
Improving the efficiency of clinical trial
designs by using historical control data or

adding a treatment arm to an ongoing trial

Maxine Sarah Bennett

St Catharine’s College
University of Cambridge

This dissertation is submitted for the degree of Doctor of Philosophy.

January, 2018





I

Improving the efficiency of clinical trial designs by using

historical control data or adding a treatment arm to an ongoing

trial

Maxine Sarah Bennett

Abstract

The most common type of confirmatory trial is a randomised trial comparing the exper-

imental treatment of interest to a control treatment. Confirmatory trials are expensive

and take a lot of time in the planning, set up and recruitment of patients. Efficient

methodology in clinical trial design is critical to save both time and money and allow

treatments to become available to patients quickly.

Often there are data available on the control treatment from a previous trial. These

historical data are often used to design new trials, forming the basis of sample size calcu-

lations, but are not used in the analysis of the new trial. Incorporating historical control

data into the design and analysis could potentially lead to more efficient trials. When

the historical and current control data agree, incorporating historical control data could

reduce the number of control patients required in the current trial and therefore the du-

ration of the trial, or increase the precision of parameter estimates. However, when the

historical and current data are inconsistent, there is a potential for biased treatment effect

estimates, inflated type I error and reduced power.

We propose two novel weights to assess agreement between the current and historical

control data: a probability weight based on tail area probabilities; and a weight based on

the equivalence of the historical and current control data parameters. For binary outcome

data, agreement is assessed using the posterior distributions of the response probability in

the historical and current control data. For normally distributed outcome data, agreement

is assessed using the marginal posterior distributions of the difference in means and the

ratio of the variances of the current and historical control data. We consider an adaptive

design with an interim analysis. At the interim, the agreement between the historical and

current control data is assessed using the probability or equivalence probability weight

approach. The allocation ratio is adapted to randomise fewer patients to control when

there is agreement and revert back to a standard trial design when there is disagreement.

The final analysis is Bayesian utilising the analysis approach of the power prior with a

fixed weight. The operating characteristics of the proposed design are explored and we

show how the equivalence bounds can be chosen at the design stage of the current study
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to control the maximum inflation in type I error.

We then consider a design where a treatment arm is added to an ongoing clinical trial.

For many disease areas, there are often treatments in different stages of the development

process. We consider the design of a two-arm parallel group trial where it is planned to add

a new treatment arm during the trial. This could potentially save money, patients, time

and resources. The addition of a treatment arm creates a multiple comparison problem.

Dunnett [39] proposed a design that controls the family-wise error rate when comparing

multiple experimental treatments to control and determined the optimal allocation ratio.

We have calculated the correlation between test statistics for the method proposed by

Dunnett when a treatment arm is added during the trial and only concurrent controls are

used for each treatment comparison. We propose an adaptive design where the sample

size of all treatment arms are increased to control the family-wise error rate. We explore

adapting the allocation ratio once the new treatment arm is added to maximise the overall

power of the trial.
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Chapter 1

Introduction

1.1 Clinical trial design

A confirmatory trial is necessary to provide firm evidence of efficacy or safety of an ex-

perimental treatment [1]. The most common type of confirmatory trial is a randomised

controlled trial (RCT) comparing the experimental treatment of interest to a standard of

care or placebo. Confirmatory trials are expensive and take a lot of time in the planning,

set up and recruitment of patients [2]. The failure rate for phase III trials is approxi-

mately 50 percent [3] and therefore the big effort in terms of cost, time and resources of

running a confirmatory trial may not lead to a beneficial treatment. Efficient method-

ological design in all phases of clinical trials is critical in saving both time and money, and

allowing treatments to become available to patients sooner. Also, regulatory bodies recog-

nise the need for more efficient and innovative trial designs [4], and guidelines have been

produced for adaptive clinical trial designs and designs using Bayesian methodology [5, 6].

This thesis considers a Bayesian approach to trial design as a way to design efficient

clinical trials and allow exploration of flexible design options. In a Bayesian framework,

the design or analysis of the trial can be adapted while the trial is ongoing, different

sources of information can be combined or expert opinion can be used to inform both the

design and the analysis of a trial. However, regulatory approval of a treatment is based

on the frequentist operating characteristics of a trial design, therefore throughout the the-

sis we aim to find a Bayesian design that has good frequentist operating characteristics.

Frequentist operating characteristics, such as the type I and type II error rate, can be

determined for any Bayesian design through simulation and can be calculated exactly for

some specific Bayesian designs.

Where possible, conjugate Bayesian analysis is used throughout this thesis. A con-

jugate prior leads to a posterior distribution that is available in closed form and is a

member of the same distributional family as the prior. Often a conjugate prior is flexible

1
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enough to represent the prior belief about the parameter and simplifies the calculation

of the posterior distribution. The availability of an analytical expression for the poste-

rior distribution is especially important in design where simulation is often required to

determine the operating characteristics of a design and an analytical expression for the

posterior distribution will reduce the computation time.

The Food and Drug Administration (FDA) acknowledge that their guidance for in-

dustry document on statistical principles for clinical trials focuses on frequentist methods

for the design and analysis of clinical trials but suggest that “the use of Bayesian and

other approaches may be considered when the reasons for their use are clear and when

the resulting conclusions are sufficiently robust” [1]. Further, the FDA have provided a

guidance document for the use of Bayesian statistics in medical device clinical trials [5].

The advantages of the Bayesian approach to trial design suggests that for trials where

recruitment is difficult and for certain therapeutic areas, this criterion will be met, even

in later phase trials.

In a standard two-arm confirmatory randomised controlled trial comparing an exper-

imental treatment to a standard of care or control treatment, the sample size is fixed at

the design stage to achieve the desired error rates for a specified treatment effect. Patients

are randomised equally between the treatment groups and the analysis is on a defined

endpoint, using only data from patients randomised within the current trial. Often the

sample size required is large.

The FDA’s guidance for industry document on adaptive design clinical trials for drugs

[6] defines an adaptive design clinical study as “A study that includes a prospectively

planned opportunity for modification of one or more specified aspects of the study de-

sign and hypotheses based on analysis of data (usually interim data) from subjects in

the study”. The motivation for using adaptive designs is to increase the efficiency of a

trial compared to using a traditional design approach. One or more of the following gains

in efficiency could be achieved depending on the design chosen: reducing the number of

patients and therefore the duration of the current trial; increasing the power of the study;

or randomising more patients to the better performing treatment.

The use of adaptive designs has increased over the past 10 years [7]. The limitations

of adaptive designs seem to mainly lie in logistical issues. In an adaptive design the end-

points used need to be observed relatively quickly to allow the trial to be adapted based

on data collected in the current trial. Additional resources are required in an adaptive

design compared to a standard trial design in order to plan and carry out interim analy-

ses and the subsequent adaptations. An adaptive design that may lead to a trial ending

before the planned duration also has implications on trial staffing.
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In this thesis we specifically consider the following Bayesian ideas and adaptive meth-

ods: incorporating historical control data into both the design and analysis of a trial;

allowing interim looks at the current trial data; incorporating expert opinion into the

design of the trial, which will also affect inference from the trial; adding treatment arms

to an ongoing trial; and adapting the treatment allocation ratio during the trial. Con-

firmatory trials will be the main focus of this thesis. Confirmatory trials are designed to

have a low type I error rate, typically 2.5% or 5% and a low type II error, typically 10%

to 20%. However, the methods considered here could be applicable to early phase trials

which are more exploratory and typically allow a higher type I error rate and a similar

type II error rate compared to confirmatory trials.

1.2 Historical data methods

Historical data can arise in many situations. There may be outcome information available

on both the experimental treatment and the standard of care from earlier phases of treat-

ment development. For the control treatment or standard of care, there are usually data

available from a previous trial. An expert’s opinion or experience could also be considered

historical data, where a standard of care treatment has been used in clinical practice for

a long duration. Historical data are often used informally to design new trials. Historical

data may be used to choose endpoints and the treatment effect to be detected in the new

study. Historical data therefore inform the design of a new study by forming the basis

of the sample size calculations but the historical data are not used in the analysis of the

new trial.

Designing a trial with the aim to incorporate historical data into the analysis has

the potential to increase the efficiency of the trial. Historical data can be used as prior

information in a fully Bayesian framework, where the historical data are updated with

the current trial likelihood using Bayes theorem [8]. The posterior distribution is then a

weighted average of the historical and current data. More recently historical data methods

have been proposed that dynamically borrow historical data when the historical data are

in agreement with the data observed in the current trial. Throughout this thesis we only

consider incorporating historical information on the control treatment into the current

trial. When the current and historical control data are in agreement, one or more of the

following advantages could be achieved depending on the design chosen: more patients

can be randomised to the experimental treatment and fewer to the control treatment;

the total sample size of the trial can be reduced; the trial duration can be decreased or

the precision of parameter estimates can be increased. However, when the historical and

current control data are inconsistent, there is a potential for biased treatment effects,

inflated type I error rate and reduced power.
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A limitation of incorporating historical control data is that although the current study

is a randomised comparison of the experimental treatment to control, the inclusion of his-

torical controls in the final analysis means that the final analysis is not a fully randomised

comparison. However, due to the advantages of the Bayesian approach to trial design

and utilising prior information, there is an argument for using designs without a fully

randomised comparison in certain settings. The benefits of adaptive designs, historical

data and non-randomised comparisons are discussed in detail by Berry in a comment

paper for Statistical Science [9] where he comments that “good statistical methods for

using historical control data seem not to be available”. A recent systematic review by

Wadsworth et al. provides details of methods relevant for extrapolations which includes

many historical data methods [10] and the following sections review some of the methods

that have been proposed in the literature for incorporating historical data into the design

and analysis of a current trial.

One of the earliest papers to discuss incorporating historical data into both the design

and analysis of a new study is a seminal paper by Pocock [11]. This paper considers a

design where patients are randomised to both treatment and control in the current study,

even when “acceptable” historical control data are available. The historical control data

are then incorporated into the final analysis of the current trial.

An important question is which historical data are relevant to the current study,

especially when there are a large amount of historical control data available spanning

many years and from multiple historical studies. In this thesis we focus on methods for

incorporating control data from a single historical study into both the design and analysis

of a current trial. However, Pocock’s acceptability criteria [11] for choosing relevant

historical studies to incorporate into a current trial design and analysis are applicable

whether there are multiple historical studies or a single historical study available. These

criteria state that the acceptability of a historical control group requires:

• the group must have received a precisely defined standard treatment which must be

the same as the treatment for the current trial controls;

• the group must have been part of a recent clinical study which contained the same

requirements for patient eligibility;

• the method of treatment evaluation must be the same;

• the distributions of important patient characteristics in the historical group should

be comparable with those in the new trial;

• the previous study must have been performed in the same organisation with largely

the same clinical investigators; and
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• there must be no other indications leading one to expect different results between

the randomised and historical controls (e.g. differing enrolment rates).

Some of the aforementioned criteria are strict. To satisfy the criterion that the histor-

ical study must have been performed in the same organisation as the current trial is likely

to rule out “literature controls” and a large amount of potentially relevant information.

Also, requiring the enrolment rates to be the same seems unnecessary unless there are

major differences between the trials, which would only be known after the current trial

had finished recruiting. However, these criteria provide a good starting point for selecting

relevant historical studies. Furthermore, it has been shown by Neuenschwander et al. [12]

that selecting a small number of historical studies that are very similar to each other and

are thought to be similar to the current study, leads to a larger prior effective sample size

than incorporating all historical data where there is lots of heterogeneity between studies.

The prior effective sample size when there are multiple historical studies is defined as how

many patients the historical studies represent when the historical studies are combined,

taking into account the heterogeneity between the historical studies.

In this chapter the historical data methods are described in their general form, the

specific details are kept for the main chapters. The main chapters include both previ-

ously published and new methods. This structure is chosen since both published and new

methods are explored and new methods are often extensions to the published methods.

Where a new method is proposed or a published method has been extended should be

clear from the text. Historical data methods for binary outcome data are considered in

Chapter 2 and methods for normally distributed outcome data are considered in Chapter

3.

To introduce the historical data approaches, we consider a standard trial design com-

paring one experimental treatment to control, assuming historical data are available for

the control arm only. Let Dt, Dc and Dh denote data from the current treatment group,

current control group and historical data, respectively. Let θc denote the parameter of

interest in the controls and θt the parameter of interest in the treatment group. Where

a method assumes that the true underlying parameters are different in the historical and

current controls, θh denotes the parameter of interest in the historical controls.

1.2.1 Pooling

The simplest approach to incorporate historical data into the analysis of the current trial

is to assume that the historical control data are exchangeable with the control data in

the current trial. The historical data forms the prior for the current study control arm

which is then updated with the current study control data using Bayes theorem [8]. We

assume an initial prior, π0(θc), for the control parameter of interest before the historical
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data are observed, π0(θc) is updated to form a posterior distribution that incorporates

the historical data, which forms the prior for the current study control parameter, given

by,

π(θc | Dh) ∝ L(θc | Dh)π0(θc), (1.1)

where L(θc | Dh) is the likelihood of the historical data. π(θc | Dh) is then updated with

the control data from the current study using Bayes theorem. The posterior distribution

for the control parameter is then,

π(θc | Dc, Dh) ∝ L(θc | Dc)L(θc | Dh)π0(θc) = L(θc | Dc, Dh)π0(θc),

where L(θc | Dc) is the likelihood of the current control data. This is the same as pooling

the current and historical control data as if they were from the same study.

1.2.2 Pocock’s approach to modelling bias

Pocock [11] proposed an approach to incorporating historical control data that acknowl-

edges that the underlying parameters of interest in the historical and current controls

may not be the same, even with careful selection of the historical data. The possibility

of unknown bias is modelled as η = θc − θh where η is treated as a random variable with

mean zero and fixed variance σ2
η. In practice, it is recommended to conduct a sensitivity

analysis considering a range of values for σ2
η. An initial vague prior is assumed for θh

before the historical data are observed, denoted π0(θh). This vague prior is updated with

the historical data to obtain the posterior distribution, π(θh | Dh) = π0(θh)L(θh | Dh).

The sum of the two random variables π(θh | Dh) and η forms the prior for the control

arm in the current study. This approach was extended to give the commensurate prior

approach described in Section 1.2.5. A bias variance approach to discounting historical

data was also proposed in a recent paper by Galwey [13].

1.2.3 Power prior

The power prior, originally proposed by Ibrahim and Chen [14] assumes that the historical

data and current control data are estimating the same underlying parameter of interest,

θc. An initial non-informative prior π0(θc) is assumed for θc before the historical data are

observed. This is then updated with the likelihood of the historical data raised to a power

α0, where the power quantifies the uncertainty in the similarity between the historical and

current studies. The prior for the current study control arm is then,
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π(θc | Dh) ∝ π0(θc)L(θc | Dh)
α0 ,

where α0 is a fixed value and usually lies between zero and one. When α0 is zero, no

historical data are used in the final analysis and the prior reduces to the initial non-

informative prior,

π(θc | Dh) = π0(θc),

and when α0 is one, all of the historical data are used in the final analysis, pooling the

current and historical controls, and the prior becomes Equation 1.1. The power can be

given a value above one, however, in the area of historical data, we consider the most

reliable information to be the data from the current randomised controlled trial and are

therefore unlikely to want to give the historical data more weight in the final analysis

than the current control data. The power α0 can be interpreted as a relative precision

parameter for the historical data.

1.2.4 Modified power prior

As we are usually unsure about the agreement between the current and historical data,

α0 can be treated as a random variable [14, 15, 16]. Ibrahim and Chen proposed a joint

prior for the parameter of interest and the power of the form [14],

π(θc, α0 | Dh) ∝ π0(θc)L(θc | Dh)
α0π(α0). (1.2)

A natural choice for π(α0) is a beta distribution, given the desirability of a power

between zero and one.

A few problems arise with the formulation of the joint prior given in Equation 1.2.

Firstly, it violates the likelihood principle [17], since multiplying the likelihood by a con-

stant would change the joint prior and therefore the posterior distribution. Secondly, the

historical data has little influence in the analysis even when there is complete agreement

between the historical and current data [15].

This joint prior is missing a factor dependent on α0 and therefore the power parameter

always has a tendency to be close to zero, making no use of the historical data. Duan

[15] proposed a correction to the original joint power prior formulation, defined as the

modified power prior, given by,
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π(θc, α0 | Dh) ∝ C(α0)π0(θc)L(θc | Dh)
α0π(α0),

where,

C(α0) =
1∫

θc
L(θc | Dh)α0π0(θc)dθc

,

in the region of α0 such that
∫
θc
L(θc | Dh)

α0π0(θc)dθc is finite. The modified power prior

does satisfy the likelihood principle.

1.2.5 Commensurate prior

The commensurate prior approach [18, 19, 20] assumes different underlying parameters for

the current and historical controls. The location commensurate prior for θc is a conditional

prior distribution, centred at the historical parameter θh with a fixed value τ that controls

the cross-study borrowing. The joint distribution of θc and θh before the current trial is

then given by,

π(θc, θh | Dh, τ) ∝ π(θc | θh, 1/τ)π0(θh)L(θh | Dh),

where L(θh | Dh) is the likelihood of the historical data and π0(θh) is an initial prior

for the historical parameter before the historical data are observed. Larger values of τ

indicate increased commensurability (reduced variability) between the current and histor-

ical data parameters and induce increased borrowing from the historical data to inform

inference on θc.

Similar to the modified power prior, there is a single parameter that governs how much

historical data are borrowed and incorporated into the final inference on the current study

control parameter τ , τ can also be treated as a random variable rather than a fixed value.

The choice of prior for τ is similar to the prior for the between study variance parameter

in a meta-analysis. Priors for variance parameters are discussed comprehensively in [21].

It is generally recommended that an informative prior should be used on the between

study variance parameter in a meta-analysis since the parameter is not well estimated

from the data when there are few studies [22]. An informative prior is recommended for

the commensurate prior for similar reasons. An informative prior is required to induce

sufficient borrowing from the historical data. For one historical study, there is a direct

relationship between a meta-analysis and the commensurate prior approach to incorpo-

rating historical data [19].
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An extension to the location commensurate prior also places a commensurate prior on

the parameter that represents the true underlying variance in the control group [18]. To

induce borrowing from the historical data to the current trial parameters, the mean and

variance in the historical and current data both have to agree.

1.2.6 Robust mixture prior

When there are historical data available from only one historical study, the robust mix-

ture prior [23] is a two-component mixture distribution of conjugate priors. The first

component of the mixture distribution is an informative component based on the histori-

cal data and the second component is a weakly-informative component. The form of the

weakly-informative component is dependent on the type of outcome data. The weights

given to each component of the mixture distribution in the prior are chosen by the study

designer based on how relevant the historical data are thought to be to the current study

control data. The prior weight given to the informative component of the robust mixture

distribution based on the historical data can be interpreted in a similar way to the power

chosen in the power prior, when α0 is a fixed value. The weakly-informative component

of the mixture distribution gives a heavy tailed prior distribution compared to using only

the historical data as a prior and adds robustness against prior-data conflict [23, 24].

Using a mixture prior allows added flexibility while maintaining the convenience of using

a conjugate prior. Here we will review properties of mixture distributions that are used

throughout this thesis.

Let π1(θc), . . . , πJ(θc) be proper probability density functions. Then given weights,

w1, . . . , wJ , where wj > 0 and
J∑
j=1

wj = 1, the mixture distribution,

π(θc) =
J∑
j=1

wjπj(θc),

is also a proper probability density.

If the individual mixture components are conjugate prior distributions, then the pos-

terior distribution is also a mixture of conjugate distributions with updated parameter

values and weights. Assuming the prior density for θc of [25],

π(0)(θc) =
J∑
j=1

w
(0)
j π

(0)
j (θc),

where the superscript (0) denotes a prior distribution or weight, w
(0)
j are the prior weights
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and π
(0)
j (θc) are the individual conjugate prior mixture distribution components (for the

robust mixture prior, π
(0)
1 (θc | Dh) would be the informative component of the mixture dis-

tribution based on the historical data and π
(0)
2 (θc) would be a weakly-informative mixture

component), the posterior distribution is given by [25],

π(1)(θc | Dc) =

J∑
j=1

w
(0)
j π

(0)
j (θc)L(θc | Dc)

C

=
J∑
j=1

w
(1)
j π

(1)
j (θc | Dc),

where the superscript (1) denotes a posterior distribution or weight, L(θc | Dc) is the

likelihood of the current trial control data and C =
J∑
j=1

w
(0)
j cj,

π
(1)
j (θc | Dc) =

π
(0)
j (θc)L(θc | Dc)

cj
, w

(1)
j =

w
(0)
j cj

J∑
j=1

w
(0)
j cj

, cj =
∞∫
−∞

π
(0)
j (θc)L(θc | Dc)dθc,

where θc is either a single parameter or a vector of parameters. The posterior mixture

distribution components π
(1)
j (θc | Dc) are then obtained from standard conjugate Bayesian

prior to posterior updates. The updated posterior weights sum to one and are calculated

using the marginal likelihood of the data for each component of the mixture prior distri-

bution.

Morita et al. [26] present a definition for the effective sample size of a parametric

distribution and their method is used to calculate the effective sample size of the poste-

rior mixture distribution. The method proposed by Morita et al. [26] approximates the

information at the mode of the mixture distribution using a quadratic approximation. A

vague prior is constructed which is updated with a sequence of known sample sizes to

get a sequence of posterior distributions. The information of these posterior distributions

with known sample sizes are then compared to the information of the mixture posterior

distribution and the closest in terms of information at the mode gives the effective sample

size of the mixture distribution.

1.3 Equivalence and choice of equivalence bounds

Throughout this thesis, the concept of equivalence is used. Equivalence testing is typ-

ically used to compare an experimental treatment with a standard of care treatment,

where the experimental treatment may offer benefits such as lower cost or fewer side ef-

fects compared to the standard of care. In a frequentist framework, to test the equivalence

of two treatments, the null hypothesis is that the treatments differ and the alternative



Chapter 1 Introduction 11

hypothesis is that the treatments are equivalent. When comparing an experimental treat-

ment to a standard of care, equivalence represents the belief that the two treatments are

close enough that neither treatment is considered more efficacious or less futile than the

other. How close two treatments are required to be for them to be considered equivalent

is governed by the equivalence interval (δl, δu). The hypotheses for testing equivalence

of two treatments in terms of the absolute difference of the parameter of interest in each

treatment group are given by [27],

H0 : θt − θc ≤ δl or θt − θc ≥ δu

H1 : δl < θt − θc < δu

The hypotheses H0 and H1 are tested as two separate one-sided hypothesis tests [27],

H01 : θt − θc ≤ δl

H11 : θt − θc > δl

and,

H02 : θt − θc ≥ δu

H12 : θt − θc < δu

In order to conclude equivalence, both null hypotheses H01 and H02 must be rejected

at the chosen significance level.

Typically, when testing equivalence in terms of the absolute difference between two

parameters, the equivalence interval is symmetric and there is one equivalence margin pa-

rameter given by δ = δu = −δl. The choice of equivalence margin is subjective, however

approaches have been proposed for choosing this parameter when comparing an experi-

mental treatment to a standard of care treatment. The equivalence margin can be chosen

based on expert opinion and interpreted as the largest difference that can be judged as

clinically acceptable for the experimental treatment to be used in practice as an equiv-

alent to the standard of care. Ng [28] discusses some interpretations of the equivalence

margin in the literature, most of which relate to clinical judgement. An alternative ap-

proach proposed in the literature for choosing δ [28] is based on the comparison of the

active standard of care treatment to a placebo using prior data. The equivalence margin

is chosen to be a small fraction (e.g. 0.2) of the treatment effect comparing the active

standard of care treatment to a placebo or a fraction of the lower limit of a confidence

interval of the difference between the active standard of care and the placebo obtained

from a meta-analysis of historical studies.
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Throughout this thesis, equivalence is used for the comparison of historical control

data and the control data from the current trial, where the current trial is assumed to be

a superiority trial. The more formal methods proposed for determining the equivalence

bounds can not be used in this setting. The control treatment may not be an active

control, as is likely with a standard equivalence design for an experimental treatment.

Therefore, the equivalence bounds are initially considered to be chosen based on expert

opinion and alternative approaches for choosing the equivalence bounds are considered.

1.4 Adding a treatment arm to an ongoing trial

There are circumstances that may arise where it would be beneficial to add a treatment

arm to an ongoing clinical trial, such as a treatment about to complete phase II develop-

ment in the same disease area or a treatment currently awaiting regulatory approval.

The advantages of adding a treatment arm to an ongoing trial include: there is only

one protocol, with new treatments incorporated as an amendment; utilising the exist-

ing trial infrastructure (e.g. staff, protocols, recruitment, randomisation); increasing the

chance of allocation to a research arm, which may boost accrual; it potentially requires

fewer patients; less money and a shorter trial duration [29].

Only a few papers have discussed methods for adding treatment arms to ongoing trials

[29, 30, 31, 32]. Elm et al. [30] consider a design where a new treatment arm is added

during an ongoing trial and randomisation continues to all treatment arms until the end

of the study. Elm et al. [30] consider before and after the new treatment arm is added as

two cohorts and assume a random cohort effect is present. They compare four different

analysis methods and their operating characteristics in this setting. The four methods

are: a linear model adjusting for a cohort effect; pooling the data from both stages; an

inverse chi-square combination test and the weighted inverse normal combination test.

Wason et al. [31] briefly discuss adding treatment arms in multi-arm multi-stage trials,

Sydes et al. [29] discuss the methodology of the STAMPEDE trial, which added multiple

treatment arms throughout the study and the most recent paper by Cohen et al. [32] gives

a review of the methodology and practice of adding a treatment arm to a study.

One of the main design considerations when adding a treatment arm during an on-

going trial is controlling the family-wise error rate (FWER) for multiple comparisons of

treatment to control. The FWER is defined as the probability of at least one type I

error. The definition of the family of hypotheses in multi-arm trials has been discussed

in many papers [29, 33, 34]. The main argument against correcting for multiple testing

when comparing multiple experimental treatments to a single control treatment is that

no adjustment is made for multiple testing when multiple treatments are compared to the
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same control treatment in separate trials. Therefore an adjustment is not necessary when

the same comparisons are made in a single trial. The main difference when conducting

a single trial rather than a separate trial for each experimental treatment is that in a

single trial, the same control group is used for all treatment comparisons, which induces a

correlation between the test statistics. The European Medicines Agency states that for a

trial where there are more than two treatment arms “control of the FWER in the strong

sense is a minimal prerequisite for confirmatory claims” [35]. A multiple testing proce-

dure controls the FWER in the strong sense if the FWER control at level α is guaranteed

regardless of which or how many null hypotheses are true. A multiple testing procedure

controls the FWER in the weak sense if the FWER control at level α is guaranteed only

when all null hypotheses are true [36]. The aim of the methods proposed in Chapter 4

when designing a trial where a treatment arm is added is to control the FWER of the

design at a specified level. The next section gives an introduction to standard methods

that correct for multiple testing.

1.4.1 Multiple testing procedures

Consider a multi-arm trial comparing J experimental treatments to a control treatment.

There is a family of hypotheses which requires J statistical tests. A type I error in this

setting is defined as rejecting any true null hypothesis (false positive) and interest is in

controlling the risk of any false positives.

If no adjustment is made for multiplicity, then the overall sample size is reduced by a

factor of (J − 1)/2J for a single trial of J experimental treatments with a single control

group compared to running J separate trials, each with its own control arm, however the

FWER will be inflated above the desired level.

Many procedures have been developed to control the FWER when performing multiple

tests. The choice of method depends on: the aim of the study; the relationship among the

null hypotheses; whether there is a logical relationship and hypotheses have a pre-specified

ordering or an ordering that is data driven; and finally, whether there is a distributional

relationship between the hypotheses and whether a non-parametric, semi-parametric or

parametric method should be used.

Multiple testing procedures fall into two main categories. Single step methods, where

individual test statistics are compared to critical values simultaneously, and secondly, se-

quential procedures, where adaptive adjustments are made to the critical values for the

remaining hypotheses dependent on the previous hypotheses tested. A comprehensive

review of multiple testing procedures is given in [37] and a nice summary of which multi-

ple testing procedures are best in different scenarios is given in the book Multiple testing
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problems in pharmaceutical statistics [36]. In this thesis only single step methods are con-

sidered. We give a summary of some of the simple single step non-parametric procedures

below [38], but focus on the single step Dunnett procedure which is a parametric proce-

dure that accounts for the correlation between test statistics when comparing multiple

experimental treatments to a single control treatment [39].

1.4.2 Single step multiple comparison adjustments

The two simplest corrections for multiple testing are given by Bonferroni and Dunnett.

Both methods maintain strong control of the FWER.

Bonferroni

For J hypotheses being tested and FWER specified at level α. The Bonferroni correction

simply tests each hypothesis at significance level α/J . The weighted Bonferroni method

tests each hypothesis at level wjα/J where
∑J

j=1wj = 1. Similarly, the Sidak method [38]

tests each hypothesis at significance level 1 − (1 − α)1/J . However, all of these methods

are conservative when the test statistics are correlated.

Dunnett

The method proposed by Dunnett [39] to correct for multiple testing is designed for com-

paring multiple experimental treatments to a single control treatment, as it accounts for

the correlation between test statistics. Throughout Chapter 4 we assume a design where

multiple experimental treatments are compared to a single control arm. Consider a trial

comparing J experimental treatments to a control treatment, with test statistics for each

experimental treatment given by,

Zj =
X̄j − X̄0√

1

nj
+

1

n0

∼ N(0, σ2),

with j = 1, 2, ...., J hypotheses being tested. Where X̄j and X̄0 are the sample means of

the experimental treatment j and the control group respectively, which are assumed to

be independently and normally distributed. µj and µ0 are the true underlying means in

the treatment and control groups. σ is the assumed known common standard deviation

across all treatment groups and nj and n0 are the sample sizes of the experimental and

control treatment arms, respectively.
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The joint distribution of the J test statistics is multivariate normal with Zj having

mean 0, variance σ2 and correlation between any two test statistics, Z1 and Z2 for example,

given by [39],

ρZ1Z2 = 1

/√(
n0

n1

+ 1

)(
n0

n2

+ 1

)
.

The critical values are determined that control the FWER at the desired level and

these are used to calculate the sample size needed per treatment group for a given marginal

power for each of the experimental treatment to control comparisons. Dunnett shows that

the optimal allocation ratio for this design is approximately n0 = n
√
J , where n0 is the

number of control patients and n the number of patients in each experimental treatment

group, further details of this design are given in Chapter 4 where the design is extended

to account for adding a treatment arm during the trial. The methods described in this

section are frequentist and in this thesis we mainly aim to use Bayesian methodology

for the reasons discussed in Section 1.1. Whitehead et al. [40] proposed a Bayesian

design comparable to the approach proposed by Dunnett [39] for comparing multiple

experimental treatments to a control treatment. The design proposed by Whitehead

et al. was for phase II trials with the aim of identifying treatments that are worth further

investigation in a phase III trial. However, the methodology can be used for confirmatory

trials. The next section describes the design proposed by Whitehead et al. [40], this design

is described in detail here since it is only briefly considered in Chapter 4.

1.4.3 Bayesian design for comparing multiple experimental treat-

ments to a control treatment

The sample sizes derived using the Bayesian approach proposed by Whitehead et al. [40]

match the sample sizes obtained from a frequentist design where the aim for the multi-arm

trial is to control the probability of detecting one or more truly beneficial experimental

treatment (family-wise power) and the probability of continuing with a single experimental

treatment that has no benefit over control (marginal type I error rate). For a confirmatory

trial the aim would usually be to control the probability of detecting a single experimental

treatment that is better than control (marginal power) and the probability of continuing

with one or more experimental treatment that has no benefit over the control treatment

(FWER). The Bayesian approach described in this section incorporates prior information

into both the design and analysis of the trial.

Following a similar notation to Whitehead et al. [40]. Let ∆∗ denote the treatment

effect to be detected, the clinically important treatment difference between a single ex-
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perimental treatment and control and let ∆ denote the treatment effect of a single exper-

imental treatment compared to control. For a single experimental treatment, the sample

size is chosen to satisfy the Bayesian criterion that the posterior belief that ∆ > 0 is large

enough to conclude that the experimental treatment is promising and research proceeds

to phase III, or the posterior belief that ∆ < ∆∗ is large enough that the treatment is

not considered further. Let j = 0, . . . , J represent the treatment group, where j = 0 rep-

resents the control treatment and there are J experimental treatments. Let i represent

the ith patient in treatment group j, i = 1, . . . , nj. nj denotes the number of patients

in treatment group j. Let xij denote the observed value for patient i on treatment j.

In this section, let the superscript 0 represent prior information and the superscript 1

represent posterior information. Let x̄j denote the sample mean for treatment j, µj the

true underlying mean for treatment j and σ2 the true underlying variance, assumed to be

common across treatment groups.

The observed value xij of the ith patient on treatment j is distributed normally with

mean µj and precision v = 1/σ2 (v−1 = σ2) for i = 1, ..., nj, j = 0, 1, ..., J , assuming v

is known. The treatment effects comparing each experimental treatment to control are

denoted by ∆j = µj − µ0 for j = 1, . . . , J .

We assume independent normal prior distributions for each treatment mean µj,

π(µj) ∼ N(µ0
j , (n

0
jv)−1),

where n0
j represents the prior effective sample size for treatment group j.

The posterior distribution for each treatment mean is then normally distributed and

given by,

π(µj) ∼ N(µ1
j , (n

1
jv)−1),

where µ1
j = (µ0

jn
0
j +njx̄j)/(n

0
j +nj) and n1

j = (n0
j +nj), which represents the total amount

of information (both prior and observed) for treatment j.

The joint posterior distribution for the vector of treatment effects (∆1, . . . ,∆J) is mul-

tivariate normal with ∆j having mean µ1
j − µ1

0 and variance (vn1
jn

1
0/(n

1
j + n1

0))−1. The

covariance between any two treatment effects is given by (n1
0v)−1.

It is assumed that the trial is designed to obtain equal information for each exper-
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imental treatment (prior effective sample size plus current data sample size), therefore

n1
1 = . . . n1

j = n1. Then the variances for each treatment effect are equal, denoted by

(vn1n1
0/(n

1 + n1
0))−1.

Sample Size Criteria

Let x denote data collected in the current trial, the sample size should be chosen to

ensure that either one treatment is developed further (Pr(∆j > 0 | x) ≥ 1 − α) or all

treatments are abandoned (Pr(∆j < ∆∗ for all j = 1, . . . J | x) > 1− β), for any possible

outcome dataset x.

To determine a suitable sample size before the study is conducted, let ∆′ denote the

value of the posterior mean of ∆j, µ
1
j − µ1

0 = ∆′, j = 1, . . . , J for which Pr(∆1 > 0 | x) =

. . .Pr(∆J > 0 | x) = 1− α and Pr(∆j < ∆∗ for all j = 1, . . . J | x) = 1− β.

Then,

Pr(∆j > 0 | x) = Φ

(
∆′

√
n1n1

0v

(n1 + n1
0)

)
=⇒ ∆′ = Φ−1(1− α)

(
n1
jn

1
0v

(n1
j + n1

0)

)−1/2

.

Pr(∆j < ∆∗ for all j = 1, . . . J | x) = Pr(max(∆1, . . . ,∆J) < ∆∗ | x) =

Pr

(
max

(
(∆1 −∆′)

√
n1n1

0v

(n1 + n1
0)
,

. . . , (∆J −∆′)

√
n1n1

0v

(n1 + n1
0)
< (∆∗ −∆′)

√
n1n1

0v

(n1 + n1
0)

∣∣∣∣∣x
))

= 1− β

=⇒

(
∆∗ − Φ−1(1− α)

(
n1
jn

1
0v

(n1
j + n1

0)

)−1/2
)√

n1n1
0v

(n1 + n1
0)

= c1−β,ρ,J ,

where c1−β,ρ,J is the value such that Pr(C1, . . . , CJ < c1−β,ρ,J) = 1− β, where the vector

(C1, . . . , CJ) is multivariate normal with Cj having mean 0, variance 1 and correlation

between any two Cj, ρ =

(
1 +

n1
0

n1

)−1

.

Sample sizes are chosen such that,

(n1 + n1
0)

n1n1
0

=
1

n0
0 + n0

+
1

n0
j + nj

=
v

{Φ−1(1− α) + c1−β,ρ,J/∆∗}2
for j = 1, . . . , J.
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The minimum total sample size required with respect to the constraint above is ob-

tained from,

nj =

(
σ2 +

σ2

√
J

)(
Φ−1(1− α)− c1−β,ρ,J

∆∗

)2

− n0
j

n0 =
(
σ2 +

√
Jσ2

)(Φ−1(1− α)− c1−β,ρ,J

∆∗

)2

− n0
0,

and the optimal allocation ratio is (n0 + n0
0) = (nj + n0

j)
√
J , consistent with the frequen-

tist approximation for the optimal allocation. Note that, when n0
j = 0 and n0

0 = 0 these

formulae reduce to the sample size formulae for a standard frequentist multi-arm trial.

If informative priors are used, the prior means will be used in the Bayesian analysis of

the trial, although they play no part in determining the sample size. The design set-up

here considers controlling the marginal type I error rate and the family-wise power, rather

than the FWER and the marginal power which we consider in Chapter 4, however, the

same theory applies.

1.5 Outline of thesis

In this thesis, three methods published in the literature for incorporating historical data

into the design and the analysis of a current trial are assessed. It is assumed throughout

that the historical data available are for the control arm only and from a single study.

The methods reviewed are: the modified power prior [15]; the commensurate prior; [18]

and the robust mixture prior [23]. In Chapter 2 these methods are explored for binary

outcome data, response and non-response to a treatment. In Chapter 3, the aforemen-

tioned methods are explored for normally distributed outcome data. The limitations of

the published methods are discussed. A novel equivalence weight approach for assessing

the agreement between historical and current controls is then proposed for binary data in

Chapter 2 and normally distributed outcome data in Chapter 3, the equivalence weight

is used to down-weight the historical data. Two designs are explored, a design where the

down-weighted historical data are incorporated as additional information to increase the

size of the current trial control arm, and an adaptive design where the down-weighted

historical data replace controls yet to be randomised in the current trial. The equivalence

weight is used alongside the analysis approach of the power prior [14] using the equiva-

lence weight as a fixed power. Methods are discussed for choosing the equivalence bounds

to control the maximum inflation in the type I error rate when there is disagreement

between the historical and current control data.
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In Chapter 4, the focus of the thesis then turns to trials where a treatment arm is

added during the trial. A design is proposed that adapts the sample size of all treatment

arms when a new treatment arm is added to control the FWER for a specific marginal

power for each treatment to control comparison. Only concurrent controls are used for

each treatment to control comparison. Optimal allocation to each treatment group is then

explored when a trial starts with a single experimental treatment and control arm, and

an additional experimental treatment is added to the trial.

Finally, the work presented in this thesis is summarised in Chapter 5 and ideas for

future research are outlined.

The statistical package Stata is used to generate results throughout the thesis [41].
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Chapter 2

Historical data methods for the

design and analysis of a trial with a

binary outcome

2.1 Introduction

This chapter is structured to address the five questions about the use of historical data

posed by Pocock in his 1976 seminal paper [11] when the outcome data are binary. These

five questions are: what is relevant historical data; how many additional patients does

the historical data provide; how do we assess agreement between historical and current

data; what sample size is required for the new study; and how can historical data be

incorporated into the analysis. The first question was addressed comprehensively in the

original paper where Pocock defined six acceptability criteria for using historical data in

both the design and analysis of a new study, these criteria were discussed in Chapter 1.

It is assumed throughout this chapter that the historical data chosen are relevant to the

current study taking into account the six acceptability criteria defined by Pocock.

In this chapter, it is assumed that only one historical study is available and therefore

the maximum number of additional patients that the historical study may provide is the

sample size of the historical study. Depending on the agreement between the historical

and current control data, the historical data may be down-weighted and therefore the ad-

ditional number of patients that the historical data provides will be reduced. To address

the remaining questions, this chapter is structured as follows: how to assess agreement

between the current and historical data is discussed in Sections 2.2 and 2.3; how to incor-

porate historical data into the design of a current study in Section 2.4; and finally how to

incorporate the historical data into the analysis of a current study is addressed in Section

2.5.

21
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Given the assumption that only one relevant historical study is available and that this

historical study provides information on the control arm only, the aim in this chapter is to

assess the conflict between the historical and current control data and to determine how

much weight to give the historical data in the final analysis of the current trial. When

outcome data are binary, response or non-response, there is only one unknown parameter,

the response probability. To assess agreement between the historical and current trial

controls, the response probabilities are compared.

The advantages and disadvantages of several historical data methods published in

the literature are explored for how they assess agreement between historical and current

controls, and how they incorporate historical data into the design and analysis of the

current study when the outcome data are binary. Two novel methods are then proposed

for assessing the agreement between historical and current control data. These two ap-

proaches specify a weight which is used to down-weight the historical data. A design that

incorporates the historical data as additional information and an adaptive design are both

explored for incorporating the historical data into the design and analysis of a new study.

The analysis approach of the power prior is utilised, where the calculated weight is used

as a fixed power to down-weight the historical data [14]. The operating characteristics

of these two new approaches are compared to the methods proposed in the literature for

binary outcome data.

For all historical data methods, the main disadvantage is that incorporating historical

control data affects the operating characteristics of the current trial. Consider a two-

arm trial for a binary outcome, with historical data available for the control arm only.

Testing the null hypothesis of no treatment difference against the alternative hypothesis

that the new treatment has a higher response probability than the controls. In general, if

the current trial control estimate of the response probability is lower than the historical,

incorporating historical data into the final analysis will result in reduced power and a

deflated type I error rate for estimating the treatment effect, compared to a standard

design not incorporating any historical data. If the current trial estimate of the response

probability in the control arm is higher than the historical data estimate, the power

and type I error rate will be inflated compared to a standard design. The effect on the

operating characteristics from incorporating the historical data is due to the historical

data causing bias in the control response probability estimate and therefore bias in the

treatment effect estimate.

2.1.1 Notation

Let xh and yh be the number of responses and non-responses in the historical data,

respectively. Let xc and yc be the number of responses and non-responses in the current
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control group and xt and yt be the number of responses and non-responses in the current

treatment group. nh, nc and nt are the historical, current control and experimental

treatment sample sizes, respectively. Let pc and pt denote the true underlying response

probabilities in the control and treatment arms, respectively. For models where it is

assumed that the true underlying response probabilities in the current and historical

studies are not the same, let ph denote the underlying true response probability in the

historical controls.

2.1.2 Illustrative example

Throughout this chapter, we consider an example from Viele et al. [42], which is repre-

sentative of a confirmatory two-arm randomised controlled trial. The primary analysis

of interest is a hypothesis test of H0 : pc = pt against H1 : pc < pt. For a standard

design, incorporating no historical data, assuming a control response probability of 65%,

200 patients are required per treatment arm to detect a treatment difference of 12% with

approximately 76% power and a one-sided type I error rate of 2.5%. In addition, for

the historical data designs considered in this chapter, it is assumed there are 100 (nh)

historical control patients available with a response probability of 65%.

Throughout sections 2.2 and 2.3 where methods are explored that assess agreement

between historical and current control data, the example used assumes that the historical

data are fixed at 65/100 responses and that there are 100 control patients in the current

trial. A range of response proportions in the current control data are explored.

2.2 Published methods for assessing agreement be-

tween historical and current control data

For the historical data methods discussed in this section, each method assesses the agree-

ment between the historical and current control data and calculates either a weight w or

a prior effective sample size (ESS). For methods that calculate a weight, this weight is

used to down-weight the historical data by raising the likelihood of the historical data to

the power of the weight and we define the effective historical sample size (EHSS) to be

the weight times the historical sample size wnh. For binary data, EHSS = wnh, since

the posterior distribution based on the weighted historical data likelihood is identical to

a posterior distribution based on the likelihood of wnh observations of which there were

wxh responses and wyh non-responses. A distinction is made between the EHSS which

is based only on the historical data and the ESS which also incorporates the information

contained in the prior before the historical data are observed.
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2.2.1 Modified power prior

The modified power prior assumes that the historical data and current control data are

estimating the same underlying parameter of interest (ph = pc). For binary outcome data,

the modified power prior has the general form [15, 43],

π(pc, α0 | xh, yh) ∝
L(pc | xh, yh)α0π0(pc)∫
L(pc | xh, yh)α0π0(pc)dpc

π(α0),

where π0(pc) is the initial prior for pc before the historical data are observed, L(pc |
xh, yh)

α0 is the likelihood of the historical data raised to a power α0, with prior π(α0).

π(α0) is assumed to be a Beta(a, b) distribution. A beta distribution is an intuitive choice

for π(α0) since it lies between zero and one and covers a wide variety of shapes depending

on the parameter values chosen. In the historical data setting, it is unlikely we would

want to give more weight to the historical data than the current control data, therefore a

beta prior that does not allow a weight above one is chosen.

For binary data and only one historical study, the likelihood of the historical data

follows a binomial distribution and beta prior distributions are assumed for pc and α0.

The modified power prior is then given by [15, 16],

π(pc, α0 | xh, yh) =
pα0xh+c−1
c (1− pc)α0yh+d−1

B(α0xh + c, α0yh + d)

αa−1
0 (1− α0)b−1

B(a, b)
,

where B(a, b) = Γ(a)Γ(b)
Γ(a+b)

and an initial Beta(c,d) prior is assumed for pc.

The joint posterior distribution is then [15],

π(pc, α0 | xh, yh, xc, yc) ∝
pα0xh+xc+c−1
c (1− pc)α0yh+yc+d−1αa−1

0 (1− α0)b−1

B(α0xh + c, α0yh + d)
.

The marginal posterior distribution for the power is given by [16],

π(α0 | xh, yh, xc, yc) ∝
Γ(α0nh + c+ d)Γ(α0xh + xc + c)Γ(α0yh + yc + d)

Γ(α0xh + c)Γ(α0yh + d)Γ(α0nh + nc + c+ d)
αa−1

0 (1− α0)b−1.

(2.1)

Throughout the thesis, for the modified power prior approach we explore using a sum-

mary measure of the marginal posterior distribution of α0 as a measure of the agreement

between the current and historical controls and as a fixed value to down-weight the his-

torical data. A fixed summary value allows exact knowledge of how much of the historical
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data are incorporated into the final analysis. We explore using the mean, median or mode

of the posterior distribution as a fixed value for α0 (substitution method). We denote this

approach the modified power prior approach because we are placing a prior on α0, we

then obtain a single value for the power from the marginal distribution of α0. An alter-

native approach is to incorporate the full uncertainty around α0 into the analysis which

we denote the fully Bayesian modified power prior approach.

The marginal distribution of pc can be used to explore the behaviour of pc by inte-

grating α0 out of the joint posterior distribution π(pc, α0 | xh, yh, xc, yc), we denote this

the fully Bayesian modified power prior approach. However, the marginal distribution

of pc does not have a closed form distribution and requires numerical integration. The

marginal distribution of pc is given by,

π(pc | xh, yh, xc, yc) =

1∫
0

π(pc, α0 | xh, yh, xc, yc)dα0,

where,

π(pc, α0 | xh, yh, xc, yc) =

pα0xh+xc+c−1
c (1− pc)α0yh+yc+d−1αa−1

0 (1− α0)b−1

B(α0xh + c, α0yh + d)

1∫
0

1∫
0

pα0xh+xc+c−1
c (1− pc)α0yh+yc+d−1αa−1

0 (1− α0)b−1

B(α0xh + c, α0yh + d)
dα0dpc

(2.2)

Choice of prior for the power

The modified power prior allows a prior to be placed on α0, with the aim of learning

about what the discounting parameter should be from the data. If there is no prior opinion

on the agreement between the historical and current control then a minimally-informative

prior for α0 may be chosen. Various minimally-informative priors have been discussed for

Bernoulli random variables [17, 44]. An intuitive choice of minimally-informative prior

for α0 would be a uniform distribution on [0,1] (or equivalently a Beta(1,1) distribution),

giving equal probability to all values of the power between zero and one. The Jeffrey’s

minimally-informative prior [17] for a Bernoulli outcome that is invariant to transforma-

tion is a Beta(0.5,0.5). Another minimally-informative prior that has been suggested is

a Beta(c,c) prior where c < 1 [45]. Here, these priors are considered as c → 0, these

priors are denoted quasi-dichotomous priors. The intuition behind using these priors for

the power prior is that they are heavy-tailed, which may help the choice of whether the

historical data should be borrowed or not depending on the observed current control data.
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These priors are considered minimally-informative because the ESS, given by the sum

of the parameter values, is small. However, they can be quite informative for the power

prior, as illustrated in Figure 2.1.

A final minimally-informative prior for a beta distribution is an improper Beta(0,0)

prior. The intuition behind this prior is to choose a prior which produces a Bayesian

posterior estimate that coincides with the maximum likelihood estimate, since the max-

imum likelihood estimate does not consider prior information. This is an intuitive prior

for a binomial likelihood and results in a proper posterior distribution, except when there

are zero responses or non-responses in the data. However, using a Beta(0,0) prior on the

power α0 results in an improper marginal posterior distribution for the α0. A Beta(0,0)

distribution can therefore not be used as a prior for the power.

Let’s consider the Viele example [42]. Figure 2.1 shows three different priors for α0, a

Beta(1,1), Beta(0.5,0.5) and a Beta(0.3,0.3) prior and the posterior distributions of α0 for

each prior given different levels of agreement between the historical and current controls.

It is assumed that there are 100 current control patients and 100 historical patients and

the response proportion in the historical controls is fixed at 65%. A Beta(1,1) prior is

assumed for pc before the historical data are observed.

A prior that gives a posterior distribution with mass close to one when there is com-

plete agreement between the historical and current control data is desirable. As has been

previously noted [16, 18] and is illustrated in Figure 2.1, under a Beta(1,1) for α0, the

marginal posterior distribution of α0 is almost flat at complete agreement between the

historical and current data (65% response proportion). The quasi-dichotomous priors re-

sult in a posterior distribution for α0 with most of its mass at zero and one and seems to

differentiate well between agreement and disagreement in the historical and current data.

From the marginal posterior distribution of α0, given in Equation 2.1, the mean is

calculated using numerical integration,

E(α0) =

∫ 1

0

α0
π(α0 | xh, yh, xc, yc)∫ 1

0
π(α0 | xh, yh, xc, yc)dα0

dα0. (2.3)

To calculate the median of the distribution, numerical integration and optimization can

be used. The function to be minimised is given by,

{∫ q(0.5)

0

π(α0 | xh, yh, xc, yc)dα0∫ 1

0
π(α0 | xh, yh, xc, yc)dα0

− 0.5

}2

, (2.4)
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Figure 2.1: Marginal distributions of α0 for different observed current control response
proportions and different priors on the power. Viele example, historical data 65/100
responses, 100 current controls.
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with respect to q(0.5). The same approach can be used to obtain the 95% credible interval

for α0. Minimising the functions,

{∫ L

0

π(α0 | xh, yh, xc, yc)dα0∫ 1

0
π(α0 | xh, yh, xc, yc)dα0

− 0.025

}2

and

{∫ U

0

π(α0 | xh, yh, xc, yc)dα0∫ 1

0
π(α0 | xh, yh, xc, yc)dα0

− 0.975

}2

,

(2.5)

respectively, with respect to L and U.

The mode M is the value of α0 such that π(M) ≥ π(α0),∀ α0 ∈ [0, 1]. The mode

can be calculated by differentiating π(α0 | xh, yh, xc, yc) and equating to zero. Or the

mode may need to be determined through searching over the function values or by using

graphical methods where the mode lies at the bounds of the distribution.

It can be difficult to evaluate Equations 2.3 to 2.5 when a quasi-dichotomous prior

is chosen for α0. When the parameter values of the quasi-dichotomous prior are small,

the marginal distribution of α0 is heavily peaked at the limits of the distribution (near

zero and one) and can be difficult to integrate using numerical integration due to the dis-

continuity at zero and/or one. Furthermore, because numerical optimisation is required
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to calculate the median, this approach could be computationally intensive depending on

the current control sample size. Since the power needs to be calculated for each observed

current control response. The terms power and weight are used interchangeably to denote

the summary measure of the posterior distribution of α0 that is used to down-weight the

historical data.

Figure 2.2 and Table 2.1 show the mean of the posterior distribution of α0 for the three

beta prior distributions discussed above: Beta(1,1); Beta(0.5,0.5); and Beta(0.3,0.3), and

the mode of the posterior distribution of α0 for a Beta(1,1) prior for a range of observed

current control proportions and fixed historical data. The mode of the quasi-dichotomous

prior was not considered here, as this would always give either zero and one, similar to

the test and pool approach discussed by Viele et al. [42]. Table 2.2 gives the median

and 95% credible interval of the power α0 for five observed current control response

proportions. The optimisation technique used to find the median value and 95% credible

interval by minimising the functions in Equations 2.4 and 2.5 was the modified Newton-

Raphson technique implemented in Mata [46]. For a single observed response proportion,

calculating the median took 2.88 seconds, therefore calculating the median for all possible

responses in a dataset or for all possible combinations of control responses in a two-stage

adaptive design may be time consuming.

Figure 2.2: Mean and mode of the marginal distribution of α0 for different observed control
response proportions and different priors on α0. Viele example, historical data 65/100
responses, 100 current controls. The vertical red line represents complete agreement
between the historical and current control proportions.
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Table 2.1: Mean and mode of the marginal distribution of α0 for a range of observed
current control proportions and different priors on α0. Viele example, historical data
65/100 responses, 100 current controls.

Current control proportion Mean (α0) Mode (α0)
Beta(1,1) Beta(0.5,0.5) Beta(0.3,0.3) Beta(1,1)

0.45 0.307 0.250 0.218 0.057
0.55 0.512 0.538 0.563 0.380
0.65 0.571 0.622 0.664 1
0.75 0.474 0.481 0.494 0.195
0.85 0.185 0.119 0.088 0.024

Table 2.2: Median and 95% credible interval of the marginal distribution of α0 for different
observed current control proportions. Viele example, historical data 65/100 responses, 100
current controls.

Median(95% credible interval)
Current control proportion Beta(1,1) Beta(0.5,0.5) Beta(0.3,0.3)
0.45 0.210 (0.011,0.889) 0.115 (0,0.956) 0.062 (0,0.986)
0.55 0.490 (0.040,0.972) 0.514 (0.006,0.998) 0.557 (0,1)
0.65 0.594 (0.065,0.981) 0.692 (0.020,0.999) 0.793 (0.003,1)
0.75 0.483 (0.038,0.972) 0.500 (0.006,0.998) 0.535 (0,1)
0.85 0.145 (0.007,0.806) 0.067 (0,0.826) 0.030 (0,0.813)

gives a low weight to the historical data even when the historical and current observed

response proportions are the same. The weight discounts slowly to zero as the difference

increases. The quasi-dichotomous priors give a higher weight at agreement and discount

more quickly to zero than the Beta(1,1) prior. The mode gives a weight of one to the

historical data (pooling of the historical and current controls) for a range of response

proportions around complete agreement and discounts quickly to zero as the difference

between the current and historical control response proportions increases. However, for

a Beta(1,1) prior, at complete agreement in the historical and current control response

proportions, the posterior distribution of α0 is almost flat across all values of α0, there-

fore a weight of one does not seem representative of the posterior belief about the power.

Using the median of the posterior distribution of α0 to down-weight the historical data

gives a higher weight at complete agreement in the historical and current control response

proportions and discounts more quickly to zero as the difference increases compared to

using the mean of the posterior distribution of α0. However, there is a computation cost

to using the median, each calculation of the power requires integration and optimisation

and therefore using the median would be too computationally intensive in the trial design

setting. The credible intervals of α0 are wide for all priors and different levels of agree-

ment between the historical and current data, indicating there is a lot of uncertainty in

estimating α0. Power prior and modified power prior are used interchangeably throughout

the thesis, where the power is treated as a random variable, the modified power prior is
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always used.

2.2.2 Commensurate prior

The commensurate prior [18, 19, 20] assumes different parameters for the true underly-

ing response probabilities in the current and historical controls. The outcome data are

modelled on the log odds scale. The model fitted is given by,

Xc ∼ Bin (nc, pc) ,

Xh ∼ Bin(nc, ph),

Xt ∼ Bin(nt, pt),

logit(pc) = ψc,

logit(ph) = ψh,

logit(pt) = ψt,

ψc ∼ N(ψh, 1/τ),

ψh ∼ N(0, 1000),

ψt ∼ N(0, 1000),

where logit(p) = log(p/(1 − p)). Three different priors for τ (the commensurability pa-

rameter) are considered in the original paper by Hobbs et al. [19]. The first two priors are

conjugate gamma priors of the form, π(τ) ∼ Gamma(c(τ̃), c) where τ̃ is a prior guess of τ

and c represents the belief in the prior estimate of τ , with a smaller value of c correspond-

ing to weaker prior belief, τ̃ > 0 and c > 0. Hobbs et al. [19] consider two gamma priors, a

Gamma(1,0.01) and a Gamma(1,0.05). The gamma prior here is parameterised in terms

of the shape and rate, therefore, a Gamma(α, β) prior has mean α/β and variance α/β2.

The Gamma(1,0.01) prior has mean 100 and variance 10000 and the Gamma(1,0.05) has

mean 20 and variance 400. The third prior considered by Hobbs et al. [19] is a spike and

slab prior. This prior distribution is a two-component mixture distribution made up of a

uniform distribution between two limits (slab) and a degenerate distribution at a selected

large value (spike).

Let Sl and Su be the limits between which the spike and slab prior is uniformally dis-

tributed and let K be a point mass that denotes commensurability between the historical

and current controls. Then the prior distribution is specified as [19],

Pr(τ < Sl) = 0,

Pr(τ < u) = p0{(u− Sl)/(Su − Sl)}, Sl ≤ u ≤ Su,

and Pr(τ > Su) = P (τ = K) = 1− p0,
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where p0 denotes the prior probability of existence within the slab, 0 ≤ Sl < Su and

K > Su.

The argument for this type of prior is that for small differences between the current

and historical data response proportions, the marginal likelihood of the data is nearly flat

with a gradually decreasing slope as a function of τ , when τ is sufficiently large. It is

therefore suggested that it may be sensible to choose a large value of τ that represents

commensurability [19]. Hobbs et al. [19] warn that the results of the commensurate prior

model are dependent on the calibration of the spike and slab prior, i.e. on the choice of

the parameters p0, Sl, Su and K. We therefore do not consider the spike and slab prior

in this thesis. In this thesis, to illustrate the commensurate prior method we consider the

Gamma(1,0.01) prior for τ .

Priors used for the between study variance parameter in a meta-analysis are also ap-

propriate priors for the commensurability parameter. An informative prior is required to

induce borrowing across studies in a meta-analysis when there is only a small amount

of data available to inform on the between study variance parameter. Hobbs et al. [19]

discuss the connection between the commensurate prior and meta-analysis. Priors of

the form Gamma(1, β) and Gamma(ε, ε) were also considered by Viele et al. [42] for the

between study variance parameter in hierarchical modelling to incorporate historical data.

In WinBUGS [47], the commensurate prior, as it was originally proposed, would be

fitted using the code in Figure 2.3(a). In this specification of the model, the parameters

ph and pc are jointly estimated. This joint specification means that the current control

data informs inference on ph. In this thesis, the current trial data is considered the most

reliable information and the aim is to assess the agreement between the historical and

current control data and to utilise the historical data in estimating pc when the current

and historical control data agree. A model where the historical data inform inference on

pc but does not allow feedback from the current data model back to the historical data

model may be more appropriate. We explore using the cut function in WinBUGS which

was designed for this purpose [17]. The model code for the commensurate prior using the

cut function is shown in Figure 2.3(b). For the example model given in Figure 2.3(b),

the cut function makes a copy of ψ∗h, but otherwise severs the link between ψ∗h and ψh.

Hence, ψh always has the same value as ψ∗h but ψ∗h is isolated from Xc and cannot be

influenced by it [17]. Possible alternative approaches to cutting the feedback from the

current control data to the historical model were explored, such as a two step procedure,

where the historical data model is estimated and the mean of the prior for ψc is fixed at

the mean of the posterior distribution of ψh with precision τ . A fully Bayesian version
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was also considered, taking the posterior samples from the distribution of ψh as the mean

of the prior distribution for ψc. However, only the cut function approach stopped the

feedback from the current data model to the historical data model.

Figure 2.3: Commensurate prior model WinBUGS code (a) Standard approach and (b)
using the cut function

model {
Xc ˜ dbin ( pc , nc )

Xh ˜ dbin (ph , nh )

Xt ˜ dbin ( pt , nt )

l o g i t ( pc ) <– p s i c

l o g i t (ph) <– ps ih

l o g i t ( pt ) <– p s i t

p s i c ˜ dnorm( psih , tau )

ps ih ˜ dnorm ( 0 , 0 . 0 0 1 )

p s i t ˜ dnorm ( 0 , 0 . 0 0 1 )

tau ˜ dgamma( 1 , 0 . 1 )

prob <– step ( pt–pc )

t r t <– pt–pc

}

model {
Xc ˜ dbin ( pc , nc )

Xh ˜ dbin (ph , nh )

Xt ˜ dbin ( pt , nt )

l o g i t ( pc ) <– p s i c

l o g i t (ph) <– p s i h s t a r

l o g i t ( pt ) <– p s i t

p s i c ˜ dnorm( psih , tau )

p s i h s t a r ˜ dnorm ( 0 , 0 . 0 0 1 )

p s i t ˜ dnorm ( 0 , 0 . 0 0 1 )

tau ˜ dgamma( 1 , 0 . 1 )

ps ih <– cut ( p s i h s t a r )

prob <– step ( pt–pc )

t r t <– pt–pc

}

( a ) (b)

Once the commensurate prior model has been fitted in WinBUGS, the ESS of the

control response probability posterior distribution needs to be determined to assess how

much information from the historical data has been incorporated into the posterior distri-

bution of pc. Hobbs et al. [20] propose using the method of Morita et al. [26] to determine

the EHSS, which assumes a normal approximation with known variance for the poste-

rior distribution of the control response probability. The effective historical sample size

is given by [20],

EHSS ≈ nc

{
prec(π(pc | xh, yh, xc, yc, τ))

prec(π(pc | xc, yc))
− 1

}
, (2.6)

where nc is the number of current controls randomised, prec(π(pc | xh, yh, xc, yc, τ)) de-
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notes the posterior precision of the control parameter under the model incorporating

historical data and prec(π(pc | xc, yc)) denotes the posterior precision of the control pa-

rameter under the model not incorporating any historical data. Equation 2.6 is derived

assuming a normal approximation with known variance for the distribution of the re-

sponse probability. The Morita algorithm [26] compares the information of the posterior

distribution that we want to approximate the ESS of, to the information of a distribution

with known sample size. Assuming a normal approximation, the information of a nor-

mal distribution with known variance is 1/σ2 and the information of a normal likelihood

with known variance is n/σ2. Minimising the distance between the information of these

two distributions gives the ESS to be the ratio of the known variance in the likelihood

to the variance of the posterior distribution. The posterior distribution of the current

control parameter obtained from fitting the commensurate prior model not incorporating

any historical data is used as the known distribution, the ESS of the control posterior

distribution incorporating the historical data is then derived as follows,

n ≈ σ2

Var(π(pc | xh, yh, xc, yc, τ))
=

nc/prec(π(pc | xc, yc))
Var(π(pc | xh, yh, xc, yc, τ))

=
ncprec(π(pc | xh, yh, xc, yc, τ))

prec(π(pc | xc, yc))

=⇒ EHSS =
ncprec(π(pc | xh, yh, xc, yc, τ))

prec(π(pc | xc, yc))
− nc = nc

{
prec(π(pc | xh, yh, xc, yc, τ))

prec(π(pc | xc, yc))
− 1

}
(2.7)

For binary outcome data, both the mean and variance are dependent on the response

probability. For low and high observed response proportions the variance of the posterior

distribution of the response probability is small and therefore the precision is large. The

normal approximation of the posterior distribution works well for the range of response

proportions where the precision under the reference model is reasonably constant, but

not at the extremes, since the normal approximation is using the relative difference in

precisions. Depending on the disagreement between the historical and current controls

and the prior on τ , incorporating historical data will bias the current control response

probability estimate, which will also affect the variance. The change in variance from the

reference model to the model incorporating historical data for binary data is dependent

on both the bias and the additional patients from the historical data.

The second approach to approximating the ESS of the posterior distribution of pc

is to use the method proposed by Schmidli et al. [23] for the robust meta-analytic prior

[23], where the posterior distribution of the control response probability is approximated
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by a mixture of beta distributions and the Morita algorithm is used to approximate the

ESS of this mixture distribution. We explore whether this approach can be used for the

commensurate prior.

Approximating the posterior distribution of the commensurate prior model

using a single beta/mixture of beta distributions

For this approach, the commensurate prior model is fitted in WinBUGS, the Markov chain

Monte Carlo (MCMC) samples of the posterior distribution of the control parameter are

then used to optimise the parameters of a mixture of beta distributions. We explore

whether a one-component or two-component mixture distribution provides the best ap-

proximation to the kernel density estimate of the posterior distribution of the control

response probability, constructed from the MCMC samples. We use the Kullback-Liebler

divergence [48], which is a measure of how one probability distribution diverges from

another, expected probability distribution, to assess whether a one-component or two-

component mixture distribution is a better approximation to the kernel density estimate.

The density estimate is constructed on the logit scale and transformed to the probability

scale to ensure the estimated density values lie between zero and one. Here, the density

estimate of the control posterior distribution is constructed as follows.

Given the M posterior sample estimates for the current control response probability

on the logit scale, which are denoted by ψ̂
(1)
c , ..., ψ̂

(M)
c . The density estimate, π(ψc), is a

mixture of normal distributions,

π(ψc) =
1

Mh

M∑
i=1

1√
2π
e

−


(
ψc−ψ̂(i)

c

h

)2

2


,

where

h = 0.8r
M1/5 and r = min

(√
Var(ψc),

IQR(ψc)
1.349

)
.

This is the standard approach for calculating univariate density values in Stata [49, 50].

The density is estimated on the logit scale and transformed to the probability scale

using the change of variables method to ensure that the estimated density values lie be-

tween zero and one. The Kullback-Liebler divergence is then used to compare the density

estimate as the true distribution with the mixture of beta distributions approximation

obtained from optimisation using the Broyden-Fletcher-Goldfarb-Shanno technique im-

plemented in Mata [46]. Letting, ψc = g(pc) = log
(

pc
1−pc

)
and pc = g−1(ψc), then the

density values on the probability scale are given by,



Chapter 2 Historical data methods for binary outcome data 35

π(pc) = π(g(pc))

∣∣∣∣dg(pc)

dpc

∣∣∣∣ ,
where

g(pc) = log(pc)− log(1− pc)

=⇒ dg(pc)

dpc
=

1

pc
+

1

(1− pc)
.

The accuracy of the mixture of beta distribution approximation to the posterior dis-

tribution will vary depending on the observed response proportion. Depending on the

number of control patients in the current trial, it may be computationally intensive to

determine the EHSS for all possible responses in the current trial, especially if a two-

component mixture of beta distributions approximation is used and the Morita algorithm

is required to calculate the EHSS.

For the Viele example, a single beta distribution provides a reasonable approximation

to the posterior distribution of the current control proportion and the ESS of a beta

distribution is the sum of the parameter values, which simplifies determining the EHSS.

A two-component mixture of beta distributions may provide a better approximation of

the posterior distribution but adds complexity for the optimisation, and the Morita al-

gorithm described in Section 2.2.3 is required to calculate the ESS of a mixture of beta

distributions.

Example of implementing the commensurate prior for the Viele example

Figure 2.4 shows the precision of the posterior distribution of pc under a model assuming

no historical data and under the commensurate prior model. For the model assuming no

historical data are available a normal prior distribution with mean 0 and precision 0.001

was assumed for pc. Figure 2.4 also shows the EHSS for the commensurate prior model

for different observed response proportions in the current controls, assuming 65 responses

out of 100 patients in the historical data and 100 current controls. A Gamma(1,0.01) prior

is assumed for τ and the standard commensurate prior model is fitted, not using the cut

function to stop the feedback from the current data model to the historical data model.

At low and high observed response proportions in the current controls, small changes in

the estimated response proportion result in large changes in the precision. The normal

approximation of the EHSS given in Equation 2.6 breaks down at the extremes because

it is based on the relative difference in precision of pc under the model with and without

historical data. Furthermore, since the standard commensurate prior approach draws the

estimated current and historical parameter estimates towards each other, the maximum

EHSS does not occur at complete agreement, but when the observed current control
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response proportion is slightly lower than the historical response proportion in this exam-

ple. The EHSS is estimated to be below zero for some observed current control response

proportions because the variance of the posterior distribution of pc is increased from in-

corporating historical data into the model that is different from the current control data.

The increased variance is largest for an observed current control response proportion of

approximately 0.4 and 0.85 where there are substantial differences between the current

and historical response proportions but some of the historical data are still incorporated

into inference on pc.

Figure 2.4: Left graph shows the posterior precision of pc for different observed current
control proportions when using the commensurate prior model and a model incorporating
no historical data. Right graph shows the EHSS (calculated using Equation 2.6) using
the commensurate prior model for different observed current control proportions. Viele
example, historical data 65/100 responses, 100 current controls. The vertical red lines
represent complete agreement between the historical and current control proportions.
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Approximating the posterior distribution of pc by a single beta distribution or a two-

component mixture of beta distributions is explored in Figure 2.5 using the original com-

mensurate prior model and in Figure 2.6 using the commensurate prior model with the

cut function. The commensurate prior approach here is illustrated having observed 65

responses out of 100 in the current controls (complete agreement with the historical data)

and also having observed 50 responses out of 100 in the current controls (substantial dis-

agreement). A Gamma(1,0.01) prior is assumed for τ .
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Figure 2.5: MCMC samples, kernel density and beta distribution approximations of the
control posterior distribution for the standard commensurate prior model for two different
observed current control response proportions, assuming a Gamma(1,0.01) prior for τ .
Historical data 65/100 responses, 100 current controls.
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Figure 2.5 shows the posterior MCMC samples, kernel density estimate and the beta

distribution approximation of the control posterior distribution for 65/100 and 50/100

current control responses. At complete agreement between the current and historical

data, a single beta distribution approximates the control posterior distribution well. The

ESS of the control posterior distribution at complete agreement is approximately 166.

For 50 current control responses out of 100, a two-component mixture of beta distributions

provides a better approximation to the control posterior distribution than a single beta

distribution. The Morita algorithm is then required to determine the ESS of the two-

component mixture distribution. The ESS for the two-component mixture distribution

is 146 compared to the ESS of 128 from using the single beta distribution approximation.

The control posterior distributions obtained in Figure 2.5 are using the original com-

mensurate prior model which allows feedback from the current control data to inform

about the historical parameter values. This can be seen from the summary statistics of

the control posterior distribution when there is disagreement between the historical and

current controls, given in Table 2.3.
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Table 2.3: Posterior summaries for the standard commensurate prior with 50/100 current
control responses. Historical data 65/100 responses.

Parameter mean sd MC error 2.5% median 97.5% burn in sample
ph 0.596 0.043 0.0003 0.516 0.595 0.685 1000 50000
pc 0.554 0.044 0.0003 0.462 0.556 0.634 1000 50000
τ 80.180 91.829 0.5639 1.842 47.760 334.397 1000 50000

From the posterior summaries in Table 2.3, the historical posterior mean is drawn

down from 0.65 towards the observed response proportion in the current control data of

0.5 and similarly the current control posterior mean is drawn slightly towards the histor-

ical response proportion.

Using the cut function, we obtain the control posterior distributions and posterior

summaries given in Figure 2.6 and Table 2.4.

Figure 2.6: MCMC samples, kernel density and beta distribution approximations of the
control posterior distribution for the commensurate prior model using the cut function for
two different observed current control response proportions, assuming a Gamma(1,0.01)
prior for τ . Historical data 65/100 responses, 100 current controls.
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From the posterior summaries given in Table 2.4, the mean of the historical data pa-

rameter is now the estimated response proportion in the historical data. Similar to the

original specification of the commensurate prior, the mean of the current control response



Chapter 2 Historical data methods for binary outcome data 39

Table 2.4: Posterior summaries for the commensurate prior model using the cut function
with 50/100 current control responses. Historical data 65/100 responses.

Parameter mean sd MC error 2.5% median 97.5% burn in sample
ph 0.650 0.047 0.0002 0.555 0.651 0.739 1000 50000
pc 0.553 0.051 0.0003 0.447 0.556 0.646 1000 50000
τ 34.278 58.427 0.3018 0.690 12.680 204.598 1000 50000

probability parameter has been drawn closer to the historical parameter estimate. Com-

paring Table 2.4 to Table 2.3, when using the cut function, the standard deviation of

the posterior distribution of pc increases. The standard deviation increases because there

is no feedback from the current control data to the historical parameter estimate and

therefore the posterior estimate of ph is not drawn closer to the posterior estimate of pc

when using the cut function, the posterior estimate of τ is then smaller, and less historical

information is used to inform inference on pc. Figure 2.6 shows that the single beta dis-

tribution approximation of the control posterior distribution when there were 50 current

control responses is not very close to the kernel density estimate, with a Kullback-Liebler

divergence measure of 0.0048. However, for this example, numerical optimisation of the

two-component mixture distribution converged to a mixture distribution that was not

close to the kernel density estimate and therefore did not provide a better approximation.

The effective sample sizes at complete agreement and a 15% difference in the historical

and current control response proportions are 142 and 93 respectively.

The two-component mixture distribution is difficult to optimise for some observed

current control response proportions and sometimes converges to a distribution that is

not close to the kernel density estimate. Figure 2.7 illustrates the EHSS obtained using a

single beta distribution approximation for all possible current control response proportions

for the Viele example. The EHSS is given assuming a Gamma(1,0.01) prior for τ using

the standard commensurate prior model and the commensurate prior model using the cut

function. The Kullback-Liebler divergence is also given to show the error in each beta

distribution approximation to the posterior distribution.

From Figure 2.7, the commensurate prior model using the cut function results in a

smaller EHSS at complete agreement between the current and historical data compared

to the standard commensurate prior model. The historical response probability is esti-

mated less precisely without the current control data feeding back into inference on the

historical data parameter.

2.2.3 Robust mixture prior

For one historical study, the robust mixture prior [23] is a two-component mixture prior,

with a mixture component based on the historical data and a weakly-informative mixture
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Figure 2.7: Commensurate prior model EHSS (left) and Kullback-Liebler divergence
(right) for different observed current control response proportions using the standard
commensurate prior model and the commensurate prior model using the cut function, τ ∼
Gamma(1, 0.01). Viele example, historical data 65/100 responses, 100 current controls.
The vertical red lines represent complete agreement between the historical and current
control proportions.
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component,

π(pc | xh, yh, w) = wBeta(xh, yh) + (1− w)Beta(1, 1),

where the weight, w ∈ [0, 1], is pre-specified.

The posterior distribution for the response probability in the control arm is then a

mixture of beta distributions with updated parameter values and weights [23],

π(pc | xh, yh, xc, yc, w) = w̃Beta(xh + xc, yh + yc) + (1− w̃)Beta(1 + xc, 1 + yc),

where,

w̃ ∝
w B(xh+xc,yh+yc)

B(xh,yh)

wB(xh+xc,yh+yc)
B(xh,yh)

+ (1− w) B(1+xc,1+yc)
B(1,1)

.

No recommendation is given for choosing the weight parameter and therefore a sensitivity

analysis is required to determine how much weight is given to the historical data in the
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final analysis for different initial weights of the prior mixture distribution [23].

The agreement between the historical and current controls is summarised using the

ESS. The ESS is determined by calculating the ESS of the control posterior distribu-

tion incorporating both the historical and randomised controls in the current trial and

subtracting the number of randomised controls [23]. The ESS of the posterior distribu-

tion is calculated using the method of Morita et al. [26], which is outlined below.

For binary data, the Morita algorithm searches for a distribution with known sam-

ple size that has the same information at the mean as the posterior distribution for the

current control response probability distribution. The sample size of the posterior distri-

bution is then estimated to be the sample size of the created distribution. Here we use

the algorithm by Morita but the information is compared at the mode of the distribution

as proposed by Schmidli et al. [23]. Comparing the information at the mode is likely to

be the reason the ESS from the one-component and two-component mixture distribu-

tions differ when the densities look similar in Figure 2.5. The original paper by Morita

et al. [26] shows that when comparing the information at the mean, the ESS matches the

commonly used ESS value for the beta distribution of the sum of the parameter values

[26]. However, the mode is used here since this seems a more appropriate measure when

the posterior mixture distribution may be bimodal.

The control response probability posterior distribution is a mixture of beta distribu-

tions and the mode is found by searching over the function values to find the maximum.

The observed information at the mode is then approximated using a quadratic approxi-

mation. Let p̃c be the mode of the current control posterior distribution. The observed

information is defined as,

I = − d2logπ(pc)

dp2
c

∣∣∣∣
pc=p̃c

The second derivative is calculated using a quadratic approximation. This is the

quadratic function whose first and second derivatives are the same as those of the distri-

bution of pc at the mode. The formula is given by,

π(pc) ≈ π(p̃c) + π̇(p̃c)(pc − p̃c) +
1

2
π̈(p̃c)(pc − p̃c)2.

This quadratic approximation is the second-order Taylor polynomial for the posterior

mixture distribution of pc at pc = p̃c.
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The observed information of the control response probability posterior distribution is

compared to a posterior distribution constructed from a non-informative prior and has a

known sample size. The expected information for the posterior distribution with sample

size m under a weakly-informative prior is,

E(I0(m)) = −
xc=m∑
xc=0

{
d2log(π0(pc | xc))

dp2
c

∣∣∣∣
pc=p̃c

}
π(xc).

where π0(pc | xc) is a beta distribution with sample size m and π(xc) is the prior predic-

tive distribution with respect to the informative prior π(pc), which is a mixture of beta-

binomial distributions. As an initial non-informative prior we choose a Beta(p̃c/c, (1 −
p̃c)/c), where c is a large constant, here it is chosen to be 100. We then loop over all

sample sizes m up to a reasonable maximum, which is chosen to be the sum of the beta

component of the mixture distribution with the largest parameter values plus 10. The

ESS is the largest m such that E(I0(m)) < I [23].

Figure 2.8 shows the prior ESS for different observed response proportions in the

current controls and different initial mixture prior weights. Here we have assumed there

are 100 historical controls with an observed response proportion of 65% and 100 current

controls. The prior ESS is nh when w̃ is one and the prior ESS is two when w̃ is zero.

Ideally, a Beta(0,0) non-informative component would be used in the mixture prior, giv-

ing a prior ESS of zero when zero weight is given to the informative component. The

historical data weight would then be EHSS/nh, however a Beta(0,0) is an improper dis-

tribution and cannot be used in the mixture prior.

A prior that gives an initial low weight to the informative historical data component of

the mixture prior, for example a weight of 0.1, gives a low prior ESS even when there is

complete agreement between the current and historical controls. A low initial prior weight

also discounts quickly as the difference in the current and historical response proportions

increases. When an initial weight greater than 0.8 is given to the informative component,

at complete agreement between the current and historical controls all of the historical

data are incorporated into the final analysis but the prior ESS remains high even when

there are substantial differences between the current and historical controls. Similar to

the commensurate prior approach, incorporating historical data can increase the variance

of the posterior distribution of the control parameter compared to using no historical

data, resulting in a negative prior ESS. For the example in Figure 2.8, calculating the

ESS for all observed current control proportions for a single initial mixture prior weight

took approximately one hour.
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Figure 2.8: Robust mixture prior effective sample size for different observed current con-
trol response proportions. Viele example, historical data 65/100 responses, 100 current
controls. The vertical red lines represent complete agreement between the historical and
current control proportions.
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2.2.4 Limitations of published historical data methods

The three methods proposed in the literature for incorporating historical control data into

the analysis of a current trial: power priors; commensurate priors; and robust mixture

priors all have their disadvantages. These are split here into the disadvantages in a non-

adaptive design setting and an adaptive design setting, focusing on when there is only

one historical study. For one historical study, it is particularly difficult to assess whether

there is agreement between the historical and current control data. Similar to the meta-

analysis problem of assessing the between study variance with only two studies, strong

priors are required on these variance parameters as they are not well estimated from the

data. All of the historical data methods proposed have this problem, strong priors are

required on the commensurability parameter, τ , and the power, α0, to induce borrowing.

The initial weights chosen for the robust mixture prior have a strong influence on how

the historical data are utilised. With only one historical study, it is required that prior

knowledge is used to inform the parameters that govern how much historical data are

borrowed and how quickly the historical data are discounted when there is disagreement.

There are differences between all the methods in how intuitive these parameters are to

choose and how easy it is to implement the method. These differences are discussed in

the next sections.
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Non-adaptive design

The main difference in using historical data methods for an adaptive design versus a

non-adaptive design is that for an adaptive design calculation of the prior ESS given the

current trial data is required at an interim analysis of the trial. The prior ESS indicates

how much of the historical data will be incorporated into the final analysis given the

agreement between the historical and current controls at that interim analysis.

For the commensurate prior and the robust mixture prior it can be difficult to deter-

mine the EHSS, this requires calculating the ESS of the control response probability

posterior distribution which does not have a known distribution. However, for a non-

adaptive design, the analysis approach for the commensurate prior and robust mixture

prior which calculates the probability that the response in treatment is greater than con-

trol, does not require the explicit calculation of the EHSS, as illustrated in Figure 2.3

and Section 2.5.7. However, it would be useful to know the EHSS and how much of

the historical data are incorporated into the final analysis. Calculating the ESS of the

fully Bayesian modified power prior was not considered in this thesis and calculating the

probability that the treatment response probability is greater than the control response

probability for the fully Bayesian modified power prior is computationally intensive due

to the number of integrations required.

As mentioned previously, choosing a flat prior for the commensurability parameter

and the power prior does not induce sufficient borrowing of the historical data when there

is complete agreement between the historical and current controls, since with only one

historical study there is not enough information to learn about these parameters from the

data. Quasi-dichotomous priors for the power in the modified power prior approach can

lead to a marginal posterior distribution that is difficult to integrate. For the commensu-

rability parameter, for a certain range of disagreement between the historical and current

controls, the variability of the posterior distribution for the control response probability

can be increased compared to the posterior distribution obtained from a design not using

any historical data.

The commensurate prior requires MCMC, each model was fitted in WinBUGS, this

increases the computation time for calculating the operating characteristics compared to

a design where a conjugate analysis is possible. For the commensurate prior with only one

historical study, the cut function stops the feedback from the current control data to the

historical parameter, but it is unclear how cutting this feedback impacts the estimation

of τ .

Finally, the choice of prior for the commensurability parameter or the power prior is not
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intuitive and the operating characteristics for each prior need to be considered which can

be computationally intensive. For the robust mixture prior, the operating characteristics

can be determined quickly as the posterior distribution is a mixture of beta distributions

and a quick method to calculate the operating characteristics is explored in Section 2.5.1.

Adaptive design

For the power prior, given an observed number of responses in the current controls, the

marginal distribution of the power has a known distribution and therefore a summary

measure of the marginal posterior distribution can be used to calculate the EHSS. Using

the mode of the marginal distribution of α0 from a Beta(1,1) prior, at complete agreement

between the current and historical data the marginal posterior distribution of the power

is nearly flat but gradually increasing with α0, the mode takes the maximum to give the

historical data a weight of one, which is not an intuitive weight to give to the historical

data. This approach however does give desirable weights, which are high at agreement

between the historical and current controls and discount to zero quickly as the difference

increases. There is no prior input from the designer of the discounting of the historical

data using the mode. Taking the mean or median of the posterior distribution requires in-

tegration for the mean and integration and optimisation for the median and therefore can

be computationally intensive. To induce increased borrowing of historical data when there

is agreement a quasi-dichotomous prior was explored. As the prior parameters decrease

to zero, these priors have an increased amount of mass at the tails of the distribution,

which can cause problems with numerical integration. The choice of prior for the power

prior and the rate at which the historical data are discounted are not intuitive.

Calculating the EHSS for the commensurate prior is particularly difficult. The control

response probability posterior distribution is not a known distribution and the distribution

can not always be approximated well by a mixture distribution. Further this posterior

distribution has to be approximated for each observed number of responses in the current

controls. If an appropriate approximation can be found then the Morita algorithm can

be used to calculate the ESS. This approach is computationally intensive. The choice of

prior on the commensurability parameter is not intuitive and because for some observed

current control responses, incorporating historical data can result in a posterior distribu-

tion with a larger variance than when not using any historical data, it is possible that the

EHSS calculated may be negative. In an adaptive design setting, this would require ran-

domising more patients to control than a design that did not consider the historical data.

The commensurate prior approach using the cut function and without the cut function

give different EHSS values.

Finally, for the robust mixture prior and only one historical study, the control response
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probability posterior distribution is a two-component mixture of beta distributions. The

Morita algorithm is required to calculate the ESS of this posterior distribution which

can be computationally intensive, the disadvantages of this algorithm, beyond computa-

tionally intensive, are given below. Similar to the commensurate prior, the variance of

the control posterior distribution can be increased when there is disagreement between

the historical and current controls and can result in a negative prior ESS. Exploring the

prior ESS for a given initial robust mixture prior weight and observed current control

response probability is the most intuitive way to see the effect of the choice of the initial

prior weight. However, this can be computationally intensive, depending on the number

of initial weights explored.

The commensurate prior and the modified power prior using the mean of the marginal

distribution of the power as a weight, do not give a weight of one to the historical data or

an EHSS equal to nh, even when the historical and current controls completely agree. It

is possible that the robust mixture prior can give an EHSS equal to nh if a high initial

weight is given to the informative component of the robust mixture prior when there is

only one historical study.

The Morita algorithm is used to determine the ESS of a parametric prior, this algo-

rithm approximates the information of the robust mixture prior at the mode and matches

this to the information of a distribution with known sample size, which then becomes the

ESS of the prior. The Morita algorithm does not compare the whole distribution to a

known distribution and it is unclear how accurate the ESS approximation is from only

comparing the information at the mode when the distribution is a mixture distribution

and the sample size is unknown. The original paper [26] justifies their approach by deriv-

ing the correct sample size estimates using their approach on distributions with a known

sample size. The Morita algorithm also requires looping over all sample sizes and possi-

ble responses in a sample size up to a chosen maximum which is computationally intensive.

Similar to the robust mixture prior, using the fully Bayesian version of the commen-

surate prior with one interim analysis only requires the EHSS to be calculated at the

interim analysis. The power and type I error of these designs can be calculated at the

end of the study, without calculating the ESS of the posterior distribution at the end of

the study. However, the amount of historical information utilised in the final analysis is

then not known.

Given the limitations of the historical data methods proposed in the literature, new

methods for incorporating historical data are required that are intuitive and simple. These

approaches need to allow control over the maximum possible type I error rate and the

reduction in power when there is conflict between the historical and current control data.
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Two methods are proposed in Section 2.3 for assessing the agreement between historical

and current control data, an equivalence probability weight and a weight based on tail

area probabilities.

2.3 Assessing agreement between historical and cur-

rent control data – probability and equivalence

probability weight

We now propose two novel methods that calculate a weight, between zero and one, where

zero represents no historical data borrowing and one represents pooling of the historical

and current data. The aim of these approaches is to obtain a high weight when there is

agreement between the historical and current control data and also to recognise conflict

quickly and discount the historical data, obtaining a low weight when there is disagreement

between the historical and current controls.

2.3.1 Probability weight

Assuming beta distributions for the historical and current control response proportions,

ph ∼ Beta(xh, yh) and pc ∼ Beta(xc, yc).

The probability weight is given by,

w = 2×min{Pr(pc > ph), 1− Pr(pc > ph)}, (2.8)

as proposed by Thompson [51] where,

Pr(pc > ph) =

∫ 1

0

∫ 1

ph

pxh−1
h (1− ph)yh−1

B(xh, yh)

pxc−1
c (1− pc)yc−1

B(xc, yc)
dpcdph. (2.9)

A quick method to calculate the probability weight is described in Section 2.5.1. Note

that doubling the Pr(pc > ph) is an approximation since the beta distribution is not al-

ways symmetric.

The probability weight is illustrated in Figure 2.9. Using the probability weight ap-

proach, when the historical and current data completely agree, the historical data are

given a high weight in the final analysis. The probability weight decreases quickly to zero

as the difference in response proportions increases. At a 15% difference, the historical

data are almost completely discounted. When the current control sample size is larger,
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Figure 2.9: Probability weight for different observed current control response proportions
and current control sample sizes of 100 and 200. Viele example, historical data 65/100
responses. The vertical red line represents complete agreement between the historical and
current control proportions.
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the historical data are discounted at a quicker rate as the difference between the current

and historical response proportions increases. The disadvantage of this approach is that

there is no flexibility in how quickly the historical data are discounted.

2.3.2 Equivalence probability weight

The second approach is the equivalence probability weight and we describe two equiva-

lence weights. The one-sample approach assumes the historical data observed response

proportion is the fixed truth and assesses the equivalence of the current controls to the

fixed historical response proportion. The two-sample approach acknowledges that the

historical data are a sample and incorporates this additional uncertainty, by assuming a

distribution for both the historical and current control response proportions.

One-sample

Assuming the historical response probability is fixed at the historical sample estimate (p̂h).

We choose an equivalence interval around the historical response probability (p̂h−δ, p̂h+δ),

where δ is the equivalence bound. The weight is the probability that the current control

response distribution lies within this interval. We assume a normal approximation to the

beta distribution for the response probability in the current controls. The accuracy of

the approximation of the normal distribution to the beta distribution in this setting is
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explored in Section 2.3.4.

The normal approximation for the beta posterior distribution is derived using Laplace’s

technique [52]. The Laplace technique is a simple 2-term expansion on the log probability

density function (pdf). Let q(pc) denote the log pdf, q(pc) = loge(π(pc)). Let p̂c denote

the maximum likelihood estimate of pc, which is also the maxima of q(pc), then,

q(pc) ≈ q(p̂c) + (pc − p̂c)q̇(p̂c) +
1

2
(pc − p̂c)2q̈(p̂c)

= q(p̂c) + 0 +
1

2
(pc − p̂c)2q̈(p̂c)

= constant+
1

2
(pc − p̂c)2q̈(p̂c)

= constant− (pc − µc)2

2σ2
.

This matches the log pdf of a normal distribution with mean µc and variance σ2.

Assuming a flat initial Beta(1,1) prior for the control response probability, the posterior

distribution given xc responses and nc − xc non-responses in the current trial is given by

[53],

π(pc | xc, nc) ∝ pxcc (1− pc)nc−xc ,

taking logs,

q(pc) = xcloge(pc) + (nc − xc)loge(1− pc),

then,

q̇(pc) =
xc
pc
− nc − xc

1− pc
= 0 =⇒ p̂c =

xc
nc
,

q̈(pc) |pc=p̂c= −
xc
p2
c

− nc − xc
(1− pc)2

= − nc
p̂c(1− p̂c)

,

σ̂2 = {−q̈(pc) |pc=p̂c}−1 =
p̂c(1− p̂c)

nc
.

A symmetric equivalence interval around the historical response probability is assumed

throughout. The historical data weight is then given by,

w = Pr(p̂h − δ ≤ pc ≤ p̂h + δ) (2.10)

where,
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Pr(p̂h − δ ≤ pc ≤ p̂h + δ) = 1−
∫ p̂h−δ

−∞
N

(
p̂c,

p̂c(1− p̂c)
nc

)
dpc −

∫ ∞
p̂h+δ

N

(
p̂c,

p̂c(1− p̂c)
nc

)
dpc

= Φ

 p̂h + δ − p̂c√
p̂c(1−p̂c)

nc

− Φ

 p̂h − δ − p̂c√
p̂c(1−p̂c)

nc


(2.11)

Figure 2.10 illustrates the main features of the one-sample equivalence probability

weight for different equivalence bounds and current control sample sizes at agreement

between the historical and current controls (65% response proportion) and substantial

disagreement (50% response proportion in the current controls).

Figure 2.10: One-sample equivalence probability weight when the historical and current
controls completely agree and when they differ for 8% and 5% equivalence bounds, 100
and 200 current control patients, historical data 65/100 responses. The vertical dashed
red lines represent the equivalence limits.
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From Figure 2.10, comparing the 8% (i.e. δ = 0.08) and 5% equivalence bounds.

The larger equivalence bounds give a higher weight to the historical data, both when the

historical and current controls agree and disagree. Comparing the historical data weight

obtained when the current control sample size is 100 patients and when it is 200 patients.
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When the current control sample size is larger, the normal approximation to the current

control response probability has a smaller variance and is more peaked around the sample

estimate and therefore for the same equivalence bounds a higher weight is obtained, since

more of the current control response probability distribution lies within the equivalence

bounds. A high weight is obtained when there is agreement and a low weight when there

is disagreement between the historical and current controls. The two-sample approach

has similar features, but is also dependent on the historical data sample size. The choice

of equivalence bounds is key to controlling how much weight is given to the historical data

when the current and historical control response proportions are in complete agreement.

The historical data estimate of the response probability is a sample estimate and the

one-sample approach does not incorporate the variability around the estimated histor-

ical response probability. Therefore, we now explore a two-sample equivalence weight

approach, where the variability around the historical data estimate is incorporated into

calculating the historical data weight.

Two-sample

We assume a normal distribution approximation for both the posterior distribution of

the response probability in the historical data and the current controls and calculate

the probability that the difference distribution of the response proportions lies within the

chosen equivalence bounds. The posterior distributions for pc and ph are derived assuming

Beta(1,1) priors for both parameters. The two-sample equivalence probability weight is,

w = 1− Pr(pc − ph > δ)− Pr(pc − ph < δ)

= Φ

 δ − (p̂c − p̂h)√
p̂c(1−p̂c)

nc
+ p̂h(1−p̂h)

nh

− Φ

 −δ − (p̂c − p̂h)√
p̂c(1−p̂c)

nc
+ p̂h(1−p̂h)

nh

 (2.12)

Figure 2.11 shows the distribution of the one-sample and two-sample equivalence prob-

ability weights obtained for the Viele example assuming different observed control propor-

tions in the current study. The historical data observed 65 responses from 100 patients

and it is assumed there are either 100 or 200 controls available from the current study.

For the one-sample equivalence probability weight, when there are 100 current control

patients, 6% equivalence bounds gives a weight of 0.79 at complete agreement between

the historical and current controls and at approximately a 15% difference, the historical

data are given a weight of zero. Assuming larger, 11% equivalence bounds, when there

are 100 current control patients, a weight of 0.98 is obtained at complete agreement which

decreases to zero at approximately a 20% difference. When there are 200 current control

patients available, the equivalence probability weight is larger at complete agreement and
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Figure 2.11: One-sample and two-sample equivalence probability weights for different ob-
served current control response proportions, different equivalence bounds and different
current control sample sizes. Viele example, historical data 65/100 responses. The ver-
tical red lines represent complete agreement between the historical and current control
proportions.
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discounts more quickly to zero as the difference between the current and historical control

proportions increases compared to when there are 100 current control patients.

The main factors that affect the weight obtained for the one-sample equivalence ap-

proach are: the difference in response proportions between the current and historical data;

the equivalence bounds chosen; and the sample size of the current control group.

The weights obtained from the two-sample equivalence approach are lower than the

one-sample approach at complete agreement between the current and historical controls

due to the variability incorporated from the historical data. The weight also decreases to

zero at a slower rate than the one-sample approach as the difference between the historical

and current controls increases. For the two-sample approach, the factors that affect the

weight are: the difference in response proportions between the current and historical data;
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the equivalence bounds chosen; the historical data sample size; and the current control

sample size. The choice of equivalence bounds is explored further in Section 2.5.6.

The maximum equivalence probability weight does not always occur when there is

complete agreement in the historical and current control response proportions. In all sim-

ulations explored, since the number of responses can only be integer values, if complete

agreement in the response proportions is possible, given the sample sizes of the histori-

cal and current control data, the maximum weight was obtained at complete agreement.

When the sample sizes in the current and historical controls differ and complete agreement

in the response proportions between the current and historical controls is not possible,

the maximum equivalence weight will occur when the current and historical control re-

sponse proportions are similar, but the maximum equivalence weight may not be when

the observed historical and current control proportions are closest. Where the maximum

equivalence weight occurs depends on what the observed historical and current control

proportions are, and the sample sizes of the historical and current control data, since the

variance of the response probability distribution is dependent on the observed proportion

and the sample size. In all simulation explored, the maximum equivalence weight is always

close to agreement in the historical and current control proportions and the maximum

weight is close to the weight obtained at complete agreement in the historical and current

control proportions. Therefore, the equivalence probability weight has the desired prop-

erty of giving the historical data a high weight when it is similar to the current control

data.

2.3.3 Using a weight to discount the historical data

The probability weight and equivalence probability weight are used as a fixed power to

down-weight the historical data. A rationale for using these probabilities to down-weight

the historical data comes from the power prior with a fixed weight [14]. The power prior

with a fixed weight is given by,

π(pc, α0 | xh, yh) ∝ L(pc | xh, yh)α0π0(pc).

If we consider a power prior of the form,

π(pc, α0 | xh, yh) ∝ L(pc | xh, yh)I{ph≡pc}π0(pc),

where I{p̂h≡p̂c} is an indicator function of whether the historical and current control data

are in agreement or not. This prior results in a pooled analysis of the current and historical
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control data when they “agree”, and when the historical and current data “disagree” the

prior becomes the initial prior for pc before the historical data are observed π0(pc). In

expectation, E(I{ph≡pc}) = Pr(ph ≡ pc), we use the expectation of the agreement as a plug-

in value approximation of the agreement between the historical and current controls. The

probability weight and equivalence probability weight are defined to be w = Pr(ph ≡ pc),

to give the prior,

π(pc, α0 | xh, yh) ∝ L(pc | xh, yh)wπ0(pc).

Then, for one historical study, the EHSS for the probability and equivalence weight

approaches is w × nh, as with the power prior approach.

2.3.4 Normal approximation to the beta distribution

For the equivalence probability weight approach, it is possible to directly use the beta

distribution for the response probability in the historical and current controls rather than

using a normal approximation. However, assuming a normal distribution gives a simple

equation (Equation 2.12) for the two-sample equivalence probability weight whereas using

the beta distribution would require numerical integration. Furthermore, choosing sym-

metric equivalence bounds seems intuitive when using the normal approximation of the

difference in response proportions since when there is no difference between the observed

current and historical control proportions the difference distribution will be symmetric

and centred at zero. For small sample sizes the beta distribution may not be symmetric.

The choice of equivalence bounds is discussed further in Section 2.5.6.

The skewness of the beta distribution with xc responses and yc non-responses is given

by,

skewness =
2(yc − xc)

√
xc + yc + 1

(xc + yc + 2)
√
xcyc

.

When xc = yc the skewness is zero and the beta distribution is symmetric. For xc < yc

the beta distribution is positively skewed and for xc > yc the beta distribution is negatively

skewed. As xc → ∞ and yc → ∞, the skewness tends to 0. The normal approximation

to the beta distribution is best when the parameters of the beta distribution are equal or

when both of the beta distribution parameter values are large.

For the Viele example, the equivalence approach using the beta distribution directly

or using the normal approximation, both with symmetric equivalence bounds, give similar

weights. Figure 2.12 illustrates this.
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Figure 2.12: Equivalence probability weights for different observed current control pro-
portions and different equivalence bounds when using a normal approximation to the
beta distribution or the beta distribution directly. Viele example, historical data 65/100
responses, 100 current controls. The vertical red lines represent complete agreement be-
tween the historical and current control proportions.
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The error in the normal approximation to each beta distribution can be explored using

the difference in the cumulative distribution functions as suggested by Cook [54].

The error is then given by,

Error = Ix(xc, yc)− Φ(z),

where Ix(xc, yc) is the regularized incomplete beta function, Φ is the cumulative distri-

bution function (CDF) of the normal distribution and z = pc−(p̂c)
(p̂c(1−p̂c))/(xc+yc) .

Figure 2.13 shows the difference in the CDF of the beta distribution and the CDF

of its normal approximation for response proportions of 55%, 65% and 75% and samples

sizes of 100 and 200. The error is dependent on the observed response proportion as well

as the sample size.

In summary, large equivalence bounds give more weight to the historical data at agree-

ment and for a wider range of disagreement in the current and historical controls. The
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two-sample equivalence weight approach incorporates the additional uncertainty around

the historical data sample estimate and therefore gives a lower weight to the historical

data at complete agreement than the one-sample approach and discounts to zero more

quickly as the difference increases. Symmetric equivalence bounds around the historical

data are used since we want to down-weight the historical data for a difference in response

proportions in either direction. If the historical response proportion is close to zero or

one, the equivalence approach may not be plausible due to the need for symmetric equiv-

alence bounds. The weights obtained from assuming a normal approximation to the beta

distribution are similar to those obtained from directly using the beta distribution and

the normal approximation is much simpler to use. However, if the response proportion is

at the extremes of the probability scale and the sample size is small, the accuracy of the

normal approximation will need to be explored further.

Figure 2.13: Difference in the CDF of the beta distribution and the CDF of its normal
approximation for response proportions of 55%, 65% and 75% and samples sizes of 100
and 200.
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2.4 Design

2.4.1 Additional information design

The primary analysis of interest in the current study is a hypothesis test of H0 : pc = pt

against H1 : pc < pt. The sample size of the current trial is fixed to detect a given treat-

ment difference at a specified power and type I error rate. A Beta(1,1) prior is assumed

for pc before the historical data are observed and a Beta(1,1) prior is assumed for pt,

for which there are no historical data available. At the end of the study, the historical

and current control data are compared. Weights are calculated according to the power

prior, probability or equivalence probability weight approaches. The prior effective sam-

ple size for the control arm is then ESS = nhw + 2, the down-weighted historical data

plus the effective sample size of the prior on pc before the historical data are observed.

For the robust mixture prior, the prior ESS is calculated directly, incorporating both the

down-weighted historical data and the effective sample size of the prior on pc before the

historical data are observed. The control arm sample size is then nc + ESS, where nc is

the current control sample size. The prior effective sample size for the treatment arm is

two from the Beta(1,1) prior on pt. The treatment arm sample size is then nt + 2.

The aim of the additional information design is to increase the power of the current

study by increasing the sample size of the control arm when there is agreement between

the historical and current controls, this is the design considered by Viele et al. [42].

2.4.2 Adaptive design with a single interim analysis

The primary analysis of interest is a hypothesis test of H0 : pc = pt against H1 : pc < pt.

We use a two-stage adaptive design proposed by Schmidli et al. [23] where the allocation

ratio is adapted after the first stage. A Beta(1,1) prior is assumed for pc before the his-

torical data are observed and a Beta(1,1) prior is assumed for pt, for which there are no

historical data available. Therefore the prior effective sample size for the treatment arm

ESSt = 2. For the methods of assessing agreement between the historical and current

controls that calculate a weight: the modified power prior; probability weight; and equiv-

alence probability weight approaches, w1 is the weight calculated at the interim analysis

when comparing the first stage current control data and the historical data and w2 is the

weight re-calculated at the end of the study comparing the historical data to all of the

current trial control data. For the robust mixture prior, the prior ESS is calculated di-

rectly, incorporating both the down-weighted historical data and the effective sample size

of the prior on pc before the historical data are observed. ESSc1 denotes the prior effective

sample size at the interim analysis using only the first stage current control data and the

historical data. The number of control and treatment patients randomised in stage one

(nc1 and nt1 respectively) and the total number of patients required per treatment group
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(nt and nc) are fixed, nt and nc are chosen as the sample sizes required to detect a given

treatment difference at a specified power and type I error rate in a standard design not

incorporating historical data. The adaptive design proceeds as follows:

Stage one: Randomise nt1 to the experimental treatment and nc1 to control.

Interim analysis: Calculate the prior effective sample size for the control arm, ESSc1 =

w1nh + 2 or ESSc1 directly using the first stage controls and the historical data.

Stage two: Randomise (nt−nt1−ESSt) to the experimental treatment and max(nc−
nc1 − ESSc1;nmin) to control.

where nmin is a pre-specified fixed minimum number of control patients to be randomised

in stage two. A minimum number of control patients are randomised in stage two to allow

a randomised comparison in the second stage even if no extra controls are required because

the total sample size is achieved through the incorporation of the historical control data.

The agreement between the historical and current controls is re-assessed at the end of the

study using all current control data and the historical data to determine the amount of

historical data to incorporate into the final analysis. We denote the prior effective sample

size at the end of the study, ESSc2 = w2nh + 2 for the weighting approaches. For the

robust mixture prior ESSc2 is calculated directly. For the robust mixture prior approach,

ESSc1 is the effective sample size of the posterior distribution at the interim minus nc1.

The robust mixture prior approach can give a negative prior ESS, where ESSc1 is calcu-

lated to be negative it is set to zero.

The adaptive design replaces current controls yet to be randomised with historical con-

trols when the historical and current controls are in agreement. The aim of the adaptive

design is to reduce the duration of the current study and the number of control patients

to be randomised in the current study.

An alternative adaptive design, not considered here, would be to fix the total sample

size of the current study at the sample size from a standard sample size calculation,

incorporating no historical data and at the interim analysis adapt the allocation ratio to

randomise more patients to treatment and fewer to control if there is agreement between

the historical and current controls. The sample of the control group including historical

controls will then be the same as the sample size of the treatment group at the end of the

study [20].
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2.5 Analysis

2.5.1 Analysis approach and operating characteristics for the

additional information design using the power prior, prob-

ability and equivalence probability weight

Our primary analysis of interest is a hypothesis test of H0 : pc = pt against H1 : pc < pt.

We assume an initial vague Beta(1,1) prior on the control response probability before

the historical data are observed. At the end of the study, using all the current trial

control data and the historical data, the weight, w, to be given to the historical data

is calculated using the power prior (a summary measure of Equation 2.1), probability

(Equation 2.9), one-sample (Equation 2.11) or two-sample (Equation 2.12) equivalence

weight approach. The initial vague Beta(1,1) prior is updated with the weighted histori-

cal data and updated again with the current trial control data. A vague Beta(1,1) prior

is assumed for the treatment response probability which is updated at the end of the trial.

The posterior distributions at the end of the study for the control and treatment

groups are then given by,

π(pc | xh, yh, xc, yc, w) ∼ Beta(1 + xhw + xc, 1 + yhw + yc),

π(pt | xt, yt) ∼ Beta(1 + xt, 1 + yt).

The weight, w, is dependent on xc, yc, xh and yh. The historical data are fixed and

therefore w is deterministic given xc and yc. The total control sample size also varies

but is deterministic given the number of current control responses observed. The primary

analysis declares trial success if Pr(pc < pt | Data) > 0.975. We propose using the it-

erative procedure described by Cook to calculate Pr(pc < pt | Data) exactly [55]. The

Pr(pc < pt | Data) can only be calculated exactly using the iterative procedure described

by Cook [55] when one of the beta parameters of the treatment or control posterior dis-

tributions: 1 +xhw+xc; 1 +yhw+yc; 1 +xt or 1 +yt are integer. Given that here we have

assumed an initial Beta(1,1) prior for the treatment response probability, 1+xt and 1+yt

will both be integer, therefore the following iterative procedure can be used to calculate

Pr(pc < pt | Data).

Let,

Pr(pc < pt | Data) = g(1 + xt, 1 + yt, 1 + xhw + xc, 1 + yhw + yc)

=

∫ 1

0

pxt(1− p)yt
B(1 + xt, 1 + yt)

Ip(1 + xhw + xc, 1 + yhw + yc)dp,
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where Ip(1 + xhw + xc, 1 + yhw + yc) is the incomplete beta function, the CDF of a

Beta(1 + xhw + xc, 1 + yhw + yc) random variable.

We then use the following symmetries to get the smallest integer parameter value in

the last position of the function g.

g(1 + xt, 1 + yt, 1 + xhw + xc, 1 + yhw + yc)

=g(1 + yhw + yc, 1 + xhw + xc, 1 + yt, 1 + xt)

=1− g(1 + xhw + xc, 1 + yhw + yc, 1 + xt, 1 + yt)

=1− g(1 + yt, 1 + xt, 1 + yhw + yc, 1 + xhw + xc).

(2.13)

Assuming the smallest integer parameter is 1 +yt. The probability that the treatment

response probability is greater than the control response probability is calculated using

the following recurrence relation [55],

g(1 + xhw + xc, 1 + yhw + yc, 1 + xt, 1 + yt + 1)

=g(1 + xhw + xc, 1 + yhw + yc, 1 + xt, 1 + yt)

+h(1 + xhw + xc, 1 + yhw + yc, 1 + xt, 1 + yt)/(1 + yt),

where,

h(1 + xhw + xc, 1 + yhw + yc, 1 + xt, 1 + yt)

=
B(2 + xhw + xc + xt, 2 + yhw + yc + yt)

B(1 + xhw + xc, 1 + yhw + yc)B(1 + xt, 1 + yt)

=
Γ(2 + xhw + xc + xt)Γ(2 + yhw + yc + yt)

Γ(1 + xhw + xc)Γ(1 + yhw + yc)Γ(1 + xt)Γ(1 + yt)

×Γ(2 + xhw + xc + yhw + yc)Γ(2 + xt + yt)

Γ(4 + xhw + xc + yhw + yc + xt + yt)
,

and,

g(1 + xhw + xc, 1 + yhw + yc, 1 + xt, 1)

=
Γ(2 + xhw + xc + yhw + yc)Γ(2 + xhw + xc + xt)

Γ(3 + xhw + xc + yhw + yc + xt)Γ(1 + xhw + xc)
.

Therefore,
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g(1 + xhw + xc, 1 + yhw + yc, 1 + xt, 1 + yt)

=g(1 + xhw + xc, 1 + yhw + yc, 1 + xt, 1)

+

yt∑
i=0

h(1 + xhw + xc, 1 + yhw + yc, 1 + xt, 1 + i)/(1 + i)

=⇒ Pr(pt > pc) = 1− g(1 + xhw + xc, 1 + yhw + yc, 1 + xt, 1 + yt), from Equation 2.13.

For binary data there are a finite number of possible responses. The number of

responses in the current control group and the number of responses in the treatment

group follow a binomial distribution, Xc ∼ Bin(nc, pc), under the alternative hypothesis

Xt ∼ Bin(nt, pt) and under the null hypothesis Xt ∼ Bin(nt, pc). The weight is determin-

istic given the observed number of control responses. Therefore, considering all possible

combinations of control and treatment response, the operating characteristics of the study

design can be calculated exactly.

Let xc = 0, . . . , nc be the number of control responses, xt = 0, . . . , nt the number of

treatment responses, then the probability of observing each combination of control and

treatment response, due to independence, is given by,

Pr(Xc = xc ∩Xt = xt) = Pr(Xc = xc | pc, nc) Pr(Xt = xt | pt, nt),

where Pr(Xc = xc | pc, nc) =
(
nc
xc

)
pc
xc(1− pc)nc−xc and Pr(Xt = xt | pt, nt) =

(
nt
xt

)
pt
xt(1−

pt)
nt−xt . pt = pc + ∆ under the alternative and pt = pc under the null hypothesis, where

∆ denotes the treatment effect.

The power is given by,

1− β =
xc=nc∑
xc=0

xt=nt∑
xt=0

Pr(Xc = xc | pc, nc) Pr(Xt = xt | pt, nt)

× 1(Pr(pt > pc) > 0.975 | xh, xc, xt, nh, nc, nt, w),

(2.14)

where 1 is an indicator function.

The type I error rate is calculated using Equation 2.14, assuming the true underlying

treatment response probability pt is equal to pc when calculating Pr(Xt = xt | pt, nt).

The expected EHSS for a given true underlying control probability can be calculated

using,
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nhE(w(xh, nh, pc, nc)) = nh

xc=nc∑
xc=0

Pr(Xc = xc | pc, nc)w(xc, nc, xh, nh). (2.15)

The expected sample size in the control group for a given control proportion is then

nc + nhE(w(xh, nh, pc, nc)) plus the prior effective sample size for pc before the historical

data are observed and the mean squared error (MSE) is given by,

E(p̂c − pc)2 =
xc=nc∑
xc=0

Pr(Xc = xc | pc, nc)
((

xhw(xc, nc, xh, nh) + xc
nhw(xc, nc, xh, nh) + nc

)
− pc

)2

. (2.16)

No historical data design

All of the historical data methods above are compared to a design not incorporating any

historical data. The operating characteristics for this design are calculated as with the

weighting approaches above assuming the weight is zero.

2.5.2 Additional information design – frequentist operating char-

acteristics for the Viele example using the probability and

equivalence probability weight

For the Viele example, we assume nc = nt = 198, along with the Beta(1,1) prior assumed

for the treatment response probabilities before any data are observed, gives an effective

sample size of 200 patients per treatment group. The true underlying response probability

in the current control arm is varied and the treatment response probability is assumed

to be 12% higher than the control response probability. The historical data are fixed at

xh = 65, nh = 100. For a standard design, incorporating no historical data, assuming

a control response probability of 65%, 200 patients per treatment arm would give 76%

power and a one-sided type I error rate of 2.5% to detect a treatment difference of 12%.

The operating characteristics of all designs incorporating historical data depend on

how quickly the historical data are discounted and the direction of the difference between

the historical and current control response proportions. All historical data methods per-

form similarly when the true control proportion is close to 0.65 (the historical response

probability), the power is increased compared to a design not incorporating the historical

data and the type I error rate is lower than the desired 2.5% level. Since this design incor-

porates the historical data as additional information, at agreement between the current

and historical controls, utilising the historical data results in an overpowered study. When

the current control response probability is higher than the historical, the historical data
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draws the estimated control response probability down, increasing the treatment effect

estimate and inflating the type I error rate. When the current control response proba-

bility is less than the historical, the estimated treatment effect is reduced and the power

is reduced when compared to a design not incorporating any historical data. When the

difference between the historical and current controls is large, on average the historical

data are given zero weight in the analysis and the operating characteristics revert back

to those of a standard trial design.

Probability weight

Figure 2.14: Comparison of the power, type I error rate, mean squared error and expected
control sample size across different true current control proportions for the additional
information design using the probability weight approach and a standard design incorpo-
rating no historical data. Viele example, historical data 65/100 responses, nc = nt = 198,
∆ = 12%. The vertical red lines represent complete agreement between the historical and
current control proportions.
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Figure 2.14 shows that the probability weight approach quickly reverts back to the

operating characteristics of a standard design as the difference between the historical and

current controls increases and the maximum possible type I error rate is 3.9%. On average

an additional 66.5 patients are incorporated into the analysis at complete agreement,



64 Chapter 2 Historical data methods for binary outcome data

giving a power of 81%. The probability weight is fixed and therefore does not allow

control over the rate at which the historical data are discounted. The range of true control

proportions around the historical data response probability that give a mean squared error

lower than the standard design indicates where the historical data design provides some

advantage over the standard trial design. For the probability weight approach this range

is 0.59 to 0.70. The range of true control proportions for which the mean squared error is

lower using the historical data design compared to the mean squared error for a standard

trial design are compared in table 2.5 on page 83 for all of the historical data methods

explored.

Equivalence probability weight

Figure 2.15: Comparison of the power, type I error rate, mean squared error and expected
control sample size across different true current control proportions for the additional
information design using the one-sample and two-sample equivalence probability weight
approaches with 8% equivalence bounds and a standard design incorporating no historical
data. Viele example, historical data 65/100 responses, nc = nt = 198, ∆ = 12%. The
vertical red lines represent complete agreement between the historical and current control
proportions.
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Figure 2.15 shows the design characteristics of the one-sample and two-sample equiv-
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alence approaches with 8% equivalence bounds. 8% equivalence bounds were chosen as

sensible bounds for a 12% treatment effect to illustrate the equivalence method. How-

ever, as discussed in Section 2.5.6 the equivalence bounds should be chosen based on prior

knowledge or to control the operating characteristics of the study design. Narrower equiv-

alence bounds borrow less historical data both when the historical and current controls

agree and disagree. This reduces the maximum possible type I error rate but also reduces

the power gained at compete agreement. The choice of bounds allows control over the

maximum inflation in the type I error rate. This is explored further in Section 2.5.6. The

two-sample equivalence approach incorporates the additional uncertainty of the historical

data being a sample and therefore on average borrows less information at complete agree-

ment compared to the one-sample equivalence approach. On average an additional 90.5

patients are incorporated into the analysis at complete agreement between the current

and historical controls for the one-sample equivalence approach and 76.3 patients for the

two-sample approach.

2.5.3 Controlling the maximum type I error rate of the addi-

tional information design incorporating historical data at

the same level as a standard trial design

When incorporating historical data into the design and analysis of a current trial there is

always a risk of inflating the type I error rate above the desired level when the historical

and current control data do not agree. The historical data are carefully selected using

the six acceptability criteria defined by Pocock [11] in the hope that the current and

historical controls are similar and incorporating the historical data improves the operating

characteristics of the current study. If we wish to incorporate historical data and control

the maximum type I error rate at the level required under a standard trial design for

any possible observed level of disagreement between the historical and current controls,

then there is little to no benefit in terms of power of incorporating the historical data

into the design and analysis of the current study, as illustrated in Figure 2.16 for the

one-sample equivalence weight approach with 8% equivalence bounds and the probability

weight approach. We searched for the probability used to declare trial success that gave

a maximum type I error rate across all current control proportions to be less than 2.5%.

Figure 2.16 shows that when the probability of declaring trial success is chosen to control

the maximum type I error rate across all true control proportions there is little to no

gain in power compared to a standard trial design when using the one-sample equivalence

probability weight approach or the probability weight approach. Therefore, for a design

where historical data are used, it has to be accepted that to gain power when there is

agreement between the current and historical controls, there is a risk of inflating the

type I error rate above the desired level if there is disagreement between the current

and historical controls. A similar result was observed by Cuffe [56] who showed that for
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outcomes that are normally distributed with known variance, to control the type I error

rate at the level of the current study when incorporating no historical data for all values

of the unknown expected outcome on control, then a conservative critical value will be

needed which will eliminate most (if not all) of the gains in power made by incorporating

the historical data.

Figure 2.16: Comparison of the power and type I error rate across different true current
control proportions for the additional information design using the one-sample equiva-
lence probability weight approach with 8% equivalence bounds and the probability weight
approach controlling the maximum possible type I error rate at 2.5% and a standard de-
sign incorporating no historical data. Viele example, historical data 65/100 responses,
nc = nt = 198, ∆ = 12%. The vertical red lines represent complete agreement between
the historical and current control proportions.

.5

.6

.7

.8

.9

1

P
ow

er

.1 .2 .3 .4 .5 .6 .7 .8 .9
True control proportion

Power

0

.02

.04

.06

.08

.1
Ty

pe
 I 

er
ro

r

.1 .2 .3 .4 .5 .6 .7 .8 .9
True control proportion

Type I error

No historical data One-sample equivalence
Probability

2.5.4 Analysis approach and operating characteristics for the

adaptive design using the power prior, probability and

equivalence probability weight

We assume an initial vague Beta(1,1) prior on the control response probability before the

historical data are observed. This prior is updated with the first stage control data at

the interim analysis. At the interim analysis, using the first stage control data and the

historical data, the weight (w1) to be given to the historical data is calculated using the

power prior (a summary measure of Equation 2.1), probability (Equation 2.9), one-sample

(Equation 2.11) or two-sample (Equation 2.12) equivalence weight approach. The ESSc1

(w1nh+2) is calculated and the number of control patients to be randomised in stage two
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is determined. At the end of the study the weight is re-calculated using all of the current

study control data, this is denoted w2. Similarly, a vague Beta(1,1) prior is assumed

for the treatment response probability which is updated after stage two of the trial. At

the interim analysis, only the response proportion in the control arm data is required to

adapt the trial, the difference in response proportions between the treatment arm and the

control arm can remain un-blinded.

The posterior distributions at the end of the study for the control and treatment

groups are then given by,

π(pc | xh, yh, xc1, xc2, yc1, yc2, w1, w2) ∼ Beta(1 + xhw2 + xc1 + xc2, 1 + yhw2 + yc1 + yc2),

π(pt | xt1, xt2, yt1, yt2) ∼ Beta(1 + xt1 + xt2, 1 + yt1 + yt2).

where xc1 and xc2 are the number of responses in the control group in stage one and two

of the trial respectively, yc1 and yc2 the non-responses and similarly with subscript t for

the treatment group. The total number of controls randomised in stage two (xc2 + yc2) is

dependent on w1, the weight given to the historical data at the interim analysis and w1 is

deterministic given the historical data and the first stage current control data. w2 is the

weight given to the historical data, calculated at the end of the study, using the historical

data and all of the control data from the current trial.

The primary analysis declares trial success if Pr(pc < pt | Data) > 0.975. The

Pr(pc < pt | Data) can be calculated exactly when one of the beta parameters of the

treatment or control posterior distributions are integer using the iterative procedure pro-

posed by Cook [55], described in Section 2.5.1. We know that the number of responses in

the control and treatment group follow a binomial distribution. Further, the weight given

to the historical data is deterministic given the observed number of control responses

and therefore the number of second stage controls required is also deterministic given the

number of control responses in stage one. Considering all possible combinations of first

and second stage control responses and all possible treatment responses, we can calculate

the operating characteristics of this adaptive design exactly. The interim analysis is at a

fixed time in the trial, when nc1 patients have been randomised to control.

Let xc1 = 0, . . . , nc1 be the number of first stage control responses, xc2 = 0, . . . , nc2|xc1 ,

the number of control responses in stage two given the number of controls randomised in

stage two. Where nc2|xc1 denotes the number of controls in stage two given the number

of control responses in stage one. The total number of controls randomised in stage two

(nc2|xc1) is dependent on nmin and w1, where w1 is the weight given to the historical

data at the interim analysis and w1 is deterministic given the historical data and the first
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stage current control data. Since xh, yh, nc1 and nmin are all fixed by design, the number

of second stage controls is denoted nc2|xc1 , dependent on the number of observed control

responses in stage one xc1. xt = 0, . . . , nt denotes all possible treatment responses. The

response distributions are given by,

Pr(Xc1 = xc1 | pc, nc1) =

(
nc1
xc1

)
pc
xc1(1− pc)nc1−xc1 ,

Pr(Xc2 = xc2 | pc, nc2|xc1) =

(
nc2|xc1
xc2

)
pc
xc2(1− pc)nc2|xc1−xc2 ,

Pr(Xt = xt | pt, nt) =

(
nt
xt

)
pt
xt(1− pt)nt−xt .

(2.17)

The power is given by,

1− β =

xc1=nc1∑
xc1=0

xc2=nc2|xc1∑
xc2=0

xt=nt∑
xt=0

Pr(Xc1 = xc1 | pc, nc1) Pr(Xc2 = xc2 | pc, nc2|xc1)

× Pr(Xt = xt | pt, nt)1(Pr(pt > pc) > 0.975 | xh, xc1, xc2, xt, nc1, nc2|xc1 , nh, nt, w2).

The type I error rate is calculated using the formula for the power assuming the true

underlying treatment response probability pt is equal to pc when calculating Pr(Xt = xt |
pt, nt).

The expected sample size of the current trial control group (ECCSS) is given by,

ECCSS = nc1 +

xc1=nc1∑
xc1=0

xc2=nc2|xc1∑
xc2=0

Pr(Xc1 = xc1 | pc, nc1)

× Pr(Xc2 = xc2 | pc, nc2|xc1)(max(nc − nc1 − ESSc1, nmin)),

and the expected effective historical sample size at the end of the current study for a

true underlying control response probability is given by,

nhE(w2(xh, nh, pc, nc1, nc2|xc1)) = nh

xc1=nc1∑
xc1=0

xc2=nc2|xc1∑
xc2=0

Pr(Xc1 = xc1 | pc, nc1)

× Pr(Xc2 = xc2 | pc, nc2|xc1)w2(xc1, xc2, nc1, nc2|xc1 , xh, nh).

The expected total sample size of the control group (ECSS) for a given control re-

sponse probability is then ECSS = ECCSS + nhE(w2(xh, nh, pc, nc1, nc2/xc1)) + 2. Note

that this could be greater or less than the total number of controls required nc. The

weight given to the historical data is re-calculated at the end of the study, where the
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level of agreement between the historical and current controls may have changed from the

agreement at the interim analysis. Further, even when no extra controls are required in

stage two of the trial, nmin controls are randomised to ensure a randomised comparison

can be made in both stages of the trial.

The mean squared error is given by,

E(p̂c − pc)2 =

xc1=nc1∑
xc1=0

xc2=nc2|xc1∑
xc2=0

Pr(Xc1 = xc1 | pc, nc1) Pr(Xc2 = xc2 | pc, nc2|xc1)((
xhw2(xc1, xc2, nc1, nc2|xc1 , xh, nh) + xc1 + xc2

nhw2(xc1, xc2, nc1, nc2|xc1 , xh, nh) + nc1 + nc2|xc1

)
− pc

)2

.

(2.18)

No historical data design

All of the historical data methods above are compared to a design not incorporating any

historical data. The operating characteristics for this design are calculated as with the

weighting approaches above assuming the weight is zero.

2.5.5 Adaptive design – frequentist operating characteristics for

the Viele example using the probability and equivalence

probability weight

We explore the operating characteristics of the adaptive design proposed in Section 2.4.2

for a range of true control response probabilities in the current study. The treatment

response is always assumed to be 12% higher than the control and there are 100 (nh)

historical control patients available with a response probability of 65%. The interim

analysis is conducted after 100 patients have been randomised to both the control and

treatment group (nc1 = nt1 = 100) and nmin = 20. In Appendix A the expected total

sample size of the control group, incorporating both current and historical control data

is illustrated for a range of true response probabilities using the probability and the

equivalence probability weight approaches. In Appendix B the expected historical data

weights at the interim analysis and the final analysis are compared for a range of true

control response probabilities using the probability and the equivalence probability weight

approaches.

Probability weight

Figure 2.17 shows the operating characteristics of the adaptive design using the probabil-

ity weight approach. Comparing the operating characteristics of the adaptive design to
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Figure 2.17: Comparison of the power, type I error rate, mean squared error and ex-
pected current control sample size across different true current control proportions for the
adaptive design using the probability weight approach and a standard design incorporat-
ing no historical data. Viele example, historical data 65/100 responses, nc = nt = 200,
nc1 = 100, nmin = 20 and ∆ = 12%. The vertical red lines represent complete agreement
between the historical and current control proportions.
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the additional information design given in Figure 2.14, the adaptive design has a lower

power at complete agreement and the maximum possible type I error rate is slightly

higher. This is because the adaptive design is replacing the current control data yet to be

randomised with historical control data when there is agreement between the current and

historical controls, therefore at agreement, the additional information design will have

a larger control sample size than the adaptive design. However, there is a substantial

saving in the current control sample size required in the adaptive design compared to the

additional information design. For the adaptive design, at complete agreement between

the current and historical control data, the expected sample size of the current control

group is 141.17, 56 patients fewer than the standard trial design. The comparisons of

the operating characteristics of all the historical data designs considered are compared in

Table 2.5 on page 83.
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Equivalence probability weight

Figure 2.18: Comparison of the power, type I error rate, mean squared error and ex-
pected current control sample size across different true current control proportions for
the adaptive design using the one-sample and two-sample equivalence probability weight
approaches with 8% equivalence bounds and a standard design incorporating no histor-
ical data. Viele example, historical data 65/100 responses, nc = nt = 200, nc1 = 100,
nmin = 20 and ∆ = 12%. The vertical red lines represent complete agreement between
the historical and current control proportions.
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Similar comparisons can be made between the additional information and adaptive de-

sign for the equivalence approach as with the probability weight approach. The additional

variance incorporated into the two-sample equivalence approach results in less information

being borrowed at complete agreement and this design requires a larger difference between

the historical and current controls for the historical data to be completely discounted and

the operating characteristics to revert back to a standard design. At complete agreement

between the current and historical control data, the expected sample size of the current

control group using the one-sample equivalence probability weight approach is 127.30

and using the two-sample equivalence probability weight approach is 131.63, as shown

in Figure 2.18. Figure 2.19 illustrates the operating characteristics for the one-sample
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Figure 2.19: Comparison of the power, type I error rate, mean squared error and expected
current control sample size across different true current control proportions for the adap-
tive design using the one-sample equivalence probability weight approach with 4%, 6%,
8% and 10% equivalence bounds and a standard design incorporating no historical data.
Viele example, historical data 65/100 responses, nc = nt = 200, nc1 = 100, nmin = 20
and ∆ = 12%. The vertical red lines represent complete agreement between the historical
and current control proportions.
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equivalence weight approach for different equivalence bounds (4%,6%,8% and 10%). As

the equivalence bounds increase, at complete agreement between the historical and cur-

rent control data, the amount of historical data borrowed and the power both increase,

however this is at the expense of a higher maximum possible type I error rate for larger

equivalence bounds when the estimated current control response probability is larger than

the historical response probability.

2.5.6 Choosing the equivalence bounds

The equivalence bounds chosen have a large effect on how much historical data are bor-

rowed and how quickly the historical data are discounted when there is disagreement

between the historical and current controls. The equivalence bounds therefore have a
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large effect on the operating characteristics of the current study. How to choose the

equivalence bounds is therefore an important question. Similar to a test of equivalence of

an experimental and control treatment, the equivalence bounds are chosen by the study

designer based on prior knowledge. The bounds are chosen to represent a clinically rel-

evant equivalence distance, which forms a region of acceptable deviation of the current

control data from the historical. In the absence of knowledge about acceptable equivalence

bounds, the equivalence bounds can be chosen to minimise trial risk based on statisti-

cal properties of the study design. For example controlling the maximum type I error

rate across all possible current control response probabilities. The main concern when

using historical data is the risk of inflating the type I error rate. A design which aims

to incorporate historical data at the design stage when the current trial data has not yet

been observed risks inflating the type I error rate. If the design parameters of the current

study are chosen to strictly control the type I error rate when incorporating historical

data, there is little to no benefit in using the historical data design over a standard trial

design, as discussed in Section 2.5.3. However, the equivalence bounds can be chosen so

that the maximum type I error rate across all possible true current control probabilities is

capped at a chosen value, minimising the risk if the current and historical control response

probabilities do in fact differ.

Further considerations in choosing the equivalence bounds are:

• The equivalence bounds should be less than the treatment effect to be detected.

• Narrow equivalence bounds will require large amounts of data to achieve a high

weight even when the historical and current controls are in complete agreement.

Using the one-sample equivalence approach the weight depends on the current con-

trol sample size and using the two-sample equivalence approach the weight depends

on both the current control and historical sample size. To avoid the historical data

having a larger influence on the control parameter estimate than the current con-

trol data, one may wish to only consider equivalence bounds that give an effective

historical sample size less than the current control study sample size at complete

agreement between the historical and current controls.

• The equivalence bounds should be chosen to give a large weight to the historical

data around agreement between the current and historical control data and a small

weight when there is substantial disagreement between the current and historical

controls.

• The equivalence bounds can be chosen to govern how quickly the discounting of the

historical data occurs as the difference between the historical and current controls

increases.
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• A criterion other than the maximum type I error rate could be used for choosing

the equivalence bounds, such as controlling the maximum mean squared error or

the maximum EHSS.

Equivalence bounds that control the maximum type I error rate

For a design where the weighted historical data are incorporated as additional informa-

tion at the end of the current study, numerical optimisation can be used to determine

the equivalence bounds that control the maximum type I error rate at a chosen value.

The bounds are determined by minimising the squared error of the maximum type I error

rate obtained for a given equivalence bound and an assumed underlying current control

response probability to the desired maximum type I error rate.

Optimisation is possible for the additional information design because the type I error

rate can be calculated quickly since there are few possible combinations of control and

treatment responses. For the two-stage adaptive design the number of possible combina-

tions of first and second stage control responses and treatment responses is much higher.

The weight given to the historical data also has to be calculated at the interim analysis

and re-calculated at the final analysis. The adaptive design is therefore more compu-

tationally expensive. Depending on the number of patients in each treatment group, a

quicker approximation of the bounds can be determined by plotting the maximum er-

ror distribution for a range of equivalence bounds and using interpolation to choose the

bounds that control the maximum type I error rate across all possible true control response

probabilities.

Figure 2.20 illustrates the maximum type I error rate across all true control proportions

in the current study for different equivalence bounds. Both the additional information

and adaptive design for the one-sample and two-sample equivalence approaches are shown.

Note that controlling the maximum possible type I error rate at 2.5% (the type I error

rate for a design not incorporating historical data) is only possible when incorporating no

historical data, as shown in Figure 2.16. Controlling the maximum type I error rate at

2.5% while incorporating historical data would require a larger sample size than a stan-

dard trial design. However, the equivalence bounds can be chosen to cap the maximum

type I error rate at a chosen value to minimise risk in a study design where the use of

historical data is required. The maximum type I error rate is higher for the adaptive de-

sign since bias is introduced from the historical data but the sample size is not increased.

The power at complete agreement between the current and historical controls for different

equivalence bounds is illustrated in Appendix C.

Using the modified Newton-Raphson optimisation technique implemented in Mata

[46], the equivalence bounds that control the maximum type I error rate at 5% for the



Chapter 2 Historical data methods for binary outcome data 75

Figure 2.20: Distribution of the maximum possible type I error rate across a range of
equivalence bounds using the one-sample and two-sample equivalence probability weight
approaches for the additional information and adaptive design.
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one-sample equivalence probability weight approach are±0.060466 and for the two-sample

equivalence probability weight approach are ±0.056281 for the additional information

design. For the adaptive design the optimisation did not converge within a week of the

code running and therefore plotting the distribution of the maximum type I error rate is

the most efficient way of determining the optimal equivalence bounds.

2.5.7 Analysis approach and operating characteristics for the

additional information design using the robust mixture

prior

For one historical study, the robust mixture prior [23] is a two-component mixture prior,

with the historical data component and a weakly-informative component,

π(pc | xh, yh, w) = wBeta(xh, yh) + (1− w)Beta(1, 1),

where the prior mixture weight w is pre-specified. A Beta(1,1) prior is assumed for the

treatment response probability.

The posterior distributions at the end of the study for the control and treatment
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groups are [23],

π(pc | xc, yc, xh, yh, w) = w̃Beta(xh + xc, yh + yc) + (1− w̃)Beta(1 + xc, 1 + yc),

π(pt | xt, yt) = Beta(1 + xt, 1 + yt),

where,

w̃ ∝
w

B(xh + xc, yh + yc)

B(xh, yh)

w
B(xh + xc, yh + yc)

B(xh, yh)
+ (1− w)

B(1 + xc, 1 + yc)

B(1, 1)

. (2.19)

For the additional information design we do not need to calculate the prior ESS at

the final analysis to calculate the power and type I error rate of the design. However, if we

wanted to know how much weight was given to the historical data in the final analysis for

a given true control response probability, the expected prior ESS can be calculated using

the method of Morita et al. [26], described in Section 2.2.3. Given that the number of

possible control responses for the additional information design is not too large, the prior

ESS should not be too computationally intensive to calculate using the Morita algorithm.

The power and type I error rate for the robust mixture approach can also be calculated

directly. The final analysis calculates whether Pr(pt > pc) is greater than 0.975. However,

now the posterior distribution for the response probability in the controls is a mixture of

beta distributions. Cook’s method [55] can be applied comparing the treatment response

distribution to each mixture component of the control posterior distribution separately.

These probabilities are weighted by the control posterior mixture weights to obtain the

overall Pr(pt > pc | Data).

For the robust mixture prior,

Pr(pt > pc | xh, yh, xc, yc, xt, yt, w) =

w̃Pr(pt > pc | 1 + xt, 1 + yt, xh + xc, yh + yc)+

(1− w̃) Pr(pt > pc | 1 + xt, 1 + yt, 1 + xc, 1 + yc),

where w̃ is given in Equation 2.19, the power is given by,

1− β =
xc=nc∑
xc=0

xt=nt∑
xt=0

Pr(Xc = xc | pc, nc) Pr(Xt = xt | pt, nt)

1(Pr(pt > pc) > 0.975 | xc, xt, yc, yt, xh, yh, w),

(2.20)
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and the type I error rate is calculated using Equation 2.20 assuming the true underlying

treatment response probability pt is equal to pc when calculating Pr(Xt = xt | pt, nt).

The expected control sample size can be calculated using,

ECSS =
xc=nc∑
xc=0

Pr(Xc = xc | pc, nc)(ESS | xc, nc, xh, nh, w),

where ESS is the effective sample size of the control posterior mixture distribution cal-

culated using the Morita algorithm.

The mean squared error is calculated using,

E(p̂c − pc)2 =
xc=nc∑
xc=0

Pr(Xc = xc | pc, nc)
((

w̃

(
xh + xc
nh + nc

)
+ (1− w̃)

(
1 + xc
2 + nc

))
− pc

)2

,

where p̂c is derived from the sum of the individual component means of the mixture

distribution weighted by the posterior weights.

2.5.8 Analysis approach and operating characteristics for the

adaptive design using the robust mixture prior

A vague Beta(1,1) prior is assumed for the treatment response probability. The robust

mixture prior is assumed for the control response probability, the prior parameters and

weights are updated with the first stage control data at the interim analysis. The ESS

of the updated mixture distribution is calculated at the interim analysis using the Morita

algorithm, to determine the number of controls to be randomised in stage two. Where

ESS < nc1, the ESS was set to nc1. At the end of the study, the mixture parameters

and weights are updated with the second stage control data.

The posterior distributions at the end of the study for the control and treatment

groups are,

π(pc | xh, yh, xc1, xc2, yc1, yc2, w) = w̃2Beta(xh + xc1 + xc2, yh + yc1 + yc2)

+ (1− w̃2)Beta(1 + xc1 + xc2, 1 + yc1 + yc2)

π(pt | xt1, xt2, yt1, yt2) = Beta(1 + xt1 + xt2, 1 + yt1 + yt2),
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where,

w̃2 ∝
w̃1

B(xh + xc1 + xc2, yh + yc1 + yc2)

B(xh + xc1, yh + yc1)

w̃1

B(xh + xc1 + xc2, yh + yc1 + yc2)

B(xh + xc1, yh + yc1)
+ (1− w̃1)

B(1 + xc1 + xc2, 1 + yc1 + yc2)

B(1 + xc1, 1 + yc1)

,

and,

w̃1 ∝
w

B(xh + xc1, yh + yc1)

B(xh, yh)

w
B(xh + xc1, yh + yc1)

B(xh, yh)
+ (1− w)

B(1 + xc1, 1 + yc1)

B(1, 1)

.

The operating characteristics for the robust mixture prior approach using the adaptive

design can also be calculated exactly using Cook’s method [55]. The probability that

treatment response is greater than control is given by,

Pr(pt > pc | xt, yt, xh, yh, xc1, xc2, yc1, yc2, w) =

w̃2 Pr(pt > pc | 1 + xt, 1 + yt, xh + xc1 + xc2, yh + yc1 + yc2)

(1− w̃2) Pr(pt > pc | 1 + xt, 1 + yt, 1 + xc1 + xc2, 1 + yc1 + yc2).

The power is given by,

1− β =

xc1=nc1∑
xc1=0

xc2=nc2|xc1∑
xc2=0

xt=nt∑
xt=0

Pr(Xc1 = xc1 | pc, nc1) Pr(Xc2 = xc2 | pc, nc2|xc1)

× Pr(Xt = xt | pt, nt)1(Pr(pt > pc) > 0.975 | xc1, xc2, xt, yc1, yc2, yt, xh, yh, w).

(2.21)

The type I error rate is calculated using Equation 2.21, assuming the true underlying

treatment response probability pt is equal to pc when calculating Pr(Xt = xt | pt, nt).

The mean squared error is calculated using,

E(p̂c − pc)2 =

xc1=nc1∑
xc1=0

xc2=nc2|xc1∑
xc2=0

Pr(Xc1 = xc1 | pc, nc1) Pr(Xc2 = xc2 | pc, nc2|xc1)(p̂c − pc)2,

where p̂c = w̃2

(
xh+xc1+xc2

nh+nc1+nc2|xc1

)
+ (1− w̃2)

(
1+xc1+xc2

2+nc1+nc2|xc1

)
.

For the adaptive design, the ESS of the posterior distribution for the control param-
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eter at the interim determines how many control patients are to be randomised in stage

two of the trial. The ESS at the interim is required for the power and type I error rate

calculations. Where the prior ESS was calculated to be negative, it was set to zero.

Calculating the expected control sample size at the end of the study would require ap-

plying the Morita algorithm for all possible combinations of first stage control responses

and second stage control responses. The number of possible combinations also increases

since the sample size in the second stage controls will vary. This is too computationally

intensive to calculate for most sample sizes and is not considered here. Not knowing how

much historical information is incorporated into the final analysis is a disadvantage of the

robust mixture prior approach in an adaptive setting.

2.5.9 Additional information design – frequentist operating char-

acteristics for the Viele example using the robust mixture

prior and the power prior

As in the robust mixture prior paper [23], we consider a two-component mixture prior for

the control response probability with two different initial prior weights,

Prior 1 (weight 0.9) : 0.9Beta(xh, yh) + 0.1Beta(1, 1),

Prior 2 (weight 0.5) : 0.5Beta(xh, yh) + 0.5Beta(1, 1).

A Beta(1,1) initial prior is assumed for pt.

Figure 2.21 displays the operating characteristics for the additional information design

using the robust mixture prior approach with weights of 0.9 and 0.5 on the informative

component of the mixture prior. A lower weight on the informative component borrows

less information in the final analysis even when there is complete agreement between the

historical and current controls. Both weights give a negative expected control sample size

for a range of differences between the historical and current controls. The initial mixture

prior weights can be chosen to control the maximum possible type I error rate in the

final analysis across all true current control proportions. This is done using optimisation

in the same way as for the equivalence approach. Figure 2.22 shows the distribution of

the maximum type I error rate across all initial mixture prior weights. Using numerical

optimisation, the weight that controls the maximum type I error rate at 5% is 0.371902 on

the informative component of the robust mixture prior and (1-0.371902) on the weakly-

informative component.

Figure 2.23 shows the operating characteristics of the additional information design

for the power prior approach. The power prior with a Beta(1,1) prior on the power,
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Figure 2.21: Comparison of the power, type I error rate, mean squared error and expected
control sample size across different true current control proportions for the additional
information design using the robust mixture prior approach with 0.9 and 0.5 initial weight
on the informative component of the mixture prior and a standard design incorporating no
historical data. Viele example, historical data 65/100 responses, nc = nt = 198, ∆ = 12%.
The vertical red lines represent complete agreement between the historical and current
control proportions.
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taking either the posterior mode or mean as the weight are considered. Also, the power

prior with a Beta(0.5,0.5) and Beta(0.3,0.3) prior on the power taking the posterior mean

are explored. Using the mean of the power prior marginal distribution as a weight gives

similar operating characteristics for all priors on the power. A large difference between

the current and historical controls is required for the historical data to be completely

discounted and the operating characteristics to revert back to those of a standard design.

Using the mode of the marginal distribution of the power gives a high weight at agreement

and discounts quickly. This results in a large power gain at agreement and a small maxi-

mum possible type I error rate. However, there is no flexibility in this approach to control

the maximum possible type I error rate across all true control proportions at a desired

level through the prior on the power and discounting the historical data. It is possible to

maintain control of the maximum type I error by calibrating the success threshold c, such
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Figure 2.22: Distribution of the maximum type I error rate across a range of initial weights
on the informative component of the robust mixture prior for the additional information
design.
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that when trial success is declared using Pr(pc < pt | Data) > c, the desired maximum

type I error is achieved.

Appendix D compares the power and type I error rate for the additional information

design using the fully Bayesian modified power prior approach with a Beta(1,1) prior on

the power and the modified power prior approach using the mean of the marginal dis-

tribution of the power as a fixed weight, assuming a Beta(1,1) prior for the power. The

operating characteristics for the two approaches are only slightly different and due to the

computational cost and difficulty in calculating the ESS of the historical data using the

fully Bayesian approach, the fully Bayesian approach was not considered further in this

chapter or Chapter 3.

The operating characteristics for the adaptive design using the robust mixture prior

and power prior approaches are given in Appendix E. Also in Appendix E, the historical

data weights at the interim analysis and at the end of the study are compared for the

power prior approach. For the robust mixture prior approach, the prior ESS was not

calculated at the end of the study because of the large number of possible combinations

of first stage and second stage control responses in the adaptive design this would be too

computationally intensive.

Table 2.5 compares the design characteristics of all the historical data methods ex-

plored in this chapter.
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Figure 2.23: Comparison of the power, type I error rate, mean squared error and expected
control sample size across different true current control proportions for the additional
information design using the power prior, assuming different priors on the power and a
standard design incorporating no historical data. Viele example, historical data 65/100
responses, nc = nt = 198, ∆ = 12%. The vertical red lines represent complete agreement
between the historical and current control proportions.
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2.6 Normal approximation of the operating charac-

teristics

When the beta posterior distributions for the control or treatment response probabilities

do not contain an integer value, for example if an integer prior is not used for the re-

sponse probability, then the iterative approach described by Cook [55] cannot be used to

calculate the Pr(pt > pc) and numerical integration is required. A normal approximation

can be used for the posterior distribution of the response probabilities to allow quicker

calculation of the operating characteristics when the sample size of each treatment group

is reasonably large (a common rule for approximating the binomial distribution by a nor-

mal distribution is that both np and n(1 − p) should be greater than 5, where n is the

number of observations and p is the response probability, this rule can be applied here).

Furthermore, if the additional information design is used and the historical data are given

a fixed weight that does not vary depending on the agreement between the current and

historical controls, a formula approximation can be derived for the operating character-

istics of the design. We initially consider the additional information design incorporating

historical data with a fixed weight in a frequentist framework.

For a standard trial design with a binary outcome, when no historical data are incorpo-

rated into the design or the final analysis of the current trial, the Bayesian and frequentist

approaches to determining the operating characteristics provide similar results, as shown

in the next section.

2.6.1 No historical data design

Frequentist

We are interested in testing the null hypothesis, H0 : pc = pt against the alternative

hypothesis, H1 : pc < pt.

Let p̂c and p̂t be the maximum likelihood estimates of the response probabilities in

the control and treatment group, respectively. The estimated treatment effect is approx-

imately normally distributed for reasonably large sample sizes in each treatment group

[57],

p̂t − p̂c ≈ N

(
pt − pc,

pc(1− pc)
nc

+
pt(1− pt)

nt

)
.

Under the null hypothesis pc = pt = p and,
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σ2
p̂t−p̂c =

pc(1− pc)
nc

+
pt(1− pt)

nt
=
p(1− p)
nc

+
p(1− p)

nt
.

Since the value of p is not known, the pooled estimate ˆ̄p = p̂cnc+p̂tnt
nc+nt

is used to estimate

σ2
p̂t−p̂c ,

σ2
p̂t−p̂c ≈

ˆ̄p(1− ˆ̄p)

nc
+

ˆ̄p(1− ˆ̄p)

nt
= ˆ̄p(1− ˆ̄p)

(
1

nc
+

1

nt

)
.

A test statistic can then be constructed under the null hypothesis as,

Z =
(p̂t − p̂c)√

ˆ̄p(1− ˆ̄p)
(

1
nc

+ 1
nt

) .

For all possible control responses xc = 0, . . . , nc and all possible treatment responses

xt = 0, . . . , nt,

Pr(Xc = xc | pc, nc) =
(
nc
xc

)
pc
xc(1 − pc)

nc−xc and Pr(Xt = xt | pt, nt) =
(
nt
xt

)
pt
xt(1 −

pt)
nt−xt ,

where pt = pc+∆ under the alternative hypothesis and pt = pc under the null hypothesis,

∆ denotes the treatment effect.

The power and type I error rate are then calculated as,

1− β =
xc=nc∑
xc=0

xt=nt∑
xt=0

Pr(Xc = xc | pc, nc) Pr(Xt = xt | pt, nt)1(Z > Φ−1(0.975) | xc, xt, nc, nt),

α =
xc=nc∑
xc=0

xt=nt∑
xt=0

Pr(Xc = xc | pc, nc) Pr(Xt = xt | pc, nt)1(Z > Φ−1(0.975) | xc, xt, nc, nt).

(2.22)

where the sample sizes are large (nc > 200 and nt > 200), a large sample approximation

may be used, given in the next section.

Approximate power - large samples

The large sample approximation is calculated from the assumed true distribution of the

treatment difference under the null and alternative hypothesis using the central limit the-

orem. Figure 2.24 illustrates how the power and type I error rate are determined.
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Figure 2.24: Sample size calculation assuming a large sample size normal approximation.
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where cv denotes the critical value.

The power is calculated as [57],

1− β = 1− Φ

(
cv−∆

σD

)
= 1− Φ

(
Φ−1(0.975)σp − (pt − pc)

σD

)
= Φ

(
(pt − pc)− Φ−1(0.975)σp

σD

)
.

(2.23)

Where, σp =

√
p̄(1− p̄)

(
1
nc

+ 1
nt

)
, p̄ = ncpc+ntpt

nc+nt
, σD =

√
pt(1−pt)

nt
+ pc(1−pc)

nc
.

The approximate type I error rate is 2.5%, since,

α = 1− Φ

(
cv− 0

σp

)
= 1− Φ

(
Φ−1(0.975)σp

σp

)
= 1− (Φ

[
Φ−1(0.975)

]
) = 0.025.

Bayesian

Assuming no prior data are available, a minimally-informative Beta(1,1) prior is used for

the response probabilities in the control and treatment group and the posterior distribu-

tions are given by,
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π(pc | xc, yc) ∼ Beta(1 + xc, 1 + yc),

π(pt | xt, yt) ∼ Beta(1 + xt, 1 + yt).

The power is then,

1− β =
xc=nc∑
xc=0

xt=nt∑
xt=0

Pr(Xc = xc | pc, nc) Pr(Xt = xt | pt, nt)

× 1(Pr(pt > pc) > 0.975 | xc, xt, nc, nt).
(2.24)

The type I error rate is calculated using Equation 2.24 assuming the true underlying

value of pt is pc when calculating Pr(Xt = xt | pt, nt). The Pr(pt > pc) is calculated using

the iterative procedure proposed by Cook [55].

Operating characteristics comparison for the Viele example incorporating

no historical data

For the example considered here, 200 patients are available per treatment group. The

current control proportion varies with the treatment effect always 12% higher. Figure

2.25 compares the operating characteristics of this design using Equations 2.22 (Normal

exact), 2.23 (Normal large sample approx) and 2.24 (Bayesian exact).

All approaches give similar design characteristics as expected. The operating char-

acteristics for the exact approaches are not continuous functions since the number of

responses are discrete values.

2.6.2 Incorporating historical data with a fixed weight

In this section it is assumed that only one historical study is available and a fixed weight

is given to the historical data w, chosen based on expert opinion.

Frequentist

Let p̂0 denote the control response proportion incorporating both historical and current

control data, to differentiate from the response proportion in the current controls only,

which is denoted, p̂c. Then,

p̂0 =
xc + xhw

nc + nhw
. (2.25)
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Figure 2.25: Operating characteristics for the exact Bayesian design, the exact frequentist
approach assuming a normal Z-statistic and the large sample approximation assuming
the test statistic follows a normal distribution – no historical data design. Viele example,
nc = nt = 200, ∆ = 12%. The vertical red lines represent complete agreement between
the historical and current control proportions.
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Since xh and w do not vary, xhw, nhw and nc are all fixed constants in this estimator.

Then,

E(p̂0 | xh, nh, nc, w) =
E(xc) + xhw

nc + nhw
=
ncpc + xhw

nc + nhw
,

Var(p̂0 | nh, nc, w) = Var

(
xc

nc + nhw

)
=
ncpc(1− pc)
(nc + nhw)2

,

and p̂t− p̂0 is approximately normally distributed with mean pt−
ncpc + xhw

nc + nhw
and variance

ncpc(1− pc)
(nc + nhw)2

+
pt(1− pt)

nt
.

A test statistic is constructed under the null hypothesis of pc = pt, but the control

estimate is p̂0, which incorporates the historical data. Note that this test statistic will

only follows a normal distribution with mean zero and variance one under the assumption

that ph = pc = pt. The pooled estimate of the true response probability under the null

hypothesis is then,
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ˆ̄p =
(nc + nhw)p̂0 + ntp̂t
nc + nhw + nt

=
ncp̂c + nhwp̂h + ntp̂t

nc + nhw + nt
,

and the test statistic, under the null hypothesis, is given by,

Z =
(p̂t − p̂0)√

ˆ̄p(1− ˆ̄p)
(

nc
(nc+nhw)2

+ 1
nt

) . (2.26)

To explore the effect of the historical data, the current control response probability is

varied. The power is calculated assuming pt = pc+0.12 and the type I error rate assuming

pt = pc, using the formulas given in Equation 2.22, where Z is now also dependent on the

fixed weight given to the historical data, w.

The large sample size approximation is calculated assuming the true distribution of the

control response proportion, p0, is N

(
ncpc + phnhw

nc + nhw
,
ncpc(1− pc)
(nc + nhw)2

)
. Therefore, Equation

2.23 can be used to calculate the power of this design using the assumed distribution for

p0 instead of pc.

Bayesian

Using the Bayesian approach, at the end of a single study the posterior distributions for

the response probabilities in the control and the treatment groups are given by,

π(pc | xc, yc, xh, yh, w) ∼ Beta(1 + xhw + xc, 1 + yhw + yc),

π(pt | xt, yt) ∼ Beta(1 + xt, 1 + yt),
(2.27)

and the power and type I error rate are calculated as in Equation 2.14. The Pr(pt > pc)

is calculated using the iterative procedure proposed by Cook [55].

Normal approximation of the Bayesian design - exact operating characteristics

using the Z test statistic

If instead of the frequentist approach, a normal test statistic is constructed based on

approximating the beta posterior distributions for the control and treatment response

probabilities by a normal distribution,
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π(pc | xc, nc, xh, nh, w) ∼ N

(
p̂0,

p̂0(1− p̂0)

wnh + nc

)
,

π(pt | xt, nt) ∼ N

(
p̂t,

p̂t(1− p̂t)
nt

)
,

(2.28)

where p̂0 is given in Equation 2.25.

The test statistic is given by,

ZB =
(p̂t − p̂0)√

ˆ̄p(1− ˆ̄p)
(

1
nc+nhw

+ 1
nt

) , (2.29)

where,

ˆ̄p =
ncp̂c + nhwp̂h + ntp̂t

nc + nhw + nt
,

and the operating characteristics can be calculated using Equation 2.22.

Large sample normal approximation of the Bayesian design operating charac-

teristics

A formula approximation of the type I error rate of the Bayesian design is given by,

α = Φ

(pc − p0)− Φ−1(0.975)×
√
p̄(1− p̄)

(
1

nc+nhw
+ 1

nt

)
√(

pc(1−pc)
nt

+ ncpc(1−pc)
(nc+nhw)2

)
 , (2.30)

and the power is given by,

1− β = Φ

(pc − p0)− Φ−1(0.975)×
√
p̄(1− p̄)

(
1

nc+nhw
+ 1

nt

)
√(

pt(1−pt)
nt

+ ncpc(1−pc)
(nc+nhw)2

)
 , (2.31)

where pt = pc + 0.12 and p̄ = ncpc+nhwph+ntpt
nc+nhw+nt

.

Operating characteristics comparison for the Viele example incorporating

historical data with a fixed weight of 0.4

The example used here assumes the historical data are incorporated as additional in-
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formation into the control arm of the current study and given a weight of 0.4. There are

200 patients in each of the current trial control and treatment arm and the treatment effect

is assumed to be 12%. Figure 2.26 compares the exact Bayesian design operating charac-

teristics (Bayes Exact calculated using the posterior distributions in Equation 2.27), the

normal approximation using the Bayesian variance (Normal Bayes exact calculated using

the test statistic in Equation 2.29), the frequentist approach using the exact operating

characteristics (Normal Freq calculated using the test statistic in Equation 2.26), the fre-

quentist large sample approximations and finally the large sample formula approximation

of the Bayesian design operating characteristics (the Bayesian large sample approxima-

tions are calculated from Equations 2.30 and 2.31). The approximations give very similar

results but the Bayesian and freqentist approaches differ due to the way the variance is

calculated.

Figure 2.26: Operating characteristics comparison for the fixed weight historical data
design. Viele example, nc = nt = 200, ∆ = 12%, historical data, 65/100 responses,
w = 0.4. The vertical red lines represent complete agreement between the historical and
current control proportions.
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2.6.3 Incorporating historical data with a variable weight

Returning to the additional informative historical data design described in Section 2.4.

For this design, the weight given to the historical data varies depending on the agree-

ment between the historical and current controls. The weight used in this section for

illustration is the one-sample equivalence weight calculated using Equation 2.11 and the
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posterior distributions are given in Equation 2.13. Since the weight varies, the operating

characteristics can only be determined using the exact calculation based on the beta pos-

terior distributions directly using the iterative procedure proposed by Cook [55] or from

constructing a test statistic based on approximating the beta posterior distributions for

the control and treatment response probabilities by a normal distribution, as in Equation

2.29. The weight is now dependent on the observed control responses and the historical

data instead of being a fixed value. The normal test statistic approach is slightly quicker

for calculating the operating characteristics than the exact approach using the method by

Cook and is required when the method proposed by Cook can not be used to calculate the

Pr(pt > pc), for example if none of the beta distribution parameter values are integers. A

similar approach can be used for the adaptive design.

Operating characteristics comparison for the Viele example incorporating

historical data with a variable weight - additional information design

Figure 2.27 shows the operating characteristics from the exact Bayesian approach and

the normal approximation based on the construction of a z-statistic from the normal

approximation of the posterior distribution of the control and treatment response proba-

bilities. The one-sample equivalence weight approach with 8% equivalence bounds is used

to calculate the weight to give to the historical data. The exact Bayesian approach and

the normal approximation give similar operating characteristics.
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Figure 2.27: Operating characteristics comparison for the exact Bayesian approach and
the normal approximation of the posterior distributions approach using the one-sample
equivalence weight with 8% equivalence bounds. Viele example, historical data 65/100
responses, nc = nt = 200, ∆ = 12%. The vertical red lines represent complete agreement
between the historical and current control proportions.
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2.7 Discussion

In this chapter, two intuitive and computationally tractable approaches for assessing

agreement between the historical and current control data are proposed. A design which

incorporates historical data as additional information or an adaptive design that replaces

current controls with historical controls can then be utilised which allow the possibility

of borrowing historical data when it is in agreement with the current control data. We

propose using the method described by Cook [55] to calculate Pr(pt > pc) which allows

the operating characteristics of the proposed designs to be calculated exactly. The equiv-

alence weight approach is flexible and allows control over how quickly the historical data

are discounted when there is disagreement between the historical and current controls.

The maximum inflation in the type I error rate across all possible current control response

probabilities can be calculated and the maximum possible type I error rate can be con-

trolled by the choice of equivalence bounds. The equivalence weight is an intuitive way

to think about discounting historical data and should provide an approach that is easy to

discuss with clinicians about utilising historical data and the effect that using historical

data has on the design characteristics of the current study.

We do not advocate the use of these methods in trials that can easily recruit the re-
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quired number of patients under a standard design. But where recruitment is slow or the

patient population is small, these methods could potentially increase the power or reduce

the duration of trials that are not feasible to run under a standard design.

Comparing the probability and equivalence weight approaches to historical data meth-

ods proposed in the literature. All historical data methods work in a similar way, dis-

counting the historical data when there is disagreement between the current and historical

controls, but the methods differ in the amount of information borrowed and the rate of

discounting as conflict increases. In this example, we found the power prior with a prior

on the power did not give an intuitive weight to the historical data and the commensu-

rate prior was difficult to use in this adaptive setting. The commensurate prior approach

was computationally intensive. The priors on the parameters that govern the borrowing

in both the commensurate prior and power prior approaches has a large effect on the

down-weighting of the historical data and these prior require careful thought. The robust

mixture prior approach works well. However, calculating the ESS is computationally

intensive and negative values can be obtained which is not intuitive and requires setting

the ESS to zero when used in an adaptive design setting. Otherwise the design would

require more controls to be randomised than a standard trial design not incorporating

any historical data. For one historical study, the effect of the weight given to the in-

formative component of the robust mixture prior needs exploration but can be used to

control the maximum type I error rate across a range of true control response probabilities.

The probability and equivalence approaches were chosen to give a large weight when

there is complete agreement between the historical and current controls. If there is a

substantial amount of historical data, it may not be desirable to give the historical data

a large weight because the historical data would have a greater influence on the control

parameter estimate than the current control data. In this case a maximum weight may

be chosen that caps the amount of historical data incorporated into the final analysis.

A large difference in current and historical control sample sizes is unlikely when there is

only one historical study.

For the analysis of the power prior approach, the fully Bayesian approach was only

considered briefly in Appendix D, throughout the thesis the modified power approach is

used taking a summary measure of the marginal posterior distribution of the power as a

fixed weight. These two approaches to using the modified power will give slightly different

operating characteristics, the summary measure approach was used in this thesis as the

fully Bayesian version is computationally intensive.

For all methods, only one interim analysis was considered, multiple comparisons of

the historical controls with the current control data as it accumulates would give more
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power to detect a difference at the expense of computation time.

For all historical data methods, careful thought is required for what are appropriate

historical data. Control data may be available from multiple studies spanning many years.

It is better to include a few studies that are carefully selected following Pocock’s criteria

for incorporating historical data [11], than to include all studies where there is a lot of

heterogeneity. Selecting a few historical studies with low heterogeneity will result in a

larger prior effective sample size than using all historical studies where there is lots of

heterogeneity. In this chapter, only one historical study has been considered but methods

for incorporating multiple historical studies have been proposed for the robust mixture

prior, commensurate prior and power prior methods [14, 19, 23].
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Chapter 3

Historical data methods for the

design and analysis of a trial with a

normally distributed outcome

3.1 Introduction

This chapter is structured in a similar way to Chapter 2. The aim of this chapter is to

address the five questions about the use of historical data posed by Pocock [11] when

the outcome data are normally distributed, these questions are described in Section 2.1.

Throughout this chapter it is assumed that the historical data chosen are relevant to the

current study taking into account Pocock’s six acceptability criteria for using historical

data in the design and analysis of a new study [11], the acceptability criteria are listed

in Section 1.2. In this chapter, it is assumed that only one relevant historical study is

available, with data available on the control arm only. This chapter is structured as fol-

lows: how to assess agreement between the historical and current controls is discussed

in Sections 3.2 and 3.3; how to incorporate historical data into the design of a current

study is discussed in Section 3.4; and finally how to incorporate the historical data in the

analysis of a current study is addressed in Sections 3.5.1 and 3.5.4.

The two approaches proposed in Chapter 2 for assessing agreement between histori-

cal and current controls, the probability weight and the equivalence probability weight,

described in Section 2.3, are extended to handle normally distributed outcome data. The

analysis approach of the power prior is used to incorporate the historical data into the

final analysis of the current study. The probability weight and equivalence probability

weight are compared to two historical data methods proposed in the literature: the mod-

ified power prior and the robust mixture prior. The weight given to the historical data

is compared between these approaches. The operating characteristics for the power prior

approach with a summary measure of the marginal distribution of the power used as a

97
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fixed weight and the probability and equivalence weights used as a fixed weight are com-

pared. The Commensurate prior approach is also discussed.

It is assumed throughout this chapter that there is one relevant historical study avail-

able and that this historical study provides information on the control arm only. The

maximum number of additional patients that the historical study may provide is the

sample size of the historical study. Depending on the agreement between the historical

and current control data, the historical data may be down-weighted and therefore the

additional number of patients that the historical data provides will be reduced. The aim

here is to assess the conflict between the historical and current control data to determine

how much weight to give the historical data in the final analysis.

When outcome data are binary, the distribution of the response probability in the

historical data is compared to the distribution of the response probability in the current

control data. There is only one parameter, the response probability, that summarises the

data in each sample and the variance is completely dependent on the mean for the true

underlying response probability. For normally distributed outcome data, two parameters

are required to describe the distribution of the outcome data, the mean and the variance.

The final analysis for a trial with normal outcome data, which compares a treatment

group to control, usually compares only the means of the two samples. The sample size is

calculated to achieve a desired power and type I error rate for the comparison of the means

in the control and treatment group. For the final analysis and the sample size calculation,

comparing the treatment mean to the control mean, it is assumed that the variances are

either: known and equal; known and unequal; or unknown in both the treatment and

control group.

When incorporating historical data into the control arm of the current trial, it is

important to consider the whole distribution of the data. A difference in either the mean

or the variance could indicate that the historical and current control data represent two

different populations for which we would want to discount the historical data in the current

trial analysis.

3.1.1 Notation

Let xhi, xci and xti denote the observed outcome value for patient i in the historical,

current control and treatment group respectively. Let x̄h denote the sample mean of

the historical control data and σ̂2
h the sample variance of the historical data. Let x̄c, σ̂

2
c

and x̄t, σ̂
2
t be the corresponding sample estimates for the current controls and treatment

group respectively. Let nh, nc and nt denote the sample sizes of the historical, current

control and treatment group respectively. Let µc be the true underlying mean in the
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current control arm and µt the true underlying mean in the treatment arm. Let σ2
c and

σ2
t be the true underlying variance in the control and treatment arms respectively. Let

τc denote the precision for the current control arm τc = 1/σ2
c and τt denote the precision

for the treatment arm. Where it is assumed that the true underlying mean and variance

in the current and historical controls may differ, the true underlying mean, variance and

precision in the historical controls are denoted by µh, σ
2
h and τh, respectively.

3.1.2 Illustrative example

Throughout this chapter, unless otherwise stated, the main example used is an adaptation

of the example from Viele et al. [42] for normally distributed outcome data. We consider

this design representative of a confirmatory trial. The primary analysis of interest is a

hypothesis test of H0 : µc = µt against H1 : µc < µt. A standard two-arm randomised

controlled trial incorporating no historical data would require 200 patients per treatment

arm to detect a mean difference of 12 with a one-sided type I error rate of 2.5% and

approximately 76% power, assuming the standard deviation in the control and treatment

group are known and equal to 45. In addition, for the historical data designs, there are

100 historical control patients available with a sample mean of 65 and sample standard

deviation 45.

Throughout the chapter, for the primary analysis comparing the treatment mean to

control mean in the current trial, it is assumed that the variance in the treatment group is

the same as the variance in the control group. Differences in both the means and variances

in the current and historical control data are explored.

3.2 Published methods for assessing agreement be-

tween historical and current control data

For the historical data methods discussed in this section, each method assesses the agree-

ment between the historical and current control data and calculates either a weight w or

a prior effective sample size (ESS). For methods that calculate a weight, this weight is

used to down-weight the historical data and we define the effective historical sample size

(EHSS) to be the weight times the historical sample size wnh. In Chapter 2 a distinction

was made between the EHSS which is based only on the historical data and the prior

ESS which also incorporates the information contained in the prior before the historical

data are observed. In this chapter the initial priors assumed for the parameters before

the historical data are observed are reference priors and therefore ESS ≈ EHSS.
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3.2.1 Modified power prior

The modified power prior assumes that the current and historical data are estimating the

same underlying parameters of interest (µh = µc and σ2
h = σ2

c ). A reference prior [58] is

chosen as the initial joint prior for the mean and variance in the control arm, µc and σ2
c .

The reference prior is, π(µc, σ
2
c ) ∝ 1/σ2

c [43], this prior is derived in Section 3.3.2. The

prior for the power, denoted π(α0) is assumed to be a Beta(a,b) distribution. The same

priors proposed in Section 2.2.1 for binary data are also considered here. These priors

are: Beta(1,1); Beta(0.5,0.5); and Beta(0.3,0.3). For normally distributed outcome data

and only one historical study, the joint modified power prior distribution of (µc, σ
2
c , α0) is

given by [15, 43],

π(µc, σ
2
c , α0 | x̄h, σ̂2

h, nh) ∝
(σ2

c )
α0nh

2
−1exp

{
−α0nh

2σ2
c

[σ̂2
h + (µc − x̄h)2]

}
αa−1

0 (1− α0)b−1

∞∫
0

∞∫
−∞

(σ2
c )

α0nh
2
−1exp

{
−α0nh

2σ2
c

[σ̂2
h + (µc − x̄h)2]

}
dµcdσ2

c

∝
α
α0nh

2
+a−1

0 (1− α0)b−1(
2σ2
c

nhσ̂
2
h

)α0nh
2

+1

Γ(α0nh−3
2

+ 1)

exp

{
−α0nh

2σ2
c

[σ̂2
h + (µc − x̄h)2]

}
,

(3.1)

where α0 ∈ (1/nh, 1], µc ∈ (−∞,∞), σ2
c ∈ [0,∞) and,

σ̂2
h = 1

nh

nh∑
i=1

(xhi − x̄h)2, σ̂2
c = 1

nc

nc∑
i=1

(xci − x̄c)2, x̄h = 1
nh

nh∑
i=1

xhi and x̄c = 1
nc

nc∑
i=1

xci.

Note that here the sample variance estimators are the maximum likelihood estimates

as specified in [15]. The joint prior defined in Equation 3.1 is zero outside the range

α0 ∈ (1/nh, 1]. The joint prior is only defined in the region of α0 ∈ (1/nh, 1] since this

is the region where the double integral in the denominator of Equation 3.1 is finite. The

lower bound of α0 implies that some historical data are automatically taken into account,

depending on the availability of historical data. When there are no historical data avail-

able nh = 0 and the joint prior for the current study control arm would be the reference

prior π(µc, σ
2
c ) ∝ 1/σ2

c .

Combining the joint power prior given in Equation 3.1 with the normal likelihood

for the current study control data and integrating out µc and σ2
c , the marginal posterior

distribution for the power, α0 is given by [43],
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π(α0 | x̄h, σ̂2
h, nh, x̄c, σ̂

2
c , nc) ∝

α
α0nh

2
+a−1

0 (1− α0)b−1Γ
(
α0nh+nc−3

2
+ 1
)

[
α0nc

α0nh+nc

(x̄h−x̄c)2
σ̂2
h

+ α0 + nc
nh

σ̂2
c

σ̂2
h

]α0nh+nc−3

2
+1

Γ(α0nh−3
2

+ 1)

,

in the range α0 ∈ (1/nh, 1].

When α0 is assumed to be unknown and given a distribution, the marginal distribu-

tions of µc and σ2
c cannot be written in closed form. Here, we calculate the mean, median

or mode of the power distribution, using formulae similar to those given in Section 2.2.1,

and use this as a fixed power prior weight. The conditional distribution of µc given a fixed

value of α0 can then be used for inference. This is described in Section 3.5.1.

Figure 3.1 shows three different priors for α0, a Beta(1,1), Beta(0.5,0.5) and a

Beta(0.3,0.3), and the posterior distributions of α0 for each prior, given different levels of

agreement between the historical and current controls. It is assumed that there are 100

current control patients and 100 historical patients. The historical control data are fixed

with sample mean, x̄h = 65 and sample standard deviation, σ̂h = 45. The initial joint

prior π(µc, σ
2
c ) ∝ (1/σ2

c ) is assumed before the historical data are observed.

Figure 3.1: Marginal distributions of α0 for different observed current control sample
means and standard deviations and different priors on the power. Example, historical
data mean 65, historical data standard deviation 45, 100 historical controls and 100
current controls.
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Figure 3.1 illustrates that under a Beta(1,1) prior for α0, the marginal posterior dis-

tribution of α0 is flat at complete agreement between the historical and current data

(x̄c = x̄h = 65 and σ̂c = σ̂h = 45). The quasi-dichotomous priors result in a posterior

distribution for α0 with more mass near zero and more mass near one depending on the

level of agreement between the current and historical data. Choosing smaller parameter

values for the quasi-dichotomous priors governs the amount of mass at the tails of the

posterior distribution. Small parameter values can cause problems when calculating sum-

mary measures of the power parameter using numerical integration because of the amount

of mass at the tails of the distribution.

Figure 3.2 shows the mean of the posterior distribution of α0 for priors Beta(1,1),

Beta(0.5,0.5) and Beta(0.3,0.3) for a range of observed current control means and standard

deviations in the current trial. Figure 3.2 also shows the mode of the posterior distribution

of α0 for a Beta(1,1) prior for a range of observed control means and standard deviations

in the current trial. These summary measures are used as a fixed weight to down-weight

the historical data.

Table 3.1: Mean and mode of the marginal distribution of α0 for different observed cur-
rent control means and standard deviations and different priors on the power. Example,
historical data x̄h = 65, σ̂h = 45, nh = 100 and nc = 100.

µc σc Mean (α0) Mode (α0)
Beta(1,1) Beta(0.5,0.5) Beta(0.3,0.3) Beta(1,1)

65 45 0.613 0.689 0.757 1
65 35 0.438 0.459 0.496 0.179
55 45 0.543 0.601 0.662 .471
55 35 0.343 0.332 0.345 0.114
75 55 0.423 0.437 0.469 0.196

Table 3.2: Median and credible interval of the marginal distribution of α0 for different
observed current control means and standard deviations and different priors on the power.
Example, historical data x̄h = 65, σ̂h = 45, nh = 100 and nc = 100.

Median(95% credible interval)
µc σc Beta(1,1) Beta(0.5,0.5) Beta(0.3,0.3)
65 45 0.637 (0.124,0.983) 0.760 (0.101,0.999) 0.875 (0.089,1)
65 35 0.395 (0.054,0.957) 0.383 (0.022,0.996) 0.393 (0,1)
55 45 0.543 (0.088,0.975) 0.628 (0.058,0.999) 0.742 (0.034,1)
55 35 0.276 (0.037,0.920) 0.217 (0.001,0.985) 0.176 (0,0.999)
75 55 0.379 (0.056,0.947) 0.359 (0.024,0.994) 0.358 (0,1)

Using the modified power prior approach, the mean weight given to the historical data

for all priors on α0 is maximised at complete agreement between the historical and current
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Figure 3.2: Contour plots of the modified power prior weight for different observed control
means and standard deviations in the current trial and different priors on α0. Example,
historical data x̄h = 65, σ̂h = 45, nh = 100 and nc = 100. The horizontal dashed lines
represent complete agreement between the current and historical control standard devi-
ations and the vertical dashed lines represent complete agreement between the historical
and current control means.
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controls, when the sample means and variances are the same. The weight decreases as

the difference in either the means increases, which is measured in absolute terms or the

differences in the variances increases, which is measured in relative terms. Taking the

mode of the posterior distribution, assuming a Beta(1,1) prior gives a weight of one at

complete agreement and also for a range of current control means and standard deviations

around the historical sample estimates of the mean and standard deviation, the mode then

decreases to zero as the mean and standard deviation differences between the current and

historical data increase, this is why the contour line for the mode giving a weight of one

is not smooth. Similar to the binary data case, as seen in Section 2.2.1, using the mean

of the marginal distribution of α0 gives a lower weight at complete agreement than using

the mode or median of the marginal posterior distribution, as illustrated in Tables 3.1

and 3.2. The weight at complete agreement using the mean ranges from 0.61 to 0.76 and
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for the median ranges from 0.64 to 0.88, for the different priors on α0. As illustrated in

Figure 3.2, using the mean of the posterior distribution of the power discounts slowly as

the difference between the historical and current controls increases, compared to using the

mode as a weight. The weights for the power prior are symmetric around the historical

data mean but not around the standard deviation. At agreement in the historical and

current controls the posterior distribution of α0 is relatively flat. Therefore, although the

mode is one at complete agreement, which is desirable, this is taking the maximum of an

almost flat distribution.

3.2.2 Robust mixture prior

Assuming known and equal variance in the current and historical control

groups

Initially, the robust mixture prior proposed by Schmidli et al. [23] is considered where

it is assumed that the control data follow a distribution from the regular one-parameter

exponential family and the variance is assumed to be known and the same in the historical

and current control data (σ2
h = σ2

c ). For one historical study, the robust mixture prior for

µc is a two-component mixture distribution, with a mixture component that is conjugate

and based on the historical data and a weakly-informative conjugate prior component.

For normally distributed outcome data, the weakly-informative prior component of the

mixture distribution is a unit information prior [23, 59]. The unit information prior is a

data dependent prior with the mean as the maximum likelihood estimate (MLE) of the

current control data and precision equal to the information provided by one observation

[59]. The unit information prior is a weakly-informative prior since it has a larger variance

than the variance of the historical data component of the mixture prior but it is still

centred around the location of the current control data [59]. The prior for µc is given by,

π(µc | x̄h, σ2
h, nh, x̄c, σ

2
c , nc) = wN(x̄h, σ

2
h/nh) + (1− w)N(x̄c, σ

2
c ), (3.2)

where σ2
h = σ2

c , because we are assuming known and equal variance in the current and

historical control groups. The weight w is pre-specified, chosen based on the prior belief

of how similar the historical data are to the current control data. When the historical

data mean is not in agreement with the mean in the current control group, a large weight

is given to the weakly-informative component of the robust mixture prior. When the his-

torical and current control means are in agreement, a large weight is given to the mixture

component based on the historical data. In Equation 3.2, x̄c is the MLE of the current

controls and σ2
c is the variance of µc representing one observation of the data. Mutsvari

et al. [60] discuss in more detail how to choose the variance of the weakly-informative
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component of the mixture prior distribution and show that choosing a variance that is

too large can lead to a large weight being given to the component of the mixture distribu-

tion based on the historical data, even when there is conflict between the current control

and historical data.

The Bayesian update of the mixture prior to posterior distribution is presented for the

general case where the historical control data variance (σ2
h) may differ from the current

control variance (σ2
c ) and both variances are assumed to be known, however, in this section

they are assumed to be the same value. The posterior distribution for µc is then a mixture

of normal distributions with updated weights and parameter values,

π(µc | x̄h, τh, nh, x̄c, τc, nc) =w̃N

(
ncτcx̄c + nhτhx̄h
ncτc + nhτh

,
1

ncτc + nhτh

)
+ (1− w̃)N

(
ncτcx̄c + τcx̄c
ncτc + τc

,
1

ncτc + τc

)
,

(3.3)

where, w̃ =
wf1(xc | x̄h, τh, nh, τc, nc)

wf1(xc | x̄h, τh, nh, τc, nc) + (1− w)f2(xc | x̄c, τc, nc)
,

f1(xc | x̄h, τh, nh, τc, nc) =

∞∫
−∞

N(xc | µc, 1/(ncτc))N(µc | x̄h, 1/(nhτh))dµc,

f2(xc | x̄c, τc, nc) =

∞∫
−∞

N(xc | µc, 1/(ncτc))N(µc | x̄c, 1/τc)dµc,

and N(xc | µc, 1/(ncτc)) is the likelihood of the current control data. f1(xc | x̄h, τh, nh, τc, nc)
and f2(xc | x̄c, τc, nc) are the marginal likelihood of the data, the probability of ob-

serving the current trial data given the prior information of each mixture component.

f1(xc | x̄h, τh, nh, τc, nc) and f2(xc | x̄c, τc, nc) can be determined through numerical in-

tegration, however for this example the marginal likelihoods are available in closed form

and are given by [25],

f1 =

(
nhτh

ncτc + nhτh

) 1
2

exp

{
1

2

(
nhτhx̄

2
h + ncτcx̄

2
c − (ncτc + nhτh)

(
nhτhx̄h + ncτcx̄c
ncτc + nhτh

)2
)}

,

f2 =

(
τc

ncτc + τc

) 1
2

exp

{
1

2

(
τcx̄

2
c + ncτcx̄

2
c − (ncτc + τc)

(
τcx̄c + ncτcx̄c
ncτc + τc

)2
)}

.
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Determining the effective sample size of the robust mixture prior

Under the assumption that the population variance is known, the effective sample size

can be approximated. Here we illustrate the approximation that is given in Hobbs et al.

[20], which is based on the Morita algorithm [26].

This approximation compares the precision of the posterior distribution of the mean

in the control group under the model where historical data are incorporated to the model

where historical data are not incorporated. The effective historical sample size is given

by,

EHSS ≈ nc

{
prec(π(µc | x̄h, σ2

h, nh, x̄c, σ
2
c , nc))

prec(π(µc | x̄c, σ2
c , nc))

− 1

}
,

where prec() denotes the precision of the distribution.

This effective historical sample size approximation is derived from comparing the in-

formation of the posterior mixture distribution for µc with the information of a created

distribution with known sample size [26]. The derivation for the EHSS is similar to the

derivation of the EHSS given in Chapter 2, Equation 2.7. The information of a normal

likelihood with sample size nc and known variance σ2
c is given by nc

σ2
c
, this is the precision

of µc under the model where no historical data are incorporated.

Assuming that the population variance in the historical and current controls are

known, the variance of the posterior distribution of µc, and therefore the precision of

µc, from the model incorporating historical data, which is a mixture distribution, given

in Equation 3.3, can be calculated analytically using,

Var(µc | x̄h, τh, nh, x̄c, τc, nc, w) = E(µ2
c | x̄h, τh, nh, x̄c, τc, nc, w)−(E(µc | x̄h, τh, nh, x̄c, τc, nc, w))2,

where,

E(µ2
c | x̄h, τh, nh, x̄c, τc, nc, w) =

w̃

(
1

ncτc + nhτh
+

(
ncτcx̄c + nhτhx̄h
ncτc + nhτh

)2
)

+ (1− w̃)

(
1

ncτc + τc
+

(
ncτcx̄c + τcx̄c
ncτc + τc

)2
)

and

E(µc | x̄h, τh, nh, x̄c, τc, nc, w) = w̃

(
ncτcx̄c + nhτhx̄h
ncτc + nhτh

)
+ (1− w̃)

(
ncτcx̄c + τcx̄c
ncτc + τc

)
.
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For the example considered in this chapter there are 100 (nh) historical control patients

available with a mean of 65 and standard deviation 45. Assuming there are also 100

current controls available and the standard deviation in the current controls is assumed

to be known and the same as in the historical data, σc = 45. Figure 3.3 illustrates the

EHSS for varying means in the current control data under two different initial priors for

µc. These priors are,

Prior 1 : π(µc) = 0.5× N(65, 452/100) + 0.5× N(x̄c, 452),

Prior 2 : π(µc) = 0.9× N(65, 452/100) + 0.1× N(x̄c, 452).
(3.4)

Figure 3.3: Robust mixture posterior EHSS for a range of current control means, assum-
ing a common historical and current control standard deviation σh = σc = 45, nc = 100,
historical data x̄h = 65, nh = 100. Two different priors for µc are explored, given in Equa-
tion 3.4. The vertical dashed line represents complete agreement between the historical
and current control means.
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The assumption of a common variance in the historical and current control group is

unlikely to be a realistic assumption. The population variance is unlikely to be known

and if the sample variance estimates are used in place of the known variances, the sample

variance estimates are unlikely to be equal in the current and historical control data.

Figure 3.4 shows the posterior weight (w̃) given to the mixture component based on

the historical data when the sample mean and variance in the current controls vary but the

known variance formulae are used for the analysis. The sample estimates of the variances
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are used in place of the known variances. The robust mixture prior distributions are given

by,

Prior 1 : π(µc) = 0.5× N(65, 452/100) + 0.5× N(x̄c, σ̂
2
c ),

Prior 2 : π(µc) = 0.9× N(65, 452/100) + 0.1× N(x̄c, σ̂
2
c ).

(3.5)

Figure 3.4 shows that a large weight is given to the historical data when the means

in the historical and current controls agree, even though the estimated variances differ.

This is expected since we do not assume a distribution for the variance parameter. The

next section explores whether it is possible to have a robust mixture prior on the joint

distribution of the control mean and variance.

Figure 3.4: Contour plots of the robust mixture prior weight on the informative component
of the posterior distribution of µc for a range of current control sample means and variances
when using the current control variance sample estimates in the known variance formulae
for the analysis, nc = 100, historical data x̄h = 65, σh = 45, nh = 100. The two priors given
in Equation 3.5 are explored. The horizontal dashed lines represent complete agreement
between the current and historical control standard deviations and the vertical dashed
lines represent complete agreement between the historical and current control means.
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Assuming unknown and not necessarily equal variances in the current and

historical control data

Ideally, the weight given to the historical data component of the robust mixture prior

would decrease if either of the estimated means or the variances in the current and histor-

ical data differ. To detect differences in both the means and the variances of the current

and historical control data, a joint robust mixture prior is required for the mean and vari-

ance parameters. We explore whether it is possible to have a similar robust mixture prior

on the mean and variance as was used for just the mean parameter in the previous sec-

tion. Let n0 denote the belief in the prior estimate of the mean for the weakly-informative

component of the robust mixture prior and v0 denote the belief in the prior estimate of

the variance for the weakly-informative component of the robust mixture prior, n0 and v0

are pre-specified to give a prior of the form,

π(µc, σ
2
c | x̄h, σ̂2

h, nh, x̄c, σ̂
2
c ) = w(N(x̄h, σ

2
c/nh)SIχ

2(nh − 1, σ̂2
h))

+ (1− w)(N(x̄c, σ
2
c/n0)SIχ2(v0, σ̂

2
c )),

(3.6)

where SIχ2(v, τ 2) denotes a scaled inverse chi-squared distribution with v degrees of free-

dom and scale parameter τ 2. The scaled inverse chi-squared distribution is chosen here as

it is a conjugate distribution for the variance. The parameters of the second component

of the mixture distribution are chosen to be weakly-informative. The prior estimate of

the mean for the weakly-informative component is taken to be the sample mean of the

current control data. This is to place the prior in the correct location, but the belief in

this value (n0) will be small to represent the vague component of the mixture prior. The

prior estimate of the variance in the weakly-informative component of the robust mixture

distribution is chosen to be the sample variance estimate of the current control data and

the belief in this value (v0) will be small to represent the vague component of the mixture

prior, this is a data dependent prior. The aim of this prior is to discount both the mean

and variance of the historical data when there is a difference in either the mean or the

variance between the historical and current control data. When the historical and current

control data agree, the historical data component of the mixture distribution should be

given a large weight and information should be borrowed for both the mean and variance

parameters.

To obtain the joint posterior distribution for the control mean and variance, each com-

ponent of the mixture distribution is updated as a standard conjugate Bayesian update.

Each component of the posterior mixture distribution is then a normal scaled inverse chi-

squared distribution with updated parameter values. The weights are updated using the

marginal distribution of the data. The posterior distribution for the mean and variance

in the control arm is given by,
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π(µc, σ
2
c | x̄h, σ̂2

h, nh, x̄c, σ̂
2
c , nc) = w̃(N(x̄hc, σ

2
c/nhc)SIχ

2(nhc, σ̂
2
hc))

+ (1− w̃)(N(x̄0c, σ
2
c/n0c)SIχ

2(v0c, σ̂
2
0c)),

(3.7)

where x̄hc =
ncx̄c + nhx̄h

nc + nh
, x̄0c =

ncx̄c + n0x̄c

nc + n0

, nhc = nc + nh − 1, n0c = nc + n0,

v0c = nc + v0, σ̂2
hc = 1

nc+(nh−1)

(
(nh − 1)σ̂2

h + ncσ̂
2
c + ncnh

nc+nh
(x̄h − x̄c)2

)
,

σ̂2
0c = 1

nc+v0

(
v0σ̂

2
c + ncσ̂

2
c + ncn0

nc+n0
(x̄0 − x̄c)2

)
,

and, w̃ =
wf1(xc | x̄h, σ̂2

h, nc, nh)

wf1(xc | x̄h, σ̂2
h, nc, nh) + (1− w)f2(xc | x̄c, σ̂2

c , nc, n0, v0)
,

where,

f1(xc | x̄h, σ̂2
h, nc, nh) =

∞∫
0

∞∫
−∞

N(xc | µc, σ2
c )N(µc | x̄h, σ2

c/nh)SIχ
2(σ2

c | nh − 1, σ̂2
h)dµcdσ

2
c ,

(3.8)

f2(xc | x̄c, σ̂2
c , nc, n0, v0) =

∞∫
0

∞∫
−∞

N(xc | µc, σ2
c )N(µc | x̄c, σ2

c/n0)SIχ2(σ2
c | v0, σ̂

2
c )dµcdσ

2
c ,

(3.9)

where N(xc | µc, σ2
c ) denotes the likelihood of the current control data. For normally

distributed outcome data and the joint mixture prior for the mean and variance given in

Equation 3.6, the marginal likelihoods given in Equations 3.8 and 3.9 have a closed form

solution [61],

f1 =
Γ(nhc/2)

Γ((nh − 1)/2)

√
nh

nhc

((nh − 1)σ̂2
h)

(nh−1)/2

(nhcσ̂2
hc)

nhc/2

1

πnc/2
and f2 =

Γ(v0c/2)

Γ(v0/2)

√
n0

n0c

(v0σ̂
2
c )
v0/2

(v0cσ̂2
0c)

v0c/2

1

πnc/2
.

The difficultly in using the robust mixture prior approach where each mixture com-

ponent is a joint distribution of the mean and variance is what parameters should be

chosen for the weakly-informative component of the mixture. The robust mixture prior

is used to create a prior that has heavy tails. Heavy-tailed priors have been shown to be

discarded when there is increasing conflict between the prior and the current data [24].

The weights of the prior distribution are updated based on how likely the observed data

are under each of the mixture components of the prior.

Figure 3.5 illustrates the posterior weight on the informative component of the mixture
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distribution for four different priors. The first component of the mixture prior is based

on the historical data and is therefore fixed. The four priors considered are:

Prior 1 : π(µc, σ
2
c ) = 0.5× (N(65, 452/100)SIχ2(100− 1, 452)) + 0.5× (N(x̄c, σ

2
c/1)SIχ2(1, σ̂2

c ));

Prior 2 : π(µc, σ
2
c ) = 0.9× (N(65, 452/100)SIχ2(100− 1, 452)) + 0.1× (N(x̄c, σ

2
c/1)SIχ2(1, σ̂2

c ));

Prior 3 : π(µc, σ
2
c ) = 0.5× (N(65, 452/100)SIχ2(100− 1, 452)) + 0.5× (N(x̄c, σ

2
c/10)SIχ2(10, σ̂2

c ));

Prior 4 : π(µc, σ
2
c ) = 0.9× (N(65, 452/100)SIχ2(100− 1, 452)) + 0.1× (N(x̄c, σ

2
c/10)SIχ2(10, σ̂2

c )).

(3.10)

Figure 3.5: Contour plots of the joint robust mixture prior weight on the informative com-
ponent of the joint posterior distribution of µc and σ2

c for a range of current control sample
means and standard deviations, nc = 100, historical data x̄h = 65, σ̂h = 45, nh = 100.
The four priors explored are given in Equation 3.10. The horizontal dashed lines represent
complete agreement between the current and historical control standard deviations and
the vertical dashed lines represent complete agreement between the historical and current
control means.
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Figure 3.5 shows the weight (w̃) given to the informative component of the posterior

mixture distribution for a range of observed current control means and standard deviations
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under four different joint priors for µc and σ2
c . Priors 1 and 2 have n0 = v0 = 1, which gives

a flat distribution for the weakly-informative component of the mixture prior and results

in a posterior distribution which gives a high weight to the historical data component of

the mixture for a wide range of agreement between the current and historical controls, the

weight then discounts to zero quickly as the difference between the current and historical

controls gets too large. Choosing a larger value for n0 and v0, n0 = v0 = 10 as in priors

3 and 4 gives a lower weight to the historical data component of the mixture posterior

distribution at complete agreement in the historical and current controls compared to

priors 1 and 2. The prior weight parameter w can be thought of as the belief in the

historical data being similar to the current control data. The prior weight (1−w) works in

a similar way to n0 and v0, all of these parameters effect the posterior mixture distribution

weights. A large initial prior weight gives more posterior weight to the historical data

component of the mixture prior at agreement in the estimated historical control means

and variances and also gives a high weight for a range of current control means and

variance around complete agreement with the historical data. As the difference between

the historical and current controls gets too large, the posterior weight decreases quickly to

zero. An initial lower prior weight for the historical data component of the mixture prior

gives a lower weight to the historical data at agreement and discounts more slowly to zero

as the difference between the current and historical controls increases compared to a high

initial prior weight. The shape of the weight contours are similar to other historical data

approaches considered in this chapter, depending on the values chosen for n0, v0 and w.

3.2.3 Limitations of published historical data methods

The commensurate prior approach was not considered in this chapter due to the limita-

tions of the approach discussed in Chapter 2. These limitations were that the commensu-

rate prior approach requires MCMC, which is computationally intensive in a trial design

setting, especially for adaptive designs, a strong prior is required on the commensurability

parameter to induce sufficient borrowing from the historical data and the choice of prior

is not intuitive, and the cut function is required to stop feedback from the current data

model to the historical data parameter estimates. When the outcome data are normally

distributed, the commensurate prior model can be fitted to assess the agreement in the

means and the variances of the historical and current control data by having a commen-

surate prior on both the current mean and variance parameter. Each parameter would

be centred at the historical data parameter estimate, with τµ, the commensurability pa-

rameter measuring the discrepancy between the historical and current data mean and τσ2

measuring the discrepancy between the historical and current data variance [18].

In Section 3.2.2 we proposed a joint robust mixture prior on the control mean and

variance parameters that will discount the historical data when there are differences in
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either the means or the variances between the current and historical controls. The joint

robust mixture prior works as desired but is not considered further in this chapter due to

the difficulty in calculating a prior ESS from this joint prior and because the choice of

the parameters for the weakly-informative component of the joint mixture prior requires

further exploration. As illustrated in Chapter 2 with the robust mixture prior for binary

data, it is difficult to determine how much historical data are incorporated into the final

analysis using the robust mixture prior approach. Calculating the effective sample size

of a joint prior or posterior distribution has not been considered here and this makes the

joint robust mixture prior difficult to use in an adaptive design setting. In the specifi-

cation of the robust mixture prior given in Equation 3.6, the prior parameters for the

weakly-informative component of the mixture and the initial weights chosen for the mix-

ture prior all interact to determine the amount of discounting of the historical data. A

non-conjugate distribution could be considered for the weakly-informative component of

the robust mixture prior, however this would make the analysis computationally intensive

and would require MCMC or other similar techniques. Using a non-conjugate distribu-

tion for the weakly-informative component of the mixture prior would make an adaptive

design implausible due to the computation time.

For the modified power prior approach, the limitations are the same as for binary data

(see Section 2.2.4): The choice of prior on the power and the power prior weights obtained

for different levels of agreement in the historical and current controls are not intuitive;

a fully Bayesian approach, using the whole distribution of the power prior rather than

taking a summary measure of the posterior distribution is computationally intensive in

the design setting; and finally a strong prior is required on the power parameter to induce

sufficient borrowing from the historical data.

3.3 Assessing agreement between historical and cur-

rent control data – overlap, probability and equiv-

alence probability weight

We now explore three new approaches to assess agreement between historical and current

control data which is normally distributed. The three methods explored here allow weights

to be between zero and one, where zero represents no historical data borrowing and one

represents pooling of the historical and current data. The aim of these approaches is to

obtain a high weight when there is agreement in both the means and the variances in the

historical and current data and to give a low weight when there is disagreement in the

historical and current control means or variances.
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3.3.1 Weights based on the amount of overlap in distributions

Overlap in the probability density functions of the historical and current con-

trol data

This approach considers using the proportion of overlap in the historical data distribution

and the current control data distribution as a weight to down-weight the historical data in

the current trial analysis. The overlapping coefficient is a measure of agreement between

two probability distributions [62]. Let πh(x | x̄h, σ̂2
h) represent the probability density

function (PDF) of the historical data and πc(x | x̄c, σ̂2
c ) the PDF of the current control

data.

The overlapping coefficient is given by,

w =

∞∫
−∞

min[πh(x | x̄h, σ̂2
h), πc(x | x̄c, σ̂2

c )]dx,

which for normally distributed data is equal to,

∞∫
−∞

min

[
1

σ̂h
√

2π
exp

{
− (x− x̄h)2

2σ̂2
h

}
,

1

σ̂c
√

2π
exp

{
− (x− x̄c)2

2σ̂2
c

}]
dx.

When the two normal densities have unequal variances, which is likely to be the case in

the historical and current sample data. The two densities, πh(x | x̄h, σ̂2
h) and πc(x | x̄c, σ̂2

c )

will cross at two points. The value of x at these points can be determined from [62],

x̄hσ̂
2
c − x̄cσ̂2

h ± σ̂hσ̂c
[
(x̄h − x̄c)2 + (σ̂2

c − σ̂2
h)log

(
σ̂2
c

σ̂2
h

)] 1
2

σ̂2
c − σ̂2

h

.

Letting x1 denote the smaller of these two points and x2 the larger, then the overlapping

coefficient is given by,

w = Φ

(
x1 − x̄h
σ̂h

)
+ Φ

(
x2 − x̄c
σ̂c

)
− Φ

(
x1 − x̄c
σ̂c

)
− Φ

(
x2 − x̄h
σ̂h

)
+ 1,

where the observed sample variances in the current and historical data are equal, the

normal density functions intersect at a single value, x = (x̄h + x̄c)/2. The weight is then

given by [62],
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w = Φ

(
− | x̄h − x̄c |

2σ̂

)
,

where σ̂ = σ̂h = σ̂c.

Figure 3.6: Contour plot of the overlap weights for different observed current control
means and standard deviations using the data distributions. Example, nc = 100 and
historical data x̄h = 65, σ̂h = 45 and nh = 100. The horizontal dashed lines represent
complete agreement between the current and historical control standard deviations and
the vertical dashed lines represent complete agreement between the historical and current
control means.
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The overlap weight is one when the observed sample means and variances in the his-

torical and current controls completely agree, as illustrated in Figure 3.6. The weights are

symmetric about the sample mean of the historical data but the overlap weight discounts

slowly as the difference in the means between the historical and current data increases.

At a mean difference of 25, when the standard deviations are the same in the historical

and current controls, a weight of 0.78 is given to the historical data. When the current

control standard deviation is much larger than the historical standard deviation, there is

still overlap in the distributions and quite a large weight is given to the historical data.

The weight decreases to around 0.3 for a large difference in the means between the his-

torical and current controls of 35 when the current control standard deviation is small, at

around 10.
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Overlap in the marginal distributions of the historical and current control

parameters

The overlap weight could also be calculated using the posterior distributions of the mean

and variance parameters in the current and historical controls. Assuming reference priors,

π(µh, σ
2
h) ∝ 1/σ2

h, π(µc, σ
2
c ) ∝ 1/σ2

c . The posterior marginal distributions of the means

and variances in the historical and current controls are given by [61],

µh ∼ tnh−1

(
x̄h,

σ̂2
h

nh

)
, σ2

h ∼ SIχ2(nh − 1, σ̂2
h),

µc ∼ tnc−1

(
x̄c,

σ̂2
c

nc

)
, σ2

c ∼ SIχ2(nc − 1, σ̂2
c ),

where the sample variances are the unbiased estimates of the variance given by, σ̂2
h =

1
nh−1

nh∑
i=1

(xhi − x̄h)2, σ̂2
c = 1

nc−1

nc∑
i=1

(xci − x̄c)2, to be consistent with the estimators used by

Murphy and Grieve [61, 63].

The weights obtained from the overlap in the posterior distributions of the means

and the overlap in the posterior distributions of the variances are multiplied to obtain

an overall weight. The overall weight is used to down-weight the historical data in the

current trial analysis.

The overlapping coefficient is then given by,

w =

∞∫
−∞

min

[
tnh−1

(
x

∣∣∣∣ x̄h, σ̂2
h

nh

)
, tnc−1

(
x

∣∣∣∣ x̄c, σ̂2
c

nc

)]
dx

×
∞∫

0

min[SIχ2(s | nh − 1, σ̂2
h), SIχ

2(s | nc − 1, σ̂2
c )]ds.

When using the sampling distributions of the mean and variance to calculate the over-

lap weight, if the sample sizes in the historical and current control data differ, a weight of

one is not obtained, even if the sample means and variances in the historical and current

control data are the same, as shown in Figure 3.8. When µc = 65, σc = 45 and nc = 500

a weight of 0.396 is obtained. Figure 3.7 illustrates the overlap weight calculated using

the posterior marginal distributions of the means and variances when the sample sizes in

the historical and current controls agree and Figure 3.8 gives the overlap weight when the

sample sizes in the current and historical data differ.

The overlap weight was not considered further in this chapter due to the slow discount-
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Figure 3.7: Contour plots of the overlap weights for different observed current control
means and standard deviations using the posterior marginal distributions of the historical
and current control means and variances. Example, nc = 100 and historical data x̄h =
65, σ̂h = 45 and nh = 100. The horizontal dashed lines represent complete agreement
between the current and historical control standard deviations and the vertical dashed
lines represent complete agreement between the historical and current control means.
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ing of the weight when there are differences between the current and historical control

data means and variances using the PDF of the data to calculate the overlap weight, and

because of the dependency of the overlap weight on the historical and current control

sample sizes when using the marginal distributions of the mean and variance to calculate

the overlap weight.
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Figure 3.8: Contour plots of the overlap weights for different observed current control
means and standard deviations using the posterior marginal distributions of the parame-
ters for different current control sample sizes. Example, historical data x̄h = 65, σ̂h = 45
and nh = 100. The horizontal dashed lines represent complete agreement between the
current and historical control standard deviations and the vertical dashed lines represent
complete agreement between the historical and current control means.
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3.3.2 Probability weight

Probability weight using the probability density functions of the historical and

current data

Assuming normal distributions for both the historical and current control data. The prob-

ability weight uses the probability that the PDF of the current control data is greater

than the PDF of the historical data to calculate the weight. Let,

Xh ∼ N(x̄h, σ̂
2
h) and Xc ∼ N(x̄c, σ̂

2
c ), then,

w = 2×min{Pr(Xc > Xh), 1− Pr(Xc > Xh)},

where,

Xc −Xh = Z ∼ N(x̄c − x̄h, σ̂2
c + σ̂2

h).

Then,
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Pr(Xc > Xh) =

∞∫
0

1√
(σ̂2

c + σ̂2
h)
√

2π
exp

{
− (z − (x̄c − x̄h))2

2(σ̂2
c + σ̂2

h)

}
dz

= Φ

(
x̄c − x̄h√
σ̂2
c + σ̂2

h

)
,

where σ̂2
g = 1

ng−1

ng∑
i=1

(xgi − x̄g)2, x̄g =
1

ng

ng∑
i=1

xgi for g = h,c.

Figure 3.9: Contour plot of the probability weights when applied to the data distributions
for different observed current control means and standard deviations. Example, nc = 100
and historical data x̄h = 65, σ̂h = 45 and nh = 100. The horizontal dashed lines represent
complete agreement between the current and historical control standard deviations and
the vertical dashed lines represent complete agreement between the historical and current
control means.
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Figure 3.9 illustrates that the probability weight based on the data PDF will give a

weight of one when the means in the historical and current control data are the same,

even if the variances differ. The contour line for a weight of one lies on top of the dashed

line of complete agreement between the current and historical control means in Figure 3.9.

Since this probability weight is based on the data distribution rather than the sampling

distributions of the mean and variance parameters, the weight discounts slowly as the

difference between the historical and current controls increases. The probability weight

based on the data PDF is not considered further in this chapter.
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Probability weight using the posterior distribution of the difference in means

and the posterior distribution of the ratio of the variances between the current

and historical controls

It is assumed that the historical data, xhi (i = 1, . . . , nh) and current control data xci

(i = 1, . . . , nc) are independent samples from N(µh, σ
2
h) and N(µc, σ

2
c ) respectively. A

scaled inverse chi-squared distribution is chosen as the prior for σ2
h and σ2

c , this is a

conjugate prior for the variance and is a more general parameterisation of the inverse

gamma prior distribution which is often used as a conjugate prior for the variance. Normal

conjugate priors are assumed for µh and µc. The joint prior is then given by,

π(µh, µc, σ
2
h, σ

2
c ) =N(µh | µh0, σ

2
h/nh0)N(µc | µc0, σ2

c/nc0)

× SIχ2(σ2
h | vh0, σ

2
h0)SIχ2(σ2

c | vc0, σ2
c0),

where µg0, σ2
g0, ng0 and vg0 denote the prior values for the mean, variance, belief in the

prior mean and belief in the prior variance, respectively, for group g, where g = h, c. Here,

the priors are chosen to be minimally-informative, also known as the reference prior [17].

The parameter values are chosen to be nh0 = nc0 = 0, vh0 = vc0 = −1 and σh0 = σc0 = 0.

To give,

π(µh, µc, σ
2
h, σ

2
c ) ∝ σ−1

h (σ2
h)
−(vh0/2+1)exp

(
− 1

2σ2
h

[vh0σ
2
h0 + nh0(µh0 − µh)2]

)
× σ−1

c (σ2
c )
−(vc0/2+1)exp

(
− 1

2σ2
c

[vc0σ
2
c0 + nc0(µc0 − µc)2]

)
∝ σ−2

h σ−2
c .

(3.11)

Under the reference prior, given in Equation 3.11. The joint posterior distribution,

given the historical and current control data is,

π(µh, µc, σ
2
h, σ

2
c | x̄h, x̄c, σ̂2

h, σ̂
2
c , nh, nc) = N(x̄h, σ

2
h/nh)N(x̄c, σ

2
c/nc)

× SIχ2(nh − 1, σ̂2
h)SIχ

2(nc − 1, σ̂2
c ),

(3.12)

where σ̂2
g = 1

ng−1

ng∑
i=1

(xgi − x̄g)2 is the unbiased sample variance for g = h, c.

From Grieve [63], the joint posterior distribution in Equation 3.12 can be re-written in

terms of the parameters of interest, the difference in means and the ratio of the variances.

Let ∆ = µc − µh and φ = σ2
c/σ

2
h, then [63],
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π(∆, φ | x̄h, x̄c, σ̂2
h, σ̂

2
c , nh, nc) = D

{(
1

nh
+
φ

nc

)(
vhσ̂

2
h +

vcσ̂
2
c

φ

)}−1/2

×
{

1 +
(∆− x̄c + x̄h)

2

(n−1
h + φn−1

c )(vhσ̂2
h + vcσ̂2

cφ
−1)

}−(nh+nc−1)/2

× Eφ−(nc+1)/2

{
1 +

vcσ̂
2
c

vhσ̂2
hφ

}−(nh+nc−2)/2

,

(3.13)

where, vh = nh − 1, vc = nc − 1, D = B−1
(

1
2
, vh+vc

2

)
, E = B−1

(
vh
2
, vc

2

) (
vcσ̂2

c

vhσ̂
2
h

)vc/2
and

B−1(a, b) denotes the reciprocal of the beta function with parameters a and b.

Equation 3.13 is given in [63] and derived by rewriting Equation 3.12 in terms of ∆,

φ, θ = µh, and ψ = σ2
h with Jacobian ψ, and integrating out θ and ψ respectively.

The properties of this joint distribution that we will use for making inference are [63],

δ ∼ Behrens-Fisher and φ
σ̂2
h

σ̂2
c

∼ Fvh,vc ,

where Fvh,vc denotes the F-distribution with vh and vc degrees of freedom. We assess the

agreement between the current and historical controls means and variances separately

using the marginal distributions of the difference in means and the ratio of the variances.

A probability weight is obtained for the difference in means between the historical and

current controls and a probability weight is obtained for the difference in variances be-

tween the historical and current controls. These weights are then combined by simply

multiplying them to obtain an overall weight to discount the historical data. Multiplying

the weights, gives a weight of one when both of the individual weights are one and a

weight of zero when both of the individual weights are zero.

Probability weight for the difference in means

The probability weight for the difference in means between the historical and current

controls is calculated as,

w∆ = 2×min{Pr(µc > µh), 1− Pr(µc > µh)}.

The marginal distribution of the difference in mean parameters between the historical

and current controls ∆ = µc − µh follows a Behrens-Fisher distribution which has been

approximated by Welsch [64].
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It is assumed ∆ = µc − µh has the approximate distribution [64],

π(∆ | Data) ≈ t

x̄c − x̄h,
σ̂2
c

nc
+
σ̂2
h

nh
,

(
σ̂2
c

nc
+
σ̂2
h

nh

)2

(σ̂2
c/nc)

2

nc − 1
+

(σ̂2
h/nh)

2

nh − 1

 . (3.14)

We calculate the probability that this distribution is greater than zero. To simplify

the calculation, the t-distribution given in Equation 3.14 can be standardised to,

t =
∆− (x̄c − x̄h)(
σ̂2
c

nc
+
σ̂2
h

nh

) 1
2

∼ tv,

where tv denotes the standard t-distribution with v degrees of freedom, given in Equation

3.14. Then the probability weight for the mean difference is given by,

w∆ = 2×min(Pr(tv ≤ t), 1− Pr(tv ≤ t)).

The probability weight for the mean is doubled because of symmetry, as we are interested

in a difference between the historical and current control means in either direction.

Probability weight for the difference in variances

To calculate the probability weight based on the ratio of the variances in the historical

and current controls, the marginal posterior distribution of the ratio of variances is used.

The posterior probability that 1/φ is less than one is given by,

Pr(1/φ ≤ 1) = Pr

(
f(nc−1,nh−1) ≤

σ̂2
c

σ̂2
h

)
,

and the probability weight for the agreement in variances is given by,

wφ =

Pr
(
F(nc−1,nh−1) ≤ σ̂2

c

σ̂2
h

)
+ Pr

(
F(nc−1,nh−1) ≥

σ̂2
h

σ̂2
c

)
if σ̂2

h > σ̂2
c

Pr
(
F(nc−1,nh−1) ≤

σ̂2
h

σ̂2
c

)
+ Pr

(
F(nc−1,nh−1) ≥ σ̂2

c

σ̂2
h

)
if σ̂2

c > σ̂2
h.

Again, a difference in the variances in the historical and current control in either di-
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rection is of interest, we therefore calculate the upper and lower tail area probabilities to

determine the probability weight for the difference in the variances.

The probability weights for the mean and the variance are then combined. If the

weights are averaged, when either of the historical and current control means or variances

completely agree and the other is in conflict a weight of a half will be obtained. When

the difference in either the means or the variances gets too large, we want to completely

discount the historical data. Taking the minimum of the probability weight based on the

difference in means and the probability weight from the ratio of the variances quickly

discounts the historical data as any differences between the current and historical data

are observed. A weighted combination of the two weights could also be used where there

is an a priori opinion about the relative importance of the variance and mean conflicts.

This parameter could be elicited from experts. Alternatively, the variance and mean

probabilities weights can be multiplied. For some trials, agreement in variances may not

be as important as agreement in means and a weighted combination of the mean and

variance probability weight may be used.

Illustrative example for the probability weight based on the posterior distri-

bution of the historical and current parameters

Figure 3.10 shows the probability weights comparing the historical and current control

means and variances separately. The variance weight is independent of the observed

sample means. The maximum weight of one is obtained when the historical and current

control sample variances are in complete agreement (σ̂2
h = σ̂2

c = 452) and discounts quickly

as the difference in variances increases. The probability weight for the difference in means

is calculated using the Welsch approximation to the Behrens-Fisher distribution, given in

Equation 3.14. This approximation is dependent on the observed historical and current

control sample variances. However, this dependence has little effect when calculating the

probability weight. As with the probability weight for the variance, a weight of one is

obtained when the sample means in the historical and current controls are in complete

agreement (x̄h = x̄c = 65) and this weight discounts quickly as the difference in means

increases.

Figure 3.11 shows the overall historical data weight obtained, taking the product of

the weights for the mean (w∆) and the variance (wφ). The probability weight approach,

multiplying the variance and mean probability weights, always gives a weight of one to

the historical data at complete agreement between the historical and current controls.

This is because both of the individual probabilities give a weight of one at complete

agreement. However, the overall probability weight discounts the historical data quickly

as either differences in the means or the variances between the historical and current
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Figure 3.10: Probability weight from the posterior distribution of the difference in means
and the ratio of the variances in the current and historical controls (mean and variance
separately) for different observed current control means and standard deviations. Exam-
ple, historical data mean 65, historical data standard deviation 45, 100 historical controls
and 100 current controls. The horizontal dashed line represents complete agreement be-
tween the current and historical control standard deviations and the vertical dashed line
represents complete agreement between the historical and current control means.
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controls are observed. When the current control sample size is 200, the historical data

are discounted at a quicker rate as the difference between the current and historical con-

trol means or variances increases, compared to when the current control sample size is 100.
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Figure 3.11: Probability weight (multiplying the mean and variance probability weights)
for different observed current control means and standard deviations. Example, historical
data mean 65, historical data standard deviation 45, 100 historical controls and 100
current controls. The horizontal dashed line represents complete agreement between the
current and historical control standard deviations and the vertical dashed line represents
complete agreement between the historical and current control means.
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3.3.3 Equivalence probability weight

To compare the historical and current control data, both the equivalence of the means

and the variances are considered. Testing both equivalence of location and dispersion

simultaneously was considered by Bauer and Bauer [65]. Grieve considers a Bayesian

approach based on the posterior probability that the parameters lie within a pre-specified

region of equivalence [63]. Here, we use the marginal distributions of ∆ and φ given by

[63],

δ ∼ Behrens-Fisher and φ
σ̂2
h

σ̂2
c

∼ Fvh,vc ,

to calculate an equivalence probability weight for the difference in means and the ra-

tio of the variances separately. We calculate, Pr(δφl < φ < δφu) using the CDF of the

F-distribution, where δφl and δφu denote the lower and upper equivalence bounds for the

ratio of the variances, and we calculate Pr(δ∆l < ∆ < δ∆u) using an approximation for

the cumulative probabilities of the Behrens-Fisher distribution, the Welsch approxima-

tion is used here, where δ∆l and δ∆u denote the lower and upper equivalence bounds for

the difference in the means in the current and historical control data. As in previous sec-

tions, we then obtain a joint equivalence probability weight by multiplying the equivalence
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probability weight for the mean difference by the equivalence probability weight for the

difference in variances. This is similar to the approach used to calculate the probability

weight in Section 3.3.2.

Here, we initially explore the equivalence probabilities for the difference in means

and ratio of the variances separately. It is assumed that the mean and variance equiva-

lence bounds are chosen independently based on reasonable deviations in the difference

in means or the ratio of variances between the historical and current controls. Figure

3.12 illustrates the equivalence weight obtained for the ratio of variances component for

different observed current control standard deviations and different equivalence bounds

for the ratio of the variances.

Figure 3.12: Variance equivalence weights for different current control standard devi-
ations. Example, historical data mean 65, historical data standard deviation 45, 100
historical controls and 100 current controls. Equivalence bounds on the ratio of variances
of (0.5,1/0.5), (0.6,1/0.6), (0.7,1/0.7) and (0.8,1/0.8). The vertical dashed line represents
complete agreement between the current and historical control standard deviations.
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Figure 3.12 shows that for this example the maximum weight is obtained when there

is complete agreement in the observed current and historical standard deviations. Wider

equivalence bounds give a higher weight for a wider range of current control standard devi-

ations around agreement between the historical and current controls. The F-distribution

used to calculate the weight is independent of the sample means. The maximum weight

is attained at complete agreement in the historical and current sample variances since in

this example the sample sizes in the historical data and the current control group are the
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same. When the sample sizes differ, the ratio of the variances follows an F-distribution

with unequal degrees of freedom. If bounds of the form (δφl, 1/δφl) are then used for the

equivalence bounds, the maximum weight will not occur at complete agreement in the

sample variances. Figure 3.13 shows the equivalence weight for the variance component

when there are 100 historical control patients and 500 patients in the current trial control

group. The maximum weight occurs when the current control sample standard deviation

is slightly above the historical standard deviation of 45. Where the maximum occurs

varies depending on the equivalence bounds chosen. However, the example used in Figure

3.13 illustrated the equivalence weights for the variance component for a large difference

in sample size between the current and historical controls and there is little difference in

the maximum equivalence weight across all current control standard deviations and the

equivalence weight obtained at complete agreement in the historical and current control

sample standard deviations.

Figure 3.13: Variance equivalence weights for different current control standard devi-
ations. Example, historical data mean 65, historical data standard deviation 45, 100
historical controls and 500 current controls. Equivalence bounds on the ratio of variances
of (0.5,1/0.5), (0.6,1/0.6), (0.7,1/0.7) and (0.8,1/0.8). The vertical dashed line represents
complete agreement between the current and historical control standard deviations.
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Figure 3.14 shows the contour plots for the equivalence weight from the difference in

means component. The Welsch approximation to the Behrens-Fisher distribution is used.

The Welsch approximation contains the sample variances of the historical and current

control data, as shown in Equation 3.14. The variance of the difference in means from the

Welsch approximation is a weighted average of the historical and current control sample
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variances. From Figure 3.14 we can see that when the estimated current control standard

deviation is smaller than the estimated historical standard deviation and the estimated

current control and historical sample means are in complete agreement, a higher weight is

given to the historical data compared to when the estimated current control standard de-

viation is larger than the estimated historical standard deviation and the estimated means

are still in complete agreement. This is because the weighted average of the sample vari-

ances gives a smaller variance around the difference in means and a larger proportion of

the distribution lies within the equivalence bounds.

Figure 3.14: Mean equivalence weights for different observed current control means and
standard deviations and equivalence bounds on the mean difference of ±6,±8,±10 and
±11. Example, historical data mean 65, historical data standard deviation 45, 100 his-
torical controls and 100 current controls. The horizontal dashed lines represent complete
agreement between the current and historical control standard deviations and the verti-
cal dashed lines represent complete agreement between the historical and current control
means.
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The overall equivalence weight is obtained from multiplying the equivalence weight
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based on the ratio of the variances and the equivalence weight based on the difference

in means. However, the overall equivalence weight does not give maximum weight to

the historical data when the sample means and variances in the historical and current

control data completely agree, even when the sample sizes in the historical data and

the current control group are equal. The overall equivalence weight is not maximised

at complete agreement because the equivalence weight component for the difference in

means is dependent on the estimated sample variances in the current control and histor-

ical data. The maximum weight for the equivalence in means does not occur when the

current and historical variances are in complete agreement, even though for the individual

mean component weight, the maximum weight is at complete agreement in the means and

for the individual variance component weight the maximum weight is given at complete

agreement in the variances. The variance component of the joint equivalence weight does

not decrease quickly enough to offset the higher weight given for the mean component

at complete agreement when the estimated current control standard deviation is smaller

than the estimated historical standard deviation. This is illustrated in Figure 3.15 where

the equivalence bounds on the mean difference are assumed to be ±8 and the equivalence

bounds on the ratio of the variances are assumed to be (0.5,2). The contour of maximum

weight lies on complete agreement in the estimated means but where the estimated cur-

rent control standard deviation is below the observed historical standard deviation.

The value of the observed current control standard deviation that gives the maximum

equivalence weight for the mean component of the joint equivalence weight varies. When

the current and historical control means are estimated to be similar, the maximum equiv-

alence weight for the difference in means component occurs at the lowest current control

standard deviation explored. For large differences in means between the current and

historical data, the maximum equivalence weight for the difference in means component

occurs at the largest standard deviation explored. This is intuitive since the variance of

the posterior distribution for the difference in means between the historical and current

data is given by, σ̂2
c

nc
+

σ̂2
h

nh
. When the difference in the historical and current control sample

means is large and the current control variance is small, less of the posterior distribution

for the difference in the historical and current control means will lie around zero and a

lower weight is obtained. For a difference distribution where the current control variance

is large, some of the distribution is likely to lie within the equivalence bounds and a larger

weight is obtained. This is illustrated in Figure 3.16 for mean equivalence bounds of

±8. Therefore, since the population variances are unknown, the difference in the sample

variances between the historical and current control data needs to be incorporated into

the mean component of the joint equivalence weight.

Mathematically, obtaining an equivalence weight that is larger at complete agreement

in sample means but not in variances compared to when there is complete agreement in
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Figure 3.15: Contour plot of the joint equivalence weight with mean equivalence bounds of
±8 and variance equivalence bounds of (0.5,2) for different observed current control means
and standard deviations. Example, historical data mean 65, historical data standard de-
viation 45, 100 historical controls and 100 current controls. The horizontal dashed line
represents complete agreement between the current and historical control standard devi-
ations and the vertical dashed line represents complete agreement between the historical
and current control means.
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both means and variances between the historical and current controls is correct. However,

ideally we want a weight that is maximised when both the sample mean and variance es-

timates in the historical and current control completely agree. This problem occurs since

the sample standard deviation estimates are used in calculating the mean weight com-

ponent of the joint equivalence weight. We therefore obtain a different weight for each

observed current control mean and standard deviation combination. However, we do not

know the true variance ratio between the historical and current controls.

Bauer and Bauer observed a similar problem in the frequentist framework when test-

ing the joint equivalence of mean and variances, in their paper [65] they consider using

a corrected t-statistic which replaces the unknown true variance in the t-statistic with

the maximum or minimum variance equivalence bound depending on the observed ratio

of variances, as a way to get a conservative estimate. Bauer and Bauer link the choice

of mean and variance equivalence bounds based on the power of the tests of both the

means and variances. Further, Bauer and Bauer discuss an alternative to the corrected

t-statistic, originally proposed by Barnard [66] which calculated the p-value of the test

statistic by averaging the p-values of the test statistics over the confidence distribution of
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Figure 3.16: Current control standard deviation that gives the maximum equivalence
probability weight for the mean component for different observed current control means
over the range of current control standard deviations explored - Example, historical data
mean 65, historical data standard deviation 45, 100 historical controls and 100 current
controls.
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the true ratio of the variances, given the observed ratio of the sample variances.

A similar approach is used here. The true ratio of variances is unknown. However,

in choosing the equivalence bounds for the ratio of the variances, we have specified an

acceptable range of difference between the historical and current control variances. The

mean equivalence weight component of the joint equivalence weight can then be calculated

by averaging the weights obtained for each combination of sample mean and variance over

the range of current control standard deviations that lie within the chosen equivalence

bounds of the ratio of the variances. This gives a single weight for the mean component

of the joint equivalence weight. The variance component of the equivalence weight is

calculated using the CDF of the F-distribution as before. The corrected equivalence

probability weight for the mean component is given by,
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Pr(δ∆l < ∆ < δ∆u | x̄h, x̄c, σ̂2
h, σ̂

2
c , nh, nc) =

σ̂2
h/δφl∫

σ̂2
h/δφu

Pr

tv ≤
δ∆u− | x̄c − x̄h |(

σ̂2
c

nc
+
σ̂2
h

nh

) 1
2

− Pr

tv ≤
δ∆l− | x̄c − x̄h |(

σ̂2
c

nc
+
σ̂2
h

nh

) 1
2

 dσ̂2
c

σ̂2
h/δφl − σ̂2

h/δφu
,

(3.15)

where,

v =

(
σ̂2
c

nc
+
σ̂2
h

nh

)2

(σ̂2
c/nc)

2

nc − 1
+

(σ̂2
h/nh)

2

nh − 1

.

If the population variances in the historical and current controls are known, there

would not be a problem of obtaining the maximum weight when the historical and cur-

rent control estimated sample means and variances do not completely agree. When the

population variances are known, if the ratio of the variances lay outside the equivalence

range, the variance component of the joint equivalence weight would be zero and within

the equivalence range, the joint equivalence weight would be one. Assuming the variances

are known, there would only be a single weight for the difference in means component

of the joint weight, which would always be maximised at complete agreement in the his-

torical and current control sample means. The joint equivalence weight obtained from

multiplying the variance equivalence weight and the mean equivalence weight averaged

over the range of observed current control standard deviations that lie within the specified

variance equivalence bounds is denoted the corrected joint equivalence probability weight.

Figures 3.17, 3.18 and 3.19 illustrate the corrected joint equivalence probability weights

obtained for different choices of equivalence bounds on the difference in means and ratio

of variances. The mean equivalence bounds shown are ±6, ±8 and ±10 and the variance

equivalence bounds are (0.8, 1/0.8), (0.7, 1/0.7), (0.6, 1/0.6) and (0.5,1/0.5).

For the example used here, the sample sizes are the same in the current control and

the historical data, therefore the maximum weight is obtained at complete agreement in

the sample means and variances. When the equivalence bounds on the difference in means

and the ratio of the variances are small (mean equiv ±6, Var equiv (0.8,1/0.8), Figure

3.17) a low equivalence weight of 0.48 is obtained at complete agreement in the sample
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Figure 3.17: Contour plots of the corrected joint equivalence probability weights for differ-
ent observed current control means and standard deviations. Equivalence bounds on the
difference in means of ±6 and varying equivalence bounds on the ratio of the variances.
Example, historical data mean 65, historical data standard deviation 45, 100 histori-
cal controls and 100 current controls. The horizontal dashed lines represent complete
agreement between the current and historical control standard deviations and the verti-
cal dashed lines represent complete agreement between the historical and current control
means.
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means and variances (x̄h = x̄c = 65, σ̂2
h = σ̂2

c = 452). Assuming larger equivalence bounds

(mean equiv ±10, Var equiv (0.5,2), Figure 3.19), the equivalence weight at complete

agreement is 0.86. Larger equivalence bounds on the mean and variance take longer to

completely discount the historical data as the difference in the sample means and vari-

ances increases. The rate of discounting is also dependent on the historical and current

control data sample sizes. For larger sample sizes the weight will decrease more quickly as

the differences between the historical and current control data increases. This is because

the posterior distribution for the difference in means and the ratio of the variances will

be more peaked for larger sample sizes.

The factors that affect the equivalence weight are: the difference in the sample means

and variances in the current control and historical data; the equivalence bounds chosen;

the historical data sample size; and the current control sample size. The choice of equiv-

alence bounds is discussed further in Section 3.3.4.
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Figure 3.18: Contour plots of the corrected joint equivalence probability weights for differ-
ent observed current control means and standard deviations. Equivalence bounds on the
difference in means of ±8 and varying equivalence bounds on the ratio of the variances.
Example, historical data mean 65, historical data standard deviation 45, 100 histori-
cal controls and 100 current controls. The horizontal dashed lines represent complete
agreement between the current and historical control standard deviations and the verti-
cal dashed lines represent complete agreement between the historical and current control
means.
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As previously noted, when the sample sizes in the historical data and the current

control arm differ. Choosing equivalence bounds of the form (δφl, 1/δφl) results in a joint

equivalence weight that is not maximised at complete agreement in the current control

and historical sample estimates of the mean and variance. However, for the example used

above, assuming the current control sample size is 500, the maximum possible equivalence

weight is very similar to the equivalence weight calculated at complete agreement.

Only the corrected equivalence probability weight is considered for the remainder of

this chapter and is denoted by the equivalence probability weight. The probability weight

and equivalence probability weight are used as a fixed weight to discount the historical

data, following the same justification as given in Section 2.3.3. For one historical study,

the EHSS for the probability and equivalence weight approaches is then wnh, the same

as for the power prior approach.
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Figure 3.19: Contour plots of the corrected joint equivalence probability weights for differ-
ent observed current control means and standard deviations. Equivalence bounds on the
difference in means of ±10 and varying equivalence bounds on the ratio of the variances.
Example, historical data mean 65, historical data standard deviation 45, 100 histori-
cal controls and 100 current controls. The horizontal dashed lines represent complete
agreement between the current and historical control standard deviations and the verti-
cal dashed lines represent complete agreement between the historical and current control
means.
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3.3.4 Choosing the equivalence bounds

The equivalence bounds chosen need to represent a clinically relevant equivalence distance,

where it is assumed that within these bounds the historical and current controls are com-

patible. An expert is likely to have knowledge or an opinion about acceptable equivalence

bounds for the difference in means between the historical and current controls, and in the

absence of knowledge about acceptable equivalence bounds for the differences in means,

the equivalence bounds can be chosen based on statistical properties of the study design.

However, choosing an equivalence bound for the ratio of the variances of the historical and

current trial control data is less intuitive, there may be less information to inform these

bounds or the expert may have less knowledge on this parameter. Allowing equivalence

bounds on both the differences in means and the ratio of the variances allows flexibility

in the design. The study designer may be more willing to accept a larger difference in the

variances than in the means of the historical and current control data and the equivalence

approach can incorporate this into the design. A difference in variances may occur due

to slightly different inclusion criteria for the current and historical studies for example,
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however the average response to treatment may be expected to be similar in the control

groups. The final analysis of the current trial will focus only on the difference in means

between the combined weighted historical data and current control data and the current

trial treatment group.

Further considerations for the choice of equivalence bounds are:

• The equivalence bound for the mean difference between the historical and current

controls δ∆u should be less than the treatment effect to be detected in the current

trial.

• Narrow equivalence bounds will require large amounts of data to achieve a high

weight even when the historical and current controls are in agreement.

• Choosing symmetric equivalence bounds on the difference in means for the current

and historical data and averaging the equivalence weight obtained over the chosen

equivalence range for the ratio of the variances will give maximum weight to the

historical data when the sample means in the current and historical data are in

complete agreement.

• Choosing bounds of the form (δφl, 1/δφl) for the ratio of the variances when the

historical and current control sample sizes differ will give a maximum equivalence

weight when there is a slight difference in the historical and current control sample

variances. However, in all examples considered, the value of the maximum equiva-

lence weight across all ratios of the sample variances and the equivalence weight at

complete agreement in variances have been very similar and in practice this should

make little difference.

• The equivalence bounds can be chosen to govern how quickly the discounting of the

historical data occurs as the difference between the historical and current controls

increases.

• It is possible to fix the equivalence bounds on the ratio of the variances and choose

the equivalence bounds on the mean difference that control the maximum possible

type I error rate for the final analysis of treatment to control.

• Where the historical data sample size is much larger than the current trial control

group, the equivalence bounds may be chosen so that the effective sample size of

the historical data is not greater than the current control sample size at complete

agreement.

Finally, to aid the choice of sensible equivalence bounds for both the difference in means

and the ratio of the variances, the marginal posterior distributions or an approximation of
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the marginal posterior distributions of these parameters are plotted. For the example here,

we plot the posterior distributions under the assumption of agreement in the historical

and current control sample means and agreement in the historical and current control

sample variances. As an approximation we have,

µc − µh ∼ N

(
x̄c − x̄h,

σ̂2
c

nc
+
σ̂2
h

nh

)
,

σ2
c

σ2
h

σ̂2
h

σ̂2
c

∼ F(nh − 1, nc − 1),

(3.16)

where x̄c − x̄h = 0, σ̂c = σ̂h = 45, nc = 100 and nh = 100.

Figure 3.20: Guidance posterior distributions, µc− µh and σ2
c/σ

2
h follow the distributions

given in Equation 3.16, where x̄c − x̄h = 0, σ̂c = σ̂h = 45, nc = 100 and nh = 100.
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From Figure 3.20 the equivalence bounds explored that cover a range of different

equivalences between the current and historical control data are: ±6; ±8; and ±10 for

the mean difference and equivalence bounds of: (0.8, 1/0.8); (0.7, 1/0.7); (0.6, 1/0.6); and

(0.5, 1/0.5) for the ratio of the variances.
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3.4 Design

3.4.1 Additional information design

The primary analysis of interest is a hypothesis test of H0 : µc = µt against H1 : µc < µt

where µc is the true mean in the current control arm and µt is the true mean for the

treatment arm. We assume that the control and treatment data are distributed normally

with unknown population variances, which are not necessarily equal.

The sample size of the current trial is fixed to detect a given treatment difference at

a specified power and type I error rate. At the end of the current study, the historical

and current control data are compared, the weight and effective sample size for the his-

torical data are calculated. The control sample size is then increased from nc to nc +wnh

(nc+EHSS) and the combination of the current control data and the weighted historical

data are used in the final analysis, comparing treatment to control.

The aim of this design is to increase the power of the current study by increasing the

sample size of the control arm when there is agreement between the historical and current

control data.

3.4.2 Adaptive design with a single interim analysis

The primary analysis of interest is a hypothesis test of H0 : µc = µt against H1 : µc < µt.

A two-stage adaptive design, originally proposed by Schmidli et al. [23] and Hobbs et al.

[20] is considered here. The allocation ratio is adapted after the first stage:

Stage one: Randomise nt1 to treatment and nc1 to control;

Interim analysis: Calculate the weight at the interim analysis, w1, using the first stage

controls and the historical data

Stage two: Randomise (nt − nt1) to treatment and max(nc − nc1 −EHSS ; nmin) to

control.

Final analysis: Re-calculate the weight, w2 using all current control data and the his-

torical data to determine the weight to be given to the historical data in the final analysis.

Where EHSS = w1×nh. nt and nc are the desired sample sizes at the end of the trial for

the treatment and control group, respectively. nt and nc are chosen as the sample sizes

required to detect a given treatment difference at a specified power and type I error rate

in a standard design not incorporating historical data. nmin is a pre-specified minimum
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number of patients to be randomised in stage two.

The adaptive design replaces current controls yet to be randomised with historical

controls when the historical and current controls are in agreement. The aim of the adaptive

design is to reduce the duration of the current study and the number of control patients

to be randomised in the current study when the historical and current controls agree.

3.5 Analysis

3.5.1 Analysis approach and operating characteristics for the

additional information design using the power prior, prob-

ability and equivalence probability weight

The primary analysis of interest is a hypothesis test of H0 : µc = µt against H1 : µc < µt.

A reference prior is assumed for the joint prior on the control mean and variance before

the historical data are observed π(µc, σ
2
c ) ∝ 1/σ2

c . A reference prior is also assumed for the

joint prior on the mean and variance in the current trial treatment group, π(µt, σ
2
t ) ∝ 1/σ2

t .

A weight is calculated that assesses the agreement between the current and histori-

cal control data using: the modified power prior and taking a summary measure of the

marginal posterior distribution of α0; the probability weight approach; or the equivalence

probability weight approach. The weight assesses the difference in both the means and

variances of the current and historical control data. The power prior approach with a

fixed power is then used for the analysis [14, 15]. This approach combines the weighted

historical data with the current trial control data to compare to the current treatment

group in the final analysis.

The joint prior for µc and σ2
c is formed from the initial reference prior, updated with

the likelihood of the historical data. The posterior distribution from the reference prior

updated with the historical data forms the prior for the current control data and is given

by,

π(µc, σ
2
c | x̄h, σ̂2

h, nh, w) ∝ σ−2
c

(
(σ2

c )
−nh/2exp

{
− nh

2σ2
c

[σ̂2
h + (µc − x̄h)2]

})w
,

where w is either a summary measure of the marginal posterior distribution of the

power prior, the probability weight or the equivalence probability weight, and is therefore

a fixed value and σ̂2
h = 1

nh

nh∑
i=1

(xhi − x̄h)2 and x̄h = 1
nh

nh∑
i=1

xhi.
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Since there is no prior information on the treatment parameters in the current trial,

the prior for the current trial treatment group is the reference prior, π(µt, σ
2
t ) ∝ (1/σ2

t ).

The likelihood distributions for the current trial data are,

p(xc | µc, σ2
c , nc) =

1

(2π)nc/2
(σ2

c )
−nc/2exp

{
− nc

2σ2
c

[σ̂2
c + (µc − x̄c)2]

}
,

p(xt | µt, σ2
t , nt) =

1

(2π)nt/2
(σ2

t )
−nt/2exp

{
− nt

2σ2
t

[σ̂2
t + (µt − x̄t)2]

}
,

for the control and treatment group respectively, where xc and xt denote the vectors of

outcome data in the current control and treatment group, respectively, and,

x̄c = 1
nc

nc∑
i=1

xci, x̄t = 1
nt

nt∑
i=1

xti, σ̂
2
t = 1

nt

nt∑
i=1

(xti − x̄t)2 and σ̂2
c = 1

nc

nc∑
i=1

(xci − x̄c)2. Here,

the sample variance estimates are the maximum likelihood estimates, to be consistent

with the sample estimates used in the modified power prior derivation [15].

The marginal posterior distribution of the treatment mean in the current trial, given

the reference prior is then given by [61],

π(µt | x̄t, σ̂2
t , nt) = tnt−1(µt | x̄t, σ̂2

t /(nt − 1)). (3.17)

The marginal posterior distribution for the control mean is then derived as follows.

The joint posterior distribution of the control mean and variance (the initial reference

prior, updated with the historical likelihood raised to a fixed power, updated again with

the likelihood of the current control data) is given by,

π(µc, σ
2
c | x̄h, σ̂2

h, nh, x̄c, σ̂
2
c , nc, w) ∝

(σ2
c )

(
−
wnh

2
−
nc
2
−1

)
exp

{
−wnh

2σ2
c

[σ̂2
h + (µ− x̄h)2]− nc

2σ2
c

[σ̂2
c + (µ− x̄c)2]

}
.

Integrating out σ2
c to obtain the marginal posterior distribution of µc, let φ = σ2

c ,

β = wnh
2

+ nc
2

,

and A = wnh[σ̂
2
h + (µc − x̄h)2] + nc[σ̂

2
c + (µc − x̄c)2], x = A

2φ
, dφ
dx

= −A
2
x−2.

Then,
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π(µc | x̄h, σ̂2
h, nh, x̄c, σ̂

2
c , nc, w) =

∫
φ−(β+1)e−A/2φdφ

= −
(
A

2

)∫ (
A

2x

)−(β+1)

e−xx−2dx

∝ A−β−1+1

∫
xβ+1−2e−xdx ∝ A−β.

A−β = (wnh[σ̂
2
h + (µ− x̄h)2] + nc[σ̂

2
c + (µ− x̄c)2])

−
(wnh

2
+
nc
2

)
,

which can be re-arranged to give,

π(µc | x̄h, σ̂2
h, nh, x̄c, σ̂

2
c , nc, w) ∝1 +

1

wnh + nc − 1


(
µc −

wnhx̄h + ncx̄c
wnh + nc

)2

wnhnc(x̄h − x̄c)2 + (wnhσ̂
2
h + ncσ̂

2
c )(wnh + nc)

(wnh + nc)2(wnh + nc − 1)



−
(wnh

2
+
nc
2

)

,

which is a t-distribution of the form,

π(µc | x̄h, σ̂2
h, nh, x̄c, σ̂

2
c , nc, w) ∝

(
1 +

1

v

(
µc − x̄0

σ̂0

)2
)−v + 1

2


, (3.18)

where,

v = wnh + nc − 1, x̄0 =
wnhx̄h + ncx̄c
wnh + nc

, and,

σ̂2
0 =

wnhnc(x̄h − x̄c)2 + (wnhσ̂
2
h + ncσ̂

2
c )(wnh + nc)

(wnh + nc)2(wnh + nc − 1)
.

This is the same distribution as is stated in [15] for the conditional distribution of µc

given α0 using the modified power prior approach. The above derivation of the marginal

distribution of µc is using the standard power prior approach, assuming the power w is a

fixed value.

The final analysis compares the difference in means of the current treatment group to

the combined control group. The posterior distribution of the difference between µt and
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µc can be calculated using: (1) simulation, (2) generating data from each of the marginal

distributions defined in Equations 3.17 and 3.18 and calculating the difference, (3) nu-

merical integration or, (4) using an approximation to the distribution of the difference.

Assuming the variances are unknown in the control and treatment groups and that

the variances are not necessarily equal, the distribution of the difference in means can be

approximated using Welsch’s approximation, given by,

µt − µc ≈ t

x̄t − x̄0,

(
σ̂2
t

nt
+

σ̂2
0

wnh + nc

) 1
2

,

(
σ̂2
t

nt
+

σ̂2
0

wnh + nc

)2

(σ̂2
t /nt)

2

nt − 1
+

(σ̂2
0/(wnh + nc))

2

wnh + nc − 1

 . (3.19)

Trial success is declared when Pr(µt − µc > 0) > 0.975.

To determine the operating characteristics of the proposed historical data designs,

data are generated from normal distributions for the control and treatment arm. nc and

nt observations are generated for the current control arm and treatment arm, respectively,

for each simulation. For the simulations considered here, the variance is assumed to be

the same in the control and treatment arm, σ2
c = σ2

t = σ2.

Under the alternative hypothesis, the data are generated from,

Xci ∼ N(µc, σ
2), Xti ∼ N(µt, σ

2), (3.20)

and under the null hypothesis, the data are generated from,

Xci ∼ N(µc, σ
2), Xti ∼ N(µc, σ

2). (3.21)

The power and type I error rate are then calculated using,

(
nsims∑
i=1

1(Pr(µt − µc > 0) > 0.975 | x̄h, σ̂2
h, nh, x̄c, σ̂

2
c , nc, x̄t, σ̂

2
t , nt, w)

)
/nsims, (3.22)

under the distributions given in Equation 3.20 for the power and 3.21 for the type I error

rate. Where nsims is the number of simulations performed.
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The expected EHSS for a given true underlying control mean and variance can be cal-

culated using,

nhE(w | µc, σ2
c , nc, x̄h, σ̂

2
h, nh) = nh

nsims∑
i=1

(w | µc, σ2
c , nc, x̄h, σ̂

2
h, nh)/nsims. (3.23)

The expected sample size in the control group for a given true control mean and vari-

ance is then nc + nhE(w | µc, σ2
c , nc, x̄h, σ̂

2
h, nh),

The mean squared error for µc is given by,

E(x̄0 − µc)2 =

nsims∑
i=1

((
wnhx̄h + ncx̄c
wnh + nc

)
− µc

)2

/nsims. (3.24)

In the formulae used for the analysis we have assumed that the control and treatment

variances may differ. Assuming that the variances are equal and using a pooled variance

for the t-test would assume that the combined historical and current control variance is

equal to the treatment variance, which may not be a realistic assumption.

3.5.2 Operating characteristics for a standard trial design with

no historical data

As a comparison for the methods proposed which incorporate historical data, the op-

erating characteristics are calculated for a trial design where the data are assumed to

be normally distributed and the means are compared between a treatment and control

group. The standard deviations are assumed to be unknown but equal in each of the

treatment groups and the sample sizes are assumed to be equal in each treatment group.

No historical data are incorporated into the analysis.

For this design, the test statistic assumed is,

t =
(x̄t − x̄c)√
σ̂2
(

1
nt

+ 1
nc

) , (3.25)

where σ̂ is the pooled estimate of the assumed common standard deviation in the treat-

ment and control group. The power for the one-sided test is then given by,
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1− β = Tnt+nc−2

µt − µc√
2σ2

n

− t−1
(nt+nc−2),0.975

 , (3.26)

where t−1
(nt+nc−2),0.975 is the 97.5th quantile of the t-distribution with nt + nc − 2 degrees

of freedom. The type I error rate, by design, is 2.5%.

Under a standard trial design, not incorporating any historical data, the power and

type I error rate are distributed binomially with probabilities α and 1 − β. Note that

the power varies depending on the assumed true standard deviation, since here a range

of true standard deviations in the current trial are considered. The confidence interval

around the power can be used as a guide as to how many simulations are required.

3.5.3 Additional information design – frequentist operating char-

acteristics example using the probability and equivalence

probability weight

For the example considered here, nc = nt = 200 and depending on the weight given to the

historical data, there are up to a further 100 control patients from the historical data. The

treatment effect, which is the difference in the mean in the treatment group compared to

the control group, is assumed to be 12. The historical control mean is assumed to be 65

and the standard deviation, 45. The true underlying mean and variance in the current

control data is varied. For the simulations of the power, the treatment mean is always

assumed to be 12 higher than the current control mean and the standard deviation in the

treatment group is assumed to be the same as the current control group. For simulations

of the type I error rate, the treatment mean and standard deviation are assumed to be the

same as the current control group. In the simulations, the range of the mean in the current

control is varied from 10 to 120 in steps of 5 and the range of the standard deviation in

the current control group is varied from 20 to 70 in steps of 5, only the relevant ranges

where the historical data affects the design characteristics are shown in the figures. We

simulated 100000 trials per scenario. The standard design, assuming a control mean of

65 and standard deviation of 45, not incorporating any historical data, has 76% power

and one-sided type I error rate of 2.5% when there are 200 patients in each treatment

group. Approximately one-half the width of a 95% confidence interval for the estimated

power is then 0.0026 and for the estimated type I error rate is 0.00098. This will vary

depending on the assumed standard deviation in the current trial and the amount of

historical data incorporated into the final analysis for each of the approaches. However,

100000 simulations should give a reasonable approximation to all designs explored.
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Probability weight

Figure 3.21 illustrates the operating characteristics for the probability weight approach

for the design where the historical data are incorporated as additional information.

Figure 3.21: Comparison of the power, type I error rate, mean squared error and expected
control sample size across different true means and standard deviations in the current trial
control arm for the additional information design using the probability weight approach
and a standard design incorporating no historical data. Example, historical data x̄h =
65, σ̂h = 45, nh = 100, nc = nt = 200 and treatment effect µt = µc + 12.

Dashed line = Standard design,Solid line = Historical data design
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The probability weight approach quickly discounts the historical data when there is

disagreement in either the means or the variances in the current controls and historical

data. When the true underlying mean and variance in the current control data is in

complete agreement with the historical data, on average the control arm sample size is

increased by approximately 44.5 patients. This is the expected effective historical sample

size at complete agreement. There is only a small gain in power, from 0.758 for the

standard design to 0.800 for the probability weight design incorporating historical data at

complete agreement. The final analysis is only a comparison of the mean in the treatment
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to the mean in the control group, the variances are not of interest. Therefore, for the

comparison of means the maximum inflation in the type I error rate is most likely to occur

at complete agreement in the variances between the current and historical control data,

where a higher weight is given to the historical data. For the range of true underlying

current control means explored here, the maximum type I error rate is 0.0358 and occurs

when the true underlying current control mean is 75. There is only a small inflation in the

type I error rate when there is disagreement between the historical and current control

data since the probability weight discounts quickly. A disadvantage of the probability

weight approach is that there is no flexibility to control the rate at which the historical

data are discounted as the difference in either of the means or variances between the

historical and current control data increases. There is also no flexibility in how much

historical data are incorporated into the final analysis at complete agreement between the

historical and current control data using the probability weight approach.

Equivalence probability weight

Figure 3.22 shows the design characteristics of the equivalence weight approach with

equivalence bounds of (-10,10) on the difference in means and (0.6,1/0.6) on the ratio

of the variances. The mean treatment effect to detect between the treatment arm and

control is 12, therefore the equivalence bounds of ±10 on the mean difference between the

current and historical controls is quite large. Here, the equivalence bounds on the vari-

ance were also chosen to be quite large. This is reflected in the amount of historical data

borrowed when there is complete agreement between the historical and current controls.

The expected effective historical sample size at complete agreement in the historical and

current controls is 86.69 and the power is 0.836. The maximum type I error rate across

the true current control means explored is 0.0722. The increase of power at complete

agreement therefore increases the risk of a higher type I error rate if there is disagreement

in the current and historical controls. The equivalence approach with these equivalence

bounds also takes longer to completely discount the historical data and revert back to

the standard design operating characteristics as the difference between the historical and

current controls increases. When the variances in the historical and current data are

substantially different (σc = 35), only a small amount of historical data are borrowed,

even if the means are in complete agreement. Narrower equivalence bounds borrow less

historical data both when the historical and current controls agree and disagree. For

equivalence bounds of (-8,8) on the difference in means and (0.7,1/0.7) on the ratio of the

variances, the maximum type I error rate across the current control means explored was

0.0595. However, the power and EHSS at complete agreement are reduced compared to

the design with larger equivalence bounds. The power at complete agreement was 0.826

and the EHSS 72.6. The choice of bounds allows control over the maximum inflation in

the type I error rate. This is explored further in Section 3.5.6.
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Figure 3.22: Comparison of the power, type I error rate, mean squared error and expected
control sample size across different true means and standard deviations in the current
trial control arm for the additional information design using the corrected equivalence
probability weight approach with mean equivalence bounds ±10 and variance equivalence
bounds (0.6,1/0.6) and a standard design incorporating no historical data. Example,
historical data x̄h = 65, σ̂h = 45, nh = 100, nc = nt = 200 and treatment effect µt =
µc + 12.

Dashed line = Standard design,Solid line = Historical data design
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Expert opinion on an acceptable range of equivalence for the agreement in variances

between the current and historical control data is unlikely. It is therefore an option to

combine the probability weight and equivalence weight approaches. The overall weight

used to discount the historical data is the product of a weight comparing the means and

a weight comparing the variances. The probability weight could be used for the variance

component and an equivalence weight for the means component. However, the probability

weight discounts quickly. If a difference in variances between the historical and current

controls is thought to not be a problem, then choosing wide equivalence bounds for the

ratio of the variances and focusing on the mean difference may be the best approach.
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The design characteristics of the additional information design using the equiva-

lence weight approach with equivalence bounds of (-8,8) on the difference in means and

(0.7,1/0.7) on the ratio of the variances are given in Appendix F.

3.5.4 Analysis approach and operating characteristics for the

adaptive design using the power prior, probability and

equivalence probability weight

For the adaptive design considered here. The analysis approach described in Section

3.5.1 is used to calculate Pr(µt − µc > 0). The number of patients randomised to the

control group now varies for each simulated trial depending on the weight calculated

at the interim analysis, w1. For each simulated trial, a fixed number of patients are

randomised to control in the first stage of the trial, nc1. The weight, w1 is then calcu-

lated, where w1 assesses the agreement between the historical and current controls using

the nc1 control patients randomised in stage one and the historical controls. A further

Rc = max(nc−nc1−w1nh;nmin) are then randomised to control in stage two. Where nc

is the total number of control patients required. The weight, w2 is then re-calculated at

the end of the study using the historical data and all of the control patients from stages

one and two, denoted by nctotal = nc1 +Rc.

To determine the operating characteristics of the adaptive design. Data are generated

from normal distributions for the first stage controls, second stage controls and the treat-

ment group using the distributions given in Equations 3.20 and 3.21. nt observations are

generated for the treatment group, nc1 observations for the first stage control group and

the second stage number of observations generated depends on the weight w1 calculated

at the interim analysis (Rc denotes the second stage number of observations generated for

a given simulation). The summary statistics in the control group at the final analysis are

calculated by pooling the first and second stage controls. The power, type I error rate

and mean squared error of the adaptive design are calculated using Equations 3.22 and

3.24 with,

σ̂2
c = 1

nctotal

nctotal∑
i=1

(xci − x̄c)2, x̄c = 1
nctotal

nctotal∑
i=1

xci, nc = nctotal and w = w2 in each simu-

lation.

The expected current control sample size for a true underling µc and σ2
c is given by,

ECCSS = nc1 +

nsims∑
i=1

(Rc | µc, σ2
c , nc, x̄h, σ̂

2
h, nh, w1)/nsims.

Since only the control data are used at the interim analysis, the treatment effect can
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remain blinded until the end of the trial.

3.5.5 Adaptive design – frequentist operating characteristics ex-

ample using the probability and equivalence probability

weight

We explore the operating characteristics of the adaptive design proposed in Section 3.4.2

for a range of true control means and variances in the current study. The treatment effect

is assumed to be a difference of 12 in the treatment mean compared to control. There are

100 historical control patients available with a mean of 65 and a standard deviation of 45.

The interim analysis is conducted after 100 patients have been randomised to the current

control arm (nc1 = 100) and the minimum number of control patients to be randomised

in stage two of the trial is fixed to be 20 (nmin = 20). We simulated 100000 trials per

scenario. The design characteristics of the adaptive design incorporating historical data

are compared to the standard design not incorporating any historical data described in

Section 3.5.2.

Probability weight

Figure 3.23 shows the operating characteristics of the adaptive design using the prob-

ability weight approach. Compared to the additional information design, the power at

complete agreement in the historical data and the current control means and variances is

slightly lower for the adaptive design. The maximum type I error rate across the current

control means explored is slightly higher at 0.0419. This is due to the historical controls

replacing current controls yet to be randomised. At complete agreement between the

historical and current controls there is a small gain in power, a reduction in type I error

rate and a saving of on average 36 patients in the control group compared to a standard

trial design not incorporating any historical data.

Figure 3.24 shows the expected probability weight calculated at the interim analy-

sis, where 100 current control patients are available, and the expected probability weight

calculated at the final analysis, using all of the current control data. The probability

weight is estimated with a higher accuracy at the final analysis, since there are more cur-

rent control patients available to compare to the historical data. At complete agreement

(µc = x̄h and σ2
c = σ̂2

h) the probability weight is higher at the final analysis. When there

is disagreement in the means or the variances between the historical and current controls,

on average the probability weight typically decreases from the interim to the final anal-

ysis. As seen with the additional information design, the probability weight discounts

the historical data quickly for either a difference in the means or variances between the

historical and current controls.



150 Chapter 3 Historical data methods for normally distributed outcome data

Figure 3.23: Comparison of the power, type I error rate, mean squared error and expected
current control sample size across different true means and standard deviations in the
current trial control arm for the adaptive design using the probability weight approach
and a standard design incorporating no historical data. Example, historical data x̄h =
65, σ̂h = 45, nh = 100, nc = nt = 200, nc1 = 100, nmin = 20 and treatment effect
µt = µc + 12.

Dashed line = Standard design,Solid line = Historical data design
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Equivalence probability weight

Figure 3.25 shows the operating characteristics of the adaptive design using the equiva-

lence probability weight approach. As with the additional information design, since the

equivalence bounds chosen for the mean and the variance are quite large, at complete

agreement in the means and variances of the control and historical data, there is a slight

increase in power, a reduction in the type I error rate and a substantial saving in the

expected number of control patients required. The expected sample size in the current

control arm at complete agreement is 126. However, this comes at the cost of the maxi-

mum type I error rate across the current controls means explored being 0.0944. Choosing

narrower equivalence bounds would increase the expected current control sample size at

complete agreement but also reduce the maximum possible type I error rate. The op-

erating characteristics of the adaptive design using the equivalence probability weight
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Figure 3.24: Expected historical data probability weight at the interim analysis and at
the end of the study for the adaptive design. Example, historical data x̄h = 65, σ̂h =
45, nh = 100, nc = nt = 200, nc1 = 100, nmin = 20 and treatment effect µt = µc + 12. I
denotes the interim analysis and F denotes the final analysis.
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approach with equivalence bounds of (-8,8) on the difference in means and (0.7,1/0.7) on

the ratio of the variances are given in Appendix F.

Figure 3.26 illustrates the expected equivalence probability weights at the interim

analysis and final analysis for two different sets of equivalence bounds, (-10,10) on the

difference in means and (0.6,1/0.6) on the ratio of the variances and (-8,8) on the difference

in means and (0.7,1/0.7) on the ratio of the variances. Narrower equivalence bounds

borrow less at agreement and discount the historical data more quickly as differences

occur in either the means or the variances in the current and historical data. Depending

on the equivalence bounds chosen and the level of disagreement, the expected weight given

to the historical data can either increase or decrease from the interim to the final analysis.

3.5.6 Mean difference equivalence bounds that control the max-

imum type I error rate

The equivalence bounds chosen have a large effect on how much of the historical data

are borrowed and how quickly the historical data are discounted when there is disagree-

ment between the current and historical controls. The equivalence bounds are chosen

to represent a clinically acceptable deviation between the historical and current control

data in both the means and the variances. However, the effect of the chosen equivalence
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Figure 3.25: Comparison of the power, type I error rate, mean squared error and expected
current control sample size across different true means and standard deviations in the cur-
rent trial control arm for the adaptive design using the corrected equivalence probability
weight approach with mean equivalence bounds ±10 and variance equivalence bounds
(0.6,1/0.6) and a standard design incorporating no historical data. Example, historical
data x̄h = 65, σ̂h = 45, nh = 100, nc = nt = 200, nc1 = 100, nmin = 20 and treatment
effect µt = µc + 12.

Dashed line = Standard design,Solid line = Historical data design
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bounds on the operating characteristics of the current study are important. The final

analysis considered here compares the mean in the treatment group to the mean in the

control group. The type I error is defined as the probability of declaring the mean in the

treatment group to be greater than the control group when in fact there is no difference in

the means. The maximum type I error rate, by this definition is likely to occur where the

variances in the historical and current control group are in agreement or close to agree-

ment, since a larger weight is typically given to the historical data when the variances

agree than when they do not. Therefore, to find the maximum type I error rate, we only

search over the range of the true control means in the current trial needs to be searched

over for the case where the variances in the historical and current control data agree.
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Figure 3.26: Expected historical data corrected equivalence probability weight at the
interim analysis and at the end of the study for the adaptive design and two sets of
equivalence bounds. Example, historical data x̄h = 65, σ̂h = 45, nh = 100, nc = nt = 200,
nc1 = 100, nmin = 20 and treatment effect µt = µc + 12. I denotes the interim analysis
and F denotes the final analysis.
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Here, it is assumed that the comparison of the means in both the historical and current

controls and the control group to the treatment group are generally more important than

the comparison of the variances. The equivalence bounds for the ratio of the variances are

fixed and the equivalence bounds for the difference in means that control the maximum

type I error rate at the desired level are found. Since the maximum inflation in the type I

error rate always occurs when the current control data mean is larger than the historical

data mean, only a range of current control means need to be explored for each mean

equivalence bound to reduce the computation time.

Figure 3.27 illustrates the maximum type I error rate obtained across a range of

possible true control means in the current study for both the additional information

design and the adaptive design, for a range of mean equivalence bounds. The variance

equivalence bounds are fixed at (0.6,1/0.6). The adaptive design always has a higher

type I error rate than the additional information design, because in the adaptive design

historical controls replace current controls yet to be randomised when there is agreement

between the current and historical control data. Whereas, in the additional information

design, the sample size is increased when the historical and current controls agree. The
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Figure 3.27: Distribution of the maximum type I error rate across a range of equivalence
bounds for the mean for the additional information and adaptive design using the corrected
equivalence probability weight approach with fixed equivalence bounds of (0.6,1/0.6) on
the ratio of the variances
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mean equivalence bounds can be chosen to control the maximum possible type I error

rate at a desired level. The power at complete agreement between the historical and

current controls for different mean equivalence bounds and fixed equivalence bounds of

(0.6,1/0.6) on the ratio of the variances is illustrated in Appendix G for both the additional

information and adaptive design.

3.5.7 Additional information and adaptive design – frequentist

operating characteristics example using the power prior

Figures 3.28 and 3.29 show the operating characteristics for the additional information

and the adaptive design using the power prior approach with a Beta(0.3, 0.3) prior on the

power parameter. The mean of the marginal posterior distribution of the power is used as

a fixed weight. The operating characteristics for the other priors considered for the power

parameter: Beta(1,1) with the mean or the mode as a fixed weight and Beta(0.5,0.5) with

the mean as a fixed weight are given in the Appendices H and I.

The weights using the power prior approach are slow to discount the historical data

when there are differences between the historical and current controls, which results in a
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Figure 3.28: Comparison of the power, type I error rate, mean squared error and expected
control sample size across different true means and standard deviations in the current trial
control arm for the additional information design using the modified power prior with a
Beta(0.3, 0.3) prior on α0 taking the mean of the posterior distribution of α0 as fixed
weight and a standard design incorporating no historical data. Example, historical data
x̄h = 65, σ̂h = 45, nh = 100, nc = nt = 200 and treatment effect µt = µc + 12.

Dashed line = Standard design,Solid line = Historical data design
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large inflation in the type I error rate for both the additional information and the adaptive

design, this is with a strong Beta(0.3,0.3) prior on the power parameter.
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Figure 3.29: Comparison of the power, type I error rate, mean squared error and expected
current control sample size across different true means and standard deviations in the
current trial control arm for the adaptive design using the using the modified power prior
with a Beta(0.3, 0.3) prior on α0 taking the mean of the posterior distribution of α0 as
fixed weight and a standard design incorporating no historical data. Example, historical
data x̄h = 65, σ̂h = 45, nh = 100, nc = nt = 200, nc1 = 100, nmin = 20 and treatment
effect µt = µc + 12.

Dashed line = Standard design,Solid line = Historical data design
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3.6 Discussion

In this chapter we have extended the probability weight and the equivalence probability

weight approaches proposed for binary data in Chapter 2 to when the outcome data from

the trial are normally distributed. The main difference with normally distributed data is

that both differences in means and variances between the historical and current controls

are considered. The additional information design or the adaptive design can then be

utilised which allow the possibility of borrowing the historical data when it is in agree-

ment with the current trial control data. For normally distributed data, the probability

weight discounts the historical data quickly for small differences in either of the means

or the variances between the current and historical data. A design using the probability

weight therefore has a low risk of inflating the type I error rate, however, there is also only

a small gain in power for the additional information design and only a small reduction

in the number of controls required in the adaptive design. The equivalence probability

weight approach is flexible and allows control over how quickly the historical data are

discounted when there is disagreement between the historical and current controls. The

maximum inflation in the type I error rate can be controlled by the choice of equivalence

bounds on the mean difference when the equivalence bounds on the ratio of the variances

are fixed. As with the equivalence approach for binary outcome data, the aim of this

approach is to be intuitive and easy to discuss with clinicians.

For normally distributed outcome data, it was only possible to compare the probability

and equivalence weight approaches with the modified power prior weight approach. The

commensurate prior was not considered because of the limitations discussed in Chapter 2.

The robust mixture prior is easy to implement under the assumption that the variances

are known and equal in the historical and current control data. However this is not a

realistic assumption and when the variances are allowed to differ, formulating the robust

mixture prior is difficult and it is unclear how the effective sample size of the histori-

cal data would be determined. The modified power prior approach, where a summary

measure of the posterior distribution of the power is used as a fixed weight was easy to

implement. However, the disadvantages of the power prior approach that arise for binary

data, also apply for normally distributed data. The main disadvantage of the power prior

approach is that the choice of prior on the power parameter is not intuitive and careful

thought is required to choose a prior that gives the desired discounting of the historical

data.

The probability and equivalence approaches were chosen to give a high weight when

there is complete agreement between the historical and current controls. If there is a

substantial amount of historical data, it may be desirable to choose narrow equivalence

bounds to limit the amount of historical data borrowed.
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Chapter 4

Adding a treatment arm to an

ongoing trial

4.1 Introduction

In this chapter we explore how to design a trial where it is planned to add a new treatment

arm part way through the study. Current practice in trials when a new treatment arm has

been added is to compare the new treatment only to controls randomised concurrently

[32] and this is the setting we consider here. The aim of our proposed design is to control

the family-wise error rate (FWER), the probability of declaring at least one treatment is

better than control when in fact there is no difference between any of the experimental

treatments and control, in the strong sense, whilst maintaining the marginal power of

each comparison at the level of the original study. Furthermore, for standard multi-arm

trials, optimal allocation randomises a larger number of patients to the control arm than

to each experimental treatment arm. In this chapter optimal allocation is explored for

designs where a treatment arm is added with the aim of increasing the overall power of

the study. We define the overall power as the probability of detecting all treatments that

are better than control.

Alongside the administrative advantages of adding a treatment arm to an already up

and running and established trial discussed in Chapter 1, statistically, having one control

arm for multiple experimental treatments results in a design that requires fewer patients

than running a separate trial for each experimental treatment versus control when the

type I error rate is controlled at the same level for each treatment to control pairwise

comparison.

Our main considerations for the design of a trial where a new treatment arm is intro-

duced are:

• Control of the FWER for multiple comparisons of treatment to control. The number

159
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of multiple comparisons will change during the trial.

• Maintaining or increasing the power.

• The optimal allocation to each treatment arm before and after a new treatment arm

is added.

Furthermore, we will discuss the use of historical controls from external studies and

non-concurrent controls from within the current study.

Section 4.2.1 discusses an approach to designing a standard multi-arm trial using the

test statistics and critical values proposed by Dunnett [39]. The change in correlation

between these test statistics varies for different ratios of treatment to control sample size

and this is explored. In Section 4.2.3 the correlation between test statistics is derived

when a treatment arm is added during the trial. It is assumed that the original trial was

a standard two-arm RCT and that only concurrent controls are used for each treatment

comparison. An adaptive design is proposed in Section 4.2.4 where the sample size of all

treatment groups is increased to control the FWER and maintain the marginal power of

the original design. The adaptive design initially assumes 1:1 allocation to all treatment

groups. Sections 4.3.1 and 4.3.2 then cover optimal allocation for a standard multi-

arm trial and a trial where a treatment arm is added, respectively. For a trial adding a

treatment arm, optimal allocation is considered both when all treatments finish recruiting

simultaneously and when the treatments finish recruiting at different time points.

4.1.1 Motivation and example

STAMPEDE

(Systemic Therapy in Advancing or Metastatic Prostate Cancer: Evaluation of Drug Ef-

ficacy.)

The STAMPEDE trial [67] provides the motivation for looking at the design of trials

where treatment arms are added during the ongoing trial. STAMPEDE is a multi-arm,

multi-stage (MAMS) randomised trial for the treatment of patients with prostate cancer.

From the outset STAMPEDE had 5 experimental treatment arms and one control arm

with 2:1:1:1:1:1 randomisation, control to each treatment and is a seamless phase II/III

design.

Three additional arms were added over the duration of the study, with adjustments

made for multiple testing in terms of the multiple stages of the trial, but no adjustment was

made for multiple testing of each treatment with control. The study designers considered

adding a new treatment to be a new trial within the STAMPEDE protocol. In terms of
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the FWER, all comparisons of an experimental treatment to control were not considered

a family of hypotheses and each comparison was considered separately. Treatments added

during the trial were only compared to controls randomised concurrently and treatment

arms finished recruiting at different time points. A simplified design for adding a treatment

arm is considered throughout this chapter.

Illustrative example

The following example is used throughout to provide a practical example of the methodol-

ogy. Assuming the primary outcome variable is normally distributed. An initial two-arm

confirmatory RCT trial is designed to detect a treatment difference of three in the ex-

perimental arm compared to control. The standard deviation is assumed to be 10 in

both treatment arms and allocation is 1:1, treatment to control. This design requires 234

patients per treatment group to achieve 90% power with a one-sided type I error of 2.5%,

representative of a confirmatory trial. It is assumed that the treatment arm added during

the ongoing trial is also looking to detect a treatment difference of three compared to con-

trol and also has a standard deviation of 10. This example is illustrated in Figure 4.1. A

trial starts with a single experimental treatment (treatment 1) and a control group, with

1:1 allocation. In this example, after 100 patients have been randomised to both treat-

ment 1 and control, a new treatment (treatment 2) is added to the trial. The first dashed

vertical line represents when the new treatment arm is added (100 patients randomised

per group), the second dashed line represents when the original trial would have ended

(234 patients randomised to control and 234 patients randomised to treatment 1) and the

third dashed vertical line indicates when the trial ends after adding a new treatment arm

during the trial (treatment 2). The outcome data are assumed to be normally distributed

and the standard deviation is assumed to be known and the same for all treatment arms.

4.1.2 Notation

Let j = 0, . . . , J represent the treatment group, where j = 0 represents the control group

and there are J experimental treatment groups. Let k = 1, . . . , K denote the stages of the

trial. For the initial example considered, illustrated in Figure 4.1, stage one represents

before the new treatment is added, stage two when all treatments are being randomised

to and stage three when only treatment 2 and control are being randomised to. Let i

represent the patients within each stage and treatment group, i = 1, . . . , njk. njk denotes

the number of patients in treatment group j in stage k.

For the standard multi-arm trial design described in Section 4.2.1. Let X̄j denote

the sample mean for treatment j, µj the true population mean for treatment j and σ2

the true variance. The variance is assumed to be common across treatment groups. nj
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Figure 4.1: Example of adding a single experimental treatment arm to a two-arm trial
comparing treatment 1 to control. The first dashed vertical line represents when the
new treatment arm (treatment 2) is added to the trial. The second dashed vertical line
represents when the original treatment (treatment 1) finishes recruitment and the third
dashed vertical line represents when the control and treatment 2 finish recruiting patients.

Add treatment 2

 

Control

Treatment 1

Treatment 2

0 100 234 334
Number of patients randomised

Adding a single treatment arm

and n0 are the sample sizes of the experimental and control treatment groups respectively.

For the design where a treatment arm is added during the trial, described in Section

4.2.2. Let X̄jk denote the sample mean of treatment j in stage k. Let k = · denote all

stages. Therefore, X̄j· denotes the sample mean of treatment group j across all stages of

the trial. Let njk denote the sample size of treatment j in stage k. Furthermore, when

considering the control arm, let k(j) denote the set of stages for which controls are ran-

domised concurrently to treatment j. Let Xijk denote the observed outcome for patient i

on treatment j in stage k. Let ∆j denote the true treatment effect comparing experimen-

tal treatment j to control. Note that if all treatments finish recruiting at the same time

there will be no stage 3 in the trial. As with the standard multi-arm design, µj denotes

the true population mean for treatment j and σ is the common standard deviation for all

treatment groups.

The sample means are assumed to be independently and normally distributed. The

methods presented in this chapter make probability statements about the true underlying

treatment differences.
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For the standard multi-arm trial, let λ : 1 denote the allocation ratio of control to each

experimental treatment group. In Section 4.3.2, where designs are proposed for adding

a treatment arm and the optimal allocation of patients to each treatment arm is deter-

mined once the new treatment arm has been added, let λjk denote the allocation ratio of

treatment j in stage k to treatment J in stage k.

In addition to the above notation, for the Bayesian design considered in Section 4.5.

Let v = 1/σ2 denote the common precision across treatment groups. The superscripts (0)

and (1) indicate prior and posterior parameters, respectively. For example, n
(0)
j denotes

the prior effective sample size for treatment j and n
(1)
j denotes the posterior effective

sample size for treatment j.

4.2 Dunnett test

4.2.1 Design

For a multi-arm trial, with J experimental treatments and a control treatment, the test

statistics comparing each experimental treatment to control are given by [39],

Zj =
X̄j − X̄0√

1

nj
+

1

n0

, (4.1)

with j = 1, . . . , J hypotheses being tested. Under the null hypothesis of no treatment

difference, Zj ∼ N(0, σ2).

The joint distribution of the J test statistics is multivariate normal with Zj having

mean 0, variance σ2 and correlation between any two test statistics, Z1 and Z2 for example,

given by [39],

ρZ1Z2 = 1

/√(
n0

n1

+ 1

)(
n0

n2

+ 1

)
. (4.2)

Let σZ1 and σZ2 denote the standard deviation of test statistics Z1 and Z2 respectively.

The correlation between any two test statistics, Z1 and Z2 for example, is derived as

follows,

ρZ1Z2 =
Cov(Z1, Z2)

σZ1σZ2

,
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where,

Cov(Z1, Z2) = Cov

 X̄1 − X̄0√
1

n1

+
1

n0

,
X̄2 − X̄0√

1

n2

+
1

n0


=

1√
1

n1

+
1

n0

√
1

n2

+
1

n0

× Cov(X̄0, X̄0)︸ ︷︷ ︸
V ar(X̄0)=σ2/n0

=⇒ ρZ1Z2 =

σ2√
(n0 + n1)(n0 + n2)n2

0

n1n2
0n2

σ2
=

1√√√√(n0

n1

+ 1

)(
n0

n2

+ 1

) ,

where Cov denotes the covariance. Figure 4.2 illustrates how the correlation between

the test statistics varies as the ratio of the control to treatment sample sizes (n0/n1 and

n0/n2) vary. The correlation is 0.5 for equal sample sizes per treatment group. Where

the number of patients in each experimental treatment group is larger than the number

of controls, the correlation is greater than 0.5 and tends to one as the number of ex-

perimental treatment group patients increases relative to the number of control patients.

When there are fewer patients in each experimental treatment group than the control

group, the correlation is less than 0.5 and tends to zero as the number of experimental

treatment group patients decreases relative to the number of control patients. This is not

an intuitive result, since it is intuitive to think that the correlation would increase as the

number of common controls increases.

Considering the standardised test statistics, Zj/σ, under the null hypothesis, the joint

distribution of the J test statistics is multivariate normal with Zj having mean 0, variance

1 and correlation between any two test statistics, Z1 and Z2 for example, denoted by ρZ1Z2

and defined in Equation 4.2. If a single critical value c is used to declare significance, then

the probability of not rejecting any null hypothesis is given by,

∫ c

−∞

∫ c

−∞
...

∫ c

−∞
πZ((z1, z2, . . . , zJ)′,0,Σ)dzJdzJ−1 . . . dz1, (4.3)
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Figure 4.2: Correlation between Dunnett test statistics for different sample size ratios of
control to treatment in each test statistic
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where πZ(z,µ,Σ) is the probability density function of a multivariate normal (MVN)

distribution with mean µ, and covariance matrix Σ.

To control the FWER at level α, c is chosen such that the integral in Equation 4.3 is

equal to 1 − α. Controlling the FWER under the global null in this case ensures strong

FWER control.

4.2.2 Extension to the Dunnett test when a treatment arm is

added during the trial

In this section we consider a trial design where a treatment arm is added to an ongoing

trial. The proposed design adapts the trial at the time point when the new treatment arm

is added, with the aim of controlling the FWER. Throughout this chapter it is assumed

that the decision to add a new treatment arm is driven by external reasons, independent

of what is happening in the current trial, for example, a new treatment finishes phase II

development and becomes available for the confirmatory trial. Adding a treatment arm

based on external reasons does not require looking at the current trial data and therefore

the FWER is not inflated due to interim analyses [32]. The aim of the trial is to identify

whether any or all treatments are better than control and finally, it is assumed that only
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controls randomised concurrently are used in the analysis for each treatment. A further

assumption throughout this section is that the allocation ratio is equal for all treatments

throughout the study.

The main difference here to the standard Dunnett design is that the controls used for

each treatment to control comparison no longer completely overlap and this changes the

correlation between the test statistics.

The test statistics of interest at the end of the study, comparing each experimental

treatment to control are given by,

Zj =
X̄j· − X̄0k(j)√√√√√ 1

nj·
+

1∑
k∈k(j)

n0k

∼ N(0, σ2),

where X̄0k(j) =

∑
k∈k(j)

n0k∑
i=1

Xi0k∑
k∈k(j)

n0k

and k(j) denotes the set of stages for which controls are

randomised concurrently to treatment j.

4.2.3 Correlation between test statistics when adding a treat-

ment arm

When a treatment arm is added during the trial, only some controls are used in both

treatment comparisons and therefore the correlation between test statistics is reduced.

The joint distribution of the J test statistics is multivariate normal with Zj having

mean 0, variance σ2 and correlation between any two test statistics, Z1 and Z2 for example,

given by,

ρZ1Z2 =
1√√√√√ 1

n1·
+

1∑
k∈k(1)

n0k

√√√√√ 1

n2·
+

1∑
k∈k(2)

n0k

∑
k∈k(1)∩k(2)

n0k( ∑
k∈k(1)

n0k

)( ∑
k∈k(2)

n0k

) , (4.4)

where
∑

k∈k(1)∩k(2)
n0k represents the number of overlapping controls and for equal sample

sizes per treatment group, the correlation simplifies to,
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∑
k∈k(1)∩k(2)

n0k

2×
∑

k∈k(1)
n0k

. (4.5)

The correlation is 0.5 when there is complete overlap in the controls for each treatment

group and zero when there is no overlap in controls, which is in agreement with the

correlation from the Dunnett test statistics for a standard multi-arm trial.

Derivation of the correlation between test statistics when adding a treatment

arm

ρZ1Z2 =

Cov


X̄1· − X̄0k(1)√√√√√ 1

n1·
+

1∑
k∈k(1)

n0k

,
X̄2· − X̄0k(2)√√√√√ 1

n2·
+

1∑
k∈k(2)

n0k


σz1σz2

.

Let κ =
1√√√√√ 1

n1·
+

1∑
k∈k(1)

n0k

√√√√√ 1

n2·
+

1∑
k∈k(2)

n0k

. Then,

Cov


X̄1· − X̄0k(1)√√√√√ 1

n1·
+

1∑
k∈k(1)

n0k

,
X̄2· − X̄0k(2)√√√√√ 1

n2·
+

1∑
k∈k(2)

n0k


= κ Cov(X̄0k(1) , X̄0k(2))

= κ Cov


∑

k∈k(1)

n0k∑
l=1

Xl0k∑
k∈k(1)

n0k

,

∑
k∈k(2)

n0k∑
m=1

Xm0k∑
k∈k(2)

n0k



= κ
1∑

k∈k(1)
n0k

∑
k∈k(2)

n0k

∑
k∈k(1)

n0k∑
l=1

∑
k∈k(2)

n0k∑
m=1

 Cov(Xl0k, Xm0k)︸ ︷︷ ︸
E(Xl0kXm0k)− E(Xl0k)E(Xm0k)
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(k/∈k(1)∩k(2) =⇒ E(Xl0kXm0k)=E(Xl0k)E(Xm0k))

= κ
1∑

k∈k(1)
n0k

∑
k∈k(2)

n0k

∑
m∈k(1)∩k(2)

n0k∑
m=1

E(Xm0kXm0k)− E(Xm0k)E(Xm0k)︸ ︷︷ ︸
= Var(Xm0k) = σ2

(Since k∈k(1)∩k(2) =⇒ Xl0k=Xm0k)

= κσ2

∑
k∈k(1)∩k(2)

n0k∑
k∈k(1)

n0k

∑
k∈k(2)

n0k

.

ρZ1Z2 =

1√√√√√ 1

n1·
+

1∑
k∈k(1)

n0k

1√√√√√ 1

n2·
+

1∑
k∈k(2)

n0k

∑
k∈k(1)∩k(2)

n0k∑
k∈k(1)

n0k

∑
k∈k(2)

n0k

× σ2

σ2

=
1√√√√√ 1

n1·
+

1∑
k∈k(1)

n0k

1√√√√√ 1

n2·
+

1∑
k∈k(2)

n0k

∑
k∈k(1)∩k(2)

n0k∑
k∈k(1)

n0k

∑
k∈k(2)

n0k

.

This simplifies if the number of patients in each treatment group are equal,

∑
k∈k(1)

n0k =
∑
k∈k(2)

n0k = n1· = n2· = n =⇒ ρZ1Z2 =

∑
k∈k(1)∩k(2)

n0k

2n
.

4.2.4 An adaptive design for adding a treatment arm with the

Dunnett correction

Initially, adding a single treatment to an ongoing two-arm trial is considered. Figure 4.3

illustrates the adaptive design which is described in detail in this section.

The trial design considered here starts with two treatment arms, an experimental

treatment and a control. The null hypothesis is, H0 : µ1 = µ0 and the alternative hypoth-

esis, H1 : µ1 > µ0.
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Figure 4.3: Example of adding a single experimental treatment arm to a two-arm trial
comparing treatment 1 to control. The first dashed vertical line represents when the new
treatment arm (treatment 2) is added to the trial. The second dashed vertical line repre-
sents when the original treatment (treatment 1) finishes recruitment and the third dashed
vertical line represents when the control and treatment 2 finish recruiting patients. The
horizontal dashed lines represent the additional patients required per treatment group
above the original sample size estimate to control the FWER while maintaining randomi-
sation of 1:1:1 to all treatment arms.

Add treatment 2
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Adaptive design - adding a treatment arm

The test statistic is given by,

Z1 =
X̄1 − X̄0√

1

n1

+
1

n0

.

The sample size required per treatment group for this design is calculated using the

standard formula,

n =
2σ2(Z1−α − Zβ)2

(µ1 − µ0)2
,

where α is the significance level, β the probability of a type II error and Z1−α and Zβ are

the (1− α)th and the βth quantiles of the standard normal distribution.
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The power is given by,

1− β = Φ

 (µ1 − µ0)√
σ2
(

1
n1

+ 1
n0

) − Z1−α

 .

Assuming that a new treatment arm is added after n01 patients have been randomised

to control. The test statistics of interest are now,

Z1 =
X̄1· − X̄0k(1)√
1

n11 + n12

+
1

n01 + n02

, Z2 =
X̄2· − X̄0k(2)√
1

n22 + n23

+
1

n02 + n03

,

where k(1) = {1, 2} and k(2) = {2, 3}. Z1 and Z2 are distributed N(0, σ2) under the null

hypothesis of no treatment difference.

We assume equal randomisation to all treatment arms throughout. All treatment

groups are of the same size (n = n01 +n02 = n02 +n03 = n11 +n12 = n22 +n23). Then the

correlation between Z1 and Z2 is n02/(2n), which can be written in terms of the ratio of the

first stage control sample size to the second stage control sample size, ρZ1Z2 = 1/2(n01

n02
+1).

Here it is assumed that the true treatment effect in both of the experimental treatment

arms compared to control are the same (µ1 = µ2 = µ). This could be the case when two

experimental treatments are explored that are similar but contain different compounds or

have differences in cost or risk profiles, but the efficacy effects are thought to be similar.

However, it could be assumed that the treatment effect for each experimental treatment

differs and therefore different sample sizes would be required. The null hypothesis for

the second treatment is, H0 : µ2 = µ0 and the alternative hypothesis is, H1 : µ2 > µ0.

To control the FWER, the number of patients randomised to every treatment arm is

increased when the new treatment arm is added to the trial, using the following steps:

1. Estimate the correlation using the original sample size calculation;

The correlation is given by, ρZ1Z2 =
1

2
(
n01

n02
+ 1
)

2. Increase the sample size of all treatment arms to control the FWER at level α and

maintain the marginal power for each pairwise comparison;

Determine the critical value that controls the FWER at level α using,
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=

∫ c

−∞

∫ c

−∞
πZ((z1, z2)′,0,Σ)dz2dz1 = 1− α

where π(z,0,Σ) is the probability density function of a multivariate normal distri-

bution with means 0, and covariance matrix Σ =

(
1 ρZ1Z2

ρZ2Z1 1

)
.

The critical value here is determined using multivariate normal integration and a

root finding algorithm in Stata which implements Brent’s method [41].

The sample size required per group is then given by,

n =
2σ2(ZΦ(c) − Zβ)2

(µ− µ0)2

3. Re-estimate the correlation using the sample sizes obtained in step 2 and repeat

step two using this correlation until the sample size does not change.

The estimate of the correlation between test statistics at the end of the study using

the original sample size calculation will be an underestimate, since, when the sample size

of all treatment groups is increased, the number of overlapping controls will increase and

therefore the correlation will increase. This is why an iterative approach is required.

4.3 Optimal allocation with a fixed trial sample size

In multi-arm trials there are various ways to define the power of a study. The marginal

power was considered in Section 4.2, which is the probability of rejecting a particular

false null hypothesis. However, in a single trial, we are making multiple comparisons and

the main aim of the trial may be to determine whether any or all treatments are better

than control, or at least one treatment is greater than control. When there are multiple

treatment comparisons, interest may be in the overall power of the study. Here, the

overall power of a multi-arm trial is defined to be the probability of rejecting all false null

hypotheses, correctly determining all treatments that are better than control. The overall

power is considered in this section, with the aim of determining the optimal sample size

which gives the highest probability of finding all treatments that are better than control.

It is assumed that all treatments are of equal importance. Further possible definitions

of power in a multi-arm trial are: weighted power – a weighted sum of the marginal

powers; minimal power – the probability of rejecting at least one false null hypothesis

and average power – the average proportion of false null hypotheses that are rejected. A

comprehensive review of power definitions in multi-arm trials is given in [36]. Firstly, the

power and optimal allocation for the original Dunnett test are considered [39].
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4.3.1 Optimal allocation for the original Dunnett test

Dunnett states that the optimal allocation for the standard Dunnett test is n0 = n
√
J .

Where n0 is the number of controls, n is the number in each treatment group and J is

the number of experimental treatments [39].

When using optimal allocation the number of patients per group are not equal. This

alters the correlation between the test statistics and therefore the critical value used for

each test.

Two methods are described in the next section for deriving the optimal allocation ratio

for the standard Dunnett design. Minimising the total variance to determine the optimal

allocation was proposed in [68]. The criterion we propose for determining the optimal

allocation is to maximise the overall power, this is the criterion we use to determine the

optimal allocation for our extension to the Dunnett design where a new treatment arm is

added during the study.

Optimal allocation derivation

Minimising the total variance

The optimal allocation ratio can be approximated by minimising the total variance

(TV ), assuming a common variance among treatments and equal sample sizes for all

experimental treatment groups, nj = n for j > 1. The total variance is the sum of the

variances of the differences in means (X̄j − X̄0) and is given by [68],

TV = Jσ2

(
1

n
+

1

n0

)
.

The values of n and n0 are determined that minimise the total sample variance subject

to the constraint that the total sample size is N = Jn + n0. This makes the assumption

that all treatments are equally important.

To minimise Jσ2

(
1

n
+

1

n0

)
where N = n0 + Jn. This is a Lagrange multiplier prob-

lem [68], min{TV + λ(N − Jn− n0)}(∗):

Solve,

∂(∗)
∂n

=
−Jσ2

n2
− λJ = 0, (4.6)

and
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∂(∗)
∂n0

=
−Jσ2

n2
0

− λ = 0. (4.7)

From Equation 4.7, λ =
− Jσ2

n2
0

, substituting into 4.6 gives [68],

−Jσ2

n2
= λJ =

−Jσ2

n2
0

=⇒ n2 =
n2

0

J
=⇒ n =

n0√
J

=⇒ n0 = n
√
J.

This gives the simple rule n0 = n
√
J for optimal allocation and substituting n0 into

N = Jn+ n0 gives n =
N

J +
√
J

[68].

Maximising the overall power

An alternative approach to determining the optimal allocation ratio is to maximise the

overall power. The overall power is the probability of rejecting all false null hypotheses.

For a three arm design, comparing each experimental treatment to control, the overall

power is defined by the bivariate normal distribution,

1− β =

∫ ∞
c∗

∫ ∞
c∗

πZ((z1, z2)′,µ,Σ)dz2dz1

where πZ((z1, z2)′,µ,Σ) is a bivariate normal distribution with mean µ = (0, 0)′ and

variance covariance matrix,

Σ =

(
1 0.5

0.5 1

)

where c∗ =

(
c
√

σ2

n∗0
+ σ2

n∗

)
−∆√

σ2

n0
+ σ2

n

, c is the Dunnett critical value and n∗ and n∗0 in the nu-

merator of c∗ are fixed as the sample sizes calculated from 1:1 allocation of patients to

treatment and control. The values of n and n0 in the denominator that maximise the

overall power are then found by searching over a range of allocation ratios to determine

the allocation ratio that maximises the overall power. This allocation ratio will randomise

more patients to control than each of the treatment groups. This changes the correlation

between the test statistics which affects the FWER. Based on this optimal allocation ra-

tio, Σ is updated and the Dunnett critical value that controls the FWER is re-calculated.

The optimal allocation that maximises the overall power is then re-calculated, with the

numerator n∗ and n∗0 fixed at the values from the previous iteration, c is the updated

Dunnett critical value, and n and n0 in the denominator are found that maximise the
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overall power, this procedure is repeated until the sample sizes obtained for the control

and the treatment groups both maximise the overall power and also control the FWER.

The two approaches to determining the optimal allocation ratio, minimising the to-

tal variance and maximising the overall power, both give an optimal allocation ratio of

approximately n0 = n
√
J . The overall power and formula approximation of the optimal

allocation are calculated assuming both treatments have the same treatment effect over

control.

Both approaches to determining the optimal allocation ratio can be applied when there

are multiple treatment arms.

4.3.2 Optimal allocation when adding a treatment arm

When adding a treatment arm to an ongoing trial, the optimal allocation depends on

whether adding a new arm was pre-planned, to be added at a specific time point, or

planned to be included when the treatment becomes available at an unknown time point.

If adding the arm was pre-planned it may be desirable to use unequal randomisation from

the beginning of the trial. However, the situation considered here is that at the design

stage of the initial trial, it is planned that a new treatment arm will be added, but the

time point is only known once the two-arm trial has begun recruiting. In this case, opti-

mal allocation for the initial trial is 1:1, treatment:control.

A further consideration is that optimal allocation will differ depending on whether,

once a new treatment is added, randomisation continues to all treatment arms until the

end of the study or whether the original treatment finishes recruitment earlier. Elm et al.

[30] suggest that once a new treatment arm is added, randomisation should continue to

all treatment arms until the end of the study. In this section we consider treatments

finishing recruitment simultaneously and at different times.

Finally, it is assumed here that the patient population is homogeneous across stages.

A stage is defined when there is a change in the design of the trial. For example, a treat-

ment arm is added, a treatment finishes recruitment or the allocation ratio is changed.

The assumption of homogeneity across stages is also the primary assumption for group

sequential test procedures and for platform trials [69, 70]. The limitations of this assump-

tion are considered in the discussion.

The overall power calculations throughout this section are the power to detect a treat-

ment effect in both groups and the treatment effect is assumed to be the same in both

groups. Only controls randomised concurrently to the treatment being tested are used in
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the analysis. As above, it is assumed that the addition of a treatment arm is based on

external reasons and not on the results of the current trial.

Optimal allocation when all treatments finish recruiting simultaneously

In this section optimal allocation is considered when a treatment arm is added to a two-

arm study that was initially randomising 1:1, treatment to control. It is assumed that

adding a treatment arm was planned and that recruitment will continue to all arms until

the end of the trial. The null hypotheses being tested are: H0 : µj = µ0 and the alterna-

tive hypotheses are, H1 : µj > µ0. Where µj are assumed to be common across treatment

groups.

Minimising the total variance

It is not possible to use the approach of minimising the total variance described in [68]

to determine the optimal allocation in the design when a treatment is added during the

trial. When adding a treatment arm the total variance is given by,

TV =

(
σ2

n01 + n02

+
σ2

n11 + n12

+
σ2

n22

+
σ2

n02

)
,

and we wish to minimise the total variance under the constraint, N = n01 + n02 + n11 +

n12 + n22.

This approach does not account for the fact that more controls (n01 +n02) are used in

the treatment 1 to control comparison than the treatment 2 to control comparison (n02).

It therefore allocates an equal number of patients to both treatment groups. Whereas, for

optimal allocation, a larger number of patients should be randomised to the new treat-

ment 2 arm. There is not a simple formula for the optimal allocation here as there is for

the standard Dunnett test.

Maximising the overall power

To determine the optimal allocation ratio when adding a treatment arm during the

trial, it is possible to numerically maximise the overall power for a fixed total sample size

using the following steps.

The test statistics of interest at the end of the study, comparing treatments 1 and 2

(where treatment 2 is added during the trial) to control, are given by,
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Z1 =
X̄1· − X̄0k(1)√√√√√ 1

n1·
+

1∑
k∈k(1)

n0k

, (4.8)

Z2 =
X̄2· − X̄0k(2)√√√√√ 1

n2·
+

1∑
k∈k(2)

n0k

, (4.9)

where X̄0k(1) =

∑
k∈k(1)

n0k∑
i=1

Xi0k∑
k∈k(1)

n0k

, X̄0k(2) =

∑
k∈k(2)

n0k∑
i=1

Xi0k∑
k∈k(2)

n0k

, k(1) = {1, 2} and k(2) = {2}. Z1 and

Z2 are distributed N(0, σ2) under the null hypothesis of no treatment difference.

1. Follow the steps in Section 4.2.4 to determine the required total sample size, N , when

adding a treatment arm during the trial using 1:1:1 allocation to all treatment arms.

The total sample size is fixed at N . It is then determined how best to allocate the

remaining patients once the new treatment arm has been added to optimise the overall

power. The new treatment arm is added at a fixed time point after n01 = n11 patients

have been randomised to the original treatment and control.

2. Determine the optimal allocation ratios in stage two of the trial that maximise the

overall power. The estimate of the correlation and critical value from step one are

used.

The correlation based on the total sample size calculation in step one is given by, ρZ1Z2 =

1/2(n01
n02

+ 1) where n is the number of patients used per group for each treatment com-

parison and n02 is the number of overlapping controls. The remaining patients to be

randomised can then be written as, R = N − (n01 + n11). The total number of patients

is given by, N = n01 + n02 + n11 + n12 + n22 (there is no stage 3 since it is assumed

randomisation continues to all treatment arms until the end of the study).

To determine the optimal allocation for the remaining patients once the new treatment

arm is added, the randomisation allocation ratio to the new treatment is fixed at one,

the remaining patients to be randomised at the time point that the new treatment arm is

added is written as,

R = λ02n22︸ ︷︷ ︸
n02

+n22 + λ12n22︸ ︷︷ ︸
n12

,
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and the values of λ02 and λ12 are determined that maximise the overall power, which is

defined by,

1− β =

∫ ∞
c1∗

∫ ∞
c2∗

πZ((z1, z2)′,0,Σ)dz2dz1, (4.10)

where πZ((z1, z2)′,0,Σ) is the bivariate normal distribution with mean 0 and variance

covariance matrix,

Σ =

(
1 ρz1z2

ρz2z1 1

)
,

where ρz1z2 is the correlation calculated in step one, defined in Equation 4.5.

c1∗ and c2∗ in Equation 4.10 are defined by,

c1∗ =

c
√

2σ2

n

− (µ1 − µ0)

√
σ2

n01 + n02
+

σ2

n11 + n12

, (4.11)

c2∗ =

c
√

2σ2

n

− (µ2 − µ0)

√
σ2

n02
+
σ2

n22

, (4.12)

where c is the Dunnett critical value and n the sample size per comparison group esti-

mated in step one. (µj −µ0) is the treatment effect under the alternative hypothesis and,

n22 =
R

λ02 + 1 + λ12
, n12 =

R

λ02 + 1 + λ12
× λ12, n02 =

R

λ02 + 1 + λ12
× λ02.

where λ02 and λ12 are the allocation ratios that maximise the overall power. This change

in allocation ratio will alter the correlation. As in Section 4.2.4, iteration is required to

control the FWER at the desired level.

3. Re-estimate the correlation and critical value that control the FWER based on the

sample sizes per comparison group calculated in step two. The sample sizes per



178 Chapter 4 Adding a treatment arm to an ongoing trial

comparison group are now unequal and Equation 4.4 is required to estimate the

correlation.

4. Repeat step 2 (replacing the Dunnett critical value and variance in the numerator

of Equations 4.11 and 4.12 with the critical value and variance calculated using the

sample sizes that maximise the overall power. Replace the correlation in Equation

4.10 with the correlation calculated using the optimal sample sizes) and repeat step

3 until the optimal allocation is determined that maximises the overall power and

where the FWER is also controlled at the desired level.

Optimal allocation when treatments finish recruiting at different time points

The previous section looks at determining the optimal allocation for the remaining pa-

tients when a new treatment arm is added part way through the trial, assuming patients

are recruited to all treatments until the end of the study. This results in a reduced alloca-

tion ratio to the original experimental treatment arm compared to the new experimental

treatment and control arms. It may be undesirable to reduce the allocation ratio to a

treatment arm during the trial.

In this section the aim is to determine a better allocation ratio than 1:1:1, whilst

allowing the original treatment arm to recruit at the same rate as the new treatment

arm. This design will randomise more controls in stage two and fewer in stage three,

which will also increase the overlapping controls and therefore the correlation. The opti-

mal allocation is determined by maximising the overall power under the constraint that

λ12 = λ22 = 1. An alternative approach would be to fix the minimum allocation to the

original treatment arm compared to the new treatment arm for the remainder of the trial

and again determine the optimal allocation by maximising the overall power.

The test statistics here are the same as those given in Equations 4.8 and 4.9. However,

there are now three stages to the design, k(1) = {1, 2} and k(2) = {2, 3}. When all

treatments finish recruiting simultaneously, there are only two stages.

1. The total sample size is fixed at N , the number of patients required to control the

FWER at level α using equal randomisation when adding a treatment arm during

the trial, described in Section 4.2.4.

It is then determined how best to allocate the remaining patients, R = N−(n01−n11), once

the new treatment arm has been added to optimise the overall power. The new treatment

arm is added at a fixed time point after n01 = n11 patients have been randomised to the

original treatment and control.

2. Determine the optimal allocation ratios that maximise the overall power. The esti-

mate of the correlation and critical value from step one are used.
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Fixing λ12 = λ22 = λ23 = 1, the remaining patients to be randomised, R, can be written

as,

R = λ02n22︸ ︷︷ ︸
n02

+ n22︸︷︷︸
n12

+n22 + n23 + λ03n23︸ ︷︷ ︸
n03

.

Optimisation is required to determine the values of λ02, λ03 and n22 or n23 that maximise

the overall power. Only one of n22 or n23 are required since N , n01 and n11 are all fixed

values. However, numerical optimisation of these parameters will always allocate zero

patients to control in the third stage and randomise all to control in stage two. This is

because all controls will then be used for the treatment 1 to control comparison. However,

some randomised controls are required in stage three. Therefore, λ03 is also fixed, adding

a constraint on the minimum allocation to control in stage three of the trial. Numerical

optimisation is then used to find the values of λ02 and n23 that maximise the overall power.

The number of controls available for the first treatment comparison will vary depending

on when the original treatment arm finishes recruiting.

The overall power is defined by,

1− β =

∫ ∞
c1∗

∫ ∞
c2∗

πZ((z1, z2)′,0,Σ)dz2dz1, (4.13)

where πZ((z1, z2)′,0,Σ) is the bivariate normal distribution with mean 0 and variance

covariance matrix,

Σ =

(
1 ρZ1Z2

ρZ2Z1 1

)
,

where ρZ1Z2 is the correlation calculated in step one, defined in Equation 4.5.

c1∗ and c2∗ in Equation 4.13 are defined by,

c1∗ =

c
√

2σ2

n

− (µ1 − µ0)

√√√√√√ 1

n1·
+

1∑
k∈k(1)

n0k

, (4.14)

and,
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c2∗ =

c
√

2σ2

n

− (µ2 − µ0)

√√√√√√ 1

n2·
+

1∑
k∈k(2)

n0k

, (4.15)

where k = 1, . . . , 3, c is the Dunnett critical value and n the sample size per comparison

group estimated in step 1. (µj −µ0) is the treatment effect under the alternative hypoth-

esis and,

n22 =
R− (λ03 + 1)n23

λ02 + 2
, n1· = n11 + n12,

∑
k∈k(1)

n0k = n01 + n22λ02, n2· = n22 + n23,∑
k∈k(2)

n0k = n22λ02 + n23λ03.

where λ03 is fixed and n23 and λ02 are found via optimisation. This change in allocation

ratio will alter the correlation. As in Section 4.2.4, iteration is required to control the

FWER at the desired level.

3. Re-estimate the correlation and critical value that control the FWER based on the

sample sizes per comparison group, calculated in step two. The sample sizes per

comparison group are now unequal and Equation 4.4 is required to estimate the

correlation.

4. Repeat step 2 (replacing the Dunnett critical value and variance in the numerator

of Equations 4.14 and 4.15 with the critical value and variance calculated using the

sample sizes that maximise the overall power. Replace the correlation in Equation

4.13 with the correlation calculated using the optimal sample sizes) and repeat step

3 until the optimal allocation is determined that maximises the overall power and

where the FWER is also controlled at the desired level.

4.4 Example – comparing methodology

This section returns to the main example, described in Section 4.1.1. Outcome data

are assumed to be normally distributed. The treatment effect to detect between any

experimental treatment and control is assumed to be three. The standard deviation is

assumed to be known and equal to 10 in all treatment groups. It is assumed that the

decision to add a treatment arm to the trial is driven by external reasons, independent of

what is happening in the current trial, the aim of the trial is to identify whether any or all

treatments are better than control and finally, it is assumed that only controls randomised

concurrently are used in the analysis for each treatment.
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4.4.1 Two experimental treatments – independent trials

In this section, trials comparing multiple experimental treatments to control in a single

trial are compared to running separate trials, each with an independent control arm. For

separate, independent trials, the standard approach is to control the marginal type I error

rate of each study. In a single study with multiple treatment arms, the aim is to control

the FWER.

For an individual trial, comparing one experimental treatment to control, 234 patients

are required per treatment group for a one-sided test at level α = 0.025 and 90% power

to detect a treatment difference of three, with a known and equal standard deviation

of 10 in both treatment groups. Therefore, for two independent trials, the total sample

size required is N = 2Jn = 936 patients, where n = 234, the number of patients in

each treatment arm. The critical value for each test is approximately 1.96. For two

independent trials, the FWER is 1 − (1 − 0.025)2 = 0.0494. For independent trials, the

number of type I errors is a binomial random variable with J trials and probability of

success α [33].

4.4.2 Three arm trial design – no multiplicity correction

To assess two experimental treatments in a single trial, there are two experimental arms

and a single control arm. Making no adjustment for multiplicity, the total number of

patients required is N = (J + 1)n = 702.

The probability of rejecting at least one null hypothesis here is given by,

= 1−

(∫ Φ−1(1−0.025)

−∞

∫ Φ−1(1−0.025)

−∞
πZ((z1, z2)′,0,Σ)dz1dz2

)
= 0.0454.

Assuming Z1 and Z2 are both ∼ N(0, 1), equal sample sizes per group and Σ =(
1 0.5

0.5 1

)
.

The FWER for this design is 0.0454, slightly less than the FWER when running two

separate trials. However, the total sample size for a three arm trial with no multiplicity

correction (702) is significantly smaller than for the separate trials design (936).

4.4.3 Three arm trial design – Dunnett multiplicity correction

This section explores a standard multi-arm trial comparing two experimental treatments

to a control treatment. All treatment arms recruit from the beginning of the study and
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Dunnett’s method is used to adjust for multiple testing.

To control the FWER at 2.5% and the marginal power of each comparison at 90%,

272 patients are required per treatment group for a one-sided test to detect a treatment

difference of three between each experimental treatment and control when the standard

deviation is known to be 10 in all treatment groups (3 groups = 816 total).

The critical value for each individual test is now increased to 2.21 to control the FWER

at 2.5%. Since,

1−
(∫ 2.21

−∞

∫ 2.21

−∞
πZ((z1, z2)′,0,Σ)dz1dz2

)
= 0.025.

Whereas, in the previous two designs in Sections 4.4.1 and 4.4.2, a standard normal

2.5% critical value of Φ−1(1− 0.025) ≈ 1.96 was used.

Here, the FWER is controlled at the desired level of 2.5% and the sample size is re-

duced from 936 in separate trials, to 816 patients in a single trial.

Note that for low powered studies (< 50% power for individual studies) it is often

better to run separate trials than a single trial with a Dunnett correction, in terms of the

number of patients required. However, for more common situations this is not usually the

case [33].

4.4.4 Adding an arm during the trial – no multiplicity correction

A trial starts with two treatment arms initially and part way through the trial a new

treatment arm is added. It is assumed that no correction is made to the critical value

for multiple comparisons (the critical value chosen at the design stage is used for both

treatment comparisons at the end of the study). There are now two comparisons to be

made at the end of the study. We explore the effects of adding a treatment arm on the

FWER.

Continuing with the main example described in Section 4.1.1. A new treatment arm

is added after 100 patients have been randomised to each treatment group, 234 patients

are allocated to the new treatment and a further 100 patients are randomised to control.

The number of concurrent controls randomised for each treatment arm are then equal.

The number of controls used in both treatment comparisons is 134. The total number

of patients per treatment group for each of the treatment comparisons is 234 (134 of the

controls are used in both treatment comparisons, overlapping controls). The correlation

is given by,
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ρZ1Z2 =
134

2× 234
= 0.286.

The FWER is then calculated as,

1−

(∫ Φ−1(1−0.025)

−∞

∫ Φ−1(1−0.025)

−∞
πZ((z1, z2)′,0,Σ)dz1dz2

)
= 0.0477,

where πZ((z1, z2)′,0,Σ) is the probability density function of a MVN distribution with

mean 0, and covariance matrix Σ =

(
1 0.286

0.286 1

)
.

An extra 234 patients are randomised to treatment 2 and an extra 100 concurrent

controls for the treatment 2 comparison when adding a treatment arm. Here, the sample

size is not increased to account for the multiplicity and the FWER is 0.0477. The total

number of patients required for this design is 802 (3× 234 + 100 extra controls).

The FWER is less for this design (0.0477) than the FWER obtained from two separate

trials (0.0494) and requires 134 fewer controls than two separate trials. However, some

may argue that for the single trial, the FWER should be controlled at the 2.5% α level

of a single independent trial. This design is considered in the next section.

4.4.5 Adding an arm during the trial – Dunnett multiplicity

correction

Following the steps described in Section 4.2.4.

1. Estimating the correlation using the original sample size per group of 234 gives a

correlation of 0.286.

2. Using this correlation, the critical value that controls the FWER at 0.025 is 2.2295,

giving a sample size per group of 273.941.

3. Re-estimating the correlation and sample size until they are constant results in a

final correlation of 0.317, critical value for each test of 2.2277 and a final sample

size per group of 273.659.

Since we require integer sample sizes, the change in correlation has no impact on the

required sample size for this design. The increase in the number patients required comes

from controlling the FWER because the treatment comparisons are within the same trial

rather than separate trials. The total sample size required per group to control the FWER

at 2.5% based on this correlation estimate would be 274 (an additional 40 patients per
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group). Three groups of 274 patients plus 100 extra non-overlapping controls, gives a to-

tal sample size of N=922, just below the 936 patients required to run two separate trials.

However, here we are controlling the FWER at 2.5%, whereas for two separate studies,

only the marginal type I error rate for each comparison is controlled at 2.5%. This design

is illustrated in Figure 4.4.

Figure 4.4: Example of adding a single experimental treatment arm to a two-arm trial
comparing treatment 1 to control. The first dashed vertical line represents when the new
treatment arm (treatment 2) is added to the trial. The second dashed vertical line repre-
sents when the original treatment (treatment 1) finishes recruitment and the third dashed
vertical line represents when the control and treatment 2 finish recruiting patients. The
horizontal dashed lines represent the additional patients required per treatment group
above the original sample size estimate to control the FWER while maintaining randomi-
sation of 1:1:1 to all treatment arms.

Add treatment 2

Overlapping controls
n01=100 n02=174 n03=100

n11=100 n12=174

n22=174 n23=100

 

Control

Treatment 1

Treatment 2

0 100 234 274 334 374
Number of patients randomised

Adaptive design - adding a treatment arm

Figure 4.4 illustrates the trial design where a treatment arm is added and the sample

size of all treatments arms are increased to control the FWER using the Dunnett cor-

rection. Treatment 2 is added after 100 patients have been randomised to control and

treatment 1 (the first dashed vertical line). The sample size for each group is then in-

creased by 40 patients from 234 to 274, shown in Figure 4.4 by the horizontal dashed

lines. The second dashed vertical line shows when the original experimental treatment

arm finishes recruitment. The number of overlapping controls is now 174 and the corre-

lation between test statistics is 0.32.
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As illustrated in this example, small changes in the correlation between test statistics

results in small changes to the critical value and therefore only small changes to the total

number of patients required. Figure 4.5 shows the critical value obtained for different

values of the correlation and FWER. For larger FWER the change in correlation has a

larger impact on the change in critical values. Therefore, for phase II trials, the change in

correlation from adding a treatment arm may increase the number of patients required.

Figure 4.5: Effect of correlation between test statistics on the critical value required to
control the FWER at different levels for a standard 3 arm trial.
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Table 4.1 compares the FWER and the number of patients required to have 90%

marginal power for each treatment to control comparison for the designs discussed in

Sections 4.4.1 to 4.4.5. From Table 4.1, for this example, in terms of the number of

patients required, a single trial design adding a treatment arm requires fewer patients

than a separate trial design, even when controlling the FWER at the level of the type I

error rate for a two-arm trial.
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Table 4.1: FWER and sample size comparisons for 90% marginal power

Design FWER Total sample size
Two separate trials 0.0494 936
Single trial – no multiplicity adjustment 0.0454 702
Single trial – Dunnett adjustment for multiplicity 0.0250 816
Adding an arm – no multiplicity adjustment 0.0477 802
Adding an arm – Dunnett adjustment for multiplicity 0.0250 922

4.4.6 Comparing a single study to separate studies in terms of

the number of patients required

As mentioned above, the main contributing factors to the total sample size required in

a single trial when adding a treatment arm are, the control of the FWER and when the

new treatment arm is added and the extra concurrently randomised controls required (for

the treatment 2 comparison when using 1:1:1 randomisation). Therefore, if control of the

FWER is required in a single study and not in separate trials, it is of interest to determine

the time point at which it is better to start a separate trial rather than add an arm to an

ongoing trial with respect to the total sample size required. This is comparing a single

trial controlling the FWER at 2.5% to separate trials, each with a 2.5% type I error rate.

The following example compares a single trial to separate trials when a treatment arm

is added at different time points during the trial, for varying power (70%, 80% and 90%)

and FWER (2.5%, 5% and 10%). Figure 4.6 shows that for 90% power and 2.5% error

rate, once 111 patients have been randomised to control, it would be better to run a new

trial than add a new treatment to the current trial, in terms of the number of patients

required, if in a single trial control of the FWER is required at the 2.5% level. The

statistical advantage of adding a treatment arm and running a single trial decreases as

the power decreases and FWER increases. Figure 4.6 shows that for 10% error rate and

70% power it is better to run separate studies than a multi arm trial, even if all treatment

arms are recruiting from the beginning of the study. It is assumed here that randomisation

is 1:1:1 and the treatment effect to be detected is the same for all treatments.

4.4.7 Adding multiple treatment arms

So far, adding only one new treatment arm has been considered. We now consider adding

two treatment arms during the trial, correcting for multiple comparisons using the Dun-

nett procedure. There are now three comparisons of interest, comparing three experimen-

tal treatments to control. The correlation between test statistics is given in Equation 4.4.

The three test statistics follow a J-variate normal distribution.
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Figure 4.6: Comparing the total sample size required for a single trial versus separate
trials when adding a new treatment arm at different time-points for varying error rates
and marginal power.
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It is assumed that the second experimental treatment arm is added before the orig-

inal experimental treatment arm finishes recruitment and therefore there is correlation

between all test statistics. However, the correlations between all test statistics can never

be equal.

Continuing the main example described in Section 4.1.1. Two new treatment arms

are added, the first after 200 patients have been randomised to either the original exper-

imental treatment or control with 1:1 allocation.

The variance-covariance matrix using the original sample size calculation of 234 pa-

tients per group is given by,

Σ =

 1 0.286 0.073

0.286 1 0.286

0.073 0.286 1


Based on the above correlation matrix, the sample size required per group to control

the FWER at 2.5% and the correlation are re-estimated until they converge. The final

sample size required per group is then 298 patients and the correlation matrix is given by,
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Σ =

 1 0.332 0.164

0.332 1 0.332

0.164 0.332 1



Figure 4.7 illustrates a design where two treatment arms are added. This design has

balanced overlap in the number of controls used between treatment 1 and treatment 2

and between treatment 2 and treatment 3. The sample size of all groups is increased to

control the FWER using the Dunnett correction. Treatment 2 is added after 200 patients

have been randomised to either control or treatment 1. Treatment 3 is then added after a

further 100 patients have been randomised to each of the groups. The sample size for each

group is increased by 64 patients from 234 to 298, shown in the Figure by the horizontal

dashed lines. The dashed vertical lines show where new treatment arms are added and

treatments finish recruiting. The number of overlapping controls now differs between test

statistics. Between Z1 and Z2, and Z3 and Z2 the number of overlapping controls is 198

(as shown by the navy and pink lines) and between Z3, Z1 is 98 controls (as shown by

the yellow line).

The total sample size required here is 1392 compared to the total sample size of 1404

when running three separate studies. However, this is under control of the FWER at the

2.5% level, the same as the marginal type I error rate for a single study comparing one

experimental treatment to control. If this strict control of the FWER is required in a

single study compared to running separate trials. The benefits of adding treatment arms

to a trial will decrease as the number of treatment arms added increases, if multiple test

correction is required for the multi-arm trial but not the separate trials.

So far, only equal allocation to all treatment arms has been considered and power in

terms of controlling the marginal power for each treatment to control comparison. We

now look at optimal allocation to maximise the overall power of the study.

4.4.8 Optimal allocation – standard Dunnett design

Returning to the main example, assuming all treatment arms recruit from the beginning

of the study and Dunnett’s method is used to adjust for multiple testing.

Table 4.2 compares the optimal allocation ratio obtained from maximising the over-

all power (max ratio) and the approximation from minimising the total variance (n
√
J),

given in Section 4.3.1 for a standard multi-arm trial with different numbers of experimen-

tal treatment arms. The optimal allocation is calculated based on the fixed total sample
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Figure 4.7: Example of adding two experimental treatment arms (treatment 2 and treat-
ment 3) to a two-arm trial comparing treatment 1 to control. The first dashed vertical
line represents when the first new treatment arm (treatment 2) is added to the trial. The
second dashed vertical line represents when the second new treatment arm (treatment
3) is added to the trial. The remaining vertical lines are when treatments finish recruit-
ing. The horizontal dashed lines represent the additional patients required per treatment
group above the original sample size estimate to control the FWER while maintaining
randomisation of 1:1:1 to all treatment arms.
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size calculated assuming 1:1 allocation to all treatment arms (N). Table 4.2 then gives

the overall power based on 1:1 allocation ( 1 − β (1:1)), the overall and marginal power

using the allocation ratio n
√
J (1− β (n

√
J)) and the overall and marginal power using

the allocation ratio that maximises the overall power (1− β (max)).

In this example, adapting the allocation ratio increases both the marginal and overall

power of the study. The approximation of the optimal allocation, randomising n
√
J

patients to control gives similar results to maximising the overall power of the study as

shown in Table 4.2. Figure 4.8 shows the overall power for different allocation ratios and

different numbers of experimental arms for a standard multi-arm trial design.
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Table 4.2: Optimal allocation ratio for the standard Dunnett design when using the
optimal allocation proposed by Dunnett n

√
J or maximising the overall power. The

overall power for the allocation ratios are also given.

J max ratio n
√
J N (1:1) 1− β (1:1) 1− β (n

√
J) 1− β (max)*

(n0 : n) (n0 : n) (marginal) (marginal)
2 1.414 (338:240) 1.414 (340:240) 816 0.834 0.840 (0.910) 0.840 (0.909)
3 1.732 (429:248) 1.732 (430:248) 1172 0.782 0.802 (0.918) 0.802 (0.918)
4 1.995 (515:258) 2 (516:258) 1545 0.743 0.779 (0.928) 0.780 (0.928)
5 2.252 (597:265) 2.236 (595:266) 1920 0.709 0.760 (0.936) 0.760 (0.935)

* Calculated based on controlling the FWER at the 2.5% level. N is fixed based on 1:1 randomisation
for 90% marginal power (treatment arm sample sizes may be increased due to rounding based on the
optimal allocation.)

Figure 4.8: Overall power by allocation ratio for a standard multi-arm trial for trials with
a different number of treatment arms and each with fixed sample size. The dashed vertical
red lines represent the optimal allocation ratio that maximises the overall power.

.835

.836

.837

.838

.839

.84

O
ve

ra
ll 

po
w

er

1 1.2 1.4 1.6 1.8 2
Allocation ratio n0/nj

J=2, N=816

.785

.79

.795

.8

.805

O
ve

ra
ll 

po
w

er

1 1.5 2 2.5 3
Allocation ratio n0/nj

J=3, N=1172

.75

.76

.77

.78

O
ve

ra
ll 

po
w

er

1 2 3 4
Allocation ratio n0/nj

J=4, N=1545

.72

.73

.74

.75

.76

O
ve

ra
ll 

po
w

er

1 2 3 4 5
Allocation ratio n0/nj

J=5, N=1920

4.4.9 Optimal allocation – adding a treatment arm – treatments

finish recruiting simultaneously

Assuming the trial starts with two treatment arms, an experimental and a control arm,

randomising 1:1. An additional treatment arm is added after 200 patients have been ran-

domised to the control or the original treatment group. Based on this design, following
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the steps in Section 4.2.4, 922 patients are required.

Up to the time point that the new treatment arm is added, the optimal allocation

is 1:1, treatment to control. Since randomisation continues to all arms until the end of

the study, controls randomised before the new treatment arm is added will not be used

in the new treatment to control comparison, but all controls will be used for the original

treatment to control comparison.

The total sample size is fixed at 922 patients (274 patients per group +100 extra con-

trols). This is the sample size required to obtain 90% marginal power for both treatment

comparisons and control the FWER at 2.5% when using 1:1:1 allocation. This design has

an overall power of 0.822.

For the optimisation we initially use a correlation of 0.317 which gives a critical value

using the Dunnett correction of 2.229. Taking into account the 200 patients that have

already been randomised, the optimal allocation ratio is calculated from when the new

treatment arm is added. The remaining number of patients to be randomised when the

new treatment arm is added are 722. Numerically optimising the overall power and iter-

ating gives a final allocation ratio for the second stage of 1.236:0.566:1, control:original

treatment:new treatment. This gives the following sample sizes in each of the treatment

groups: 258 for the new treatment; 246 for the original treatment and 419 controls (319

for the treatment 2 to control comparison). The overall power here is 86.24% and the

marginal power is 91.23% for the new treatment to control comparison and 93.43% for the

original treatment to control comparison. This design controls the FWER at the 2.5%.

The Dunnett critical value used in the final analysis is 2.225. Figure 4.9 illustrates this

design.

Figure 4.10 illustrates the overall power obtained for different allocation ratios to control

and the original treatment arm with respect to the new treatment arm. This is the

allocation used once the new treatment arm is added, prior to this, allocation is 1:1

original treatment:control.

4.4.10 Optimal allocation – adding a treatment arm – treat-

ments finish recruiting at different times

Reducing allocation to the original experimental treatment arm when the new treatment

arm is added delays learning about the effect of the original treatment arm and may affect

patient accrual. Patients may be more willing to participate in the trial if they have equal

chance of receiving either of the experimental treatments. This section assumes the trial

starts with two treatment arms randomising 1:1. An additional arm is added after 200
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Figure 4.9: Example of adding a single experimental treatment arm to a two-arm trial
comparing treatment 1 to control. The first dashed vertical line represents when the
new treatment arm (treatment 2) is added to the trial. The second dashed vertical line
represents when all treatments finish recruiting. The allocation ratio is adapted when
treatment 2 is added and all treatments finish recruiting simultaneously. The allocation
ratios and sample sizes in each stage for each treatment are displayed.
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patients have been randomised to either the control or the original treatment arm. Here,

once the new treatment arm is added, randomisation continues at the same rate to both

experimental treatment arms.

The total sample size is fixed at 922 patients (274 patients per group +100 extra con-

trols). This is the sample size required to obtain 90% marginal power for both treatment

comparisons and control the FWER at 2.5% when using 1:1:1 allocation.

For the optimisation, the initial correlation estimate is 0.317, which gives a critical

value using the Dunnett correction of 2.229. Taking into account the 200 patients that

have already been randomised, the optimal allocation ratio is calculated from when the

new arm is added. The remaining number of patients to be randomised when the new

treatment arm is added is 722. The optimal allocation ratio to control in stage two and

the number of patients to be randomised to treatment two in stage three are then found

that maximise the overall power.

After iteration, the overall power is maximised when the allocation ratio in the sec-



Chapter 4 Adding a treatment arm to an ongoing trial 193

Figure 4.10: Overall power for different sample size ratios of control to treatment 2 and
treatment 1 to treatment 2 in stage 2 of the trial when all treatments finish recruiting si-
multaneously and the total sample size is fixed at 922 patients. Allocation is 1:1 treatment
1 to control prior to the addition of treatment 2 to the trial.
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ond stage is 1.758:1:1, control:treatment 1:treatment 2 and 71 patients are randomised to

treatment 2 with 1:0.5 allocation, treatment 2 to control in stage three. This gives the

following sample sizes in each stage of the trial:

Stage 1 – 100:100, control:treatment 1

Stage 2 – 289:164:164, control:treatment 1:treatment 2

Stage 3 – 36:71, control:treatment 2

With 389 controls for the treatment 1 comparison and 325 controls for the treatment

2 comparison. The overall power is 85.20%. The marginal power is 89.83% for the new

treatment to control comparison and 93.74% for the original treatment to control com-

parison. This design is illustrated in Figure 4.11. For a larger number of treatment arms

where changes in the correlation have a larger impact on the critical values obtained, a

larger number of iterations may be required, only a few iterations were required for the

examples considered here.

All of the optimal allocation methods considered achieve higher overall power com-

pared to an equal allocation (overall power for equal allocation is 82.2%) design for the
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Figure 4.11: Example of adding a single experimental treatment arm to a two-arm trial
comparing treatment 1 to control. The first dashed vertical line represents when the new
treatment arm (treatment 2) is added to the trial. The second dashed vertical line rep-
resents when treatment 1 finishes recruiting and the third dashed vertical line represents
when treatment 2 and control finish recruiting. The allocation ratios are adapted when
treatment 2 is added to the trial and again when treatment 1 finishes recruiting. The
allocation ratios and sample sizes in each stage for each treatment are displayed.
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Table 4.3: Allocation ratios, overall power and sample size comparisons for the adding
a treatment arm design using optimal allocation when treatments finish recruitment at
different times. The total sample size of the trial is based on an adding a treatment arm
design with 1:1:1 allocation design with marginal power of 90% and FWER of 2.5%.

Stage 3 ratio Stage 2 ratio n23 Correlation Overall power
1:0.2 2.015:1:1 100 0.170 0.852
1:0.3 1.932:1:1 93 0.176 0.850
1:0.4 1.856:1:1 85 0.181 0.848
1:0.5 1.791:1:1 78 0.186 0.847
1:0.6 1.730:1:1 71 0.191 0.845
1:0.7 1.678:1:1 64 0.197 0.844
1:0.8 1.632:1:1 58 0.202 0.843

same sample size. The power calculations are based on the unrounded optimal sample

size estimates. The sample sizes are then rounded for each stage which may affect the

operating characteristics slightly. An alternative approach, not considered here, would be
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to try integer sample sizes around the non-integer sample size found to determine which

gives the highest overall power for the design. Table 4.3 compares the overall power for

different fixed stage 3 allocation ratios and Figure 4.11 illustrates the design for the stage 3

fixed allocation ratio of 1:0.5, treatment to control. The marginal power for the treatment

2 to control comparison can be less than the marginal power obtained when using 1:1:1

allocation under this design where the allocation ratios are adapted and the original ex-

perimental treatment can finish recruitment before the new experimental treatment arm

finishes recruitment, since the optimal allocation is determined that maximises the overall

power. The gain in power from the treatment 1 to control comparison can outweigh that

of the treatment 2 to control comparison. Furthermore, placing a higher constraint on

the number of controls that are to be randomised in stage 3 of the trial, results in less

patients being randomised to both treatment 2 and control in stage three and a larger

number of patients being randomised in stage 2.

4.5 Bayesian design – adding a treatment arm during

the trial with the Dunnett correction

Adaptive trial designs and the idea of utilising all relevant information considered in ear-

lier chapters fit more comfortably into a Bayesian framework. It is therefore of interest

to consider the multiple testing approaches and methods for adding a treatment arm into

an ongoing trial in a Bayesian framework.

A Bayesian approach comparable to the frequentist approach proposed by Dunnett

[39] for comparing multiple experimental treatments with a common control has recently

been proposed in the literature [40]. This approach is described in more detail in Chapter

1. It is shown in [40] that the sample sizes required under a Bayesian design are analogous

to a frequentist multi-arm trial design where the total sample size per treatment group

is formed from the prior effective sample size plus the number of patients in the current

trial for that treatment group.

Assuming that the sample sizes (prior + current sample size) in each experimental

treatment arm are equal, in a Bayesian framework inference is made on the posterior

distribution of the treatment difference. For a standard three arm trial design with all

treatments recruiting from the start of the trial and all controls overlapping, the covariance

of the treatment difference is given by,

Cov(µ
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1 − µ

(1)
0 , µ

(1)
2 − µ

(1)
0 ) = Cov(µ

(1)
0 , µ

(1)
0 ) = Var(µ
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0 ) = ((n

(0)
0 + n0)v)−1,
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where µ1
j = (µ0

jn
0
j +njx̄j)/(n

0
j +nj) is the posterior mean for treatment j. n

(0)
j denotes the

prior effective sample size for treatment j and nj denotes the sample size in the current

trial for treatment j. v = 1/σ2 denotes the precision. This is analogous to the covariance

of the treatment differences from the frequentist design.

Assuming the same design for adding a treatment arm as in Section 4.2.4. The main

difference in the Dunnett adjustment for a standard multi-arm trial and when adding a

treatment arm to the trial is the covariance between the mean differences (or the corre-

lation as considered in previous sections). If the sample sizes in all treatment groups are

assumed to be equal and allocation is 1:1 or 1:1:1 to all treatments throughout the study,

it can be shown that in the Bayesian framework, when adding a treatment arm during the

trial, the covariance between treatment mean differences is given by (using the notation

in Figure 4.3 for the current trial sample sizes),
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where n
(0)
0 + n01 + n02 is the number of controls used for the first treatment comparison

(prior+current data) and n
(0)
0 + n02 + n03 is the number of controls used for the second

treatment comparison. n
(0)
0 +n02 represents the number of controls used in both treatment

comparisons. This is consistent with the frequentist approach, given in Equation 4.5, with

the control sample sizes replaced by the total information (prior + trial sample sizes)

rather than just the current trial sample size. For unequal sample sizes in each treatment

group, the covariance is given by,
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All results for adding a treatment arm considered earlier in this chapter can be for-

mulated in a Bayesian framework. The only difference is that the current trial sample

sizes are replaced by the total information (prior + trial sample sizes). For the sample

size calculation, only the prior sample sizes are used, however this approach allows the

prior estimates to be used in the final analysis. In this design the standard deviation is

assumed known, but the final analysis will use the sample variance estimates. Therefore,

the properties of the design may not hold if the assumptions about the standard deviation

were incorrect.
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We did not explore this design in much detail since it is a bit strange to only use con-

current controls in a Bayesian framework because of the likelihood principle [17]. However,

it is interesting to note that the results are the same in a Bayesian framework as in the

frequentist framework.

4.6 Discussion

In this chapter we have explored how to design a trial where a treatment arm is added

part way through. It was assumed that the trial initially started as a standard two-arm

randomised controlled trial comparing an experimental treatment to a standard of care

with 1:1 allocation. The setting considered here is a confirmatory trial where it is recom-

mended that for a single trial with two or more experimental treatments, control of the

FWER is required [35]. In this chapter we have assumed that the new treatment arm is

added based on external reasons and not based on outcome data from the current trial.

Furthermore, it was assumed interest lies in the comparison of each experimental treat-

ment to control, the experimental treatments are not directly compared. Whether control

of the FWER is required under these assumptions has been widely discussed [29, 33, 34].

The main argument for not adjusting for multiplicity is that if the same two comparisons

were made in separate trials, controlling the FWER would not be required. The use of

the same control group in both treatment comparisons in a multi-arm trial is an argument

for controlling the FWER. It has been considered that due to random chance the control

group in a multi-arm trial could over or underestimate the true treatment effect. This

control group is then used for all treatment to control comparisons [33]. An increase in

sample size to achieve control of the FWER will reduce some of the sample variation in

the controls. Since the regulatory advice is to control the FWER in this setting, this was

the approach considered in this chapter.

To determine the optimal allocation ratio, it was assumed that the total sample size of

the study was fixed. Based on this total sample size, the optimal allocation for the remain-

ing patients to be randomised after the treatment arm was added was determined. The

allocation ratio was determined that maximised the probability of detecting a treatment

effect in both arms. This was chosen because we assumed that the expected treatment

effect in all experimental arms was the same. In this case, the marginal power will either

increase or be similar to the marginal power in the design assuming equal allocation to

all treatment arms. The marginal power may be lower than desired if the overall power

is used for optimisation of the allocation ratio and the treatment effects are assumed to

differ in each of the experimental arms. Where the treatment effects are assumed to differ,

optimisation can be based on maximising the probability of there being no type I errors

as in the original Dunnett paper [39] or the probability that there is a treatment effect in

at least one of the treatment arms. The methods described in Section 4.3.2 can be used
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in both of these situations.

In this chapter, two definitions of power in multi-arm trials have been considered,

detecting a particular effective treatment compared to control, the marginal power and the

overall power, the probability of rejecting all false null hypotheses, where both treatments

have been effective. The definition of power will depend on the study objectives. Whether

that is to determine all treatments better than control, any treatment better than control

or the best treatment.

4.6.1 Concurrent controls

Current practice in clinical trials that have added a treatment arm is to use only concur-

rently randomised controls for each treatment to control comparison [32]. One reason for

this is to preserve randomisation. Incorporating control data from the first stage in the

second treatment control comparison is utilising non-randomised information into that

comparison. A second reason is that the patient population may differ before and after

the treatment arm has been added. Incorporating the first stage control data into the

second treatment comparison could then bias the treatment effect estimate for treatment

two. Depending on the possible types of change that occur when a new treatment arm is

added, this may affect the original treatment to control comparison. However, the use of

only concurrent controls guards against some possible biases or loss of power that could

occur from adding a treatment arm to an ongoing study. This is discussed in Section 4.6.2.

Possible reasons for a change in the patient population when the new treatment arm

is added are: a change in patient characteristics, patients may be more willing to be ran-

domised with the possibility of receiving two experimental treatments; a change in baseline

characteristics over time; and clinicians are more willing to randomise patients higher or

lower risk patients into the trial because of their expectations of the new treatment.

4.6.2 Analysis

For the designs considered in this chapter it was assumed that the patient population

is homogeneous across stages. The final analysis assumed a z-test for each treatment

comparison, pooling data across stages but only using concurrent controls and assuming

that the population variance is known. In reality, the population variance would not be

known, however for large samples as are likely in a confirmatory trial, the z-test is ade-

quate. However, if the approximation of the standard deviation was inaccurate this will

affect the operating characteristics of the trial.

If it is thought that adding a treatment during the trial may alter the trial in some

way, causing a stage effect, adjustment for stage or treatment by stage interactions may
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be required using a linear regression approach. This method is described by Elm et al.

[30] and may reduce the power of the study. The effect of different stage effects was not

explored here but was considered in [30]. This paper shows that a linear model adjusting

for stage was a more powerful analysis approach when a stage effect was present compared

to a pooled analysis. This paper considered a random stage effect and the allocation ratio

was adjusted when the new treatment arm was added so all treatments finished recruiting

at the same time.

A few considerations on stage effects are, if 1:1 allocation is maintained to all treatment

arms throughout the study, for a stage effect that changes all treatment groups when the

new treatment arm is added, a pooled analysis using concurrent controls will not bias

the treatment effect estimates. If 1:1 allocation is used and there is a stage effect in the

control group only, only the original treatment effect estimate will be affected. A stage

effect in the control arm only could be caused by patient drift, as is seen in antibacterial

trials. In this case a treatment by stage interaction would be required. If there are

any stage effects and the allocation ratio is adapted, adjusting for stage and a stage by

treatment interaction will be required to obtain an unbiased treatment effect estimate for

the original treatment to control comparison.

4.6.3 Bayesian design

As described in Section 4.5, the theory of designing a trial where a treatment arm is

added to an ongoing study and the design is adapted to control the operating characteris-

tics in a frequentist framework hold in the Bayesian methodology. However, the Bayesian

paradigm is to combine all sources of evidence and relevant information. In the frequen-

tist design we only consider the use of concurrently randomised controls in each of the

treatment comparisons, whereas a fully Bayesian design in this setting would consider

all trial information and prior information before the trial started. In a fully Bayesian

design the controls randomised in stage one would be used for the second stage treat-

ment to control comparison. This is equivalent to pooling the data across stages of the

trial. Throughout the thesis we have used the Bayesian framework to borrow information

whilst considering the consequences on the operating characteristics. Since control of the

frequentist operating characteristics is required for regulatory approval. The Bayesian

design was considered in Section 4.5 with the use of only concurrent controls since there

is an advantage of the Bayesian approach in terms of the ease of interpretation of the

parameters values in a Bayesian setting.

4.6.4 Historical data and non-concurrent controls

When adding a treatment arm to an ongoing clinical trial there are two types of relevant

non-randomised data. External historical data from a previously run trial (usually for the
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control treatment only) and the first stage control data before the new treatment arm is

added. Both of which could be considered historical data. Following current practice, the

first stage controls would not be used in the second treatment comparison.

Ideally, controls randomised before the new treatment arm is added would be used

in the new treatment control comparison to gain power. If the original treatment arm

finishes recruitment before the new treatment arm, there will also be non-concurrent con-

trols for the original treatment.

Historical data methods compare the current and historical data. When there is dis-

agreement, the historical data are down-weighted in favour of the results from the current

trial. This approach is not applicable with non-randomised comparison data from within

the same trial.

However, based on the assumption that it is pre-planned to add a treatment arm dur-

ing the study. An interesting design that could be explored would be a two-stage design

where external historical control data replace some current controls yet to be randomised

up to the time point the new treatment arm or arms are added. The agreement between

the first stage controls and historical data will determine how many current controls are

randomised in stage 1. Using this approach more controls will be randomised in stage 2 of

the trial and therefore more concurrent controls will be available for all treatments. The

second stage control data can then be compared with the combined first stage current

control data and the historical data. Where the data from the first and second stage are

similar they can be pooled and when they differ, the first stage data can be discounted.

The historical data used in the first stage could then be used in the final analysis if it

is in agreement with the second stage data or discounted using historical data methods

if not. If population drift is anticipated in the control arm, as is the case in antibiotic

trials where patients become resistant to standard treatments, then this approach may

be beneficial.
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Summary and future research

5.1 Summary of thesis

This thesis focuses on designs to improve efficiency of clinical trials over the standard

confirmatory two-arm randomised controlled trial. The main aims of the proposed de-

signs are to either increase the power of the current trial or reduce the number patients

required in the current trial and therefore the duration of the trial. Reducing the num-

ber of patients required in a confirmatory trial allows treatments to proceed through the

development process more quickly and therefore patients can benefit from treatments

earlier than if a standard trial design were used. In disease areas where recruitment is

challenging, these designs may allow trials to be run that were previously infeasible. We

consider two approaches for improving the efficiency of clinical trial designs, utilising his-

torical data and adding a treatment arm to an ongoing trial. The uptake of historical

data methods has been low, possible reasons for this are: the risk of a loss of power or

inflation in type I error in the current trial when the historical and current control data

do not agree; a lack of understanding of historical data methods by clinicians and statis-

ticians; and a lack of software available to implement historical data methods. Another

example of gaining efficiency in a clinical trial is to add an extra treatment arm to an

ongoing trial. Recent trials have implemented adding a treatment arm, however, the de-

sign and analysis implications of adding a treatment arm have not been fully explored [32].

Chapters 2 and 3 focus on historical data methods, specifically when there is one his-

torical study available. The aim of the adaptive design proposed is to replace current

control patients yet to be randomised with historical control data when the current and

historical control data agree, reducing the number of controls to be randomised in the

current study. As the disagreement between the historical and current controls increases,

the adaptive design discounts the historical data and reverts back to a standard trial

design to minimise the loss of power and the inflation in type I error.

201
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Chapter 2 initially explores three methods proposed in the literature for incorporating

historical data into the design and analysis of the current trial when the outcome data

are binary. The methods considered are: power priors [15, 71] using a fully Bayesian

approach or a summary measure of the marginal posterior distribution of the power as a

fixed weight; the commensurate prior [19] and the robust mixture prior [23]. The limita-

tions of these approaches were discussed extensively in Chapter 2. The main limitations

were: the choice of prior on the “borrowing” parameter; calculating the effective histori-

cal sample size when using the adaptive design; and the computation time in calculating

the operating characteristics of the design. The choice of prior for each approach was not

intuitive in the amount of historical data that was incorporated into the final analysis and

strong priors were required on the “borrowing” parameters to ensure a sufficient amount

of historical data was incorporated into the final analysis when the historical and current

controls were in agreement. For the adaptive design, at the interim analysis, it is required

to calculate the effective historical sample size, but this is difficult for the fully Bayesian

version of the power prior, the commensurate prior and the robust mixture prior. Fi-

nally, determining the operating characteristics for the commensurate prior and the fully

Bayesian power prior and the effective historical sample size for the robust mixture prior

were computationally intensive. Of the methods considered, the power prior approach

with a fixed power weight was the simplest and most intuitive way to incorporate histori-

cal data into the current trial design and analysis. Choosing the weight for the historical

data requires careful consideration.

From exploring historical data methods previously proposed in the literature, the most

important factors for the design of a trial incorporating historical data were: a method

to assess the agreement between historical and current control data that is intuitive to

describe to clinicians and easy to calculate; the operating characteristics of the design

need to be quick to calculate and the approach needs to allow control over the maximum

possible type I error rate across all true control response probabilities. Control of the max-

imum type I error is important for the design to obtain regulatory approval, although in

rare diseases the maximum type I error can be relaxed. The proposed equivalence weight

approach for assessing agreement along with the analysis approach of the power prior with

a fixed weight meets these criteria. The equivalence bounds allow discussion with clin-

icians about the acceptable range of agreement between historical and current controls

and allows control over how much historical data are borrowed at complete agreement

and how quickly the historical data are discounted as the difference between the current

and historical controls increases. The equivalence weight is used as a fixed power in the

analysis approach of the power prior. The initial priors for the response probabilities are

chosen to be beta distributions with integer parameter values. The probability that the

response probability in the treatment group is greater than the response probability in the

control group can then be calculated quickly and exactly using the iterative procedure de-
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scribed by Cook [55]. The operating characteristics for the adaptive design incorporating

historical data can then be calculated exactly and quickly. Finally, equivalence bounds

can be determined that control the maximum type I error rate at the desired level.

In Chapter 2 the historical data methods explored are: power priors; commensurate

priors and robust mixture priors. Chapter 3 explores these historical data methods when

the outcome data are normally distributed. For normally distributed outcome data, both

differences in the means and the variances between the historical and current control

data are considered important when assessing agreement. Chapter three explores the

limitations of published historical data methods when the outcome data are normally

distributed. Many of the limitations of historical data methods found for binary data

hold for normally distributed outcome data. The commensurate prior and the robust

mixture prior seem to be “black box” approaches. Both models can be fitted for nor-

mally distributed data, however the choice of prior on the borrowing parameter for the

commensurate prior and the prior parameters for the robust mixture prior are difficult to

choose. The approaches for determining the effective sample size of the historical data

have not been explored for the commensurate prior and robust mixture prior approaches

when assuming unknown mean and variance in the current and historical data. Again, it

was found that the most intuitive approach to incorporate historical data into the design

and analysis of the current trial was to use the power prior approach with a fixed power.

The equivalence weight approach for assessing agreement between the historical and

current controls is slightly more complicated for normally distributed data than the bi-

nary data case. For normally distributed outcome data, the equivalence weight is based

on the marginal posterior distributions of the difference in the means and the ratio of

the variances in the current and historical control data. The equivalence weight allows

control over the amount of historical data borrowed and the rate of discounting. By fixing

the equivalence bounds on the ratio of the variances, the mean equivalence bound can

be chosen to cap the maximum possible inflation in the type I error rate across all true

control means.

There are a few disadvantages to the equivalence weight approach for normally dis-

tributed outcome data: the operating characteristics cannot be calculated exactly, there-

fore simulation is required; it can be difficult to choose and interpret equivalence bounds

for a variance parameter; and when the sample sizes in the historical and current controls

differ, choosing equivalence bounds of the form (δφl ,1/δφl) does not give maximum weight

to the historical data when there is complete agreement in the sample variances. However,

in practice, the maximum weight obtained for the variance component of the equivalence

weight and the weight obtained at complete agreement in the sample variances have been

very similar in the examples considered. With one historical study, the difference in sam-
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ple sizes between the current and historical controls is likely to be small.

Finally, Chapter 4 looked at adding a treatment arm to an ongoing trial. An iterative

procedure is proposed that re-calculates the sample size required in all treatment groups

of the trial when a treatment arm is added during the study with the aim of controlling

the family-wise error rate. The Dunnett procedure [39] is used which compares multiple

experimental treatments to a single control and the correlation is adjusted to account for

only concurrent controls being used in each treatment to control comparison. Adding

a treatment arm to an ongoing study is compared to running a separate trial for each

experimental treatment in terms of the total number of patients required if the error rate

is required to be the same for each separate trial and the multi-arm trial. Finally, given

a fixed number of patients, the optimal allocation ratios to each treatment are explored

that maximise the overall power of the study when a treatment arm is added during the

trial.

5.2 Future research

The methodology presented in Chapters 2 and 3 describes the equivalence weight approach

for assessing agreement between historical and current controls for binary and normally

distributed outcome data. Further work is needed to apply this approach to other types

of outcome data. Neither ordinal nor survival data have been considered. For survival

data, there is the added complication of censoring and equivalence could be assessed us-

ing the Kaplan Meier curves, the logrank test or the hazard ratios. The concept of the

equivalence approach is the same for all types of outcome data, however each requires a

different implementation and careful thought is required on how to define equivalence for

each type of outcome.

In this thesis we have focused on the specific problem of having only one relevant

historical study. Both having one historical study and having multiple historical studies

have their own complications. For only one historical study, it is not possible to obtain an

estimate of the between study heterogeneity. Where there are multiple relevant historical

studies, there will not only be heterogeneity between the historical studies and the current

control group but also between the historical studies themselves. The historical studies

need to be combined and the heterogeneity between the studies determined. When there

is one historical study, the effective historical sample size is simply the sample size of the

historical study. When there are multiple historical studies, the effective historical sample

size incorporates the heterogeneity between the historical studies, increased heterogeneity

reduces the effective historical sample size [12]. How to combine multiple historical studies

and given the heterogeneity between them determine how much information is contained

in the historical data is a complicated process. The combined historical data then has
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to be compared to the current control data and incorporated into the current trial analysis.

Schmidli et al. [23] propose first performing a meta-analysis of the historical studies

and using the meta-analytic predictive distribution as a prior for the current study. One

historical distribution is then compared to the current controls. This approach takes into

account the heterogeneity between the historical studies by a reduced prior effective sam-

ple size and as with the robust mixture prior, the meta analysis predictive distribution

is discounted when there is prior data conflict. An alternative approach to incorporating

multiple historical control studies into the design and analysis of the current trial is to

consider each historical study separately. The agreement between each historical study

and the current control arm is assessed. The historical studies can then be incorporated

into the final analysis each with their own weighting parameter, this approach is proposed

as a way to incorporate multiple historical studies using the power prior approach [71].

Further work will explore the advantages and disadvantages of these two approaches and

how they compare in terms of how much historical data are incorporated into the final

analysis using each approach. The best approach may differ depending on the number of

historical studies. For a small number of historical studies, where estimating the between

study heterogeneity is difficult, incorporating the studies individually may be the best

approach. For many historical studies a meta-analysis approach may be best.

The advantage of incorporating historical data into both the design and analysis of a

current study is that it allows fewer control patients to be randomised in the current study

if the historical and current controls agree. Sequential designs that allow early stopping

for efficacy and/or futility also allow the possibility for fewer patients to be randomised

in the current trial. An area of interesting future work would be to compare the expected

total sample size for the equivalence approach utilising historical data to both frequentist

and Bayesian sequential designs. Historical data methods and sequential designs could

potentially be used in combination.

The examples considered here were consistent with a confirmatory trial design in terms

of the operating characteristics chosen and therefore the required sample size. We did not

explore how the methods worked when the current study was an early phase trial design,

which typically have a smaller sample size and allow a higher type I error rate. Further,

we did not consider multiple historical studies and a setting where there is a large amount

of historical data compared to the sample size of the current control arm. Therefore fur-

ther work would look at the effect of different sample sizes in the historical and current

trial and trials with different design characteristics. The adaptive design considered in

Chapters 2 and 3 only incorporated one interim analysis. As data on the current control

arm accrues, the accuracy of the estimate of the agreement between the historical and

current controls will also improve. Possible future work could look at the optimal time to
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perform the interim analyses and the optimal number of interim analyses that are required

to improve the efficiency of the design but still allow the design to be logistically plausible.

In the recent literature, alternative approaches have been proposed for determining

the power when using the power prior method. An empirical Bayes approach has been

proposed by Gravestock and Held [72]. This approach is similar to deriving the weight as

the mode of the marginal posterior distribution of the power under a flat Beta(1,1) prior.

Ibrahim et al. [71] propose various methods to facilitate the choice of a fixed power for

a normal linear model, these are: a penalized likelihood type criterion; marginal likeli-

hood criterion; deviance information criterion; and pseudo-marginal likelihood criterion.

Finally, Pan et al. [73] propose the calibrated power prior where the power is defined

as a function of a congruence measure between the historical and current data. Future

work would compare these approaches to the equivalence weight approach proposed in

this thesis.

In Chapter 4, it was assumed that the treatment effect to detect, comparing each of

the experimental treatments to control, was the same for all treatments. This may not

be a plausible assumption for some designs and it is of interest to determine the optimal

allocation ratios to each treatment group in terms of power when the assumed treatment

effects differ. A further assumption made in Chapter 4 was that all the treatments were

of equal importance and the aim was to detect whether any or all treatments were better

than control. If the aim was to detect the best treatment then the power would depend

on the mean effect of the best treatment and the mean effect of all other experimental

treatments. Future work could look at adding a treatment arm and optimal allocation to

detect the best treatment.

To determine the optimal allocation ratio after a new treatment arm has been added to

the trial, we have assumed that the patient population is homogeneous across stages. Elm

et al. [30] looked at different analysis methods, specifically: pooling data across stages;

regression adjusting for stage; and combination p-value methods. Elm et al. [30] explored

the performance of these methods when the assumption that the patient population is

homogeneous across stages was not true. They consider the stage effect to be random

and affecting all treatment groups. It is of interest to see how stage effects may affect

the operating characteristics when a treatment arm is added during the trial. Finally,

the design and analysis for adding a treatment arm to a trial considered in Chapter 4

only used concurrently randomised controls for each treatment comparison. “Historical”

control data from within the same trial meets all of Pocock’s [11] criteria for acceptable

historical data and future work will look at ways to incorporate this data into the new

treatment control comparisons when a treatment arm has been added during an ongoing

trial.
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5.3 Conclusion

This thesis explores two approaches to improve the efficiency of clinical trial designs over

the standard two-arm randomised controlled trial. The first approach is to utilise histor-

ical data. An equivalence weight approach is proposed that assesses agreement between

historical and current control data and allows the study designer to specify acceptable

ranges of agreement. An adaptive design is then used which allows historical controls to

replace current controls when there is agreement between the current and historical data.

This reduces the number of controls to be randomised in the current study. When there is

disagreement, the historical data are discounted and the trial reverts back to a standard

design to safeguard against a large reduction in the power or a large inflation in the type I

error rate of the current study. The equivalence approach is explored for both binary and

normally distributed outcome data. The second approach explored to improve efficiency

is to add a treatment arm to an ongoing study. Multiple experimental treatments are

compared to concurrently randomised controls from a single control group. The sample

size of the study is increased to control the family-wise error rate using the Dunnett pro-

cedure [39], where the correlation is derived to account for the use of concurrent controls

only in each treatment comparison. The use of a single control group typically results in

a reduction in the number of controls required compared to running a separate trial for

each experimental treatment, depending on when the new treatment arm is added and

the desired operating characteristics of the design. Further, there are substantial savings

in both time and money from not having to initiate a new trial. The work of this thesis

has made the use of historical data in trial design more approachable to clinicians and

addressed concerns over family-wise error rate inflation when adding a treatment arm to

an ongoing study.
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Appendix A

Expected control sample size for the

adaptive design with a binary

outcome

Expected total control sample size across different true current

control proportions for the adaptive design using the probability

and equivalence probability weight

Section 2.5.5 explores the design characteristics of the Viele example for the adaptive

design proposed in Section 2.4.2. Figures A.1 and A.2 show the ECSS across a range

of true current control proportions for the Viele example using the adaptive design with

the probability weight and equivalence probability weight with 8% equivalence bounds,

respectively. For a range of current control response probabilities around complete agree-

ment between the current and historical data, the ECSS for the adaptive design is slightly

above the 200 patients required under a standard trial design. This increase in sample

size is due to the minimum requirement of 20 controls to be randomised in stage two of

the trial and also due to the weight given to the historical data changing from the interim

analysis to the final analysis. The ECSS is also slightly below 200 for a range of current

control proportions due to the change in the weight calculated at the interim analysis

and the final analysis. The change in the weight from the interim to the final analysis is

illustrated in Appendix B.
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Figure A.1: Expected control sample size across different true current control proportions
for the adaptive design using the probability weight approach and a standard design
incorporating no historical data. Viele example, historical data 65/100 responses, nc =
nt = 200, nc1 = 100, nmin = 20 and ∆ = 12%. The vertical red line represents complete
agreement between the historical and current control proportions.
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Figure A.2: Expected control sample size across different true current control proportions
for the adaptive design using the one-sample and two-sample equivalence probability
weight approaches with 8% equivalence bounds and a standard design incorporating no
historical data. Viele example, historical data 65/100 responses, nc = nt = 200, nc1 = 100,
nmin = 20 and ∆ = 12%. The vertical red line represents complete agreement between
the historical and current control proportions.
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Appendix B

Expected weights at the interim and

final analysis with a binary outcome

Comparison of the expected probability and equivalence proba-

bility weights across different true current control proportions at

the interim and final analysis for the adaptive design

For the adaptive design proposed in Section 2.4.2, the weight is calculated at the in-

terim analysis and this weight is used to choose how many current controls to randomise

in stage two of the trial. The weight given to the historical data is re-calculated at the

end of the trial and this weight is used to discount the historical data in the final anal-

ysis. Figures B.1 and B.2 illustrate the difference in the expected weights at the interim

analysis and the final analysis for the Viele example using the probability weight and

equivalence probability weight.

At the end of the study, when the sample size of the controls is larger than at the

interim analysis, on average the weight is slightly higher at complete agreement and

discounts to zero at a quicker rate than at the interim analysis. The difference between the

equivalence weight at the interim and final analysis differs depending on the equivalence

bounds chosen.
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Figure B.1: Expected probability weight at the interim analysis and at the end of the study
for the adaptive design. Viele example, historical data 65/100 responses, nc = nt = 200,
nc1 = 100, nmin = 20 and ∆ = 12%. The vertical red line represents complete agreement
between the historical and current control proportions.
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Figure B.2: Expected equivalence probability weight at the interim analysis and at the
end of the study for different equivalence bounds for the adaptive design. Viele example,
historical data 65/100 responses, nc = nt = 200, nc1 = 100, nmin = 20 and ∆ = 12%.
The vertical red lines represent complete agreement between the historical and current
control proportions.
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Appendix C

Power at agreement for different

equivalence bounds with a binary

outcome

Power at agreement in the historical and current controls for dif-
ferent equivalence bounds with a binary outcome

Section 2.5.6 explores how to choose the equivalence bounds to control the maximum

type I error across all true control response probabilities in the current study. Figure C.1

shows the power at complete agreement between the historical and current controls for

different equivalence bounds. Smaller equivalence bounds result in less gain in power at

agreement between the current and historical controls but also result in a lower maxi-

mum type I error when there is disagreement between the current and historical controls.

The power at complete agreement in the current and historical controls versus the maxi-

mum type I error across all true current control response probabilities is the trade off in

choosing the equivalence bounds. The curves in Figure C.1 are not smooth due to the

rounding up of the effective historical sample size in the additional information design

and the rounding up in calculating both the remaining controls to be randomised in stage

two of the adaptive design and when re-calculating the effective historical sample size at

the end of the study for the adaptive design. Typically, larger equivalence bounds should

give a larger power at complete agreement between the current and historical controls.

This is at the expense of a higher maximum type I error across all true control proportions.
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Figure C.1: Power at complete agreement in the historical and current controls for differ-
ent equivalence bounds for the additional information and adaptive design, Viele example.
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Appendix D

Fully Bayesian power prior with a

binary outcome

Comparison of the power and type I error of the fully Bayesian
power prior and the power prior taking the mean of the marginal
distribution of the power as a fixed weight

Figure D.1 compares the power and type I error of the additional information design

for the Viele example when using the fully Bayesian version of the modified power prior

and when taking the mean of the marginal distribution of α0 as a fixed power, both

modified power prior approaches are described in Section 2.2.1. The power is assumed to

have a Beta(1,1) prior. Beta(1,1) priors are also assumed for the control and treatment

response probabilities. The joint posterior distribution for pc and α0 is given in Equation

2.2. The Pr(pt > pc) is then calculated using numerical integration,

Pr(pt > pc) =

1∫
0

1∫
pc

1∫
0

π(pc, α0 | xh, yh, xc, yc)π(pt | xt, yt)dα0dptdpc

The power and type I error are then calculated using Equation 2.14. Using this process

to determine the operating characteristics of a design is computationally intensive.

From Figure D.1, the operating characteristics have a similar pattern for the fully

Bayesian modified power prior and the modified power prior using the mean of the

marginal distribution of the power as a fixed weight, when a Beta(1,1) prior is assumed

for the power. The fully Bayesian modified power prior has a lower maximum type I error

across all true current control proportions compared to the modified power prior using

the mean of the marginal distribution of the power as a fixed weight, this is likely to be

due to the large uncertainty in estimating α0 as shown by the 95% credible intervals for

α0 in Table 2.2. Using the fully Bayesian version of the power prior does not provide a
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Figure D.1: Comparison of the power and type I error across different true current control
proportions for the additional information design using the fully Bayesian modified power
prior approach, the modified power prior taking the mean of the marginal distribution
of α0 as a fixed power and a standard design incorporating no historical data. Viele
example, historical data 65/100 responses, nc = nt = 198, ∆ = 12%. The vertical red
lines represent complete agreement between the historical and current control proportions.
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Appendix E

Adaptive design example using the

robust mixture prior and the power

prior with a binary outcome

Adaptive design – frequentist operating characteristics for the
Viele example using the robust mixture prior and the power prior

Figure E.1 illustrates the operating characteristics for the adaptive design using the ro-

bust mixture prior approach. Calculating the expected control sample size (incorporating

both the current controls and historical data) at the end of the study is computationally

intensive using the robust mixture prior and therefore only the expected current control

group sample size (which only requires calculating the ESS at the interim analysis) is

calculated. Figure E.2 shows the operating characteristics for the adaptive design using

the power prior approach with different priors on the power. Finally, Figure E.3 shows the

expected weight given to the historical data at the interim analysis and the final analysis

for the Viele example using the modified power prior with different priors on the power.
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226 Appendix E Adaptive design example – robust mixture prior and power prior

Figure E.1: Comparison of the power, type I error, mean squared error and expected cur-
rent control sample size across different true current control proportions for the adaptive
design using the robust mixture prior approach with 0.9 and 0.5 initial weight on the
informative component of the mixture prior and a standard design incorporating no his-
torical data. Viele example, historical data 65/100 responses, nc = nt = 200, nc1 = 100,
nmin = 20 and ∆ = 12%. The vertical red lines represent complete agreement between
the historical and current control proportions.
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Figure E.2: Comparison of the power, type I error, mean squared error and expected
current control sample size across different true current control proportions for the adap-
tive design using the power prior, assuming different priors on the power and a standard
design incorporating no historical data. Viele example, historical data 65/100 responses,
nc = nt = 200, nc1 = 100, nmin = 20 and ∆ = 12%. The vertical red lines represent
complete agreement between the historical and current control proportions.
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Figure E.3: Expected power prior weight at the interim analysis and at the end of the
study for the adaptive design with different priors on the power. Viele example, historical
data 65/100 responses, nc = nt = 200, nc1 = 100, nmin = 20 and ∆ = 12%. The
vertical red lines represent complete agreement between the historical and current control
proportions.
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Appendix F

Equivalence probability weight

example with a normally distributed

outcome

Additional information and adaptive design - frequentist oper-

ating characteristics example using the equivalence probability

weight with a normally distributed outcome

The following figures illustrate the design characteristics for the additional informa-

tion and adaptive design using the equivalence probability weight approach with mean

equivalence bounds of ±8 and variance equivalence bounds of (0.7,1/0.7), analogous to

Figures 3.22 and 3.25, respectively.
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230 Appendix F Equivalence probability weight example

Figure F.1: Comparison of the power, type I error, mean squared error and expected
control sample size across different true means and standard deviations in the current
trial control arm for the additional information design using the corrected equivalence
probability weight approach with mean equivalence bounds ±8 and variance equivalence
bounds (0.7,1/0.7) and a standard design incorporating no historical data. Example,
historical data x̄h = 65, σ̂h = 45, nh = 100, nc = nt = 200 and treatment effect µt =
µc + 12.

Dashed line = Standard design,Solid line = Historical data design
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Figure F.2: Comparison of the power, type I error, mean squared error and expected
current control sample size across different true means and standard deviations in the
current trial control arm for the adaptive design using the corrected equivalence probabil-
ity weight approach with mean equivalence bounds ±8 and variance equivalence bounds
(0.7,1/0.7) and a standard design incorporating no historical data. Example, historical
data x̄h = 65, σ̂h = 45, nh = 100, nc = nt = 200, nc1 = 100, nmin = 20 and treatment
effect µt = µc + 12.

Dashed line = Standard design,Solid line = Historical data design
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Appendix G

Power at agreement for different

equivalence bounds with a normally

distributed outcome

Power at complete agreement between the historical and current
controls for different equivalence bounds on the mean difference
with a normally distributed outcome

Sections 3.3.4 and 3.5.6 discuss how to choose the mean equivalence bounds to control

the maximum type I error across all true current control means. Figure 3.27 shows

the maximum type I error across a range of equivalence bounds for the mean when the

equivalence bounds on the ratio of the variances are fixed at (0.6,1/0.6). Figure G.1 shows

the power at complete agreement between the historical and current control means and

standard deviations for different mean equivalence bounds when the equivalence bounds

on the ratio of the variances are fixed at (0.6,1/0.6). Smaller equivalence bounds result in

less gain of power at agreement between the current and historical controls but also have

a lower risk with a smaller maximum type I error when there is disagreement between

the current and historical controls. The power at complete agreement in the current and

historical controls versus the maximum type I error across all true means in the current

controls is the trade off in choosing the equivalence bounds.
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Figure G.1: Power at complete agreement in the historical and current controls for dif-
ferent equivalence bounds on the mean difference when the equivalence bounds on the
ratio of the variances are fixed at (0.6,1/0.6) for the additional information and adaptive
design.
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Appendix H

Additional information design

example using the power prior with

a normally distributed outcome

Additional information design - frequentist operating character-
istics example using the modified power prior

The following figures illustrate the design characteristics for the additional information

design using the modified power prior with a Beta(1,1) prior on the power using the mean

of the marginal distribution of the power as a fixed weight, a Beta(0,5,0,5) prior on the

power using the mean of the marginal distribution of the power as a fixed weight and a

Beta(1,1) prior on the power using the mode of the marginal distribution of the power as

a fixed weight. The following figures are analogous to Figure 3.28.
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236 Appendix H Additional information design example using the power prior

Figure H.1: Comparison of the power, type I error, mean squared error and expected
control sample size across different true means and standard deviations in the current
trial control arm for the additional information design using the modified power prior
with a Beta(1, 1) prior on α0 taking the mean of the posterior distribution of α0 as fixed
weight and a standard design incorporating no historical data. Example, historical data
x̄h = 65, σ̂h = 45, nh = 100, nc = nt = 200 and treatment effect µt = µc + 12.

Dashed line = Standard design,Solid line = Historical data design
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Figure H.2: Comparison of the power, type I error, mean squared error and expected
control sample size across different true means and standard deviations in the current
trial control arm for the additional information design using the modified power prior
with a Beta(0.5, 0.5) prior on α0 taking the mean of the posterior distribution of α0 as
fixed weight and a standard design incorporating no historical data. Example, historical
data x̄h = 65, σ̂h = 45, nh = 100, nc = nt = 200 and treatment effect µt = µc + 12.

Dashed line = Standard design,Solid line = Historical data design
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Figure H.3: Comparison of the power, type I error, mean squared error and expected
control sample size across different true means and standard deviations in the current
trial control arm for the additional information design using the modified power prior
with a Beta(1, 1) prior on α0 taking the mode of the posterior distribution of α0 as fixed
weight and a standard design incorporating no historical data. Example, historical data
x̄h = 65, σ̂h = 45, nh = 100, nc = nt = 200 and treatment effect µt = µc + 12.

Dashed line = Standard design,Solid line = Historical data design
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Appendix I

Adaptive design example using the

power prior with a normally

distributed outcome

Adaptive design - frequentist operating characteristics example
using the modified power prior

The following figures illustrate the design characteristics for the adaptive design using

the modified power prior with a Beta(1,1) prior on the power using the mean of the

marginal distribution of the power as a fixed weight, a Beta(0,5,0,5) prior on the power

using the mean of the marginal distribution of the power as a fixed weight and a Beta(1,1)

prior on the power using the mode of the marginal distribution of the power as a fixed

weight. The following figures are analogous to Figure 3.29.

239



240 Appendix I Adaptive design example using the power prior

Figure I.1: Comparison of the power, type I error, mean squared error and expected
current control sample size across different true means and standard deviations in the
current trial control arm for the adaptive design using the using the modified power prior
with a Beta(1, 1) prior on α0 taking the mean of the posterior distribution of α0 as fixed
weight and a standard design incorporating no historical data. Example, historical data
x̄h = 65, σ̂h = 45, nh = 100, nc = nt = 200, nc1 = 100, nmin = 20 and treatment effect
µt = µc + 12.

Dashed line = Standard design,Solid line = Historical data design
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Figure I.2: Comparison of the power, type I error, mean squared error and expected
current control sample size across different true means and standard deviations in the
current trial control arm for the adaptive design using the using the modified power prior
with a Beta(0.5, 0.5) prior on α0 taking the mean of the posterior distribution of α0 as
fixed weight and a standard design incorporating no historical data. Example, historical
data x̄h = 65, σ̂h = 45, nh = 100, nc = nt = 200, nc1 = 100, nmin = 20 and treatment
effect µt = µc + 12.

Dashed line = Standard design,Solid line = Historical data design
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Figure I.3: Comparison of the power, type I error, mean squared error and expected
current control sample size across different true means and standard deviations in the
current trial control arm for the adaptive design using the using the modified power prior
with a Beta(1, 1) prior on α0 taking the mode of the posterior distribution of α0 as fixed
weight and a standard design incorporating no historical data. Example, historical data
x̄h = 65, σ̂h = 45, nh = 100, nc = nt = 200, nc1 = 100, nmin = 20 and treatment effect
µt = µc + 12.

Dashed line = Standard design,Solid line = Historical data design
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