 3-chromatic

graphs F and for e = γn2 where γ is fixed and satisfies 1/4 < γ < 1/2. For any

other F , this problems is wide open. Finally, we note that it is possible to go even

further and generalise the problem to the context of hypergraphs.
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CHAPTER 7

Directed hypergraphs and sparse Ramsey

theory

1 Introduction

When does a graph G admit an orientation such that every out-degree is at most

k? An obvious necessary condition is that |E(H)| ≤ k|V (H)| for every subgraph

H. Indeed, suppose that G has such an orientation and let H be a subgraph of G.

In H the sum of out-degrees of the vertices equals the number of edges. Moreover,

each vertex contributes at most k to this sum, giving the condition. Hakimi [33]

observed that this condition is in fact sufficient.

Proposition 7.1 (Hakimi [33]). Let G be a graph and k ≥ 0 an integer. Then G

admits an orientation such that every vertex has out-degree at most k if and only if

all subgraphs H ⊂ G satisfy |E(H)| ≤ k|V (H)|.

In fact, Hakimi proved a stronger result that determines, for any fixed graph G,

all possible out-degree sequences that can be obtained by giving G an orientation.

Proposition 7.1, which is a special case of Hakimi’s result, is a simple consequence

of Hall’s marriage theorem.

What about hypergraphs? Suppose that an r-uniform hypergraph G is given an

orientation, by which we mean that for each edge e one of the possible r! orderings

of the vertices in e is chosen. The ordering chosen for a particular edge e is called

the orientation of e. Note that if r = 2 then this coincides with the usual definition

of graph orientation. We will often denote an orientation of G by D(G) and the

corresponding orientation of an edge e by D(e).

Given an orientation D(G), a vertex v and an index i ∈ [r] = {1, 2, . . . , r} we

define the i-degree of v, written di(v), to be the number of edges e such that v is in

the i-th position of D(e). For example, if r = 2 then d1(v) is the out-degree of v.

119



When does an r-uniform hypergraph G admit an orientation such that the 1-

degree of each vertex is at most k? Again, an obvious necessary condition is that

|E(H)| ≤ k|V (H)| for every subgraph H ⊂ G. Caro and Hansberg showed that this

condition is sufficient.

Theorem 7.2 (Caro and Hansberg [3]). Let G be an r-uniform hypergraph and

k ≥ 0 an integer. Then G admits an orientation such that d1(v) ≤ k for all vertices

v if and only if all subgraphs H ⊂ G satisfy |E(H)| ≤ k|V (H)|.

Caro and Hansberg proved this result by constructing a suitable maximal flow

on H, and a simple proof via Hall’s marriage theorem is also possible.

Now, in contrast to the situation for graphs, for hypergraphs there is a sensible

notion of degree for sets of multiple vertices. For example, given an orientation

D(G) and a pair of vertices u, v, we can define d12(u, v) to be the number of edges

e such that u and v (in some order) are in the first two positions of D(e). So, if

V = [5] and E = {(4, 5, 1), (4, 1, 3), (1, 4, 2)}, then d12(1, 4) = 2.

More generally, for a p-set of vertices A = {v1, . . . , vp} ⊂ V and a p-set of indices

I ⊂ [r], the I-degree of A, denoted by dI(A), is the number of edges e such that

the elements of D(e) in positions labeled by I are v1, . . . , vp in some order. More

formally, dI(A) is the number of edges e such that if we write D(e) = (x1, . . . , xr)

then {xi : i ∈ I} is exactly the set A.

There is also an equally natural variant of this notion where the mutual order

of v1, . . . , vp is important. However, the types of questions examined by Caro and

Hansberg and by us turn out to be not very interesting with this alternative defi-

nition of degree. Therefore, in this chapter we mainly consider ‘unordered’ degrees,

but we give a brief analysis of the notion of ‘ordered’ degrees in Section 5.

Caro and Hansberg asked if a similar result to their Theorem 7.2 can be found

for degrees of multiple vertices.

Question 7.3 (Caro and Hansberg [3]). Fix integers k ≥ 0 and 1 ≤ p ≤ r. Which

r-uniform hypergraphs G admit an orientation such that d[p](A) ≤ k holds for every

p-set of vertices A?

Again there is an obvious necessary condition: if G has such an orientation then

for each family of p-sets U ⊂ V (G)(p) at most k|U | edges e satisfy e(p) ⊂ U (here

we write X(p) for the family of all p-subsets of X). Indeed, given U , every e with

e(p) ⊂ U contributes 1 to the sum
∑

A∈U d[p](A), and this sum cannot exceed k|U |.
It turns out that Question 7.3 can be answered in a fairly simple way: just like

in the earlier similar scenarios, an application of Hall’s marriage theorem shows that
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the aforementioned necessary condition is sufficient. We give this simple proof in

Section 6. However, the story does not end here. Caro and Hansberg’s interest in

Theorem 7.2 and in Question 7.3 was mainly to answer questions of the following

type. When does an r-uniform hypergraph G admit an orientation such that for

every vertex v there exists some i ∈ [r] such that di(v) ≤ k?

It is once again easy to obtain a necessary condition: such an orientation would

partition the vertices of G into sets V1, . . . , Vr where each v is assigned to some Vi

with i satisfying di(v) ≤ k. Theorem 7.2 applied to the induced subgraphs G[Vi]

gives a necessary condition: |E(H)| ≤ k|V (H)| for all subgraphs H ⊂ G[Vi] and all

i. Caro and Hansberg proved that this condition is sufficient.

Theorem 7.4 (Caro and Hansberg [3]). Let G be an r-uniform hypergraph and

k ≥ 0 an integer. Then the following statements are equivalent:

• H admits an orientation such that for each vertex v some i ∈ [r] satisfies

di(v) ≤ k

• V (G) can be partitioned into r sets V1, . . . , Vr such that for each j and each

U ⊂ Vj there are at most k|U | edges contained in U .

They also examined a similar natural question for degrees of multiple vertices.

When can an r-uniform hypergraph G be given an orientation such that for any p-set

of vertices A there is some p-set I ⊂ [r] such that dI(A) = 0? Such an orientation

would partition V (p) into
(
r
p

)
sets WI , I ∈ [r](p), where each A ∈ V (p) is thrown into

some WI with dI(A) = 0. For any I and any edge e the p-set of vertices that are in

positions labeled by I in D(e) must not belong to WI . So there are no edges whose

p-sets all belong to a single WI , giving a necessary condition. Caro and Hansberg

asked if, similarly to the case p = 1, this condition is sufficient.

Question 7.5 (Caro and Hansberg [3]). Let 1 ≤ p ≤ r be integers and G an r-

uniform hypergraph. Suppose that V (G)(p) can be coloured with R =
(
r
p

)
colours

in such a way that there does not exist an edge whose p-subsets all have the same

colour. Must G admit an orientation such that for any p-set of vertices A there is

some p-set I ⊂ [r] such that dI(A) = 0?

The main aim of this chapter is to show that the answer to Question 7.5 is

positive for r much larger than p, but negative in general.

Theorem 7.6. For every integer p ≥ 1 there exists a constant r0 = r0(p) such that

the answer to Question 7.5 is yes whenever r ≥ r0. However, the answer is no for

(r, p) = (4, 2).
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Here is a very brief overview of our proof. When r is large we prove that every

function from [r](p) to N(p) satisfies a certain property, which we call the fixed inter-

section property. We then use a simple counting argument to deduce that in this

case the answer to Question 7.5 is positive. On the other hand, when (r, p) = (4, 2),

we reduce Question 7.5 to a question about the existence of a graph which satisfies

a certain Ramsey property but does not satisfy another Ramsey property. Finally,

we use a new amalgamation-type technique to construct such a graph.

The structure of this chapter is as follows. In Section 2 we make a few impor-

tant definitions and give a more detailed overview of the proof of Theorem 7.6. In

Section 3 we prove our main theorem in the case where r is large. In Section 4 we

construct a graph whose existence implies a negative answer to Question 7.5 when

(r, p) = (4, 2). Finally, in Section 6 we suggest some open problems.

2 Overview of the proof

It turns out that the following notion is crucial to understanding Question 7.5.

Definition 7.7. Let 1 ≤ p ≤ n be integers and f : [n](p) → [n](p) a function.

We say that f fixes an intersection if there exist distinct x, y ∈ [n](p) such that

|f(x) ∩ f(y)| = |x ∩ y|. Moreover, if every nonconstant function f : [n](p) → [n](p)

fixes an intersection then we say that [n](p) has the fixed intersection property.

The connection between the fixed intersection property and our problem is as

follows. Let G be an r-uniform hypergraph with an
(
r
p

)
-colouring of V (G)(p) such

that there does not exist and edge e with e(p) monochromatic. Let us label the

colours by elements of [r](p). Our aim is to give an orientation to every edge e such

that for all A ∈ e(p) of colour c(A) ∈ [r](p), the set of vertices in positions indexed

by c(A) in the orientation of e does not equal A.

Let us focus our attention on a single edge e. We may label the vertices of e

by 1, . . . , r. The restriction of the colouring to e(p) gives a non-constant function

c : [r](p) → [r](p). Therefore, if [r](p) has the fixed intersection property, then there

exist distinct A,B ∈ [r](p) such that |c(A) ∩ c(B)| = |A ∩ B|. Let π be a random

orientation of e, where each one of the possible r! orientations is chosen with equal

probability. We have

P
[
π(A) = c(A) for some A ∈ [r](p)

]
≤

∑

A∈[r](p)

P [π(A) = c(A)]

= 1
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and the inequality is strict unless the events ‘π(A) = c(A)’, A ∈ [r](p), are disjoint.

However, if there exist distinct A,B ∈ [r](p) with |c(A) ∩ c(B)| = |A ∩B|, then it is

possible to have π(A ∩ B) = c(A) ∩ c(B), π(A \ B) = c(A) \ c(B) and π(B \ A) =

c(B) \ c(A), in which case π(A) = c(A) and π(B) = c(B) happen at the same time.

Therefore, if p, r are such that [r](p) has the fixed intersection property, then with

positive probability we have π(A) 6= c(A) for all A ∈ [r](p). Any such π gives the

desired orientation for e.

We have proved the following statement.

Proposition 7.8. The answer to Question 7.5 is yes for any choice of integers

r ≥ p ≥ 1 such that [r](p) has the fixed intersection property.

Our aim now is to understand when [n](p) has the fixed intersection property.

It is not difficult to see that [2p](p) does not have it for any p ≥ 2. This can be

demonstrated by choosing y = [p], ȳ = {p + 1, . . . , 2p} and defining f : [2p](p) →
[2p](p) by

f(x) =




y if x = y or x = ȳ

ȳ otherwise.

This f is non-constant and does not fix an intersection. On the other hand, in

Section 3 we prove that, for any fixed p, [n](p) has the fixed intersection property for

sufficiently large n.

Theorem 7.9. For every integer p ≥ 1 there exists a constant n0 = n0(p) such that

if n ≥ n0 then [n](p) has the fixed intersection property.

We prove Theorem 7.9 by a repeated application of Ramsey’s theorem. As an

immediate corollary we get one half of our main theorem.

Corollary 7.10. The answer to Question 7.5 is positive if r is sufficiently large,

given p.

We conjecture that n = 2p ≥ 4 is actually the only case where [n](p) does not

have the fixed intersection property. A positive answer to this conjecture would give

a more precise version of our main result. However, we state this conjecture mainly

because we find it interesting on its own.

Conjecture 7.11. Let n, p be positive integers. If n > 2p, then [n](p) has the fixed

intersection property.
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What if [n](p) does not have the fixed intersection property? The simplest such

case is n = 4, p = 2. The main part of this chapter is devoted to showing how the

trivial failure of the fixed intersection property of [4](2) can be ‘lifted’ to a failure of

Question 7.5 for the case r = 4, p = 2.

Theorem 7.12. There exists a 4-uniform hypergraph H satisfying:

(a) there exists a 6-colouring of V (H)(2) such that H does not have monochromatic

edges

(b) for every orientation of H there is a pair of vertices u, v such that dI(u, v) > 0

for all I ∈ [4](2).

In particular, the answer to Question 7.5 is negative for r = 4, p = 2.

This theorem completes our main result. For its proof we obtain the 4-uniform

hypergraph H from a graph with certain Ramsey properties, using the observation

that the elements of V (H)(2) can be treated as edges of the complete graph on

V (H). Our work relies on a new version of the amalgamation technique, which is a

well-known tool in sparse (structural) Ramsey theory.

3 Fixed intersection property of [n](p) for n large

Here we prove Theorem 7.9 which says that for any fixed p if n is sufficiently large

then [n](p) has the fixed intersection property. First, we extend the definition of the

fixed intersection property to slightly greater generality.

Definition 7.13. Let p ≥ 1 be an integer and S, T sets. We say that a function

f : S(p) → T (p) fixes an intersection if there exist distinct x, y ∈ S(p) such that

|f(x)∩f(y)| = |x∩y|. Moreover, we say that S(p) has the fixed intersection property

if every non-constant function f : S(p) → S(p) fixes an intersection.

We can now describe our strategy. First, we use Ramsey’s theorem to show that

N(p) has the fixed intersection property. Next, we use compactness to deduce that

[n](p) also has this property for sufficiently large n.

We start with a technical lemma.

Lemma 7.14. Let f : S(p) → N(p) be a non-constant function where S is a subset

of N and p is a positive integer. If there exists a set M ⊂ S of size at least 2p − 1

such that f is constant on M (p), then f fixes an intersection.
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Proof. Suppose for contradiction that f does not fix an intersection. Note that

M 6= S since f is non-constant. This allows us to define i0 = min(S \M). We will

show that, in fact, f is constant on M
(p)
1 where M1 = M ∪ {i0}.

Take any x ∈M (p)
1 of the form x = x′∪{i0} with x′ ∈M (p−1). We define a = f(y)

for any y ∈M (p) and consider two cases: we have either f(x) = a or |f(x)∩a| ≤ p−1.

In the latter case we can choose y ∈ M (p) such that |x′ ∩ y| = |f(x) ∩ a| (this is

possible because |M | ≥ 2p− 1). However, then |x ∩ y| = |x′ ∩ y| = |f(x) ∩ f(y)|, so

f fixes an intersection, which contradicts our initial assumption. We conclude that

f(x) = a and so f is constant on M
(p)
1 .

We repeat this argument to obtain a possibly infinite chain of sets M1 ⊂ M2 ⊂
M3 ⊂ · · · whose union is S and such that f is constant on M

(p)
i for all i. This

contradicts the assumption that f is non-constant on S(p) and so we are done.

We use this lemma to achieve our first goal.

Theorem 7.15. For any positive integer p, N(p) has the fixed intersection property.

Proof. We use induction on p. It is clear that the theorem holds for p = 1, so it is

enough to consider the case p ≥ 2. Let f : N(p) → N(p) be a non-constant function.

Since N can be reordered without having any impact on the problem, we are free

to choose the value to which f maps [p], say, f([p]) = [p]. Now, we define a finite

colouring of N(p) by setting c(x) = f(x) ∩ [p], x ∈ N(p), where subsets of [p] are the

colours. Ramsey’s theorem tells us that there exists an infinite set M ⊂ N such that

c is constant on M (p). Say, c(x) = a ⊂ [p] for all x ∈M (p).

If a = ∅ then we pick an arbitrary x ∈ (M \ [p])(p). In this case |x ∩ [p]| = 0 =

|f(x) ∩ f([p])|, so f fixes an intersection. If a = [p] then f(x) = [p] for all x ∈M (p)

and we are done by Lemma 7.14. It remains to consider the case where a is a proper

subset of [p]. We write s = |a| and note that 1 ≤ s ≤ p− 1. For any fixed z ∈M (s)

we define a function f ∗ : (M \ z)(p−s) → (N \ a)(p−s) by setting f ∗(x′) = f(x′ ∪ z) \ a
for all x′ ∈ (M \ z)(p−s). Now, either f is constant on M (p), in which case we are

done by Lemma 7.14, or f is non-constant on M (p) and we can choose z so that f ∗ is

also non-constant. Then, by the induction hypothesis, |f ∗(x′)∩f ∗(y′)| = |x′∩y′| for

some distinct x′, y′ ∈ (M \z)(p−s) and so |f(x′∪z)∩f(y′∪z)| = |f ∗(x′)∩f ∗(y′)|+s =

|x′ ∩ y′|+ |z| = |(x′ ∪ z) ∩ (y′ ∪ z)|.

A compactness argument extracts the result for finite domains.

Corollary 7.16. For any positive integer p there exists an integer n ≥ p + 1 such

that every non-constant function f : [n](p) → N(p) fixes an intersection.
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Proof. Suppose that there exists a value for p for which this statement is not true.

Then for any integer n ≥ p+1 there exists a non-constant function fn : [n](p) → N(p)

that does not fix an intersection. Trivially, for any fixed n and any s ≥ p the sets

fn(x), where x ranges over all p-subsets of [s], cover at most p
(
s
p

)
elements of N.

Therefore, after reordering N if necessary we can achieve that for all n and for all

x ∈ N(p) the set fn(x) only contains integers that are less than or equal to p
(

maxx
p

)
.

The point here is that for any s ≥ p there are only finitely many possibilities for fn

on elements of [s](p).

We define f : N(n) → N(n) as follows. By the pigeonhole principle, there exists an

infinite set of indices Sp+1 ⊂ N such that the functions fn, indexed by n ∈ Sp+1, are

identical on [p+1](p). We define f on [p+1](p) to be the same as any fn with n ∈ Sp+1.

Now, there is an infinite set Sp+2 ⊂ Sp+1 such that the functions fn indexed by Sp+2

agree on [p+2](p). We extend the definition of f to [p+2](p) by making it be the same

as any fn with n ∈ Sp+2. By repeating this process indefinitely we obtain a function

f : N(n) → N(n) with the property that for every s ≥ p there exists an index n(s) such

that f is the same as fn(s) on [s](p). In particular, f is not constant since if it were

then fn(2p−1) would be constant on [2p− 1](p), which is impossible by Lemma 7.14.

By Theorem 7.15, there exist distinct x, y ∈ N(p) such that |f(x) ∩ f(y)| = |x ∩ y|.
But x, y ∈ [s](p) for some s and we have |fn(s)(x) ∩ fn(s)(y)| = |x ∩ y|. This means

that fn(s) fixes an intersection, which contradicts our initial assumptions.

We get Theorem 7.9 as an immediate corollary.

Theorem 7.9. For every integer p ≥ 1 there exists a constant n0 = n0(p) such that

if n ≥ n0 then [n](p) has the fixed intersection property.

4 Sparse Ramsey type counterexample

4.1 Overview of the construction

In light of Conjecture 7.11 and Proposition 7.8, we seek p ≥ 2 such that Question

7.5 has a negative answer when r = 2p. It turns out that p = 2 works. We recall

the exact statement that we prove.

Theorem 7.12. There exists a 4-uniform hypergraph H satisfying:

(a) there exists a 6-colouring of V (H)(2) such that H does not have monochromatic

edges
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(b) for every orientation of H there is a pair of vertices u, v such that dI(u, v) > 0

for all I ∈ [4](2).

In particular, the answer to Question 7.5 is negative for r = 4, p = 2.

A useful idea here is to consider the elements elements of V (H)(2) as the edges

of the complete graph on vertices V (H). It allows us to deduce Theorem 7.12 from

a statement about graphs rather than hypergraphs.

Let G be a graph. We can form a 4-uniform hypergraph H by taking V (H) =

V (G) and E(H) = {A ∈ V (G)(4) : A(2) ⊂ E(G)}. In other words, the edges of

H are the 4-cliques of G. With this setup, property (a) translates to the condition

that G admits a 6-edge-colouring without monochromatic 4-cliques. We now seek a

condition that would guarantee (b). Suppose (b) is false. Then there exists an edge-

colouring c : E(G) → [4](2) such that dc(e)(e) = 0 for all e ∈ E(G). Restricting to

any 4-clique A of G, this induces a function cA : V (A)(2) → [4](2) with the property

that there exists a bijection σ : V (A)→ [4] such that cA({u, v}) 6= {σ(u), σ(v)} for

all {u, v} ∈ V (A)(2). We know that such σ can exist only if cA fixes an intersection.

Therefore, to ensure (b), it is enough to require that for every edge-colouring of

G with colours [4](2) there is a 4-clique A ⊂ G such that the induced colouring

V (A)(2) → [4](2) does not fix an intersection. The following definition describes such

a function as a 6-colouring of the edges of a 4-clique.

Definition 7.17. Take six colours and partition them into three pairs. Call two

colours opposing if they are in the same pair. Let A be a 4-clique in a graph G

whose edges are coloured with these six colours. We say that A is special if there

is a pair of opposing colours c1, c2 such that A consists of a 4-cycle of colour c1 and

two independent edges of colour c2.

We will prove the following result, which immediately implies Theorem 7.12.

Lemma 7.18. There exists a graph G satisfying:

(a) it is possible to colour E(G) with six colours without forming a monochromatic

4-clique

(b) it is not possible to colour E(G) with six colours without forming a monochro-

matic or a special 4-clique.

Proof of Theorem 7.12 (assuming Lemma 7.18). LetG be a graph as in Lemma 7.18

and label the six colours by distinct elements of [4](2) in such a way that {{1, 2}, {3, 4}},
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{{1, 3}, {2, 4}}, {{1, 4}, {2, 3}} are the pairs of opposite colours. We define a 4-

uniform hypergraph H on the same set of vertices as G, where we take a 4-set

A ⊂ V (G) as an edge of H if A spans a clique in G. Condition (a) of Theorem 7.12

follows directly from the correspond condition of Lemma 7.18, and so it remains

to establish Condition (b). Assume for contradiction that H admits an orienta-

tion such that for every pair of vertices u, v there exists a set I ∈ [4](2) such that

dI(u, v) = 0. This gives a colouring c : V (H)(2) → [4](2) (which maps each pair {u, v}
to an arbitrary corresponding set I), whose restriction to E(G) is a 6-colouring of

E(G). By Condition (b) of Lemma 7.18, there exists a 4-clique in G which is ei-

ther monochromatic or special. Let {v1, v2, v3, v4} be such a clique. It cannot be

monochromatic, since in every ordering of {v1, v2, v3, v4} every pair of positions is

occupied by a pair of vertices. Thus, the clique has to be special. Hence, we may

assume that in the orientation that {v1, v2, v3, v4} gets from H the pairs {v1, v2},
{v3, v4} do not take positions {1, 2}, while all other pairs of vertices do not take the

positions {3, 4}. However, this is impossible – either by simple case analysis or by

our earlier observations regarding functions that fix an intersection.

4.2 Amalgamation

The proof of Lemma 7.18 is based on a new amalgamation-type method. Amalga-

mation technique (also known in literature as partite construction) was introduced

by Nešetřil and Rödl [50–52]. In this subsection we review a basic form of this

technique and apply it to prove a few classical results which we will later use as

tools.

Suppose that we are interested in a certain Ramsey property for graphs. For

example, we may be interested in graphs G that are c-edge-Ramsey for H, meaning

that every colouring of E(G) with c colours produces a monochromatic copy of H.

Or, if we replace edge colourings by vertex colourings, then we have the property

of a graph being c-vertex-Ramsey for H. Whichever Ramsey property we choose,

intuitively we think that if a graph G has that property, then G is ‘dense’. A typical

problem in sparse Ramsey theory is to construct graphs that are ‘dense’ in this

sense but ‘sparse’ in some other sense. Amalgamation is useful for constructing

such graphs.

As a concrete example, let us construct a graph G with the following two prop-

erties, where k, c are fixed positive integers with k ≥ 2:

• G is c-vertex-Ramsey for Kk−1; we call this property D
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• G does not contain a clique on k vertices; we call this property S.

For this construction we fix a large integer t and consider t-partite graphs (in fact,

G itself will be t-partite). Moreover, whenever we mention t-partite graphs, we

implicitly assume that the vertex classes are labelled 1 through t.

A key idea is to consider the following weaker versions of the property D for

t-partite graphs. Let F be a t-partite graph. For any i ∈ {0, . . . , t} we say that a

colouring of V (F ) is i-simple if for every j ∈ {i + 1, . . . , t} all vertices in the jth

vertex class have the same colour. We say that F has property Di if every i-simple

colouring of V (F ) with c colours produces a monochromatic clique on k vertices.

We note that Dt is exactly the same property as D.

Now, our strategy is to construct t-partite graphs G0, . . . , Gt that all have prop-

erty S and such that Gi has property Di for every i. If we are successful then we

can simply take G to be Gt. Constructing the starting graph G0 is straightforward.

Indeed, we can take G0 to consist of disjoint copies of Kk−1 with the property that

for every k − 1 vertex classes there exists a copy of Kk−1 that intersects them all.

Provided that t is greater than c(k−2), which we are free to assume, every 0-simple

colouring of V (G0) with c colours produces at least k− 1 vertex classes that get the

same colour and so there must be a monochromatic copy of Kk−1. Therefore, G0

has property D0 and it also has property S by construction.

Suppose that for some i ∈ {1, . . . , t} we have constructed a t-partite graph Gi−1

satisfying properties S and Di−1. We denote the ith vertex class of Gi−1 by V and

take a new set W whose size is much bigger than that of V . We take
(|W |
|V |
)

disjoint

copies of Gi−1 and label them as GA
i−1 where A runs over all |V | element subsets of

W . We construct Gi by gluing these copies of Gi−1 at the ith vertex class: more

precisely, for every A we identify the ith vertex class of GA
i−1 with the set A. This

produces a t-partite graph Gi whose ith vertex class is W and whose every other

vertex class is a disjoint union of
(|W |
|V |
)

copies of the corresponding vertex class of

Gi−1. To see that Gi has property S, let us assume that C ⊂ V (Gi) is a clique on k

vertices. Since at most one vertex of C belongs to the ith vertex class of Gi, there

is a vertex v ∈ C which is in another vertex class. Such v belongs to a unique copy

of Gi−1, say GA
i−1. Since C is a clique and all of the neighbours of v are in GA

i−1,

the whole clique C belongs to GA
i−1. However, this contradicts the assumption that

Gi−1 satisfies property S. So no such C exists.

It remains to check that Gi has property Di. Consider any i-simple colouring of

V (Gi) with c colours. Provided that the size of W exceeds (|V | − 1)c, which we

are free to assume, there must be a monochromatic |V | element set B ⊂ W . Now,
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the restriction of the colouring to GB
i−1 is an (i − 1)-simple colouring of a graph

which is isomorphic to Gi−1. As a result, there must be a monochromatic copy of

Kk−1. We conclude that Gi has properties S and Di and hence we are done with the

construction of G.

We now list a few classical results that can be proved by amalgamation technique.

These results will be our main technical tools in the proof of Lemma 7.18.

Lemma 7.19. Let k, c be positive integers with k ≥ 2 and H a graph that does not

contain a clique on k vertices. Then there exists a graph G satisfying

• G is c-vertex-Ramsey for H

• G does not contain a clique on k vertices.

Lemma 7.20. Let k, b, c be positive integers with k ≥ 2 and suppose that H is a

graph that is not b-edge-Ramsey for Kk. Then there exists a graph G satisfying

• G is c-vertex-Ramsey for H

• G is not b-edge-Ramsey for Kk.

Lemma 7.21. Let k, c be positive integers with k ≥ 2 and suppose that H is a graph

that does not contain a clique on k vertices. Then there exists a graph G satisfying

• G is c-edge-Ramsey for H

• G does not contain a clique on k vertices.

We sketch the proofs for completeness. Lemmas 7.19 and 7.21 are completely

standard [41]. Lemma 7.20 is less well-known but its proof is no more difficult than

that of Lemma 7.19.

Proof of Lemma 7.19. We run the construction described earlier in this subsection,

the only difference being that now G0 consists of disjoint copies of H rather than

Kk−1.

Proof of Lemma 7.20. We run the same construction as in Lemma 7.19. We have

to check that the final graph Gt is not b-edge-Ramsey for Kk. It is clear that G0 is

not b-edge-Ramsey for Kk, so it suffices to prove that if Gi−1 is not b-edge-Ramsey

for Kk then neither is Gi.

Let ω be a colouring of E(Gi−1) with b colours that does not produce a monochro-

matic Kk. By construction, Gi can be partitioned into edge-disjoint copies of Gi−1 in
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a natural way, and so ω naturally extends to a colouring of the edges of Gi. Suppose

that C ⊂ V (Gi) is a monochromatic clique on k vertices. Then some vertex v ∈ C
does not belong to the ith vertex class of Gi and so v belongs to a unique copy of

Gi−1, say GA
i−1. Since C is a clique, it must all belong to GA

i−1 but this contradicts

the assumption that ω does not produce a monochromatic Kk in Gi−1. Therefore,

no such C exists.

The proof of Lemma 7.21 is somewhat more complicated. For this proof we need

the following technical proposition.

Proposition 7.22. Let G be a bipartite graph with vertex classes X, Y and let c be

a positive integer. Then there exists a bipartite graph H with vertex classes X ′, Y ′

such that every colouring of E(H) with c colours produces a monochromatic induced

copy of G. Moreover, in that copy of G, the vertex class corresponding to X is

contained in X ′ and the vertex class corresponding to Y is contained in Y ′.

Proof. Choose a large number n and define H to have vertex classes X ′ = Xn, Y ′ =

Y n and edges E(G)n; that is, we join (x1, . . . , xn) ∈ X ′, (y1, . . . , yn) ∈ Y ′ by an

edge if x1y1, . . . , xnyn are edges in G. Suppose that the edges of H are coloured

with c colours. Provided that n is sufficiently large, it follows from the Hales-Jewett

theorem [34] that E(G)n contains a monochromatic combinatorial line L. We may

assume without loss of generality that L = {(e, . . . , e, fl+1, . . . , fn) : e ∈ E(G)}
for some 1 ≤ l ≤ n and some fixed edges fl+1, . . . , fn. Let us write, for every

l + 1 ≤ i ≤ n, fi = aibi where ai ∈ X and bi ∈ Y . Moreover, let us define sets

A = {(x, . . . , x, al+1, . . . , an) : x ∈ X} ,
B = {(y, . . . , y, bl+1, . . . , bn) : y ∈ Y } .

Clearly, H induces a copy of G on A∪B. Moreover, L is precisely the set of edges of

H spanned by A∪B. Therefore, that induced copy of G is monochromatic. Finally,

we have A ⊂ X ′ and B ⊂ Y ′.

Proof of Lemma 7.21. Once again we start by fixing a large integer t. We consider

t-partite graphs with the vertex classes labelled 1 through t. In this proof, we will

always respect the labels of the vertex classes. In particular, if G′, G′′ are graphs

with labelled vertex classes, then we say that G′′ contains G′ if it is possible to

embed G′ into G′′ in a way that preserves these labels. We list all
(
t
2

)
pairs (i, j)

with 1 ≤ i < j ≤ t in an arbitrary fixed order (i1, j1), . . . , (i(t
2)
, j(t

2)
).
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Let G be a t-partite graph. We say that a colouring of the edges of G is n-simple

if, for all m with n + 1 ≤ m ≤
(
t
2

)
, all edges between the imth and the jmth vertex

classes have the same colour. We say that G has property Dn if every n-simple

colouring of E(G) with c colours produces a monochromatic copy of H. So, our aim

is to find a graph G which does not contain a clique on k vertices but which has

property D(t
2)

.

Our strategy is to construct t-partite graphs G0, . . . , G(t
2)

which do not contain

a clique on k vertices and such that, for all n, Gn has property Dn. Having achieved

this, we take G to be G(t
2)

. We take the starting graph G0 to be a union of disjoint

copies of H such that for every choice of |H| vertex classes of G0 there exists a

copy of H that intersects them all. Provided that the parameter t was chosen to

be sufficiently large, namely, at least as large than the c-colour Ramsey number for

a clique on |H| vertices, every 0-simple colouring of E(G) with c colours produces

a monochromatic copy of H. Moreover, G0 trivially does not contain a clique on k

vertices.

Now, suppose that for some 1 ≤ n ≤
(
t
2

)
we have a t-partite graph Gn−1 with

the desired properties. Let X and Y be the inth and jnth vertex classes of Gn−1,

and let H = Gn−1[X ∪ Y ] be the bipartite graph induced by Gn−1 on X ∪ Y . By

Proposition 7.22 there exists a bipartite graph F , with vertex classes X ′ and Y ′,

such that every colouring of E(F ) with c colours produces a monochromatic induced

copy of H such that the vertex classes corresponding to X, Y are contained in X ′, Y ′,

respectively.

This is how we construct Gn. First, we take F as above and declare that Gn

induces F on the union of its inth and jnth vertex classes. In particular, these vertex

classes of Gn are exactly the sets X ′, Y ′, respectively. Let H be the family of all

induced copies of H in F , with vertex classes corresponding to X, Y contained in

X ′, Y ′, respectively. Now, we take |H| disjoint copies of Gn−1, labelled GA
n−1 where

A ∈ H, and glue them to F by identifying the graph induced by the union of the

inth and jnth vertex classes of GA
n−1 with A.

It is easy to see that Gn has property Dn. Indeed, it follows from the choice of F

that given any n-simple colouring of E(Gn) with c colours there exist a monochro-

matic A ∈ H. The restriction of this colouring to GA
n−1 is an (n−1)-simple colouring,

and so there exists a monochromatic induced copy of H.

It remains to check that Gn does not contain a clique on k vertices. If k = 2,

then Gn−1 is empty and so Gn is empty. We now suppose that k ≥ 3 and that

C ⊂ V (Gn) is a clique on k vertices. Then there exists a vertex v ∈ C that does

not belong to the inth and jnth vertex classes of Gn. There exists a unique A such
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that v belongs to GA
n−1 and, since C is a clique, all of C belongs to GA

n−1. However,

then Gn−1 contains a clique on k vertices, which contradicts our assumption.

4.3 Proof of Lemma 7.18

In this subsection we prove Lemma 7.18. Our proof uses a new amalgamation-type

method. The main novelty is that, instead of working with t-partite graphs, we base

our construction on graphs whose vertices are partitioned into sets V1, . . . , Vt that

span sparse subgraphs. In exchange, we ensure that the structure of the cross-edges

is simple. More precisely, we work with blowups of a fixed graph.

Definition 7.23. Let G be a graph on n vertices, labelled 1 through n. Given an

n-tuple of graphs F = (F1, . . . , Fn), we define the F-blowup of G, denoted G(F), to

be the graph obtained by the following procedure. First, we take graphs F1, . . . , Fn

on disjoint vertex sets. Then, we add all possible edges between Fi and Fj for all i, j

that are adjacent in G; we do not add any edges between Fi and Fj for i, j that are

not adjacent. If i, j are the endpoints of an edge e ∈ E(G), then the edges added

between Fi and Fj are called e-cross-edges of G(F).

1

3

2

4

F1

F2

F3

F4

Figure 7.1: Construction of blowup.

The structure of the proof is as follows. We fix a graph Ĝ on n vertices which

has certain properties. Then, we consider the F -blowup of Ĝ, where F is an n-tuple

of fairly simple graphs. We keep replacing graphs in F by bigger (but still sparse)

graphs until eventually the blowup Ĝ(F) satisfies some properties that we need.

The following technical lemma is the tool that allows us to replace the graphs in

F by bigger graphs, two at a time, in a way that meaningfully affects the blowup

Ĝ(F).

Definition 7.24. Let G,H be graphs. The join of G and H, denoted G+H, is the

graph obtained by taking G and H on disjoint vertex sets and adding all possible

edges between G and H. In other words, G+H = K2(G,H). The edges in G+H

that have one endpoint in G and one in H are called cross-edges.
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Proposition 7.25. Let k and s be positive integers and suppose G0 and H0 are

graphs that do not contain Ks. Then there exist graphs G and H satisfying

(i) G and H do not contain Ks, and

(ii) every colouring of the cross-edges of G+H with k colours produces a copy of

G0 +H0 with G0 ⊂ G, H0 ⊂ H whose cross-edges all have the same colour.

Proof. By Lemma 7.19, there exists a graph H that is k-vertex-Ramsey for H0 but

contains no copies of Ks. There also exists a graph G that is k|H|-vertex-Ramsey

for G0 but contains no copies of Ks.

Let c by a colouring of the cross-edges of G+H with colours 1, . . . , k. It induces

a vertex-colouring cG : V (G) → [k]V (H) where, for every x ∈ V (G), the value of

cG(x) is the function which assigns to every y ∈ V (H) the colour c(xy). By our

choice of G, there exists a copy of G0 in G which is monochromatic with respect to

cG. That is, the colour of any cross-edge of G0 +H (where G0 on the left stands for

the aforementioned copy of G0 in G) depends only on its endpoint in H and not on

the one in G0. We define a vertex colouring cH : V (H)→ [k] by letting each vertex

of H have the colour of any edge joining it to G0. By our choice of H, there exists

a copy of H0 in H that is monochromatic under cH , which means exactly that all

cross-edges of G0 +H0 have the same colour.

We now have the technical tools needed to prove Lemma 7.18. We recall the

statement of this lemma and then prove it.

Lemma 7.18. There exists a graph G satisfying:

(a) it is possible to colour E(G) with six colours without forming a monochromatic

4-clique

(b) it is not possible to colour E(G) with six colours without forming a monochro-

matic or a special 4-clique.

Proof. Let Ĝ be a fixed graph. At the moment Ĝ can be any graph, but as the proof

builds up it will become clear what properties Ĝ needs to satisfy. Let the vertices

of Ĝ be labelled 1 through n, where n is the order of Ĝ. We enumerate the edges of

Ĝ in any fixed order e1, . . . , em.

Lemma 7.21 gives us a graph F which is 6-edge-Ramsey for K3 and which does

not contain a K4. We define F0 to be the n-tuple (F, . . . , F ), consisting of n copies

of F . We construct further n-tuples F1, . . . ,Fm by considering the edges of Ĝ in

the predefined order and at each step carrying out the following procedure. Suppose
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that we have constructed the n-tuple Fi−1 = (F1, . . . , Fn), where 1 ≤ i ≤ m. We

consider the edge ei and write ei = uv. By Proposition 7.25, there exist graphs

F ′, F ′′ satisfying

• F ′ and F ′′ contain no copies of K4, and

• whenever the cross-edges of F ′+F ′′ are coloured with six colours, we can find

a copy of Fu in F ′ and a copy of Fv in F ′′ such that all cross-edges of Fu + Fv

have the same colour.

We replace Fu by F ′ and Fv by F ′′ to obtain the new n-tuple Fi. We run this

procedure for i = 1, . . . ,m until we obtain the n-tuple Fm. We define G = Ĝ(Fm).

Our aim now is to choose Ĝ such that G has the desired properties.

Let c be a colouring of E(G) with six colours. By construction of G, there

exists a copy of Ĝ(Fm−1) such that only one colour is used for the em-cross-edges

of Ĝ(Fm−1). Similarly, this copy of Ĝ(Fm−1) contains a copy of Ĝ(Fm−2) in which

only one colour is used for the em−1-cross-edges (and the same still holds for the

em-cross-edges). We continue in this manner and, eventually, we obtain a copy of

Ĝ(F0) such that, for every edge of Ĝ, the corresponding cross-edges of Ĝ(F0) have

the same colour. We denote this copy of Ĝ(F0) by A. Now, the restriction of c to A

gives rise to a colouring of E(Ĝ), which we denote by ĉ, where any e ∈ E(Ĝ) gets

the colour of the e-cross-edges in A. To make ĉ well defined, if there are multiple

ways to obtain A, then we fix one of them.

Recall that Ĝ(F0) was obtained by taking n disjoint copies of F , corresponding

to the vertices of Ĝ, and joining some of them by cross-edges. We now consider the

colouring of these copies of F in A. Since F is 6-edge-Ramsey for K3, each copy

of F contains a monochromatic triangle. We extend the edge-colouring ĉ to the

vertices of Ĝ (making it a total-colouring) by giving each v ∈ V (Ĝ) the colour of a

monochromatic triangle within the corresponding copy of F in A. In every situation

where multiple monochromatic triangles could be chosen, we make an arbitrary

choice and fix it.

Notice that if ĉ produces at least one of the following:

(i) a K4 with all edges of one colour

(ii) a vertex and an incident edge of one colour

then c produces a monochromatic K4. Moreover, if ĉ produces

(iii) an edge e with endpoints having the colour that opposes the colour of e

135



then c produces a special K4.

Conversely, suppose that ĉ is a total colouring of Ĝ with six colours. It induces

an edge colouring c of G with six colours where for all e ∈ E(G) we define

c(e) =




ĉ(v) if e is an edge in the subgraph that corresponds to a vertex v ∈ Ĝ
ĉ(e′) if e is an e′-cross-edge.

A monochromatic copy of K4 appears in c if and only if (i) or (ii) appears in ĉ.

Putting everything together, it suffices to find a graph Ĝ that admits a total

colouring with six colours with no (i) and (ii) but whose every total colouring with

six colours produces at least one of (i), (ii) and (iii). We now construct such Ĝ.

Let H be the smallest complete graph that is 4-edge-Ramsey for K4. Then H

is not 5-edge-Ramsey for K4. It follows from Lemma 7.20 that there exists a graph

Ĝ that is 6-vertex-Ramsey for H but not 5-edge-Ramsey for K4. We will show that

the graph Ĝ has the desired properties. First, if we use five colours for the edges of

Ĝ avoiding a monochromatic K4 and a sixth colour for the vertices, then we create a

total colouring of Ĝ that avoids (i) and (ii). Conversely, given any total colouring of

Ĝ with six colours, there must exist a copy of H whose vertex set is monochromatic.

Say, a is the colour of these vertices. If some edge in this copy of H has colour a

or the colour opposing a, then we can find (ii) or (iii). Otherwise, the edges in the

aforementioned copy of H are coloured with four colours, and so we have (i).

This concludes the proof of Lemma 7.18.

5 Ordered degrees

In this section we define and briefly examine the notion of ‘ordered’ degrees for sets

of multiple vertices. Let D(G) be an orientation of an r-uniform hypergraph G.

Given a pair of vertices u, v, we can define d∗12(u, v) to be the number of edges e

such that u is in the first position of D(e) and v is in the second. For example, if

E(G) = {(4, 5, 1), (4, 1, 3), (1, 4, 2)} then d∗12(1, 4) = 1.

More generally, for an ordered p-tuple of distinct vertices A = (v1, . . . , vp) and

an ordered p-tuple I = (i1, . . . , ip) ∈ [r]p with distinct elements, the ordered I-

degree of A, denoted by d∗I(A), is the number of edges whose orientations have

vertices v1, . . . , vp in this order occupying positions labelled by I. More formally,

d∗I(A) is the number of edges e such that if we write D(e) = (x1, . . . , xr) then

xi1 = v1, . . . , xip = vp.

In the remainder of this section we reserve the term p-tuple to mean an ordered
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p-set without repeated elements. For any set S we denote by Sp the family of all

p-tuples consisting of elements of S. For example, [3]2 = {(1, 2), (1, 3), (2, 1), (2, 3),

(3, 1), (3, 2)}.
Following the spirit of Theorems 7.1, 7.2 and Question 7.3, we can ask when an

r-uniform hypergraph G can be given an orientation such that d∗(1,2,...,p)(A) ≤ k for

all p-tuples of vertices A, where k ≥ 0 is a fixed integer.

It is easy to find a necessary condition: for any collection of p-sets U ⊂ V (p) there

be at most kp!|U | edges e such that e(p) ⊂ U . Indeed, every such edge contributes

1 to the sum ∑

A∈U

∑

A∗ an
ordering of A

d∗(1,2,...,p)(A
∗)

and this sum does not exceed kp!|U |.
The proof of sufficiency is based on Hall’s marriage theorem.

Theorem 7.26. Fix integers k ≥ 0, 1 ≤ p ≤ r and let G be an r-uniform hypergraph.

Suppose that for any U ⊂ V (p) there are at most kp!|U | edges e such that e(p) ⊂ U .

Then G admits an orientation such that d∗(1,2,...,p)(A) ≤ k for every p-tuple A ⊂ V .

Proof. Construct a bipartite graphH with vertex classesX = E(G) and Y = V (G)p.

Join e ∈ X and A ∈ Y by an edge if e contains all elements of A.

Take any S ⊂ X and let Γ(S) ⊂ Y be the neighbourhood of S in H. If we treat

members of Γ(S) as p-sets rather than p-tuples, then we obtain a family of p-sets

U ⊂ V (p) that contains all p-sets of all edges in the family S. Therefore, |S| ≤ kp!|U |.
Moreover, it is clear that |U | = |Γ(S)|/p! and so we have k|Γ(S)| ≥ |S|. By Hall’s

marriage theorem, it is possible to assign an element of Y to every element of X in

such a way that each element of Y is used at most k times. Now, we give each edge

e ∈ E(G) = X an orientation such that the initial p positions of that orientation

form the p-tuple from Y assigned to e. This produces an orientation of G with the

desired property.

A version of Question 7.5 can be asked for ordered degrees. When does an r-

uniform hypergraph G admit an orientation such that for each p-tuple of vertices

A there is a p-tuple I ∈ [r]p such that d∗I(A) = 0? If p = 1 then this is covered by

Theorem 7.4 so let us assume that p ≥ 2. In contrast to the notion of ‘unordered’

degrees, it turns out that every G admits such an orientation. In fact, this can be

achieved by a simple explicit construction.
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Theorem 7.27. Let 2 ≤ p ≤ r be integers and G an r-uniform hypergraph. Then

G admits an orientation such that for each p-tuple of vertices A there is a p-tuple

I ∈ [r]p such that d∗I(A) = 0.

Proof. Without loss of generality we assume that V (G) = [n]. For each edge e,

we order its vertices in the increasing order. Let A = (a1, . . . , ap) be a p-tuple of

vertices. If a1 < · · · < ap then d∗(p,p−1,...,1)(A) = 0. Otherwise, d∗(1,2,...,p)(A) = 0.

6 Concluding remarks and open problems

We begin by completing the answer to Question 7.3.

Theorem 7.28. Let k, p, r be integers with k ≥ 0, r ≥ p ≥ 1 and let G be an r-

uniform hypergraph. If for every U ⊂ V (p) the number of edges e satisfying e(p) ⊂ U

does not exceed k|U |, then G admits an orientation such that d[p](A) ≤ k for all

A ∈ V (p).

Proof. We construct a bipartite graph H with vertex classes X = E(G) and Y =

V (G)(p) by joining e ∈ X and A ∈ Y by an edge if A ⊂ e. In other words, we join

each edge of G to its p-subsets.

Given S ⊂ E(G), we define Γ(S) ⊂ Y to be the neighbourhood of S in H. By

the assumed property of G, we have |S| ≤ k|Γ(S)|. By Hall’s marriage theorem it

is possible to assign, to every e ∈ X, an element y(e) ∈ Y in such a way that each

element of Y is used at most k times. Now, for every edge e ∈ E(G) = X we assign

an orientation D(e) such that the first p positions of D(e) form the set y(e). This

gives an orientation of G with the desired property.

We proved that the answer to Question 7.5 is positive for pairs (r, p) for which

[r](p) has the fixed intersection property. Moreover, the answer is false for (r, p) =

(4, 2), which is the smallest pair such that [r](p) does not have this property. It

would be interesting to know if the answer to Question 7.5 is positive precisely for

those pairs (r, p) for which [r](p) has the fixed intersection property.

Conjecture 7.29. Let p, r be integers such that r ≥ p ≥ 2. If [r](p) does not have

the fixed intersection property, then the answer to Question 7.5 is no.

There are several interesting questions related to the fixed intersection property.

We recall the statement of our main conjecture, which says that if r 6= 2p, then [r](p)

has the fixed intersection property.
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Conjecture 7.11. Let n, p be positive integers. If n > 2p, then [n](p) has the fixed

intersection property.

A similar question considers functions f : [r](p) → N(p).

Question 7.30. For what choices of r and p does every non-constant function

f : [r](p) → N(p) fix an intersection?

Obviously, Conjecture 7.11 is true for all pairs (r, p) that satisfy the condition

of Question 7.30. Moreover, we have proved that this condition is satisfied for any

fixed p as long as r is sufficiently large. However, it is not possible to resolve Con-

jecture 7.11 solely by answering Question 7.30, because there exists a non-constant

function f : [11](5) → N(5) that does not fix an intersection. We found one such

function via brute-force computer search.

It is also interesting to consider functions f : [r](p) → [r](p) that have some

condition imposed on them. Here is a natural question.

Question 7.31. For what choices of r and p does every bijection f : [r](p) → [r](p)

fix an intersection?

There is a simple counting argument that shows that Question 7.31 is satisfied

by pairs (r, p) where r = Ω(p2). Suppose that f : [r](p) → [r](p) is a bijection and

assume for convenience that f([p]) = [p]. There are exactly
(
r−p
p

)
elements of [r](p)

that do not intersect [p] and
(
r
p

)
−
(
r−p
p

)
elements that intersect [p]. So if there

is no x ∈ [r](p) such that |f(x) ∩ [p]| = |x ∩ [p]| = 0 then
(
r
p

)
> 2

(
r−p
p

)
which is

equivalent to (1 + p/(r − p)) (1 + p/(r − p− 1)) · · · (1 + p/(r − 1)) > 2. But then

exp (p/(r − p) + · · ·+ p/(r − 1)) > 2. If r ≥ cp2 then the left hand side is at most

e1/(c−1) which is not greater than 2, provided that c is sufficiently large.
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[9] P. Erdős, Some theorems on graphs, Riveon Lematematika 9 (1955), 13–17. In Hebrew.

[10] , On a theorem of Rademacher-Turán, Illinois J. Math 6 (1962), 122–127.

[11] , Problem 9 in Theory of Graphs and its Applications, Vol. 159, Czech. Acad. Sci. Publ.,

Prague, 1964.

[12] , Some recent combinatorial problems, 1990, manuscript.
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the minimum number of edges on odd cycles, manuscript.

[16] , The minimum number of triangular edges and a symmetrization for multiple graphs,

arXiv:1411.0771, 2014, preprint.

[17] T. Gallai, Solution to problem 4065, Amer. Math. Monthly. 51 (1944), 169–171.

[18] S.W. Golomb, Tiling with polyominoes, J. Combin. Theory 1 (1966), no. 2, 280–296.

141



[19] , Tiling with sets of polyominoes, J. Combin. Theory 9 (1970), no. 1, 60–71.

[20] , Polyominoes which tile rectangles, J. Combin. Theory Ser. A 51 (1989), no. 1, 117–

124.

[21] B. Green and T. Tao, On sets defining few ordinary lines, Discrete Comput. Geom. 50 (2013),

no. 2, 409–468.

[22] J. R. Griggs, Problems on chain partitions, Discrete Math. 72 (1988), no. 13, 157–162.

[23] J. R. Griggs, R. K. C. Yeh, and C. M. Grinstead, Partitioning boolean lattices into chains of

subsets, Order 4 (1987), no. 1, 65–67.
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