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Summary 

Large individual differences in cooperative contributions are common within animal 

societies such as cooperative breeders, where helpers care for offspring which are not their 

own. Understanding this variation has been a major focus in behavioural ecology and while 

evidence has shown that individuals are capable to adaptively adjust their cooperative 

behaviours, the physiological mechanisms underlying such adjustments remain poorly 

understood. Steroid hormones are prominent candidates to regulate cooperative behaviours due 

to their ability to integrate internal physiological state and environmental stimuli to produce an 

adaptive behavioural response. In this thesis, I investigate the effects of two steroid hormones, 

Cortisol (CORT) and Testosterone (T), in the regulation of cooperative behaviours in the 

Damaraland mole-rat (Fukomys damarensis). Because these hormones are susceptible to both 

modulate and be modulated by cooperative contributions, I experimentally tested both sides of 

this relationship. I show that, despite the absence of correlation between CORT and T and 

cooperative contributions, experimental increases of cooperative contributions elevate CORT 

levels, but not T (Chapter 3). Additionally, experimental increases of CORT levels in female 

helpers raised their cooperative contributions by more than one half demonstrating the 

regulatory effect of CORT on cooperative behaviours (Chapter 4). As breeding opportunities 

are likely to affect cooperative contributions and because T is a likely candidate to mediate a 

trade-off between future reproduction and current cooperation, I tested the effects of 

experimental increases of T levels in female helpers. I show that such elevations have no 

measurable effect of aggression, dispersal tendencies (both important to attain a breeding 

position) or cooperative contributions (Chapter 5). Taken together, the results of this thesis 
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demonstrate that CORT can both respond to and regulate cooperative behaviours and suggest 

that this hormone may play a major role in the adaptive regulation of cooperative behaviour.  
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Chapter 1 

General Introduction 
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1.1 Individual differences in cooperative behaviours: evolutionary 

explanations 

Large individual differences in cooperative contributions are characteristic of animal 

societies where individuals behave to the benefit of others (Bergmüller et al., 2010; Clutton-

Brock, 2016; Komdeur, 2006). Such differences are particularly striking in the context of 

cooperative breeding (Clutton-Brock et al., 2001a; Hodge, 2007; Zöttl et al., 2016b) where a 

majority of group members known as helpers delay dispersal, forgo or forfeit reproduction, and 

help a minority of breeders in raising their young (Clutton-Brock, 2016; Koenig and Dickinson, 

2016).  

Inclusive fitness theory, which is encapsulated by Hamilton’s rule (Bourke, 2011; 

Hamilton, 1964), has provided the most valuable framework to explain why some helpers 

cooperate more than others: the expression of cooperative behaviours should be favoured 

whenever the sum of their lifetime effects on the reproductive success of the performer (C; 

C<0 for altruistic behaviour, C>0 for mutually beneficial behaviour) and their positive effects 

on the reproductive success of the recipient (B) weighted by the genetic relatedness between 

the two (r) is greater than zero (rB + C > 0).  

Empirical work has supported these predictions by revealing that cooperative 

contributions are conditional on individual, social and environmental conditions affecting the 

direct (C) and indirect (B) fitness components of cooperative behaviours (Bergmüller et al., 

2005a; Cant, 2005; Clutton-Brock et al., 2002). Individuals typically adjust their cooperative 

contributions such as to minimize the negative downstream fitness effects of the short-term 

energetic costs of cooperative activities (Boland et al., 1997; Canestrari et al., 2007; Grantner 

and Taborsky, 1998; Hodge, 2007; Lovegrove, 1989; Russell et al., 2003). They cooperate less 

when they are relatively lighter (Clutton-Brock et al., 2002; Russell et al., 2003), when food 

resources are scarce (Bell, 2010; Bruintjes et al., 2010; Nichols et al., 2012), when they have 

been more generous in the past (Russell et al., 2003; Sanderson et al., 2014), or when they 

approach reproduction (Bell, 2010; Bergmüller et al., 2005a; Cant, 2005; Gilchrist and Russell, 

2007; Young et al., 2005). In contrast, they help more when they forage more efficiently 

(Clutton-Brock et al., 2001a) and when the energetic constraints of cooperative activities are 

relaxed by supplementary feeding (Boland et al., 1997; Clutton-Brock et al., 2002; Russell et 
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al., 2003). Helpers also increase their cooperative contributions in the presence of a smaller 

workforce or when the ratio of helper to offspring is lower  (Gilchrist and Russell, 2007; Liebl 

et al., 2016; Russell et al., 2003), since the fitness benefits of each unit of cooperative 

contributions to the recipients are likely to be greater.   

1.2 Individual differences in cooperative behaviours: 

physiological explanations 

Although individuals adjust their cooperation contributions in an adaptive manner, the 

physiological mechanisms through which the fitness costs and benefits of cooperative actions 

are evaluated and the expression of cooperative accordingly fine-tuned, remain largely 

unknown. Elucidating the neural, genetic, epigenetic and neuroendocrine pathways regulating 

cooperative behaviours represents an outstanding challenge. Yet, this is needed to develop an 

integrated understanding of cooperation in nature and move the field beyond the phenotypical 

gambit that has been long-standing in the field of behavioural ecology (Rubenstein and 

Hofmann, 2015). Ultimately, a better understanding of the physiological mechanisms 

regulating cooperative behaviours has the potential to shed some light on potential constraints 

acting on the expression of cooperative behaviours (Hau, 2007; Ketterson and Nolan, 1999).  

Cooperative behaviours ultimately represent a uniform category of behaviours that 

increase the reproductive success of their recipients (West et al., 2007), but their underlying 

physiological regulatory mechanisms are likely to vary between the multiple forms they can 

take (Clutton-Brock, 2016; Koenig and Dickinson, 2016; Soares et al., 2010). While both 

helpers’ territory defence and provisioning of offspring can be viewed as cooperative, the 

aggressive display advantageous to the expression of the first may be highly inappropriate to 

the expression of the second.  

In cooperative breeders, three major classes of hormones have so far attracted most of 

the interests: the neurohormones oxytocin and vasopressin, the peptide hormone prolactin and 

the steroid hormones glucocorticoid (GC) and testosterone (T), both of which are the focus of 

this thesis. The acknowledged effect of the neurohormones oxytocin and vasopressin on social 

bonding and parental behaviours raised interest on their role in the regulation of some forms of 
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alloparental behaviour, relying on close associations with offspring (Bales et al., 2004; Madden 

and Clutton-Brock, 2011; Olazábal and Young, 2006). The role of the peptide hormone 

prolactin on the expression of alloparental care has been investigated based on its ubiquitous 

role in the regulation of parental behaviours (Carlson et al., 2006b; Ziegler, 2000). 

1.3 Individual differences in cooperative behaviours: a role for 

steroid hormones? 

Glucocorticoids and T are principally secreted by the gonads and the adrenals 

respectively, as the end-product of the hypothalamic-pituitary-adrenal (HPA, HP-interrenal 

axis in fish and amphibians) and hypothalamic-pituitary-gonadal (HPG) axes, also referred to 

as the stress and reproductive axis (Nelson, 2005). GC and T are essential regulators of 

development and exert profound and pleiotropic effects on physiology, morphology and 

behaviours (Adkins-Regan, 2005; Arnold, 2009; Nelson, 2005; Seckl, 2004). The common 

pathway through which these hormones shape phenotypes is via the formation of a complex 

with specific intracellular receptors that regulate genes’ expression. Through their capacity to 

modulate the structure and the activity of the nervous system, steroids mediate behaviours via 

the interaction of effects falling within a continuum, which extremes can be categorized as 

“organizational” and “activational”. Organizational effects are developmental effects that last 

for the entire life and usually take place during finite sensitive time-windows, often early in 

life, while activational effects are rapid, reversible and can occur at any developmental stage 

(Oliveira, 2009; Phoenix et al., 1959; Schulz et al., 2009).  

Secretions of both GC and T not only regulate genes’ expression but also integrate 

internal physiological states with behavioural and environmental stimuli, including the ones 

susceptible to shape the fitness values of cooperative actions. Indeed, GC and T profiles can 

vary with sex, developmental stage (age), food availability and nutritional status, season, group 

size, social rank and conditions (Creel et al., 2013; Hau et al., 2016; Oliveira, 2004; Sapolsky, 

2005; Wingfield et al., 1990). GC and T are particularly responsive to social conflicts during 

which their secretions are increased by the expression of aggressive behaviour (Goymann, 

2009; Landys et al., 2007; Oliveira, 2004; Ros et al., 2014) and to mating opportunities and 

behaviours (Harding, 1981).  
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Glucocorticoids are essential physiological regulators of energy balance (Landys et al., 

2006; McEwen and Wingfield, 2003) and may thus be critical to the regulation of energetically 

costly cooperative behaviours such as the ones frequently expressed by cooperative breeders. 

Glucocorticoids regulate locomotor activity, foraging behaviours and energy metabolic 

pathways (Landys et al., 2006) to ultimately allow individuals to meet the energetic demands 

imposed by both predictable and unpredictable life history events (Landys et al., 2006; 

McEwen and Wingfield, 2003). The expression of energetically demanding activities increase 

energetic needs causing an elevation in GC (Hackney and Viru, 1999; Malisch et al., 2008; 

Stranahan et al., 2008) that facilitate the mobilisation of energy stores and energy production 

(Landys et al., 2006; Sapolsky et al., 2000). Elevations in GC secretions could thus facilitate 

the expression of energetically demanding cooperative activities but an increase in the 

expression of cooperative behaviours could also raise GC secretions.  

Elevated T levels have frequently been shown to be detrimental to the expression of 

parental care (Hirschenhauser and Oliveira, 2006; Peters et al., 2002; Rilling, 2013; Rosvall, 

2013; Wingfield et al., 1990; but see: Lynn, 2008) and if the neuroendocrine mechanisms 

regulating the expression of alloparental care in helpers are derived from parental care, high T 

levels would be expected to decrease alloparenting. Studies of cooperatively breeding birds 

have supported this possibility by showing that T levels of helpers often decrease during 

provisioning stage of the chicks (Khan et al., 2001; Mays et al., 1991; Schoech et al., 2004; 

Vleck and Brown, 1999). Increased T also favours competitive abilities through heightened 

aggression, especially within the context of reproduction  (Hau, 2007; Wingfield et al., 2006). 

Thus, T could more generally be hypothesized to mediate the trade-off between cooperation 

and future breeding, by decreasing investments into costly cooperative activities and by 

favouring investments into traits susceptible to facilitate future breeding. In cooperative 

breeders, increased competitive abilities may be essential to obtain and successfully maintain 

a breeding position as suggested by the period of intense competition among group members 

(Clarke and Faulkes, 1997; Clutton-Brock et al., 2006; Cooney and Bennett, 2000) and the 

unusually high levels of T measured in dominant breeders (Creel et al., 1997; Davies et al., 

2016; Desjardins et al., 2008). 

In cooperative breeders, investigations of direct associations between GC, T and 

cooperative behaviours are scarce and primarily focused on alloparental care. The relationship 

between GC and cooperative behaviours has highlighted both positive, null and negative 

associations. In meerkats (Suricata suricatta), plasma GC levels of male helpers were lower at 
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the beginning of a day spent babysitting newly born pups at the burrow and higher at the end 

of it as compared to days spent foraging with the rest of the group (Carlson et al., 2006b).  

Although this suggests that babysitting raises GC levels, individual babysitting contributions 

throughout the entire baby-sitting period were not correlated with GC levels (Carlson et al., 

2006b). Male helpers which had higher plasma GC during the babysitting period provisioned 

more food items to pups after their emergence from the burrow (Carlson et al., 2006a). In 

banded mongooses, the relationships between GC and pup-feeding are somewhat opposite to 

the pattern highlighted in meerkats. Higher levels of faecal GC metabolites prior to the pup-

provisioning period predicted lower, not higher, individual contributions to pup feeding 

(Sanderson et al., 2014). When GC were measured during the period of pup-feeding, the 

direction of the associations was reversed and individuals that fed pups more throughout the 

provisioning period had higher GC levels (Sanderson et al., 2014). In striped mice, GC 

increased with the time female helpers previously spent huddling the pups whereas they 

decreased in male helpers (Raynaud and Schradin, 2015). In common marmosets (Callithrix 

jacchus) no associations between GC and infant carrying were found (Mota et al., 2006).  

Investigations of the associations between T and cooperative contributions have mostly 

reported null associations. In meerkats, plasma T levels of male helpers during the baby-sitting 

period did not correlate with their baby-sitting contributions (Carlson et al., 2006b) and did not 

predict subsequent contribution to pup feeding (Carlson et al., 2006a). However, male helpers 

conducting extra-territorial forays, during which they seek for mating opportunities, have 

increased T levels and contribute less to pup care after returning to their group (Young et al., 

2005). In striped mice, plasma T levels were not affected by the time helpers previously spent 

huddling pups in the nest (Raynaud and Schradin, 2015). In the cooperatively breeding cichlid 

Neolamprologus pulcher, breeding females had higher T levels and contributed more to 

cooperative activities than the other classes of individuals within the social group, and their T 

levels were positively correlated with their contributions to territory defence and territory 

maintenance (Desjardins et al., 2008).  

The correlative nature of the studies conducted so far in cooperative breeders prevents 

to draw firm conclusions on whether GC and T regulate cooperative behaviours. Experimental 

manipulation of GC and T are exceptions and have so far been unsuccessful to manipulate 

hormone levels within the physiological range of non-experimental individuals, hence 

requiring a cautious interpretation (Raynaud and Schradin, 2014; Santema and Clutton-Brock, 

2012). It is currently difficult to assess the extent to which the lack of consistencies in the 
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associations highlighted so far originate from genuine differences in the regulation of 

cooperative behaviour by hormones or from discrepancies in the type (plasma, urine, or faeces) 

or timing (before, during or after behavioural sampling) of the samples used for hormone 

measurements.  

Although acknowledged, the possibility that cooperative behaviours could influence 

hormone levels, has rarely been addressed even in the studies in which hormone levels were 

determined after the quantification of cooperative contributions. This may be because the 

primary role of GC in the regulation of energy balance has been largely disregarded, which is 

somewhat surprising considering the energetic costs of cooperative behaviours in cooperative 

breeders. This omission has certainly contributed to the general lack of clear predictions 

regarding the expected directions of associations. The integration of the role played by GC in 

regulating energy homeostasis would certainly facilitate the formulation of clear predictions 

by forcing researchers to consider the energetic costs of the cooperative activities under 

investigations and the variables that may affect individuals’ ability to cope with such costs. 

Overall, the relationships between GC and T and cooperative behaviours remain poorly 

understood. Experimental manipulations of HPA and HPG axis are essential to elucidate 

whether cooperative behaviours are regulated by GC and/or T whereas experimental 

manipulations of cooperative behaviours are required to elucidate whether variation in GC or 

T can be modulated by cooperative contributions. It is currently unknown whether differences 

in GC and T can generate variation in cooperative behaviours and for how much of the variation 

they might account for.  

My dissertation aims to advance the understanding of the hormonal mechanisms 

regulating the expression of cooperative behaviours and contribute to the development of a 

more integrated understanding of cooperation. 

I focus on the short-term and reversible interactions between hormones and cooperative 

behaviours. I investigate the relationships between GC and T and the expression of cooperative 

behaviours along two complementary axes. The first axis explores the general hypothesis of a 

positive association between GC and cooperative contributions while the second explores the 

hypothesis of negative association between T and cooperative contributions. Each of those two 

axes is investigated through a combination of correlative and experimental approaches. 

Specifically, I address two major questions: 
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1) Do cooperative contributions modulate GC and T levels? 

2) Do GC and T levels modulate cooperative contributions? 

1.4 The Damaraland mole-rat 

I investigate these questions in the Damaraland mole-rat (Fukomys damarensis), a 

cooperatively breeding subterranean rodent which offers unparalleled advantages to investigate 

the interaction between hormones and individual variation in cooperative behaviours for two 

reasons.  

First, there are large individual differences in cooperative contributions between group 

members. These differences originally led to the suggestion that helpers may be separated into 

a “frequent” and an “infrequent” worker castes where slow growing animals were believed to 

specialize in helping and fast-growing animals in dispersing (Bennett and Faulkes, 2000; 

Bennett and Jarvis, 1988; Scantlebury et al., 2006). The large individual variation in helpers’ 

cooperative contributions were confirmed in a recent study conducted on a larger sample size 

of colonies, yet the existence of helpers’ working castes was rejected (Zöttl et al., 2016b).  

Second, colonies can be housed in artificial tunnel systems that approximate natural conditions, 

where natural behaviours are readily observable (Cooney and Bennett, 2000; Zöttl et al., 

2016b). This allows for extremely controlled experiments to be carried out while retaining 

ecological validity as well as the timely collection of weight and endocrine data.   

 

1.5 Thesis structure 

In Chapter 2, I provide general information on the biology of my model system and 

species, the Damaraland mole-rat, and I detail the methods and conditions in which the data 

were collected and how they were analysed.  
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In Chapter 3, I investigate whether differences in CORT and T may arise as a 

consequence of individual variation in cooperative contributions. I present the associations 

between CORT and T with individual cooperative contributions using correlative data as well 

as the effects of experimental manipulations of cooperative contributions on CORT and T 

levels.  

In Chapter 4, I investigate whether CORT modulates the cooperative contributions of 

female helpers by experimentally elevating their CORT levels. 

In Chapter 5, I investigate whether T modulates the cooperative contributions of female 

helpers by experimentally elevating their T levels. I also investigate whether T modulates 

females’ competitive abilities to assess if increased T may facilitate the transition from helping 

to breeding. 

In Chapter 6, I provide a synthesis of my research and offer a critical discussion on the 

relevance and weaknesses of my findings and highlight promising areas for future research.  
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Chapter 2 

General Methods 
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2.1 Study System 

2.1.1 Study Site  

All the behavioural data and biological samples of my thesis were collected from a 

breeding population of captive Damaraland mole-rats (Fukomys damarensis) at the Kuruman 

River Reserve (26°58’S, 21°49’E), Northern Cape, South Africa (Figure 2.1). 

 

Figure 2.1 - Map of South Africa showing the location of the study site (green dot). 

2.1.2 Study species 

Damaraland mole-rats (Fukomys damarensis) are part of the Bathyergidae, a family of 

obligatory subterranean hystricognath rodents that defines the African mole-rats. The 

phylogeny of the Bathyergidae is still debated (Faulkes et al., 2011; Van Daele et al., 2007) 

and African mole-rats are composed of at least 30 species from 6 distinct genera. African mole-

rat species range on a continuum of social systems from solitary (genera Heliophobus, 

Bathyergus, Georychus) to highly social like in the cooperatively breeding naked mole-rat 

(Heterocephalus glaber) and Damaraland mole-rat (Faulkes et al., 2013). Damaraland mole-

rats are widely distributed in southern Africa, being found mostly in Botswana and Namibia 

but also in Zambia, Zimbabwe and South Africa, in xeric habitats where rainfall is 

unpredictable and low (Bennett and Faulkes, 2000) 
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Damaraland mole-rat colonies typically consist of family groups (Burland et al., 2002) 

of up to 41 individuals (Jarvis and Bennett, 1993), characterized by an extreme reproductive 

skew. Within a colony, reproduction is monopolized by a single breeding female (Burland et 

al., 2004; Young et al., 2010), often referred to as the queen, while the number of males 

achieving paternity can be higher than one and up to three (Burland et al., 2004). Breeding 

males and females are unrelated (Burland et al., 2004) and colonies in which breeders of one 

sex are missing become reproductively quiescent (Bennett et al., 1996; Jacobs et al., 1998; 

Rickard and Bennett, 1997) suggesting that Damaraland mole-rats are obligate outbreeders. 

This suggestion has been experimentally supported by showing that the immigration of 

unrelated individuals causes helpers to attempt breeding (Cooney and Bennett, 2000) and 

reproductively quiescent colonies to resume breeding (Jacobs et al., 1998; Rickard and Bennett, 

1997). Also, pairs of siblings fail to show copulatory behaviours and fail to conceive, in 

contrast with non-sibling pairs which show copulatory behaviours within minutes of pairing 

and eventually conceive (Bennett et al., 1996). 

In intact colonies, the reproductive axis of female helpers is physiologically suppressed 

since the development of follicles in the ovaries is incomplete, causing anovulation (Bennett et 

al., 1994; Molteno and Bennett, 2000). This suppression possibly occurs at the level of the 

pituitary gland which, in helpers, is less responsive to an exogenous stimulation with 

Gonadotropin Releasing Hormone (GnRH) (Bennett et al., 1993). GnRH is a peptide hormone 

that is naturally secreted by the hypothalamus and which stimulates the pituitary to release 

Luteinizing Hormone (LH) in the blood stream which in turn stimulates the release of 

Testosterone (T) by the gonads. In agreement with a downregulation of their reproductive axis, 

female helpers have lower baseline levels of LH (Bennett et al., 1993) and in some cases lower 

levels of sex hormones such as oestradiol, progesterone and T (Bennett, 1994; Clarke et al., 

2001; Lutermann et al., 2013; Rickard and Bennett, 1997). In contrast to females, there is no 

evidence of a physiological suppression of the reproductive axis of male helpers, whose sperm 

production and sperm motility is not different from breeding males (Faulkes et al., 1994). 

Both the presence of the breeding female and the absence of breeding opportunities 

have been suggested as two non-mutually exclusive components of the physiological 

reproductive suppression of female helpers. In the absence of a breeding female, this 

suppression of helpers is relieved despite a lack of breeding opportunities (Bennett et al., 1996; 

Molteno and Bennett, 2000), but others have argued otherwise (Clarke et al., 2001). When 

female helpers face a breeding opportunity their physiological reproductive suppression is 
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relieved (Clarke et al., 2001; Cooney and Bennett, 2000), even in the presence of a breeding 

female (Cooney and Bennett, 2000). Furthermore, it has been suggested that when ecological 

conditions favour breeding opportunities by the relaxation of dispersal constraints, female 

helpers’ suppression is eased (Young et al., 2010). In intact colonies and in the absence of 

helpers’ breeding opportunities, intra-colony levels of aggression are low (Clarke et al., 2001; 

Cooney and Bennett, 2000; Rickard and Bennett, 1997), raising the question as to whether the 

breeding female plays an active role in helpers’ physiological reproductive suppression. 

Helpers’ breeding opportunities have dramatic consequences on the social dynamic of 

colonies. Immigration of unrelated individuals trigger intense aggression among group 

members (Cooney and Bennett, 2000; Jacobs et al., 1998), that can have lethal consequences 

(Jacobs et al., 1998) and which can culminate into changes in the breeding hierarchy (Cooney 

and Bennett, 2000). In the wild, within group reproductive competition and social instability 

may be favoured by rainfall which facilitates underground dispersal (Young et al., 2010) of 

adult males and females (Hazell et al., 2000a; Young et al., 2010), by softening the sand 

substrate and consequently decreasing the energetic demands of burrowing behaviours 

(Lovegrove, 1989).  

Most of the cooperative behaviours expressed by Damaraland mole-rats are related to 

contributions to common goods from which all group members can benefit. Energetically 

demanding burrowing activities (Lovegrove, 1989) enable the extension of the burrow system, 

necessary to locate and expose the underground storage organs of geophytes on which this 

species feeds (Jarvis et al., 1998) (Figure 2.2). Food items can also be transported to constitute 

communal food stores (Jarvis et al., 1998), as well as provide vegetal material that is used to 

build a communal nest (Figure 2.3). In contrast to most other cooperative breeders, direct 

alloparental care, as interpreted from observations in captive colonies, is rare (Zöttl et al., 

2016b). However, young pups that occasionally wander in tunnel system will be retrieved into 

the nest where they are huddled and groomed by all group members and lactated by the 

breeding female. The reproductive success of breeders is increased by helpers (Young et al., 

2015). Insofar this effect is assumed to be contingent on helpers’ behaviours, it supports the 

cooperative characters of individual contributions to common goods and offspring care (West 

et al., 2007). However, the respective contribution of these distinct activities on breeders’ 

reproductive success (Young et al., 2015) and the extent to which they benefit helpers indirect 

and direct reproductive success is unknown.  
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Pioneering work on Damaraland mole-

rats had suggested that helpers could be assigned 

to a frequent and an infrequent helper classes 

(Bennett and Faulkes, 2000; Bennett and Jarvis, 

1988; Scantlebury et al., 2006) but this possibility 

was recently rejected (Zöttl et al., 2016b). 

Although differences in individual cooperative 

contributions are large, their distribution falls 

alongside a continuum and is not bimodally 

distributed as would have been predicted by the 

existence of distinct helper classes (Zöttl et al., 

2016b). Helpers’ cooperative contributions are 

better described by an age-related polyethism in 

which contributions increase in the first year of 

life before plateauing (Zöttl et al., 2016b). Also, 

faster growing helpers have higher cooperative 

contributions than slower growing helpers, which 

is opposite to the pattern initially suggested for 

frequent and infrequent helpers (Bennett and 

Faulkes, 2000; Bennett and Jarvis, 1988).  

 

 

 

 

 

 

 

 

 

Figure 2.2 – The underground storage 

organs of geophytes on which wild 

Damaraland mole-rats feed, commonly 

called gemsbok cucumber (Acanthosicyos 

naudinianus). Courtesy of Kyle Finn. 

Figure 2.3 – Communal nest of a wild 

Damaraland mole-rat colony. Courtesy of 

Kyle Finn. 
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2.1.3 Study Population 

The captive population used for this thesis is maintained in laboratory facilities of the 

Kuruman River Reserve, Northern Cape, South Africa. This population originated from 25 

wild colonies trapped in the surrounding of the research site between February and October 

2013 (242 individuals). Throughout the development of the work presented here, the study 

population has increased in size due to recruitment in both originally wild caught colonies and 

colonies that were formed by the pairing of unrelated individuals from opposite sex. Currently, 

the study population is composed of 72 colonies with group sizes ranging from 1 to 26 animals. 

This captive population comprised 472 animals, 365 of which were born in the lab. 
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2.2 Laboratory Settings 

2.2.1 Artificial Habitat 

Captive colonies were kept individually in standardized artificial tunnel systems of 

three different sizes with total tunnel lengths of about 4, 8 or 18 meters (Figure 2.4). Artificial 

tunnel systems were built with PVC pipes which upper part had been cut off and replaced with 

a transparent plastic film to enable behavioural observations. For the medium and large size 

tunnel systems, a large plastic box, referred to as the waste box, was connected to one extremity 

of the tunnel system to enable animals to sweep unwanted material out. Nesting and toilet areas 

were provided in the form of standardized size transparent plastic boxes which, when used as 

a nest, were filled by the animals with small pieces of paper towel that were compacted against 

the boxes’ walls. Each tunnel system was equipped with several dead ends PVC pipes which 

were frequently used as food storage spaces. Fresh Kalahari sand could be supplied to the 

colony through vertical PVC pipes referred to as sand dispensers, located at the opposite 

extremity of the tunnel system to the one constituted by the waste box. 

The temperature in the animal rooms was controlled with an air-conditioning system 

set between 20 °C in winter and 23 °C in summer leading the temperature to effectively range 

between 17 and 26 °C. 
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2.2.2 Husbandry 

All tunnel systems were subjected to a daily clean in the morning. Dirty PVC pipes 

were cleaned with paper and a toilet brush, toilet areas were emptied, rinsed with water and 

dried, waste boxes were emptied and obstructed sand dispensers, PVC pipes and plastic boxes 

were unblocked. Nest material was provided away from the nest and consisted of small pieces 

of paper towel. Sand dispensers were refilled with fresh sand and the animals were fed ad 

libitum a diet of sweet potatoes, cucumber and occasionally apples twice daily. Food items 

were provided behind the food dispensers to encourage burrowing, although a freely accessible 

food source was always made available. Additionally, colonies were provided with sand and 

extra food if necessary every evening. 

  

Figure 2.4 – Different sizes of tunnels systems where Damaraland mole-rat colonies were housed. The smallest 

sized systems (top left) were used for colonies with up to three individuals; medium sized systems (top right) were 

used for colonies with up to ten individuals and large sized systems (bottom) were used for colonies with more 

than ten individuals. Rectangles represent transparent plastic boxes used as nesting areas. Circles represent the 

vertical sand dispensers. Diagrams represent a top view of the tunnel systems.  
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2.3 Behavioural Data 

All the behavioural data of this thesis were obtained using scan and focal observations 

that were recorded on a handheld Android device operating the software Pocket Observer 

(Noldus, Wageningen). Each individual within the colonies where observations took place 

could be readily identifiable by a unique coloured dye mark and/or its natural fur colour pattern. 

Also, individuals carried a passive implantable transponder for identification which was 

inserted subcutaneously at the age of 3 months for individuals born in captivity.  

A delay of at least 20 minutes after morning cleaning and 1 hour after urine 

sampling/weighing was respected before the start of a behavioural observation to minimize the 

effect of possible disturbances. Fresh sand was provided in the sand dispensers at the start of 

each observation to create burrowing opportunities. During scan observations, fresh sand was 

added every 2 hours.  

2.3.1 Scan observations 

The scan observation protocol combined an all individual´s instantaneous and an all 

occurrences continuous sampling techniques as defined by Altmann (1974). During the 

instantaneous sampling of a given colony, the behaviour of each group member was determined 

from a list of 17 defined behaviours (Table 2.1) following a pre-defined and fixed sequence of 

individuals. Instantaneous samples were separated by 4 minutes. The available time between 

the end of an instantaneous sample and the beginning of the following one was used to collect 

ad libitum data on social interaction (Table 2.2). Scan observations typically included between 

10 and 20 individuals and lasted for 12 or 24 hours, leading respectively to the collection of 

180 or 360 instantaneous samples per individual. Observations usually started between 07:00 

and 08:00 and were carried out by at least two observers alternating shifts every 2 to 4 hours. 
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Table 2.1 – Instantaneous sampling ethogram used for scan observations. The left side of the table shows how 

behaviours were grouped to form variables used in the statistical analyses (1 - for details on how this behaviour 

was included in the statistical models please refer to each chapter’s methods). 

 

 

 

 

 

 

 

Variables Behaviour Description 
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Food carry Transporting of food pieces 
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Nest material 
Preparing nest material for transport and transporting nest 

material  

B
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g
 Dig Excavating sand using incisors and front paws 

Sweep Moving sand backwards using hind legs 

Kick Compacting sand against tunnel using nose or hind legs 

Locomotion work Moving between bouts of the above behaviours 

 Pup carry1 Grabbing and/or moving a pup using incisors 

N
o

n
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 Locomotion Moving unrelated with cooperative behaviours 

 Sniff Investigating objects with the nose 

 Eat Ingesting food 

 Self-Groom Hygiene maintenance behaviours directed to the actor's body 

 Social interaction Any interaction with another individual 

 Pump  Repetitive up and down movement of the body   

 Other 
Any behaviour that cannot be assigned to the described 

behaviours 

  Gnaw1 Chewing the plastic tunnels with incisors 

R
es

t   Rest Sleeping in the nest or tunnels 

  Huddle 
Resting in the tunnels in physical contact with at least one 

individual 
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Table 2.2 – Continuous sampling ethogram used for scan observations. 

 

 

Behaviour Description 

Pup Carry Grabbing and/or moving a pup using incisors 

Bite Closing incisors on another individual's body part 

Overt aggression Rapid succession of high intensity aggressive behaviours (spar, bite, chase) 

Pull tail 
Grabbing the tail of another individual and pulling it, often resulting in dragging the 

receiver of this behaviour 

Pass Moving past another individual with physical contact 

Submissive call High pitched call co-occurring with small backwards jumps 

Pump  Repetitive up and down movement of the body   

Gnaw Chewing the plastic tunnels with incisors 

Rest Sleeping in the nest or tunnels 

Huddle Resting in the tunnels in physical contact with at least one individual 

Sniff Investigating another individual with the nose 

Spar Locking incisors with another individual, pulling and pushing each other 

Sex foreplay Quick succession of social behaviours displayed before a copulation 

Chase Following another individual with accelerated locomotion 

Copulation Mounting another individual attempting sexual intercourse 

Allogroom Grooming directed towards another individual 

Food Competition Pushing away another individual with the hind legs from a food resource 

Nest material Preparing nest material for transport and transporting nest material  
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2.3.2 Focal subject observations 

Focal observations (Altmann, 1974) were opportunistically conducted on active 

subjects only. The recording of complete activity bouts, starting with the focal subject waking 

up and leaving the nest and finishing with the return to the nest, were prioritized over 

incomplete activity bouts. Observations were terminated whenever the focal subject rested, or 

disappeared in the nest uninterruptedly for 5 minutes, but could otherwise be terminated at any 

time. During each activity bout, all the behaviours displayed by the focal subject were recorded 

using a list of 31 behaviours (Table 2.3).  

2.3.3 Data preparation 

For some statistical analyses, behaviours sharing functional similarities were merged 

into new variables (Table 2.1, Table 2.3). The Activity variable was obtained by grouping all 

behaviours, at the exception of resting and huddling. Behaviours that were part of the activity 

variable were separated into the Total Cooperation and the Non-cooperation variables. All the 

behaviours which could be defined as beneficial to other group members were assigned to the 

Total cooperation variable whereas the remaining behaviours were assigned to the Non-

cooperation variable. The Total Cooperation variable, which was used to assess individual 

general cooperative contributions, was sub-divided into the Burrowing, the Food carrying and 

the Nest building variables. Burrowing included all the behaviours related to tunnel 

maintenance, sand excavation and transport in the tunnel system (Table 2.1, Table 2.3). 

Alloparental care estimated through the behaviour Carry pup was part of the Total cooperation 

variable but did not integrate any of its sub-variables nor was analysed separately due to its 

extremely low occurrence frequency. 

Unless otherwise specified, the behaviour Gnaw was removed from the dataset prior to 

statistical analyses for which any cooperative and non-cooperative variables were used as 

response variables. This was justified by the undefined cooperative character of gnawing which 

could be assimilated to digging as well as to a displacement behaviour. Furthermore, gnaw was 

significantly increased by the administration of cortisol and there was a positive effect of 

CORT treatment on its expression (CORT treatment effect: estimate=0.475, SE=0.199, 

Z=2.39, p=0.017), which together could have influenced my conclusions.  
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For statistical analyses of scan data, the total number of scans recorded, after the 

exclusion of gnaw when it applied, the sum of scans a subject had been observed displaying 

the activity under investigation (success), and the difference between the two (failure) were 

computed. Focal data were pooled over each observation day or treatment week for each 

subject, the total duration of the activity under investigation and the total daily or weekly 

duration of observation, after exclusion of gnawing when it applied, were computed.  

 

Table 2.3 – Focal observation ethogram. The left side of the table shows how behaviours were grouped to form 

variables used in the statistical analyses. S.E. denotes state events; P.E. denotes point events 

Variables Behaviour Description 
Event 

Type 
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Food carry Transporting of food pieces S.E. 

N
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t 
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Carry nest material Transporting nest material  S.E. 

Nest Building 
Shredding nest material in small piece by chewing it with 

incisors 
S.E. 

B
u

rr
o

w
in

g
 Dig Excavating sand using incisors and front paws S.E. 

Sweep Moving sand backwards using hind legs S.E. 

Kick Compacting sand against tunnel using nose or hind legs S.E. 

Pup carry Grabbing and/or moving a pup using incisors P.E. 

A
g

g
re

ss
iv

e 
b

eh
av

io
u

r Displace 
Pushing away another individual with the hind legs from a 

space or resource 
S.E. 

Bite Closing incisors on another individual's body part P.E. 

Overt aggression 
Rapid succession of high intensity aggressive behaviours 

(spar, bite, chase) 
P.E. 

Pull tail 
Grabbing the tail of another individual and pulling it, often 

resulting in dragging the receiver of this behaviour 
P.E. 

Pass Moving past another individual with physical contact P.E. 

Submissive call High pitched call co-occurring with small backwards jumps P.E. 

Beg call 
Pup vocalization to another individual to gain access to a 

space or resource 
P.E. 

Unknown call 
Any vocalization that cannot be classified as submissive or 

beg 
P.E. 

Eat Ingesting food S.E. 
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Table 2.3 – (Continuation) 

 

  

Behaviour Description 
Event 

Type 

Self-Groom Hygiene maintenance behaviours directed to the actor's body S.E. 

Pump  Repetitive up and down movement of the body   P.E. 

Gnaw Chewing the plastic tunnels with incisors S.E. 

Rest Sleeping in the nest or tunnels S.E. 

Huddle 
Resting in the tunnels in physical contact with at least one 

individual 
S.E. 

Sniff Investigating another individual with the nose P.E. 

Spar 
Locking incisors with another individual, pulling and 

pushing each other 
S.E. 

Back spar Sparing with another individual while turned on its back P.E. 

Sex foreplay 
Quick succession of social behaviours displayed before a 

copulation 
S.E. 

Chase Following another individual with accelerated locomotion S.E. 

Copulation Mounting another individual attempting sexual intercourse P.E. 

Allogroom Grooming directed towards another individual P.E. 

Retreat Quickly moving away from another individual P.E. 

Drop food Binging a piece of food to a food storage place P.E. 

Miscellaneous 
Any behaviour that cannot be assigned to the described 

behaviours 
S.E. 
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2.4 Endocrine Data 

2.4.1 Urine samples collection 

Individuals were removed from their original tunnel system and placed in individual 

urine chambers between 07:00 and 08:00, where a food item was provided. Individuals were 

kept in the chambers until 0.4 ml of urine had been collected which generally occurred after a 

single urination, shortly after the transfer into the chamber. If no urination had occurred within 

180 minutes, individuals were placed back in their original colony. Urine samples were kept in 

a -20 ºC freezer until hormone analysis. Both the time of urination and the delay to urination 

were recorded to allow the control of their effects on endocrine values. 

2.4.2 Blood samples collection  

Individuals were removed from their tunnel systems and anaesthetized with 5% 

Isoflurane (Isofor, Safe Line Pharmaceuticals, Johannesburg, South Africa) mixed with oxygen 

gas, delivered through a vaporizer at a rate of 1 l/min through a cone which was gently fitted 

on the subject’s snout. Once fully sedated, the isoflurane dose was reduced to 2% until the 

completion of the blood sampling procedure. Blood was collected into 0.5 ml Lithium-Heparin 

Minicollect tubes with micro haematocrit capillary tubes (Sodium-heparinised 80 IU/ml) after 

piercing a foot vein with a sterile needle. Blood samples were immediately centrifuged for 5 

minutes at 2000 G, and the plasma separated from the cell pellet and stored at -20 ºC until 

hormone analyses. The completion of blood collection usually occurred within 5 minutes 

(mean=270 s, SD=105 s, for the samples used in this thesis). After blood samples, subjects 

were kept in a bucket until full mobility was regained and then placed back in their original 

tunnel system.  

2.4.3 Hormones Analyses 

Cortisol (CORT) and Testosterone (T) determinations were carried out using two 

different analytical methods. The endocrine data presented in Chapter 2 were obtained by the 
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analyses of urine samples at the University of Pretoria in collaboration with Professor Nigel C. 

Bennett using radio-immunoassay (RIA). All other endocrine data presented in this thesis were 

obtained by the analyses of urine and plasma samples at the Neuchâtel Platform of Analytical 

Chemistry (NPAC) in collaboration with Dr. Gaëtan Glauser using Ultra-High Performance 

Liquid Chromatography-tandem Mass Spectrometry (UHPLC-MS/MS).  

To assess the reproducibility of sample preparation and analysis, multiple urine samples 

from captive males and females Damaraland mole-rats were pooled into a male and a female 

control samples (MC and FC respectively). Aliquots of 1 ml of MC or FC were then stored at 

-20 °C until hormone analyses.  

Radioimmunoassays 

The RIAs were conducted using commercially available coated tubes assay kits (Coat 

a Count, Diagnostic Products Corporation, Los Angeles, CA) validated for both CORT and T 

determinations in Damaraland mole-rats (Clarke et al., 2001). All, samples were analysed in 

duplicates and at least two MC and a FC samples were analysed at the beginning and at the end 

of each samples batch (minimum of 4 control samples/batch) for the calculation of intra and 

inter-assay variation.  

For CORT analyses, the procedures described by the kit supplier were followed. 

Standard solutions of known CORT concentrations provided by the supplier were used to 

establish a reference standard calibration curve. Briefly, for each sample duplicate, 25 µl of 

urine were added into a polypropylene tube coated with anti-CORT antibodies. One ml of tracer 

solution containing iodinated (125I) CORT was then added to the tubes to enable the CORT 

contained in the urine and the radiolabelled CORT from the tracer solution to compete for the 

antibodies’ binding sites. After 45 minutes of incubation at 37 ºC, the tubes were emptied and 

radioactivity was measured with a gamma counter. Cortisol concentrations were determined 

using the standard calibration curve drawn from the radioactivity measured in tubes of known 

CORT concentrations. The limit of detection (LOD) varied across batches and ranged from 

0.023 to 0.425 ng/dl. The intra-assay variation determined by averaging the coefficient of 

variability (CV) between duplicates, after the exclusion of all samples which concentration fell 

below the quantification limit (LOQ) of the kit (0.7 ng/dl), was of 10.98%. When determined 
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using the average CV of the control samples the intra-assay variation was of 5.48%. The inter-

assay variation was of 7.6% when calculated with the control samples.  

For Testosterone, a similar procedure was followed at the difference than the tubes were 

coated with antibodies anti-testosterone and that 50 µl of urine were used in each duplicate. 

The tracer consisted of iodinated (125I) T and the incubation time was of 3 hours at 37 ºC. The 

intra-assay variation determined by averaging the CV between duplicates, after the exclusion 

of all samples which concentration fell below the LOQ of the kit (20 ng/dl) was of 11.11%. 

When determined using the average CV of the control samples the intra-assay variation was of 

9.67%. The inter-assay variation was of 12.59% when calculated with the control samples. 

Ultra-High Performance Liquid Chromatography – Tandem Mass Spectrometry (UHPLC-

MS/MS) 

For UHPLC-MS/MS analyses, 100 µl of urine were added to 410 µl of a solution 

containing 400 µl of sodium phosphate buffer (0.1M, pH7) and 10 µl of methanol containing 

isotopically labelled internal standards at 80, 40 and 800 ng/ml for cortisol-D4, testosterone-

D3 and dehydroepiandrosterone-D5, respectively (Toronto Research Chemicals). Spiking 

labelled internal standards enabled to accurately account for variations resulting from steroid 

loss during sample preparation and from matrix effects and sensitivity variation in the mass 

spectrometer over time (Stokvis et al., 2005). Differing from RIA, the glucuronated forms of 

steroids excreted in the urine were deconjugated by adding 2.5 µl of beta-glucuronidase from 

Escherichia Coli (Roche chemicals) to each sample and allowing 1 hour incubation at 50 ºC. 

A solid phase extraction (SPE) using Isolute C18(EC) cartridges (50 mg/1cc, Biotage, Sweden) 

was then performed. Briefly, the cartridges were conditioned with 1 ml of methanol 100%, 

equilibrated with 1 ml of methanol 5%, the samples were passed through the cartridges which 

were then washed with 1 ml of methanol 5% followed by 1 ml of hexane. Steroids were 

recovered by eluting the cartridges with 1 ml of ethylacetate which was evaporated in a 

centrifugal evaporator (Labconco) at 35 ºC and reconstituted in 100 µl of methanol 50%. 

Samples were injected in an Acquity UPLCTM coupled to a Xevo TQ-S triple 

quadrupole (Waters, Milford, MA, USA) with all aspects of the system optimized for steroid 

analyses.  Calibration solutions containing Cortisol, Testosterone and DHEA at 0.1, 1, 20, 100 
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and 250 ng/ml as well as internal standards were prepared in methanol 50%. For DHEA, 

additional concentrations at 500, 1500 and 3000 ng/ml were used.  

For CORT and T quantifications, the mass-spectrometer peaks were integrated using 

the program QuanlynxTM and normalized to those of the internal standards following an 

automated method developed at the NPAC. The peak integration was visually controlled for 

each hormone and each sample. Different calibration equations were applied to each batch of 

samples by selecting the most appropriate model (linear, quadratic or cubic) and weighting 

factor (in most cases 1/x). All CORT and T concentrations measured in urine samples fell well 

above the LOQ of the method which was set at a signal to noise ratio of 8 corresponding to 0.7 

ng/ml of CORT and 0.09 ng/ml of T. Inter-day coefficient of variation, calculated from control 

samples prepared independently for each new series of samples analysis, was of 5.22% for 

CORT and 2.06% for T.  

Testosterone levels in plasma samples were only used in Chapter 5. The LOD and LOQ 

of the method were set at a ratio signal to noise of 3 and 8 corresponding to a plasma 

concentration of 0.008 and 0.021 ng/ml of T, respectively. All the plasma samples had T 

concentrations higher than the LOD, however 5 of the 80 samples analysed returned a T value 

below the LOQ and were kept for statistical analyses. All plasma T samples were analysed on 

a single sample batch and therefore inter-day variation cannot be provided.  

All raw hormone concentrations determined with RIA and UHPLC-MS/MS were 

corrected for variation in urine dilution by the determination of urine specific gravity (SG) 

using a digital hand-held pen refractometer (Atago, Ltd). Correction of hormone concentration 

with SG has been shown to be reliable and arguably more accurate than creatinine correction 

(Miller et al., 2004). For each sample, triplicate SG values were determined with 10 µl of urine, 

at the few exceptions of insufficient urine volume availability where only one value was 

measured. For each urine sample, SG values were averaged and hormone concentrations were 

obtained following Miller and colleagues (Miller et al., 2004) formula:   

[Corrected Hormone] = [Raw Hormone] x (SG Population – 1) / (SG Target Sample – 1), 

where SG Population represents the population average of SG values and SG Target Sample represents 

the SG value of the sample which hormone concentration is to be corrected. 
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2.5 Statistical Analyses 

All the data exploration, analyses and plotting were conducted using the software R 

version 3.1.2 (R Development Core Team, 2011). 

Prior to statistical analyses, a data exploration procedure largely inspired by Zuur et al. 

(2010) was conducted to check for the presence of outliers and zeros. Also, the variance 

inflating factor (VIF) of the explanatory variables used in the statistical models were calculated 

using the R corvif function (Ieno and Zuur, 2015) to assess collinearity. If explanatory variables 

returned a VIF higher than 3, suggesting a high degree of collinearity, they were sequentially 

excluded from the maximal model until all explanatory variables returned a value smaller than 

3.  

Whenever necessary and possible, I used a mixed effect modelling approach to account 

for the dependency structure in the data caused by the repeated measurements of individuals 

within colonies. Mixed models enable the specification of random effect terms which estimate 

the variance between and within clusters of non-independent data. Whenever the data structure 

did not comply with the mixed model assumptions, I conducted non-parametric statistical tests, 

which are detailed in each relevant chapter. 

For continuous response variables, I fitted Linear Mixed Models (LMMs) with a normal 

error structure and identity link function to the data. In cases where the model validation plots 

(see further section) did not comply with the model assumptions, the response variables were 

transformed by their natural logarithm before being specified in the model. In the few cases 

where the data set did not consist of repeated measurements, Linear Models (LMs) were fitted 

instead. LMs are similar to LMMs, at the exception that no random effect term is specified. In 

cases where response variables were continuous and strictly positive, they were either 

transformed by their natural logarithm and specified in LMMs.  

When the response variables were count data, GLMMs with a negative binomial error 

structure and logit link function (negative binomial GLMMs) were fitted to the data. 

When the response variables were proportions, such as for the analyses of the scan data, 

GLMMs with a beta-binomial error structure and logit link function were fitted to the data 

(beta-binomial GLMMs). Beta-binomial GLMMs were preferred over conventional binomial 
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GLMMs because data from the scan data were always overdispersed which can lead to biased 

parameter estimates and standard errors. When beta-binomial GLMMs failed to converge, 

GLMMs with a binomial error structure and logit link functions were fitted, and an 

Observation-level Random Effect term added into the model (OLRE binomial GLMMs). An 

OLRE enables to capture any important pattern in the response variable that cannot be 

explained by the other terms specified in the model (Zuur et al., 2013). In both OLRE binomial 

and beta-binomial GLMM, the count of scan during which an individual was observed 

displaying the behaviour under investigation was used as a response variable and, unless 

specified otherwise, the total number of scans conducted during an observation session was 

used as the binomial total. 

All models were fitted using the R package lme4 (Bates et al., 2015) except the beta-

binomial GLMMs which were fitted in the glmmADMB package (Fournier et al., 2012).  

The choice of covariates included in our maximal models was driven by a priori 

hypothesis and/or based on the data exploration procedures. All continuous explanatory 

variables that were specified within interaction or polynomials terms were centred and scaled 

in order to enable the independent interpretation of their main effects (Schielzeth, 2010). 

Maximal models were simplified following a stepwise backward deletion of non-significant 

terms in order of descending interactions least significant terms until only significant terms 

remained. The p-values for each term were computed by conducting a likelihood ratio test 

between two nested models, one of which contained and one of which did not contain the term 

under investigation. P-values lower than 0.05 indicate that the removal of the term from the 

model significantly decrease its explanatory power. Terms that were dropped during model 

simplification process are reported with the model estimates, standard errors, and test-statistic 

with which they were last included in the model selection process.  

The validation of minimal models relied on the visual assessment of homogeneity of 

variance between the model residuals and its fitted values as well as the normality of its 

residuals. When count or proportion data were used as a response variable, I checked that the 

data were not overdispersed. To this purpose, the ratio between the model residual sum of 

square from the original data and the residual sum of square from a hundred data sets generated 

from the minimal model using parametric bootstrapping were computed. The confidence 

interval of those 100 ratios was then computed and overdispersion was assumed whenever the 

lower limit of the 95% confidence interval was greater than 1.  
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For all graphical representation using box and whiskers figures, lower and upper hinges 

of the boxplot display the 25th and 75th quartile (inter-quartile range, IQR) respectively, while 

whiskers extend to lower and higher value laying within 1.5 * IQR of the lower and upper 

hinges. 
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Chapter 3 

Effect of individual cooperative contributions on 

cortisol and testosterone levels 
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Abstract  

Unravelling the physiological mechanisms underlying cooperative behaviours 

represents one of the remaining challenges in the study of cooperation. Empirical studies have 

shown that the expression of cooperative behaviours varies with individual and social 

characteristics but the physiological mechanisms modulating this variation are still poorly 

understood. In cooperative breeders, where a majority of group members does not breed and 

cares for the breeders’ offspring, it has been suggested that cooperative behaviours could be 

modulated by steroid sex hormones, like testosterone (T), and glucocorticoid stress hormones 

(GC). However, previous correlative studies cannot tell whether differences in GC and T levels 

causally modulate individual cooperative contributions. Since GC and T secretions are 

responsive to behavioural output, in this chapter I investigate the alternative possibility that 

differences in GC and T levels can arise due to variations in cooperative behaviours. I show 

that GC levels, but not T, were close to being significantly increased by an experimental 

treatment in which individual cooperative contributions were more than doubled. However, 

variations in cooperative contributions generally failed to explain variations in GC levels, 

suggesting that additional factors may have contributed to the rise of GC levels.  
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3.1 Introduction 

Large differences in individual cooperative contributions are common within 

cooperative societies (Clutton-Brock et al., 2001b, 2000; Field et al., 2006; Robinson, 1992; 

Zöttl et al., 2016b) where a majority of group members forfeit or forgo their own reproduction, 

care for offspring which are not their own (Clutton-Brock, 2016; Koenig and Dickinson, 2004), 

or maintain foraging tunnels and food stores (Bennett and Faulkes, 2000). Research on 

cooperative breeders has shown that part of this variation can be explained by individual 

adjustments of cooperative activities to individual, environmental and social cues (Clutton-

Brock et al., 2002; Russell et al., 2003; Wright and Dingemanse, 1999; Young et al., 2005), 

but the physiological mechanisms modulating these adjustments remain poorly understood. 

It has been suggested that steroid glucocorticoid (GC) stress and sex hormones, like 

testosterone (T), modulate cooperative behaviours in cooperative breeders (Carlson et al., 

2006a, 2006b; Sanderson et al., 2014; Young et al., 2005). Increased GC levels facilitate energy 

production (Landys et al., 2006; Sapolsky et al., 2000) and may support the expression of the 

energetically demanding forms of cooperative activities (Clutton-Brock et al., 1998; Grantner 

and Taborsky, 1998; Russell et al., 2003), leading to positive correlations between GC and 

cooperative behaviours (Sanderson et al., 2014). Conversely, increased T levels have been 

shown to reduce parental care (Lonstein and De Vries, 2000) suggesting that they may have 

similar effects on the expression of alloparental care (Vleck and Brown, 1999; Young et al., 

2005).  

Rises in GC levels may occur as a direct response to the increased energetic demands 

associated with the expression of cooperative activities expressed by cooperative breeders 

(Grantner and Taborsky, 1998; Russell et al., 2003). Indeed, elevations in GC levels represent 

a common response to increased physical activity (Hackney and Viru, 1999; Malisch et al., 

2008; Stranahan et al., 2008) where the positive effects of GC on energy production (Landys 

et al., 2006; Sapolsky et al., 2000) represent a physiological adaptation to exercise-induced 

elevated energetic demands (Malisch et al., 2008; Stranahan et al., 2008; Viru and Viru, 2004). 

Physical activity has also been shown to modulate T levels (Copeland et al., 2002; Daly et al., 

2005). Since GC decrease T secretions (Cumming et al., 1983; Moore et al., 1991), it has been 

suggested that exercise induced decreases in baseline T could be caused by post-exercise 

elevations in CORT (Daly et al., 2005). However, the correlational nature of the studies has 
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precluded firm conclusions on whether GC and T causally modulate the expression of 

cooperative activities (Carlson et al., 2006a, 2006b; Young et al., 2005) and increased GC and 

T levels could also arise as a consequence of individual differences in cooperative activities.  

To determine whether variation in GC or T levels can be generated by differences in 

cooperative behaviours, experimental manipulations of individual cooperative contributions 

are required. While such manipulations have already been carried out in cooperative breeders 

(Bergmüller and Taborsky, 2005; Liebl et al., 2016; Russell et al., 2003), their effects on GC 

or T profiles have not been investigated. I combined a correlative and an experimental approach 

to investigate whether individual variation in cooperative contributions could generate 

variations in GC and T levels in captive Damaraland mole-rat (Fukomys damarensis). I first 

determined whether helpers’ cooperative contributions, measured as the expression of 

burrowing, nest building and food carrying activities, were correlated with cortisol (CORT), 

the GC measured in Damaraland mole-rats, and T under non-experimental conditions. 

Subsequently, individual cooperative contributions were manipulated during two successive 

days to test whether experimentally induced increases in cooperative contributions would affect 

CORT or T levels. Since energetically demanding activities can increase CORT levels and 

increased CORT can down-regulate T, I investigated whether: i) CORT would be positively 

and T negatively correlated with cooperative contributions, ii) experimentally induced 

increases in individual cooperative contributions would raise CORT levels and decrease T 

levels.  
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3.2 Methods 

3.2.1 Colony maintenance and husbandry 

For details of colony maintenance and general animal husbandry refer to Chapter 2.  

3.2.2 Experimental design and procedures 

Study 1: Correlation between CORT, T and individual cooperative contributions  

The correlation between CORT, T and individual cooperative contributions was 

investigated by determining CORT and T concentrations in urine samples collected the 

morning following a 12 hours scan observation (n=40 observation sessions). CORT and T were 

measured in non-breeding females (20 individuals; weight range: 71-176 g, mean=115.86 g) 

and males (21 individuals; weight range: 92-215 g, mean=153.9 g) born in captivity from 20 

distinct colonies (colony size range: 3-17 individuals, mean=9.43 individuals) and older than 

350 days. Each individual returned 1 to 3 combined behavioural and endocrine measurements 

which led to a total sample size of 70 data points.  

Experiment 1: Effect of cooperative contribution manipulations on CORT and T levels  

To investigate whether individual cooperative contributions modulate CORT and T, 

cooperative contributions were experimentally manipulated by changing the sand provisioning 

regime. Five originally wild-caught colonies (colony size range: 9-14 individuals, mean=12.2, 

SD=1.77) were subjected to an increased sand provisioning treatment (the sand treatment) and 

to a control treatment. During the sand treatment, sand dispensers (see Chapter 2, Figure 2.4) 

were refilled every hour for 12 successive hours starting at 07:00, while during the control 

treatment they were filled once in the morning and once in the evening. The control treatment 

corresponded to a decrease and the sand treatment to an increase in the sand provisioning as 

compared to Study 1, in which sand was provided every two hours. Each treatment lasted 7 
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days, although only the first two days are relevant for the data presented here. The two 

treatments were separated by 7 days, and their sequence was balanced across colonies. 

A 12 hours scan observation session was conducted on the second day of each treatment 

and a urine sample was collected the following morning for the subsequent determination of 

CORT and T levels. Urine samples of all adult individuals, excluding breeding females 

(undetermined age but older than 2 years; females weight range: 86-163 g, mean=129 g; males 

weight range: 92-214 g; mean=165 g), were analysed resulting in a sample size of 88 samples 

(21 females and 23 males). In the absence of parentage analyses, I was unable to identify the 

breeding males. Since multiple males can mate with each breeding female, excluding all males 

which had been observed mating would have dramatically reduced the sample size and I 

therefore decided to retain all male data. Additional animal procedures (blood and sperm 

samples collection) were conducted one day before and one day after each treatment for other 

purposes (Mendonça et al., in preparation). 

3.2.3 Hormone analyses 

All hormone analyses were conducted at the Neuchatel Platform of Analytical 

Chemistry using ultra-high-pressure liquid chromatography-tandem mass spectrometry 

(UHPLC-MS/MS). Details of the analytical procedures are presented in Chapter 2. All raw 

hormone concentrations were corrected for urine specific gravity as detailed in Chapter 2, to 

control for variation in urine concentration. 

3.2.4 Data management and statistical analyses 

A mixed modelling approach was followed to account for the non-independence in the 

data caused by the repeated measurements of individuals. Individual and colony (when colony 

number >6) identities were specified as random factors. Model simplification and validation 

followed the procedures described in Chapter 2. In models where hormone concentration was 

specified as a response variable, its natural logarithm was used and urination delay was 

specified as an independent covariate to control for the effects of the time spent in the urine 

chamber on hormones levels. This was especially relevant for CORT since data exploration 

revealed that CORT levels increased with urination delay (LM; urination delay effect: 



37 

 

estimate=0.20, χ2=22.98, p<0.001). This pattern is more likely to result from lengthening in 

urination delay to increase CORT rather than the opposite since the urination delay of female 

helpers administered with a 5 mg CORT implant (Chapter 4) did not differ from when they 

were administered with a control implant (gamma GLMM; Treatment effect: estimate=-0.017, 

SE=0.053, χ2=0.102, p=0.750). Whenever the data did not comply with the linear mixed model 

assumptions, non-parametric statistical tests were used instead. 

Behavioural variables represent grouped behaviours, following the procedures detailed 

in Chapter 2. 

Study 1: Correlation between CORT, T and individual cooperative contributions  

To determine whether CORT and T levels correlated with individual cooperative 

contributions, I specified the CORT and T levels as response variables in two distinct LMMs. 

I hypothesized that the effect of cooperative contributions on CORT and T could be dependent 

on individual sex and weight and therefore specified the proportion of Total Cooperation, sex 

(female, male), weight and all possible interactions between them as covariates. Age and group 

size were specified as two independent covariates to control for potential effects of 

developmental stage and of social environment on hormone values, respectively. Testosterone 

levels of two females were unusually high and were excluded from the T model. 

Experiment 1: Effect of cooperative contribution manipulations on CORT and T levels  

I investigated whether the behavioural and hormonal responses to treatment were 

dependent on subjects’ weight and sex. Therefore, treatment (control, sand), sex (female, 

male), weight, and all possible interactions between them were specified as covariates. To 

control for the effects of potentially stressful animal procedures conducted prior and after each 

treatment week, I specified treatment week (week 1, week 2) as an independent covariate.  

First, I investigated whether the sand treatment fulfilled its goal of increasing individual 

cooperative contributions. Total Cooperation was specified as a response variable in an OLRE 

binomial GLMM. Additionally, I determined whether the effect of treatment was shared across 

the different types of cooperative activities: Burrowing was tested with an OLRE binomial 
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GLMM while a non-parametric Wilcoxon sign ranked test was used for Food Carrying and 

Nest Building.  

Secondly, I tested the effect of treatment on non-cooperative behaviours, activity and 

social behaviours, as these are susceptible to influence CORT and T levels (Creel et al., 2013). 

I specified Non-cooperation and Activity as response variables in two distinct OLRE binomial 

GLMMs. The number of Passes was specified as a response variable in a negative binomial 

GLMM to test the effect of treatment on interferences between individuals and potential 

opportunities for social interaction. I tested the effect of treatment on aggressive interactions 

by specifying the number of individuals involved in Overt-aggression, or Chase or Food 

Competition bouts using a chi-squared test.  

Third, I tested the effect of treatment on subjects’ body condition. I specified the weight 

difference between the first and the third day of treatment as a response variable in a LMM. 

Treatment, sex and the interaction between the two were specified as covariates. To control for 

the fact that heavier animals have more weight to lose (regression to the mean effects: Kelly 

and Price, 2005), weight at the beginning of treatment was fitted as a covariate. I then tested 

whether differences in weight changes may be explained by an effect of treatment on feeding 

behaviour by specifying Eat as a response variable in an OLRE binomial GLMM.  

Finally, I investigated the effect of treatment on hormonal levels, by specifying CORT 

and T levels as response variables in two distinct LMMs. Since treatment had a nearly 

significant effect on CORT levels (see results section), I investigated whether the differences 

in Burrowing (the cooperative activity that was increased by the sand treatment) between 

treatments explained the changes in CORT levels. For this, I specified the difference in the log 

transformed CORT levels between sand and control treatments as a response variable in a linear 

model and the difference in Burrowing between treatments, as a covariate. Log transformed 

CORT levels during the control treatment were specified as an additional independent 

covariate, to control for a potentially more pronounced effect of the sand treatment on lower 

CORT levels. To account for differences in CORT that may be caused by differences in the 

urine collection delay between treatments, I specified this difference as an independent 

covariate. I then investigated whether Burrowing would predict CORT levels when data of 

both treatments were pooled together. To test this possibility, I specified a LMM similar to the 

one used to test the effect of treatment on CORT levels, the only difference being that the 

covariate treatment was replaced by the proportion Burrowing.  
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3.3 Results 

Study 1: Correlation between CORT, T and individual cooperative contributions 

Cortisol (Table 3.4, Model 1, Figure 3.5) and testosterone (Table 3.4, Model 2, Figure 

3.6) levels were not affected by individual cooperative contributions. Cortisol levels 

significantly increased with age and urination delay. Testosterone levels were significantly 

higher in males than in females and increased with weight. 

Experiment 1: Effect of cooperative contribution manipulations on CORT and T levels  

The sand treatment significantly increased individual Total Cooperation, from 7.2 to 

16.7 percent (Table 3.2, Model 1, Figure 3.7). This increase was driven by the significant effect 

of treatment on Burrowing (Table 3.2, Model 2), as Nest Building (paired Wilcoxon signed-

rank test; females: n=21, V=22, p=0.608; males: n=23, V=45, p=1) and Food Carrying (paired 

Wilcoxon signed-rank test; females: n=21, V=38.5, p=0.627; males: n=23, V=62, p=0.550) 

were unaffected.  

The effect of treatment on Non-cooperation was dependent on weight: non-cooperative 

behaviours increased with weight during the control treatment and decreased with weight in 

the sand treatment (Table 3.6, Model 1). However, within this interaction, the effect of 

treatment was not significant. The combined effects of treatment on the expression of 

cooperative and non-cooperative behaviours led to a significant increase in Activity, which was 

close to being significantly affected by weight and sex (Table 3.6, Model 2). Indeed, heavier 

individuals increased their activity to a lesser extent and males increased their activity to a 

greater extent than females. Treatment also affected social conditions: number of Passes (Table 

3.7) and number of individuals involved in aggressive interactions (Chi-square test: χ2=5.572, 

df=1, p=0.018) were both significantly higher in the sand treatment.  

Treatment significantly affected the pattern of weight changes: individuals had a stable 

weight during the sand treatment and lost weight during the control treatment (Table 3.5), 

despite eating significantly more (Table 3.6).  
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Testosterone levels were not modulated by treatment, and similarly to the results of 

Study 1, T was significantly higher in males and increased with weight (Table 3.10, Model 1). 

Individual CORT levels were increased by the sand treatment to a degree that fell short of 

significance and significantly increased with urination delay (Table 3.10, Model 2, Figure 3.8). 

However, individual changes in CORT levels across treatments were not predicted by the 

changes in burrowing but there was a significant negative correlation with the CORT levels 

during the control week (Table 3.11, Figure 3.9). When data from both treatments were pooled, 

individual burrowing contributions did not explain CORT levels (Table 3.12).  
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Table 3.4 – Predictors of CORT (Model 1; n=70 urine samples from 20 females and 21 males) and T (Model 2; 

n=68 urine samples from 19 females and 21 males) levels. The response variables were ln-transformed and the 

data were analysed in LMMs. All variables shown in bold were retained in the minimal model. a indicates variables 

centred and scaled; b indicates variables centred and scaled by sex. 

Covariates Estimate SE test statistic p-value 

Model 1. Predictors of CORT levels         

Intercept  1.504 0.198 7.584  

Urination delay  0.015 0.002 6.224 <0.001 

Age a 0.177 0.089 1.993 0.047 

Sex  -0.198 0.185 -1.069 0.261 

Total Cooperation a -0.039 0.092 -0.421 0.788 

Total Cooperation a x Sex 0.368 0.197 1.872 0.105 

Group size a 0.171 0.108 1.582 0.096 

Weight b 0.014 0.127 0.110 0.930 

Total Cooperation a x Weight b 0.076 0.103 0.743 0.384 

Sex x Weight b 0.106 0.185 0.576 0.523 

Total Cooperation a x Sex x Weight b 0.166 0.261 0.635 0.524 

Model 2. Predictors of T levels         

Intercept  2.040 0.211 9.664  

Weight b 0.281 0.110 2.560 0.013 

Sex 1.350 0.170 10.269 <0.001 

Urination Delay  0.004 0.002 1.783 0.071 

Age a -0.100 0.094 -1.066 0.299 

Group size a -0.050 0.128 -0.388 0.793 

Total Cooperation a 0.029 0.098 0.298 0.791 

Sex x Weight b -0.316 0.200 -1.577 0.227 

Total Cooperation a x Sex -0.331 0.208 -1.593 0.122 

Total Cooperation a x Weight b -0.024 0.109 -0.221 0.810 

Total Cooperation a x Sex x Weight b -0.447 0.268 -1.666 0.076 
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Figure 3.5 - Correlation between ln-transformed urinary CORT levels and Total Cooperation. Total Cooperation 

is expressed as percentage of scans displayed during scan observation sessions. Each dot represents a distinct 

measurement, although measurements are not all independent from one another as 1-3 repeated measurements 

were collected from each individual. 

 

 

 

Figure 3.6 - Correlations between ln-transformed urinary T levels and Total Cooperation in females (left) and 

males (right). Total Cooperation is expressed as percentage of scan displayed during scan observation sessions. 

Each dot represents a distinct measurement, although measurements are not all independent from one another as 

1-3 repeated measurements were collected from each individual. 
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Table 3.5 – Predictors of Total Cooperation (Model 1) and Burrowing (Model 2) during the sand provisioning 

experiment (control: n=44 individuals; sand: n=44 individuals; 21 females, 23 males). The data were analysed in 

OLRE binomial GLMMs with a logit link function. All variables shown in bold were retained in the minimal 

model. b indicates variables centred and scaled by sex. 

Covariates Estimate SE test statistic p-value 

Model 1. Predictors of Total Cooperation 

Intercept  -0.280 0.137 -20.412  

Treatment 0.999 0.144 6.955 <0.001 

Sex 0.304 0.219 1.390 0.166 

Treatment Week 0.113 0.143 0.792 0.431 

Weight b 0.053 0.110 0.477 0.633 

Treatment x Weight b -0.190 0.142 -1.338 0.187 

Weight b x Sex  0.146 0.221 0.659 0.510 

Treatment x Sex  0.092 0.278 0.331 0.742 

Treatment x Weight b x Sex  -0.460 0.275 -1.674 0.100 

Model 2. Predictors of Burrowing 

Intercept  -2.931 0.142 -20.580  

Treatment 1.076 0.146 7.380 <0.001 

Sex 0.306 0.230 1.329 0.189 

Treatment Week 0.091 0.145 0.625 0.535 

Weight b 0.061 0.115 0.532 0.596 

Treatment x Weight b -0.182 0.144 -1.266 0.212 

Weight b x Sex  0.133 0.230 0.578 0.563 

Treatment x Sex  0.103 0.284 0.364 0.720 

Treatment x Weight b x Sex  -0.461 0.280 -1.647 0.105 
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*** 

Figure 3.7 - Effect of sand provisioning experiment on individual Total Cooperation, expressed as the 

percentage of scan displayed during the 12 hours scan sessions of the control (left) and the sand (right) 

treatments. Lines between points illustrate the repeated measurements of same individuals. ***: p<0.001). 
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Table 3.6 - Predictors of Non-cooperation (Model 1) and Activity (Model 2) during the sand provisioning 

experiment (control: n=44 individuals; sand: n=44 individuals; 21 females, 23 males). The data were analysed in 

OLRE binomial GLMMs with a logit link function. All variables shown in bold were retained in the minimal 

model. b indicates variables centred and scaled by sex. c indicates p-values returned by the lmerTest package. 

Covariates Estimate SE test statistic p-value 

Model 1. Predictors of Non-cooperation 

Intercept  -1.359 0.051 -26.861   

Treatment -0.019 0.050 -0.379 0.705 c 

Weight b 0.055 0.050 1.093 0.275 c 

Treatment x Weight b -0.124 0.052 -2.405 0.021 

Sex -0.065 0.087 -0.746 0.457 

Treatment Week -0.010 0.051 -0.198 0.843 

Treatment x Sex  0.165 0.098 1.682 0.098 

Weight b x Sex  -0.024 0.088 -0.271 0.787 

Treatment x Weight b x Sex  -0.056 0.100 -0.560 0.567 

Model 2. Predictors of Activity 

Intercept  -0.091 0.076 -11.951  

Treatment 0.416 0.084 4.921 <0.001 

Treatment Week 0.080 0.084 0.957 0.341 

Sex 0.090 0.125 0.719 0.473 

Weight b -0.008 0.063 -0.121 0.904 

Treatment x Weight b -0.162 0.081 1.999 0.052 

Treatment x Sex  0.303 0.153 1.979 0.052 

Weight b x Sex  0.009 0.126 0.068 0.946 

Treatment x Weight b x Sex  -0.253 0.151 -1.680 0.099 
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Table 3.7 – Predictors of Passes during the sand provisioning experiment (control: n=44 individuals; sand: n=44 

individuals; 21 females, 23 males). The data were analysed in negative binomial GLMMs with a logit link 

function. All variables shown in bold were included in the minimal model. b indicates variables centred and scaled 

by sex. c indicates p-values returned by the lmerTest package. 

Covariates Estimate SE test statistic p-value 

Intercept  0.826 0.119 15.327  

Treatment 0.494 0.122 4.054 <0.001 c 

Weight b 0.057 0.117 0.489 0.625 c 

Treatment x Weight b -0.389 0.129 -3.011 0.002 

Sex -0.337 0.185 -1.815 0.074 

Treatment Week -0.049 0.122 -0.401 0.689 

Weight b x Sex  0.187 0.189 0.988 0.321 

Treatment x Sex  0.200 0.244 0.821 0.412 

Treatment x Weight b x Sex  0.122 0.258 0.472 0.637 

 

 

 

Table 3.8 – Predictors of weight changes during the sand provisioning experiment (control: n=44 individuals; 

sand: n=44 individuals; 21 females, 23 males). The data were analysed in LMMs. All variables shown in bold 

were retained in the minimal model. 

Covariates Estimate SE test statistic p-value 

Intercept  -1.591 0.630 -2.526  

Treatment 1.818 0.882 2.061 0.041 

Sex 0.197 1.116 0.177 0.861 

Weight -0.018 0.015 -1.183 0.230 

Treatment x Sex  -0.338 1.773 -0.190 0.845 
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Table 3.9 – Predictors of Eat (control: n=44 individuals; sand: n=44 individuals; 21 females, 23 males). The data 

were analysed in OLRE binomial GLMM with a logit link function. All variables shown in bold were retained in 

the minimal model. b indicates variables centred and scaled by sex. 

Covariates Estimate SE 
test 

statistic 
p-value 

Intercept  -2.804 0.049 -5.732  

Treatment -0.211 0.072 -2.930 0.003 

Weight b 0.066 0.037 1.790 0.072 

Treatment Week -0.012 0.072 -0.160 0.873 

Sex 0.009 0.072 0.124 0.902 

Treatment x Sex  0.080 0.144 0.555 0.579 

Weight b x Sex  -0.019 0.073 -0.255 0.798 

Treatment x Weight b -0.022 0.074 -0.030 0.976 

Treatment x Weight b x Sex  0.092 0.148 0.623 0.533 
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Table 3.10 – Predictors of T (Model 1) and CORT (Model 2) levels during the sand provisioning experiment 

(control: n=44 individuals; sand: n=44 individuals; 21 females, 23 males). The data were analysed in LMMs. All 

variables shown in bold were retained in the minimal model. b indicates variables centred and scaled by sex. 

Covariates Estimate SE 
test 

statistic 
p-value 

Model 1. Predictors of T 

Intercept  2.113 0.187 11.311  

Weight b 0.309 0.127 2.441 0.016 

Sex 1.437 0.258 5.562 <0.001 

Treatment Week -0.091 0.107 0.856 0.387 

Urine collection delay 0.002 0.003 0.961 0.354 

Treatment 0.024 0.117 0.206 0.837 

Weight b x Sex  -0.376 0.257 -1.464 0.128 

Treatment x Sex  0.043 0.214 0.199 0.835 

Treatment x Weight b -0.020 0.110 -0.183 0.846 

Treatment x Weight b x Sex  -0.046 0.229 -0.203 0.835 

Model 2. Predictors of CORT 

Intercept  1.855 0.156 11.867  

Urine collection delay 0.013 0.002 5.952 <0.001 

Treatment 0.290 0.154 1.883 0.058 

Treatment Week 0.199 0.150 1.325 0.177 

Weight b 0.059 0.075 0.785 0.420 

Sex -0.056 0.153 -0.365 0.706 

Treatment x Sex  0.453 0.298 1.520 0.116 

Weight b x Sex  -0.221 0.152 -1.461 0.128 

Treatment x Weight b -0.054 0.150 -0.361 0.704 

Treatment x Weight b x Sex  0.069 0.304 0.227 0.810 
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Figure 3.8 – Effect of the sand provisioning experiment on CORT levels. After controlling for the significant 

effect of urination delay on CORT levels, the sand treatment led to an increase in CORT levels (p=0.057). CORT 

levels are expressed after their ln transformation in ng/ml of urine. Urination delay is given in minutes from 

transfer into the urine chamber until urination. Circles and triangles represent the raw data for the control and the 

sand treatment respectively. Dashed and solid line represent the LMM predictions for the control and sand 

treatment, respectively. The 95 % confidence intervals are depicted in grey. 

 

 

 

 

Table 3.11 – Predictors of changes in Burrowing between the sand and the control treatments (n=44 individuals). 

The data were analysed in a LM. All variables shown in bold were included in the minimal model. a indicates 

variables that were transformed by their natural logarithm. 

Covariates Estimate SE 
test 

statistic 
p-value 

Intercept 25.504 8.206 3.108  

Urine collection delay difference 0.224 0.080 2.806 0.005 

CORT a -7.347 3.205 -2.293 0.021 

Burrowing difference 0.124 0.135 0.922 0.336 
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Figure 3.9 - Correlation between differences in urinary CORT and differences in number of Burrowing scans 

between the control and sand treatment. 

 

 

 

Table 3.12 – Predictors of CORT levels during the sand provisioning experiment (control: n=44 individuals; sand: 

n=44 individuals; 21 females, 23 males). Data of the two treatments were pooled and analysed in a LMM. All 

variables shown in bold were retained in the minimal model. a indicates variables centred and scaled; b indicates 

variables centred and scaled by sex. 

Covariates Estimate SE 
test 

statistic 
p-value 

Intercept  1.854 0.156 11.867  

Urine collection delay 0.013 0.002 5.952 <0.001 

Treatment Week 0.230 0.150 1.518 0.125 

Weight b 0.059 0.076 0.773 0.430 

Burrowing a 0.050 0.077 0.650 0.504 

Sex -0.087 0.157 -0.553 0.567 

Weight b x Sex  -0.212 0.154 -1.373 0.155 

Burrowing a x Sex  0.044 0.163 0.269 0.778 

Burrowing a x Weight b 0.005 0.089 0.055 0.954 

Burrowing a x Weight b x Sex  -0.065 0.188 -0.346 0.713 
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3.4 Discussion 

My results show that when Damaraland mole-rats were provided with more sand, 

individuals more than doubled their cooperative contributions, raising their CORT levels by 

25%, although this fell short of significance. Burrowing was the only cooperative activity 

elevated by the treatment, suggesting it could be responsible for the increase in CORT. 

Therefore, individual burrowing contributions would have been expected to positively 

correlate with CORT levels, yet my results show this is not the case. First, individual 

differences in burrowing contributions across the two treatments did not correlate with the 

variations in CORT levels. Second, when the low burrowing contributions of the control and 

the high burrowing contributions of the sand treatments were pooled, they still failed to predict 

CORT levels, paralleling the results of the non-experimental data.  

The lack of correlation between burrowing and CORT levels does not exclude the 

possibility that increased burrowing raised CORT levels. Following the evening interruption 

of the increased sand provisioning, it is likely that burrowing contributions rapidly returned to 

their usual levels. Since GC profiles closely match recent levels of activity (Girard and Garland, 

2002; Hackney and Viru, 1999; Malisch et al., 2008), the overnight delay left until urine 

sampling may have been sufficient for elevated CORT levels to fade (Smith and French, 1997). 

In laboratory rodents, differences in GC levels induced by experimental increase in physical 

activity can persist beyond a period of rest, but this may require a longer treatment duration 

than the one used in this experiment (Naylor, 2005). Overall the effect of increased cooperative 

activities on CORT levels may have been more pronounced if samples had been collected in 

the evening immediately after the interruption of the sand provisioning and/or after a longer 

period of treatment. 

Increased sand provisioning also influenced social interactions and feeding, which 

could lead to the reported effects of treatment on CORT levels. Investigations of the effects of 

voluntary exercise on GC profile have mostly been conducted on animals housed in social 

isolation (Fediuc et al., 2006; Girard and Garland, 2002; Lancel et al., 2003; Makatsori et al., 

2003), allowing to dismiss the effect of social influences on the modulation of GC levels (Creel 

et al., 2013). In highly social species such as cooperative breeders, changes in the expression 

of cooperative behaviours may be associated with changes in social conditions. My results 

highlight that such confounding social influences should be considered when investigating the 
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effect of cooperative contributions on GC levels. When colonies were provided with more sand, 

individuals became more active, they encountered other group members more frequently and 

more of them were involved in aggressive interactions. Although colonies were fed ad libitum, 

individuals were observed eating less during the sand treatment. However, individuals did not 

suffer a loss of body condition, suggesting that they ate more at night, when no sand was 

provided. This advocates a neutral energetic balance, making it unlikely that changes in feeding 

may have contributed to the increases in CORT. 

Candidate explanations for a modulation of CORT – cooperative activities, social 

conditions and feeding - could act in concert and are challenging to tease apart. Both a decrease 

in energy intake (Levay et al., 2010; Lynn et al., 2010, 2003) and social isolation (Sapolsky et 

al., 1997; Weiss et al., 2004) could explain the increase in GC levels which is characteristic of 

babysitting meerkats (Carlson et al., 2006b). Similarly, both increased energetic demands and 

decreased food intake caused, respectively, by acquisition and provisioning of food items for 

pups may explain the positive association between GC and pup feeding in banded mongooses 

(Sanderson et al., 2014). Clearly, future studies aiming to unravel the effects of cooperative 

behaviours on hormone levels will have to rely on carefully designed experiments in which the 

effects of these varied influences can be distinguished. 

Neither the correlative nor the experimental results suggest that cooperative 

contributions affect T levels. These results indicate that the elevation of CORT levels was 

insufficient to induce a decrease in T, a hormone that generally favours competitive abilities 

and reproductive behaviours (Hau, 2007). This does not support the hypothesis that higher 

cooperative contributions may lead to hormonal changes contributing to helpers’ lower 

competitiveness and reproductive investment. 

In summary, regardless of the factors that may modulate CORT levels, life in an 

environment where individual cooperative contributions are elevated can lead to increased 

stress levels. Further experimental manipulations are now needed to test whether stress 

hormones could also modulate individual cooperative contributions.  
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Chapter 4 

Effects of Cortisol manipulation on the cooperative 

contributions in female helpers 
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Abstract 

Individual cooperative contributions are seldom equally distributed within animal 

societies partly because individuals adjust their level of cooperation to perceived individual 

and environmental characteristics. The physiological mechanisms controlling these 

adjustments remain poorly understood but glucocorticoid (GC) stress hormones may represent 

a general mechanism underlying adaptive plasticity in cooperative contributions. Studies of 

cooperative breeders have demonstrated associations between GC and the expression of 

cooperative behaviours but have not yet demonstrated a causal link between the two. In Chapter 

3, I provided evidence that GC can be increased by cooperative behaviours. In this chapter, I 

test the reverse, yet not mutually exclusive possibility, that GC causally modulate cooperative 

contributions. I show that experimental elevation of GC in non-breeding female helpers 

increased their cooperative contributions, indicating that GC facilitates the expression of 

energetically demanding cooperative activities. These findings offer the first experimental 

evidence in a cooperative breeder that GC modulates cooperative contributions. 
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4.1 Introduction 

Individual cooperative contributions are highly variable and are conditional on 

individual, social and environmental characteristics affecting the fitness costs and benefits of 

cooperation (Clutton-Brock et al., 2002; Russell et al., 2003). While the adaptive character of 

individual abilities to alter their level of cooperation in a context-dependent fashion has 

received considerable attention (Cant, 2005; Griffin and West, 2002), the physiological basis 

of these changes remain largely unknown (Soares et al., 2010). Elucidating the physiological 

mechanisms modulating cooperative behaviours represent one of the remaining challenges in 

the study of cooperation.  

Glucocorticoid (GC) stress hormones may play an important role in modulating the 

expression of energetically costly cooperative behaviours as a result of their profound effect 

on the regulation of energy metabolism, feeding behaviour and locomotor activity (Landys et 

al., 2006). Costly cooperative behaviours are commonly displayed in cooperative breeders, 

where so called helpers forego their own reproduction and care for offspring which are not 

their own (Clutton-Brock, 2016; Koenig and Dickinson, 2004). The energetic costs of 

cooperative activities arise because of increased energy expenditure when defending a territory, 

decreased energy intake when forgoing feeding to babysit pups at the burrow, or a combination 

of the two when digging for a prey that is subsequently provisioned to a young. Glucocorticoids 

may promote the expression of these cooperative activities since increased GC release 

promotes energy production (Landys et al., 2006; Sapolsky et al., 2000). Alternatively, 

increased GC levels may reflect poor body condition (Levay et al., 2010; Lynn et al., 2010, 

2003), promote food consumption (Landys et al., 2006) and lead to a decrease in costly 

cooperative contributions. Previous correlational studies have indeed suggested that GC affect 

both baby-sitting and pup feeding (Carlson et al., 2006a, 2006b; Sanderson et al., 2014) but 

were unable to demonstrate GC causal effect on the modulation of these activities. 

Experimental manipulations of GC neuroendocrine pathways are required to unequivocally 

determine whether GC modulate cooperative activities.  

Using captive Damaraland mole-rat (Fukomys damarensis) as a model system, I 

investigated whether cortisol (CORT), the form of GC secreted by this species (Clarke et al., 

2001), modulates cooperative contributions. In contrast to other cooperative breeders, 

alloparental care is rarely observed and cooperative activities mostly consist of excavating 



56 

 

activities necessary to maintain and expand underground foraging tunnels to locate food 

sources and of building and maintaining a communal nest and food stores (Bennett, 1990; Zöttl 

et al., 2016b). These behaviours can be defined as cooperative as they contribute to common 

goods from which all group members can benefit. Furthermore, the possibility that helpers’ 

cooperative activities may have been selected through their positive effects on other group 

members’ reproductive success has recently been supported by a field study showing that 

helpers increase offspring recruitment (Young et al., 2015). I experimentally increased female 

helpers’ CORT levels within its physiological range during a week. Elevations of GC levels 

are known to increase locomotor activity and energy production (Landys et al., 2006). Since 

cooperative behaviours in the Damaraland mole-rat are energetically demanding (Lovegrove, 

1989), I investigated whether experimentally increases in CORT levels raised helpers’ 

cooperative contributions. Since increased CORT levels can downregulate the secretions of the 

sex steroid hormone testosterone (T) (Viau, 2002), which may conflict with the expression of 

cooperative behaviours, I also measured T levels to assess the possibility that CORT modulates 

cooperative activities via its effect on T release. 
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4.2 Methods 

4.2.1 Colony maintenance and husbandry 

For details of colony maintenance and general animal husbandry refer to Chapter 2.  

4.2.2 Experimental design and procedures  

Seven pairs of non-reproductive adult females (subject 1 and subject 2), originally from 

7 originally wild-caught colonies (group-size range: 6 to 21 individuals, mean=10.71, 

SD=5.12) were used in this experiment. Both subjects were subjected to a cortisol and a control 

treatment. On day 1, subject 1 and 2 respectively received a 7 days’ release pellet containing 

0.001 mg (control) and 5 mg (cortisol) of CORT before 8:00. Hormone pellets (Innovative 

Research of America) were inserted subcutaneously in the neck area using a 10-gauge precision 

trochar (Innovative Research of America), while subjects were kept under anaesthesia with a 

constant flow of Isoflurane. Procedures did not exceed 15 minutes and subjects were placed 

back in their tunnel system as soon as full mobility was regained. Two weeks later, the same 

procedure was repeated at the only difference that treatments were reversed between the two 

experimental subjects.  

To determine the effect of treatment on subjects’ endocrine profile, a urine sample was 

collected on day 3 and day 6 of each treatment week.  

Treatment validation followed a two-step process. First, I assessed whether the cortisol 

treatment successfully elevated CORT levels. Second, I assessed the physiological validity of 

the cortisol treatment by comparing the CORT values measured during this treatment with 

those measured in two distinct social situations: baseline and eviction. Baseline condition was 

quantified in samples collected from non-experimental adult female helpers of similar weight 

range to the experimental subjects, living in stable social environment (baseline condition: 

n=29, 13 individuals). Samples collected within 2 days following the eviction of adult female 

helpers from their original colony were expected to reflect stress induced CORT levels 

(eviction condition: n=12 samples, 11 individuals).  
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During each treatment week, behavioural observations consisted of two 12 hours scan 

sessions conducted on day 2 and day 5 and focal observations conducted on days 1,3,4,6 and 7 

(observation count/individual: range: 10-24, mean=17.14, SD=4.27; observation time in 

hour/individual: range: 5.7-17.35 mean=11.59, SD=3.36). All behavioural observations were 

carried out by a total of three observers blind to treatment.  

Subjects were weighed on implantation day (day 1) and on the morning after the end of 

the treatment (day 8). 

4.2.3 Hormone analyses 

All hormone analyses were conducted at the University of Pretoria, in collaboration 

with Professor Nigel Bennett using radioimmunoassay. Details of the analytical procedures are 

available in Chapter 2. Before statistical analyses, all raw hormone concentrations were 

corrected for urine specific gravity as detailed in Chapter 2, to control for variation in urine 

concentration across samples. 

4.2.4 Data management and statistical analyses 

Treatment effects on endocrine values 

On the first step of the validation process, I specified CORT concentrations transformed 

by their natural logarithm (ln transformed) as a response variable in a LMM. I anticipated that 

implants’ CORT release may not be constant throughout the week of treatment and that 

changes in CORT levels could vary as a function of individual weight. For these reasons, 

treatment (control, cortisol), day of treatment (day 3, day 6), subject weight on implantation 

day and all possible interactions between them were specified as covariates. Because CORT 

concentrations could increase with the time spent in the urine chamber, I also specified 

urination delay as an independent covariate. Two outliers from different subjects, one on day 

3 and one on day 6, during the cortisol treatment were excluded from the analyses leading to a 

total of 54 CORT concentrations (n=14 individuals, 2 urine samples per treatment). 
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On the second step, to evaluate the physiological validity of the cortisol treatment, ln 

transformed CORT values were specified as a response variable in a LMM, where individual 

condition (baseline, cortisol, eviction), individual weight and urination delay were specified as 

independent covariates.  

To assess if the effects of treatment on cooperative contributions may be mediated via 

a CORT induced decreases of T secretions, I questioned whether treatment affected T levels. 

Generally, T concentrations measured were low and fell in the lower part of the assay standard 

curve. In the 28 samples analysed, 15 had one and 8 had both their duplicates below the assay 

detection limit, and only 3 samples had a concentration that was higher than the lowest standard 

curve concentration resulting in a high coefficient of variation between duplicates. 

Testosterone concentrations were ln transformed and specified as a response variable in a LMM 

where only treatment was specified as a covariate because of the small sample size. Data from 

one subject which returned undetectable T concentrations for both treatments were excluded 

from the analyses as the effect of treatment on T values could not be determined (n=26 data 

points, 13 subjects). All other undetectable T concentrations were assigned a concentration 

equal to the assay LOD and kept in the dataset. A similar model was run a second time after 

the removal of a subject returning an unusually high T concentration during the control 

treatment. 

Treatment effects on behaviour and body-condition 

For the analyses described below, I investigated whether treatment effects on behaviour 

varied as a function of subjects’ weight and treatment day. The former, because weight 

differences may reflect variation associated with differences in the stress axis; the latter, 

because CORT effects may vary through treatment, due to a non-constant release of the 

hormone from the pellets. Unless stated otherwise, I specified treatment (control, cortisol), 

treatment day (day 2, day 5), weight on implantation day, an interaction between treatment and 

treatment day and an interaction between treatment and subjects’ weight as covariates. If not 

detailed differently, analyses were conducted on scan data using beta-binomial GLMMs (see 

Chapter 2). Behaviour variables used for statistical analyses represent grouped behaviours, 

following the procedures described in Chapter 2. 
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I first tested whether treatment affected individual cooperative contributions by 

specifying Total Cooperation as a response variable. Because the cortisol treatment induced 

CORT levels close to those measured during a stressful situation (see results), I asked whether 

treatment effect would be retained when only data referring to CORT levels closer to baseline 

were considered. To answer this question, I repeated the previous analyses: a) after excluding 

all the cortisol treatment behavioural data collected on day 2, because CORT levels were 

highest earlier in the treatment week (see results), and b) that were associated with CORT levels 

higher than the treatment median. For these two latter models, only treatment, subjects’ weight 

and their interaction were fitted as covariates.  

I subsequently investigated whether changes in cooperative contributions were 

predicted by the changes in CORT levels between the cortisol and the control treatments. To 

answer this question, I specified the difference in Total Cooperation (day 2 and day 5) between 

the two treatments as a response variable in a LMM. I had no a priori prediction as to whether 

changes in cooperative contributions are more likely to be mediated by the absolute difference 

in CORT levels between treatments or its relative change as compared to the concentration 

determined during the control treatment. I consequently specified both the absolute and the 

relative changes in CORT as independent covariates, which was possible because data 

exploration procedures revealed an absence of collinearity between the two. To control for the 

possibility that treatment effects on cooperative contributions could be more pronounced in 

subjects that cooperated less during the control week, Total Cooperation measured during the 

control treatment was fitted as an additional independent covariate. Covariates accounting for 

non-linear effects of changes in CORT on Total Cooperation were omitted since a Generalized 

Additive Model (GAM) conducted as part of the data exploration procedures confirmed the 

absence of such effects. 

To determine whether treatment effect on cooperative contributions were the 

consequence of a specific effect of CORT on cooperative behaviours or a more general effect 

on activity, I first tested the effect of treatment on non-cooperative behaviours by specifying 

Non-Cooperation as a response variable. After, I asked whether in combination with CORT 

effects on Total Cooperation, this would translate into a general treatment effect on subjects’ 

activity by specifying Activity as a response variable. I then investigated the specificity of 

treatment effect on cooperative contributions by asking whether Total Cooperation during 

activity bouts was influenced by CORT. Similar to previous models, Total Cooperation was 
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specified as a response variable, at the only difference that the number of scans during which 

subjects were active, not the total number of scans, was used as the binomial total. 

To investigate whether treatment effect on individual cooperative contributions was 

restricted to some of the cooperative activities merged into Total Cooperation, I specified 

Burrowing, Food Carrying (binomial GLMM) and Nest Building (OLRE binomial GLMM) as 

distinct response variables in three separate models. For Food Carrying and Nest Building, data 

from the two scan days were pooled to limit the presence of zeros and treatment, weight and 

an interaction between the two were specified as covariates. Due to the low frequency at which 

these two activities were expressed, treatment effects were also investigated using the focal 

data to complement the analyses of the scan data. The daily focal total duration of Food 

Carrying was log transformed and specified as a response variable in a Gaussian LMM where 

subjects’ weight, treatment, and their interactions were specified as covariates. Nine out of 141 

observations were excluded from the analyses as they returned a zero. The duration of Nest 

Building over the entire week of treatment was log transformed and specified as response 

variable in a Gaussian LMM in which treatment, weight, and an interaction between the two 

were specified as covariates. In both LMMs, the daily (Food Carrying) and weekly (Nest 

Building) total focal observation duration was fitted as independent covariate in their respective 

models, to control for effects due to variation in observation duration. 

Finally, I questioned whether CORT treatment could be costly by determining whether 

treatment affected subjects’ weight change over each treatment week. Weight difference 

between day 1 and day 8 of each week, was specified as response variable with treatment being 

as a covariate. To control for regression to the mean effects (Kelly and Price, 2005), subjects’ 

weight on day 1 was fitted as an independent covariate.  
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4.3 Results 

Treatment effects on endocrine values 

Cortisol treatment caused a 3-fold increase in urinary CORT concentrations (n=28 

samples, mean=10.63 ng/dl, SD=9.15 ng/dl), in comparison to concentrations measured during 

the control week (n=28 samples, mean=3.16 ng/dl, SD=2.35 ng/dl). The effect of the cortisol 

treatment on urinary CORT levels was significant and there was a trend for significance on an 

interaction between treatment and treatment day (Table 4.13). The latter was caused by the 

decrease in CORT concentrations from day 3 to day 6 during the cortisol treatment, but not in 

the control treatment. This suggests that more CORT was released from the implant at the 

beginning of the treatment and/or subjects’ endogenous CORT secretions decreased as the 

treatment progressed (Figure 4.10).  

A visual inspection of CORT concentrations showed that the CORT levels induced 

during the cortisol treatment fell within the physiological range of those measured during the 

control treatment and in non-experimental adult female helpers (Figure 4.11). CORT levels 

during the cortisol treatment were significantly higher than in female helpers experiencing a 

stable social environment (baseline), but not significantly different than in evicted female 

helpers (Table 4.14).  

Testosterone concentrations were significantly decreased during the cortisol treatment 

(LMM; treatment effect: estimate=-1.110, SE=0.390, χ2=7.190, p=0.007). This effect remained 

after the removal of an individual data returning an unusually high T concentration during the 

control treatment (LMM; treatment effect: Estimate=-0.903, SE= 0.358, χ2=5.472, p=0.019). 

Treatment effects on behaviour and body-condition 

The cortisol treatment significantly increased the expression of Total Cooperation by 

more than one half (Table 4.15; Figure 4.12). This effect was maintained when the higher 

CORT levels were removed from the dataset: Total Cooperation was still significantly higher 

after the exclusion of all the data collected on day 2 of the cortisol treatment (beta binomial 

GLMM: treatment effect: estimate=0.493; SE=0.221; χ²=4.530; p=0.033), and nearly 
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significantly increased after the exclusion of all the data associated with CORT levels higher 

than the cortisol treatment median (beta binomial GLMM: treatment effect: estimate=0.450; 

SE=0.224; χ²=3.824; p=0.051). 

Changes in levels of Total Cooperation were independent on the magnitude of the 

changes in CORT levels between treatments. Neither the absolute nor the relative increase in 

CORT levels were correlated to the difference in Total Cooperation between the cortisol and 

the control treatments (Table 4.16; Figure 4.13). Also, treatment effect on Total Cooperation 

was more pronounced in subjects that cooperated less in the control treatment: the changes in 

Total Cooperation between treatments were significantly and negatively correlated with Total 

Cooperation expressed during the control treatment (Table 4.16). 

The upregulation of individual cooperative contributions arose as a combination of a 

general effect of treatment on individual activity and an upregulation of cooperative 

contributions during activity bouts. There was a trend for the cortisol treatment to increase the 

expression of non-cooperative behaviours (Table 4.17). Together with the increase of Total 

Cooperation by the cortisol treatment, this translated into a significant and positive effect on 

individual activity (Table 4.18). Because CORT induced increases of Total Cooperation were 

more pronounced than Non-cooperation, the proportion of Total Cooperation expressed during 

activity bouts was significantly increased during the cortisol treatment (Table 4.19; Figure 

4.14).  

The cortisol treatment induced increase in individual cooperative contributions was the 

consequence of a significant elevation of the expression of Burrowing (Table 4.20; Figure 

4.15). Cortisol treatment also caused a significant increase in Food Carrying (Binomial 

GLMM: treatment effect: estimate=0.354, SE=0.171, χ²=4.240, p=0.040), but this effect 

became highly insignificant after the removal of a single outlier (Binomial GLMM: treatment 

effect: estimate=0.122, SE=0.184, χ²=0.428, p=0.513; Figure 4.16). Treatment did not affect 

Nest Building (OLRE binomial GLMM: treatment effect: estimate=0.217, SE=0.372, 

χ²=0.342, p=0.559; Figure 4.17). The absence of treatment effect on both Food Carrying and 

Nest Building was supported by the analyses of focal data (Gaussian LMMs: Food Carrying: 

treatment effect: estimate=-0.084, SE=0.169, χ2=0.243, p=0.622; Nest Building: treatment 

effect: estimate=-0.270, SE=0.314, χ2=0.776, p=0.379). 
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Despite the large increase in cooperative contributions and activity, treatment did not 

affect subjects’ weight changes (LMM; treatment effect: estimate=1.214, SE=0.928, χ2=1.727, 

p=0.189).  
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Table 4.13 - Predictors of CORT levels on the first step of the treatment validation process. The response variable 

was ln-transformed and the data analysed in LMM. All variables shown in bold were retained in the minimal 

model. a indicates variables centred and scaled.  

Covariates Estimate SE 
test 

statistic 
p-value 

Intercept 0.859 0.146 5.886  

Treatment 1.189 0.182 6.548 <0.001 

Day -0.203 0.181 -1.120 0.252 

Weight a -0.029 0.120 -0.242 0.788 

Urination delay -0.027 0.098 -0.277 0.846 

Treatment x Day -0.635 0.370 -1.718 0.072 

Weight a x Day 0.075 0.186 0.401 0.672 

Treatment x Weight a 0.028 0.189 0.146 0.876 

Treatment x Weight a x Day 0.219 0.381 0.573 0.531 

 

 

 

 

Figure 4.10 - Effect of the cortisol manipulation experiment on CORT levels measured during the control (left) 

and cortisol (right) treatments. CORT values have been ln transformed. Lines between points illustrate the 

repeated measurements of same individuals. ***: p<0.001). 
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Table 4.14 - Predictors of CORT levels on the second step of the treatment validation process. The response 

variable was ln-transformed and the data analysed in LMM. All variables shown in bold were retained in the 

minimal model. a indicates variables centred and scaled. b indicates p-values returned by the lmerTest package. 

Covariates Estimate SE 
test 

statistic 
p-value 

Intercept 1.834 0.166 11.025  

Condition    < 0.001 

- Cortisol 0.000 0.000 0.000  

- Baseline -0.961 0.189 -5.099 < 0.001 b 

- Eviction -0.370 0.234 -1.580 0.190 b  

Urination delay 0.005 0.002 2.047 0.038 

Weight a 0.091 0.084 1.084 0.262 

 

 

 

 

Figure 4.11 – Comparison of the CORT levels measured during the cortisol treatment (middle) with those 

measured in two distinct social situations: baseline (left) and eviction (right). CORT values have been ln 

transformed. NS: p>0.05 (non-significant); ***: p<0.001. 
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Table 4.15 – Predictors of Total Cooperation during the cortisol manipulation experiment. All variables shown in 

bold were retained in the minimal model. a indicates variables centred and scaled. 

Covariates Estimate SE 
test 

statistic 
p-value 

Intercept -2.155 0.189 -11.400  

Treatment 0.576 0.170 3.400 0.001 

Day -0.219 0.162 -1.350 0.184 

Weight a -0.132 0.151 -0.870 0.400 

Treatment x Weight a 0.234 0.172 0.136 0.173 

Treatment x Day 0.252 0.324 0.780 0.437 

 

 

 

 

Figure 4.12 - Effect of the cortisol manipulation experiment on individual Total Cooperation, expressed as the 

percentage of scan displayed during the 12 hours scan sessions (averaged over day 2 and day 5) of the control 

(left) and the cortisol (right) treatments. Lines between points illustrate the repeated measurements of same 

individuals. **: p=0.001). 
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Table 4.16 – Predictors of differences in Total Cooperation between the cortisol and the control treatments, during 

the cortisol manipulation experiment. The data were analysed in LMM. All variables shown in bold were retained 

in the minimal model. 

Covariates Estimate SE 
test 

statistic 
p-value 

Intercept 19.030 5.274 3.608  

Total Cooperation control week -0.421 0.147 -2.877 0.008 

Relative CORT difference 0.059 0.178 0.333 0.740 

Absolute CORT difference -0.118 0.227 -0.521 0.593 

 

 

 

 

Figure 4.13 - Correlation between changes in Total Cooperation and absolute changes in CORT levels during the 

cortisol manipulation experiment. Changes in Total cooperation are given as the difference in the number of scans 

between the cortisol and the control treatment. Absolute changes in CORT levels correspond to the difference in 

urinary CORT levels between the cortisol and the control treatment. Data points are not all independent from one 

another as 2 differences are displayed from each individual (day 2 and day 5). 
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Table 4.17 – Predictors of Non-cooperation during the cortisol manipulation experiment. Data were analysed in 

beta-binomial GLMM. All variables shown in bold were retained in the minimal model. a indicates variables 

centred and scaled.  

Covariates Estimate SE 
test 

statistic 
p-value 

Intercept -1.340 0.118 -11.360  

Treatment 0.160 0.088 1.810 0.076 

Weight a -0.058 0.090 -0.640 0.516 

Day -0.039 0.088 -0.440 0.660 

Treatment x Day -0.242 0.172 -1.410 0.164 

Treatment x Weight a 0.113 0.086 1.310 0.194 

 

 

 

Table 4.18 – Predictors of Activity during the cortisol manipulation experiment. Data were analysed in beta-

binomial GLMM. All variables shown in bold were retained in the minimal model. a indicates variables centred 

and scaled.  

Covariates Estimate SE 
test 

statistic 
p-value 

Intercept -0.649 0.179 -3.630  

Treatment 0.433 0.126 3.440 0.001 

Day -0.110 0.124 -0.890 0.377 

Weight a -0.115 0.146 -0.790 0.436 

Treatment x Weight a 0.169 0.126 1.350 0.181 

Treatment x Day -0.083 0.245 -0.340 0.733 

 

 

 

Table 4.19 – Predictors of the ratio of Total Cooperation expressed during activity bouts, during the cortisol 

manipulation experiment. Data were analysed in beta-binomial GLMM. All variables shown in bold were retained 

in the minimal model. a indicates variables centred and scaled. 

Covariates Estimate SE 
test 

statistic 
p-value 

Intercept -0.779 0.144 -5.420  

Treatment 0.410 0.135 3.040 0.003 

Day -0.191 0.130 -1.470 0.146 

Weight a -0.143 0.114 -1.250 0.229 

Treatment x Day 0.418 0.252 1.660 0.106 

Treatment x Weight a 0.128 0.129 0.990 0.318 
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Figure 4.14 – Effect of the cortisol manipulation experiment on the proportion of Total cooperation expressed 

during activity bouts, in the control (left) and cortisol (right) treatments. Lines between points illustrate the 

repeated measurements of same individuals. **: p<0.01. 

 

 

 

 

Table 4.20 – Predictors of Burrowing expressed during activity bouts, during the cortisol manipulation 

experiment. Data were analysed in beta-binomial GLMM. All variables shown in bold were retained in the 

minimal model. a indicates variables centred and scaled. 

Covariates Estimate SE 
test 

statistic 
p-value 

Intercept -2.315 0.202 -11.460  

Treatment 0.638 0.184 3.470 <0.001 

Day -0.200 0.176 -1.140 0.260 

Weight a -0.167 0.156 -1.070 0.301 

Treatment x Weight a 0.245 0.189 1.300 0.191 

Treatment x Day 0.198 0.356 0.56 0.578 
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Figure 4.15 - Effect of the cortisol manipulation experiment on Burrowing during the control (left) and cortisol 

(right) treatments. Lines between points illustrate the repeated measurements of same individuals. ***: p<0.001. 

 

 

Figure 4.16 – Effect of the cortisol manipulation experiment on Food Carrying (after exclusion of an outlier) 

during the control (left) and cortisol (right) treatments. Lines between points illustrate the repeated measurements 

of same individuals. NS: p>0.05 (non-significant). 

 

 

Figure 4.17 - Effect of the cortisol manipulation experiment on Nest Building during the control (left) and cortisol 

(right) treatments. Lines between points illustrate the repeated measurements of same individuals. NS: p>0.05 

(non-significant).  
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4.4 Discussion 

The results presented here offer the first experimental demonstration that GC can 

increase cooperative contributions in cooperative breeders. Experimentally induced increases 

in CORT led female helpers to increase their cooperative contributions by more than one half, 

from to 11 to 18% of their time budget. This increase was not a mere consequence of CORT 

induced increase in helpers’ general activity since the ratio between cooperative and non-

cooperative behaviours was increased during activity bouts. Hence, CORT induced increases 

in cooperative contributions arose via a combination of general effects on individual activity 

and specific effects on cooperative behaviours during activity bouts.  

My results suggest that CORT effects on cooperative behaviours were permissive, in 

the sense that CORT administration, rather than the amplitude of the CORT increases, 

facilitated their expression. The downregulation in T secretions associated with the cortisol 

treatment should be interpreted with caution due to low T concentrations measured and their 

associated high coefficients of variation. But it is possible that the modulation of cooperative 

contributions may have occurred through reduction of T. The effects of variation in T on 

cooperative behaviours were further investigated in Chapter 5.  

There was no indication that female helpers suffered an energetic cost from increases 

in cooperative contributions after being treated with CORT, possibly as a result of the ad 

libitum food regime under which the experimental colonies were maintained. Helpers’ 

energetic demands were most probably increased during the cortisol treatment, but available 

food resources must have been sufficient to maintain a positive energy balance and prevent 

weight loss. This pattern is in agreement with evidence that in other cooperative breeders more 

generous helpers do not lose weight when the energetic constraints acting upon cooperative 

actions are relieved by supplementary feeding (Canestrari et al., 2008; Clutton-Brock et al., 

2002, 2001a, 2000), but do so when resources are limited (Russell et al., 2003; Sanderson et 

al., 2014) 

I am confident that the effects of CORT on cooperative contributions reported here are 

meaningful as the physiological validity of the cortisol treatment was supported by two lines 

of evidence. First, CORT concentrations during the cortisol treatment overlapped with the 

concentrations measured during the control treatment and in non-experimental female helpers 
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of similar weight range. Second, CORT concentrations measured during the cortisol treatment 

did not significantly differ from concentrations measured in females that had just been evicted 

from their colonies. The latter suggests that the cortisol treatment simulated CORT 

concentrations typically encountered in threatening situations such as eviction, which was 

shown to cause an increase CORT in female meerkats (Young et al., 2006). CORT induced 

increases in individual cooperative contributions were maintained even after the exclusion of 

data associated with higher CORT levels, suggesting that CORT effects on cooperative 

contributions may not be restricted to stress related CORT concentrations. This is relevant since 

cooperative activities in captive Damaraland mole-rats are expressed as part of the daily-life 

routine, in the apparent absence of stimuli that may cause CORT to rise above baseline 

concentrations.  

The finding that increased CORT increases female helpers’ cooperative contributions 

contrasts with studies of meerkats, where experimentally induced CORT increase in male 

helpers failed to modulate cooperative contributions, measured in term of sentinel duty and pup 

feeding (Santema et al., 2013). Pup feeding is energetically costly (Russell et al., 2003; 

Sanderson et al., 2014), and it was anticipated that CORT increases pup feeding due to its 

positive effect on energy production. A possible explanation to the lack of CORT effect on pup 

feeding is that the short-term observation schedule applied by the authors may have prevented 

the detection of slower acting genomic effects of CORT on behaviours. It is also possible that 

the experimentally induced CORT  may have fallen above the range of concentrations under 

which pup-feeding and sentinel behaviours are usually expressed, thereby hindering 

ecologically relevant conclusions (Crossin et al., 2016). Alternatively, the physiological control 

mechanisms of distinct forms of cooperative behaviours in meerkat (alloparental care) and in 

Damaraland mole-rat (contribution to a common goods), although both energetically 

demanding, may not be shared. More detailed analyses of this chapter’s data revealed that this 

could occur across cooperative activities displayed by Damaraland mole-rats, as the cortisol 

treatment caused an increase in burrowing but not in food carrying nor nest building activities. 

Considering the multiple forms of cooperative behaviours displayed in nature, a major 

challenge will be to identify and explain why some forms of cooperative activities are under 

the control of similar versus different physiological mechanisms.  

My results suggest that it is possible that breeding females may strategically adjust 

helpers GC levels to increase their cooperative contributions. This suggestion was originally 

proposed in naked mole-rats more than twenty years ago (Reeve, 1992) but has received little 
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support since then (Jacobs and Jarvis, 1996; Santema and Clutton-Brock, 2012). Because 

CORT secretions are increased in response to received aggression and social stress (Goymann 

and Wingfield, 2004; Romero and Butler, 2007; Wittig et al., 2015) and increase helpers’ 

cooperative contributions (this study), CORT may represent a general physiological 

mechanism through which cooperative contributions of helpers could be controlled. Using 

experimental manipulation of breeders’ aggression and of helpers’ cooperative contributions, 

I aim to test this possibility in the Damaraland mole-rats. Considering the potential benefit 

breeders may gain from increased helpers’ cooperative contributions (Creel and Creel, 2002; 

Russell et al., 2007; Young et al., 2015), the mechanisms which may have prevented such 

breeders’ strategy to evolve should be identified. 
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Chapter 5 

Effects of testosterone on cooperative and social 

behaviour in subordinate females 
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ABSTRACT 

In cooperative breeders, individual differences in breeding opportunities may affect 

cooperative contributions. Such contributions could compromise the future reproductive 

success of an individual; hence, as they become more likely to breed, non-breeding female 

helpers decrease their contributions to cooperative activities. The hormonal mechanisms 

controlling this life history trade-off between current cooperative contributions and future 

direct fitness are unknown but testosterone represents a prominent candidate. Indeed, while 

increased T levels usually support individual reproductive effort by promoting dominance and 

aggression, which may be essential attributes for helpers to secure breeding opportunities, it 

has also been suggested to decrease the expression of cooperative behaviours. I investigated 

the effects of changes in testosterone levels on cooperative behaviour, aggression and dispersal 

tendencies in captive Damaraland mole-rats by experimentally increasing T levels in female 

helpers. My results show that experimental increases in T levels had no measurable effect on 

any of the parameters measured, thereby offering no support that T mediates a trade-off 

between helpers’ current cooperation and future reproduction. The apparent behavioural 

insensitivity of female helpers to T raises questions on the behavioural consequences of the 

differences in T levels observed between breeders and non-breeders in the Damaraland mole-

rat as well as other cooperative breeding species. 
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5.1 Introduction 

Large individual differences in cooperative contributions are characteristic of animal 

societies where individuals behave to the benefit of others (Clutton-Brock et al., 2001b, 2000; 

Field et al., 2006; Robinson, 1992; Zöttl et al., 2016b). Research on cooperative breeders has 

shown that helpers, which support breeders’ reproductive effort (Clutton-Brock, 2016; Koenig 

and Dickinson, 2016), adjust their cooperative contributions in relation to their own breeding 

opportunities (Bergmüller et al., 2005a; Field et al., 2006; Young et al., 2005). This may be 

because helpers differentially solve a trade-off between current cooperation and future 

reproduction as a function of their proximity to breeding (Cant, 2005; Cant and Field, 2001). 

Helpers that are closer to breeding often decrease their cooperative contributions (Bergmüller 

et al., 2005a; Clutton-Brock et al., 2002; Gilchrist and Russell, 2007; Young et al., 2005; Zöttl 

et al., 2013), an explanation being that their future breeding may be more profoundly affected 

by the short term energetic costs of cooperative behaviours (Bell, 2010). Such costs may 

compromise extra-territorial forays, dispersal and competitive abilities which are essential 

traits for helpers to secure breeding (Cant et al., 2006; Clarke and Faulkes, 1997; Clutton-Brock 

et al., 2006; Cooney and Bennett, 2000; Young et al., 2007). 

The physiological mediator of a trade-off between current cooperative behaviours and 

future direct reproduction have not been investigated but the sex hormone testosterone (T) 

represents a prominent candidate (Hau, 2007). In cooperative breeders, competition over 

breeding opportunities can be particularly intense and there is suggestive evidence that 

increased T supports breeding. Breeders commonly have higher T levels than same-sex helpers 

and these differences have been interpreted as a physiological explanation to their dominance 

and heightened aggression (Clutton-Brock et al., 2006; Creel et al., 1997; Davies et al., 2016; 

Desjardins et al., 2008; Schoech et al., 2004), ultimately allowing them to largely monopolize 

reproduction. A positive effect of T on aggression may also be beneficial for helpers seeking 

reproduction within (Clarke and Faulkes, 1997) or away from their group (Young, 2003). In 

males, the latter could be further facilitated by a potential positive effect of increased T levels 

on extra-territorial foray (Young et al., 2005) and dispersal (Raynaud and Schradin, 2014). 

Increased T levels have also been suggested to decrease alloparental care in several species of 

birds and mammals (Clark and Galef, 1999; Schoech et al., 2004; Vleck and Brown, 1999; 

Young et al., 2005), paralleling the correlative and experimental evidence of T effect on 
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parental care (Hirschenhauser and Oliveira, 2006; but see: Lynn, 2008; Peters et al., 2002; 

Rilling, 2013; Rosvall, 2013; Wingfield et al., 1990). Due to the correlational nature of most 

of the studies conducted so far, the role of T in the regulation of cooperative and aggressive 

behaviours in cooperative breeders remains elusive. It remains unknown whether increased T 

could support helpers’ transitioning to breeding and whether this may cause a simultaneous 

increase in aggressive and decrease in cooperative behaviours.   

I investigated whether experimental changes in T affected female helpers’ aggression, 

dispersal and cooperative behaviours in captive Damaraland mole-rat (Fukomys damarensis). 

In this species, reproduction is monopolized by a single reproductive female (Burland et al., 

2004; Young et al., 2010) and cooperative behaviours mostly consist of energetically 

demanding burrowing activities (Lovegrove, 1989), to locate food sources, as well as building 

and maintaining a communal nest and food stores  (Jarvis et al., 1998; Zöttl et al., 2016b). The 

reproductive axis of female helpers is physiologically suppressed in the presence of the 

breeding female (Bennett, 1994; Bennett et al., 1993; Molteno and Bennett, 2000). However, 

there are indications that this suppression is relieved in the presence, or possibly in anticipation, 

of breeding opportunities (Cooney and Bennett, 2000; Young et al., 2010), arising as a result 

of male immigration or female emigration into a foreign group (Hazell et al., 2000b; Jacobs et 

al., 1998; Young et al., 2010). Also, the outcome of the intense conflicts triggered by such 

opportunities (Cooney and Bennett, 2000) could be mediated by T since increased T levels 

have been suggested to support female competitive abilities (Lutermann et al., 2013). 

I determined the behavioural effects of T increases on female helpers following the 

steps leading to their emigration into a foreign colony. Female helpers were observed in their 

original colony, where they could interact with all other group members, and in standardized 

behavioural tests, to examine traits that could not be assessed in the usual conditions of 

captivity. I tested the effects of T on aggressive interactions with the breeding dominant female 

by enforcing physical proximity between them. I measured the effects of T on behavioural and 

physiological indices likely to be related to dispersal in a novel environment test (NET) and in 

a social isolation test (SIT). Finally, I determined T effects on the willingness to engage into 

aggressive interactions with a foreign breeding female in a test simulating their emigration into 

a foreign group. I predicted that experimental increases in T levels would increase female 

helpers’ levels of aggression, support dispersal behavioural indices and decrease the 

physiological stress response to social isolation, and lower cooperative contributions.  
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5.2 Methods 

5.2.1 Colony maintenance and husbandry 

For details of colony maintenance and general animal husbandry refer to Chapter 2.  

5.2.2 Experimental design 

To investigate whether T increases aggressive, dominance and dispersal tendencies but 

reduces cooperative contributions in Damaraland mole-rats, I evaluated the behavioural and 

endocrine effects of short term experimental increases of T on captive female helpers. 

Experimental subjects were treated with intramuscular injections of control (0.1 ml of castor 

oil), low dose (Tlow: 0.04 mg of T propionate in 0.1 ml of castor oil) and high dose (Thigh: 0.1 

mg of T propionate in 0.1 ml of castor oil) of testosterone. The Tlow treatment aimed to elevate 

female helper’s T concentration around the highest T levels measured in wild female helpers 

while the Thigh aimed to elevate T within the range of wild breeding females (Lutermann et al., 

2013). Seven pairs of adult female helpers living in six originally wild-caught colonies (group-

size range: 7-16 individuals, mean=12.14 individuals, SD=2.85 individuals) were used for this 

experiment. 

Behavioural effects of the treatments were assessed with focal observations (Chapter 2; 

Table 2.3). I also used a set of four tests to examine the effects of T on traits that could not be 

assessed in the usual conditions of captivity: i) a novel environment test (NET); ii) a social 

isolation test (SIT); iii) an encounter with a familiar breeding female test and iv) an encounter 

with a foreign breeding female test. 

Given the high number of tests, the experiment was divided in two parts, separated by 

at least 7 days. All behavioural observations were carried out by a total of three observers. 

On the first part of the experiment, both females from each experimental pair (weight 

range: 108-173 g, mean=138.8 g) were subjected to the control, the Tlow and the Thigh 

treatments. For each subject, fourteen days were allowed between each of the 3 treatments. 

There were 6 possible different sequences of treatments that allow the subjects within a pair to 
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never receive the same treatment simultaneously. Each sequence was randomly assigned to 6 

pairs and one of the sequences was randomly selected and repeated on the 7th experimental 

pair. Three days before the start of the experiment a urine sample was collected from each 

subject. On the first day of each treatment (day 1), both subjects were anaesthetized, treated, 

weighed and placed back in their original tunnel system at around 13:00. Twenty minutes were 

allowed before focal observations of subjects in their group started and these were interrupted 

6 hours later. On day 2, focal observations were resumed at 7:00 and were terminated 6 hours 

later, leading to a total observation effort of 12 hours and an average total time of nearly 4 

hours per subject, per treatment (mean=226.40 min, SD=88.06 min). A blood sample was 

collected immediately after the end of the focal observations to determine treatment effects on 

plasmatic T concentration. During the afternoon of day 2, each subject was individually tested 

in the NET (see test description below), allowing at least 3 hours after the blood sample. In the 

evening of day 2, at around 19:00, subjects were individually isolated from their colony (SIT; 

see test description below). A urine sample was collected on the following morning (day 3), 12 

hours after the start of the social isolation. 

On the second part of the experiment, subjects from each experimental pair (weight 

range: 105-178 g, mean=137.8 g) received only the control and the Thigh treatments. This time 

subjects were treated three days apart from each other to avoid the repeated daily testing of the 

familiar breeding female. Within subjects seven days were allowed between treatments. Five 

of the pairs were tested once and 2 pairs were tested twice (5 months apart). On day 1, treatment 

was administered as described on the first part of the experiment. At around 08:00 of day 2 the 

experimental females were exposed to a familiar breeding female test (see test description 

below) and then returned to their original colony. At around 12:00 of day 2 the experimental 

females were exposed to a foreign breeding female test (see test description below). Twenty 

minutes after the end of this last test a blood sample was collected.  

The novel environment test (NET) 

The NET setup consisted of a plastic box (length=75 cm, width=44 cm, height=40 cm) 

divided in 3 parallel visible areas of equal surface (Numbers 2, 5 and 8 in Figure 5.18), each 

containing two parallel 20 cm PVC pipes (Numbers 3, 4, 6, 7, 9 and 10 in Figure 5.18). The 

plastic box contained an opening in one of its corners that enabled the connection of a PVC 

pipe on the outer side of the box. Active subjects were transferred to the NET setup by gently 
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disconnecting a targeted part of their tunnel system while they were inside of it, referred to as 

the familiar area (Number 1 in Figure 5.18), and connecting it to the plastic box. A 10 min 

focal observation was carried out to continuously monitor the location of the subject in one of 

the 10 distinct areas of the box. As soon as the observation was terminated, the tested subjects 

were replaced in their original colony together with the familiar area. 

 

 

 

Figure 5.18 - The novel environment test (NET) setup. Refer to the description on the text for more details. Image 

represents a view from the top of the box. 

 

 

The social isolation test (SIT) 

Subjects were individually isolated from the rest of their colony in an open and clean 

plastic box containing a thin layer of fresh sand, food and some paper serving nest material.  

The familiar breeding female test 

Each experimental subject and the breeding female belonging to the same colony were 

placed in a transparent plastic box attached to the tunnel system in a U shape, referred to as the 

arena. The arena enabled the isolation of specific group members from the rest of the colony 
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into a confined area by operating removable gates through the tunnels. At the introduction of 

the breeding female into the arena, a 10 minute focal observation (Chapter 2; Table 2.3) of the 

experimental subject was conducted, after which the gates were removed and both animals 

could freely access the rest of their tunnel system.  

The foreign breeding female test 

Each experimental subject was placed in the arena of a foreign colony, where it was 

exposed to that colony’s foreign breeding female. Subjects were exposed to a matched-size 

foreign breeding female that remained consistent across the two treatments (n=13 distinct 

resident breeding females). Differently to the encounters with the familiar breeding female, the 

arena was physically divided in two equal parts by a metal grid to avoid physical injuries. 

Although the grid prevented the expression of some social behaviours, the opponents 

frequently sniffed each other and sparred through the grid. Also, the size of the arena was 

sufficiently large which allowed both the animals to stay away from the grid and avoid 

interactions. Once the resident breeding female was introduced into the arena, on the opposite 

side of the grid to the subject, a 10 minutes focal observation was started. The foreign breeding 

female and the grid were then removed from the arena allowing the subject to freely patrol the 

arena for 3 minutes, after which it was placed back in its original colony. 

5.2.3 Treatment Validation 

Treatment validation followed a two-step process. First, I determined whether treatment 

successfully increased T levels of the experimental subjects using: a) the plasma samples 

collected after focal observations; and b) the urine samples collected before the experiment and 

after the SIT. As a second step, I assessed the physiological realism of the treatments by 

comparing the T levels they induced with: c) the plasma samples collected following a social 

conflict (the foreign breeding female test) of control treatments; d) plasma samples collected 

after an injection of gonadotropin-releasing hormone (GnRH; see description below), and e) 

plasma and urine samples of breeding females. 

Samples collected following a social conflict and a GnRH injection enabled 

comparisons with T levels predicted to reflect subjects’ ability to secrete T following, 



83 

 

respectively, a natural and an exogenous stimulation of T release. Samples from breeding 

females were used to determine whether treatment fulfilled the initial aim of inducing T levels 

that were similar to those of breeding females. 

GnRH injections 

Five of the seven experimental pairs of helpers were administered with GnRH. Each 

pair was tested once at the exception of one pair which was tested twice. The injection of GnRH 

occurred at least 7 days after the termination of the first part of the experiment and 7 days 

before the beginning of the second. 

Between 12:00 and 14:00, both subjects of a pair were successively removed from their 

tunnel system, anaesthetized and injected subcutaneously with 200 µl of a saline solution 

containing 2 µg of GnRH. Such treatment had previously been shown to successfully raise the 

secretion of luteinizing hormone (LH), which stimulates T release, in female Damaraland 

mole-rat (Bennett et al., 1993; Young et al., 2010). Following GnRH injection, the subjects 

were placed in a covered plastic box containing a thin layer of sand and provided with food 

and nest material. Forty minutes after injection, subjects were anaesthetized again and blood 

sampled following the procedures detailed in Chapter 2. 

Plasma and urine samples of breeding females 

Five plasma samples and 246 urine samples from breeding females, most of which were 

collected during pregnancy, were collected following the procedures detailed in Chapter 2. 

5.2.4 Hormone analyses 

All plasma and urine samples collected were analysed at the Neuchatel Platform of 

Analytical Chemistry (NPAC) using ultra-high-pressure liquid chromatography-tandem mass 

spectrometry (UHPLC-MS/MS). For the data presented in this chapter, I used T concentrations 

from plasma samples and CORT and T concentrations from urine samples. Details of the 

analytical procedures are presented in Chapter 2.  
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5.2.5 Data handling and statistical analyses 

I used a mixed modelling approach to account for the dependency structure in the data 

caused by the repeated measurements of individuals and, unless stated otherwise, I specified 

individual and colony identity as nested random effects. For model simplification and 

validation, I followed the steps described in Chapter 2. Generalized linear hypotheses testing 

conducted with the glht function (p-values adjusted for multiple comparisons by the single-

step method) from the multcomp package, were used for post-hoc pairwise comparisons of 

means between levels of categorical covariates (Hothorn et al., 2008). 

Treatment validation 

All analyses were conducted with LMMs in which T levels were ln-transformed and 

specified as a response variable.  

To determine whether the exogenous administration of T successfully increased T 

concentrations, I used the plasma T levels determined after the focal observations as response 

variable. I specified weight, treatment (control, Tlow, Thigh) and an interaction between the two 

as covariates.  

In a similar model, the urinary T levels measured before the experiment (baseline) and 

after the SIT (control, Tlow, Thigh) were specified as a response variable. A four levels 

categorical covariate (condition: baseline, control, Tlow, Thigh) was specified. The delay to 

urination was specified as an additional independent covariate. Data of a single individual that 

returned several outliers were removed from the analyses, which led to a total of 13 baseline, 

12 control, 12 Tlow and 13 Thigh data points, after accounting for missing samples.  

For the comparisons of plasma T levels induced by treatment with the T levels of 

breeding females and of subjects which T secretions had been stimulated, the data from the 

Thigh were excluded from the analyses. This exclusion relied on data exploration showing that 

T levels in the Tlow treatment were already substantially higher than in all other conditions and 

aimed to limit the number of post-hoc pairwise comparisons. To test the effect of sampling 

condition and to control for the effect of weight differences between subjects and breeding 

female on T levels, condition (control=14 samples, Tlow=14 samples, GnRH=11 samples, social 
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conflict=10 samples, breeding female=5 samples) and individual weight were specified as two 

independent covariates.  

The differences between urinary T levels of experimental subjects and breeding females 

were investigated using a similar model at the difference that condition (baseline=13 samples, 

Tlow=12 samples, Thigh=13 samples, breeding female=246 samples from 33 individuals) and 

urination delay were specified as covariates.  

Effects of T on aggressive interactions 

I used the focal data collected on the first part of the experiment to determine whether 

T affected agonistic interactions between the subjects and other group members. For all the 

analyses using the focal data, I extracted subjects’ interactions with female group members 

collected during focal observation and excluded all interactions occurring with juveniles. I used 

the data from the familiar and the foreign breeding female tests to examine whether T affected 

agonistic interactions with the familiar and foreign breeding females. Behavioural variables 

represent grouped behaviours, following the procedures detailed in Chapter 2. 

To investigate the effect of treatment on the expression of aggressive behaviours, I used 

the focal data and specified the count of Aggressive behaviours (see Chapter 2; Table 2.3) 

given by subjects during the 12 hours window as a response variable in a negative binomial 

GLMM. To control for the effect of differences in individual tendency to approach or avoid 

social partners and the number of available social partners on the expression of Aggressive 

behaviours, both the number of Passes and the number of social partners present in the group 

were specified as covariates. To investigate whether T changed the perception of subjects by 

their social partners a similar model was used, with the only difference that the count of 

Aggressive behaviours received by subjects was specified as a response variable in a negative 

binominal GLMM. Finally, the number of Aggressive behaviours given by the subject was 

specified as a response variable in a separate beta-binominal GLMM, where the sum of 

Aggressive behaviours given and received was specified as the binomial total.  

Data from the familiar breeding female test was used to determine the effects of T on 

the aggressive behaviours directed to and received from the familiar breeding female with a 

non-parametric Wilcoxon signed-rank test.  
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Data from the foreign breeding female test was used to determine whether T affects the 

tendency of subjects to engage in aggressive interactions with a foreign breeding female. I first 

tested the effect of treatment on the duration spent sparring through the grid with the foreign 

breeding female. Because this measurement was dependent on the proximity of the opponent 

to the grid, I also tested the treatment effect on the duration subjects spent interacting 

aggressively with the grid (sparring and gnawing). I ln-transformed both durations and 

specified them as response variables in two distinct LMMs where subject and foreign breeding 

female identities were specified as random effects. Treatment, weight difference between the 

subject and the foreign breeding female and its quadratic were specified as covariates.  

I used the focal data to determine whether T affected subjects’ submissive behaviour to 

other group members and vice-versa. The sum of bouts of Submissive calls given and received 

by the subjects during the 12 hours observation window were fitted as response variables in 

two distinct negative binomial GLMMs in which the colony and subjects’ identities were 

specified as nested random effects. To control for the effect of variation in subjects’ activity 

and in aggressive behaviours on the response variable, both observation duration and the 

number of aggressive behaviours received (for the analyses of Submissive calls given) or given 

(for the analyses of Submissive calls given) were specified as two independent covariates. 

I used the data from the familiar breeding female test to determine whether T affected 

subjects’ submission towards the familiar breeding female with a non-parametric Wilcoxon 

signed-rank test. Four subjects received submissive calls from the breeding female and never 

gave submissive calls, suggesting that these subjects were perceived as dominant by the 

breeding female. Therefore, the model was repeated after the exclusion of these 4 females from 

the dataset.  

Effects of T on traits related to dispersal 

Using the data from the NET, I investigated T effects on subjects’ willingness to leave 

a familiar environment and explore an unfamiliar area. I used the ln-transformed latency to 

leave the familiar area, the total time spent outside of the familiar area, and the total number of 

unfamiliar areas visited by the subjects as response variables in three different LMMs. An 

interaction between treatment (control, Tlow and Thigh) and subjects’ weight was fitted as a 

covariate. To account for the possibility that subjects habituated to the NET setup throughout 
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the experiment, the test repetition number (1 to 3) was added as an independent covariate. The 

data of two tests in which subjects never left the familiar area were excluded from the analyses 

of the total time spent outside the familiar area. 

Using the data from the SIT, I investigated whether T modulated CORT secretions in 

response to social isolation by specifying the ln-transformed CORT levels as a response 

variable in a LMM. To test the differences in CORT levels measured before the beginning of 

the experiment and after the SIT of each treatment, I specified a 4 levels covariate (condition: 

baseline, control, Tlow and Thigh). I controlled for the effect of subjects’ weight and urination 

delay on CORT levels by specifying each factor as independent covariates. To account for the 

possibility that subjects may have habituated to SIT throughout the experiment, the repetition 

number (1 to 3) was fitted as an independent covariate.  

Effects of T on individual cooperative contributions 

For the investigation of T influences on cooperative contributions, I used the focal data 

collected on the first part of the experiment. Unless specified otherwise, I summed the duration 

of the different cooperative activities under investigation (see Chapter 2; Table 2.3) over the 

two days of treatment and transformed them by their natural logarithm before specifying them 

as response variables in LMMs. Treatment, weight and an interaction between the two were 

specified as covariates in all LMMs to investigate whether treatment effects would vary with 

subjects’ weight. 

I first tested whether T affected subjects’ cooperative contributions relative to the time 

they were active. I specified Total Cooperation as a response variable and the total observation 

duration excluding Rest duration (i.e. time Active) as a covariate, to control for the effect of 

differences in activity levels on Total Cooperation. A quadratic effect for this covariate was 

also added since data exploration revealed a non-linear and mostly quadratic effect of duration 

of activity on Total Cooperation. I then investigated whether T affected subjects’ absolute 

cooperative contributions. The model was similar to the one described above, at the only 

difference that the linear and quadratic covariates controlling for the effect of differences in 

activity on the duration of cooperative contributions were not specified as covariates.  
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In a similar way, I determined whether T effects could vary across distinct cooperative 

activities, by specifying Burrowing, Food Carrying and Nest Building durations as response 

variables in 3 distinct LMMs. 
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5.3 Results 

Treatment validation 

The exogenous administration of T significantly increased plasma testosterone levels, 

as Tlow and Thigh levels were on average 5 and 10 times higher than the control treatment, 

respectively (Table 5.21; Figure 5.18). Also, plasma T levels in the Thigh treatment were 

significantly higher than in the Tlow treatment (Table 5.21, Figure 5.19). The treatment effects 

on plasma T levels were significantly dependent on individual weight, as T levels increased 

with weight in the control treatment but less so in the Tlow and Thigh treatments (Table 5.21).  

Testosterone levels were still increased after the SIT since urinary T levels measured 

after this test were significantly higher in the Thigh treatment compared to baseline, whereas the 

difference was nearly significant for the Tlow treatment (Table 5.22). Testosterone levels in the 

Thigh treatment were significantly higher than in the control treatment (Table 5.22). The absence 

of differences in T between baseline and the control treatment suggests that social isolation has 

no effect on T levels, legitimating the use of T values measured after the SIT for treatment 

validation purposes (Table 5.22). 

Plasma T levels of female helpers in the Tlow treatment were significantly higher than: 

(i) those following the encounter with a foreign breeding female, (ii) those after T secretions 

had been stimulated by the administration of GnRH and (iii) those found in breeding females 

(Table 5.23; Figure 5.20). Comparisons with T levels in the control treatment otherwise showed 

that T levels of female helpers were significantly increased by 2.2 times after the GnRH 

challenge but were not increased following the encounter with a foreign breeding female (Table 

5.23).  

Urinary T levels of female helpers were higher in the Tlow and Thigh treatments compared 

to breeding females (Table 5.24). Finally, there was no difference between urinary T levels of 

female helpers before the start of the experiment (baseline) and breeders (Table 5.24). 

Effects of T on aggressive behaviour 
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The amount of aggressive behaviours given (negative binomial GLMM; treatment 

effect: χ2=0.367, p=0.834) or received (negative binomial GLMM; treatment effect: χ2=1.338, 

p=0.512) by subjects when they could interact with all other group members was not affected 

by T. Also, the proportion of aggressive behaviours given by subjects was not affected by T 

(beta-binomial GLMM: treatment effect: χ2=0.912, p=0.634). 

Similar results were obtained when subjects could only interact with the familiar 

breeding female since both aggressive behaviours given to (Wilcoxon signed-rank test:  V=26, 

p=0.324) and received from the familiar breeding female (Wilcoxon signed-rank test:  V=41.5, 

p=0.305) were not affected by T.  

Subjects’ tendency to behave aggressively towards a foreign breeding female was not 

affected by T: neither the time subjects spent sparring with the breeding female (LMM: 

χ2=0.062, p=0.803) nor the time they spent interacting aggressively with the grid were affected 

by treatment (LMM: χ2=0.494, p=0.482). 

Testosterone did not affect the number of submissive bouts given (negative binomial 

GLMM; treatment effect: χ2=1.990; p=0.370) nor the number of submissive bouts received by 

other group members (negative binomial GLMM; treatment effect: χ2=2.060; p=0.357). When 

subjects could only interact with the familiar breeding female, T had no effect on the number 

of submissive bouts given (Wilcoxon signed-rank test: V=28, p=0.233; after exclusion of 

subjects perceived as dominant by the breeding female: V=21, p=0.305).  

Effects of T on traits related to dispersal 

Testosterone did not affect subjects’ latency to leave the familiar area (LMM; treatment 

effect: χ2=0.409, p=0.815), nor the time spent outside of the familiar area (LMM; treatment 

effect: χ2=2.291, p=0.318) nor the total number of unfamiliar areas visited (LMM; treatment 

effect: χ2=2.348, p=0.309). 

CORT levels were increased in socially isolated subjects, but CORT levels measured 

after the SIT were not affected by T (Table 5.25). 

Effects of T on individual cooperative contributions 
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Testosterone had no effect on individual relative cooperative contributions when 

differences in subjects’ activity levels were controlled for (Table 5.26, Model 1), and had no 

effect on the total time individuals cooperated during the 12 hours observation time window 

(Table 5.26, Model 2).  

When investigated in isolation, neither Burrowing (LMM; treatment effect: χ2=0.637, 

p=0.727), nor Food Carrying (LMM; treatment effect: χ2=1.192, p=0.551), nor Nest Building 

(LMM; treatment effect: χ2=0.500, p=0.779) were affected by treatment.  
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Table 5.21 – Predictors of T levels in plasma samples, used on the first step of the treatment validation process. 

The response variable was ln-transformed and the data analysed in LMM. All variables shown in bold were 

retained in the minimal model. a indicates variables centred and scaled. All model p-values were computed with 

lmerTest except those labelled with b which were calculated with the likelihood ratio test. 

Covariates Estimate SE 
test 

statistic 
p-value 

Intercept -3.450 0.195 -17.659  

Treatment     

- Control 0.000 0.000   

- Tlow 1.743 0.140 12.409 <0.001 

- Thigh 2.445 0.140 17.411 <0.001 

Weight a 0.520 0.155 3.343 0.002 

Weight a x Treatment   11.110 0.004 b 

- Control 0.000 0.000   

- Tlow -0.371 0.146 -2.535 0.010 

- Thigh -0.449 0.139 -3.234 0.002 

Generalized Linear Hypotheses 

Tlow = Thigh 0.209 0.038 5.452 <0.001 

 

 

 

 

Figure 5.19 - Effect of the T manipulation experiment on T plasma levels measured during the control (left) and 

Tlow (middle) and Thigh(right) treatments. Lines between points illustrate the repeated measurements of same 

individuals. ***: p<0.001. 
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Table 5.22 - Predictors of T levels in urine samples, used on the first step of the treatment validation process. The 

response variable was ln-transformed and the data analysed in LMM. All variables shown in bold were retained 

in the minimal model. a indicates variables centred and scaled. b indicates p-values computed with lmerTest. 

Covariates Estimate SE 
test 

statistic 
p-value 

Intercept 1.849 0.123 15.004   

Condition   31.349 <0.001 

- Baseline 0.000 0.000   
- Control 0.144 0.141 1.019 0.315 b 

- Tlow 0.276 0.141 1.960 0.058 b 

- Thigh 0.863 8.138 6.276 <0.001 b 

Weight a -0.042 0.093 -0.452 0.504 

Urination delay 0.000 0.001 -0.364 0.723 

Weight a x Condition     1.508 0.680 

Generalized Linear Hypotheses 

Tlow = Control 0.132 0.144 0.919 0.554 

Thigh = Control 0.719 0.141 5.107 <0.001 
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Table 5.23 - Predictors of T levels in plasma samples, used on the second step of the treatment validation process. 

The response variable was ln-transformed and the data analysed in LMM. All variables shown in bold were 

retained in the minimal model. a indicates variables centred and scaled. b indicates p-values computed with 

lmerTest. 

Covariates Estimate SE 
test 

statistic 
p-value 

Intercept -1.677 0.172 -9.745   

Condition   61.967 <0.001 

- Tlow 0.000 0.000   
- Control -1.752 0.178 -9.830 <0.001 b 

- GnRH -1.240 0.196 -6.319 <0.001 b 

- Social Conflict -1.566 0.197 -7.941 <0.001 b 

- Breeding Female -1.345 0.299 -4.491 <0.001 b 

Weight a 0.326 0.103 3.164 0.004 

Generalized Linear Hypotheses 

Control = GnRH -0.512 0.197 -2.604 0.027 

Control = Social Conflict -0.186 0.198 -0.940 0.701 

Control = Breeding Female -0.407 0.300 -1.359 0.417 

 

 

 

 

Figure 5.20 - Comparisons of plasma T levels induced by the Tlow and Control treatments with the T levels 

measured after exogenous (GnRH) and natural (Social Conflict) stimulations of T release and with T levels 

measured in breeding females. Lines between points illustrate the repeated measurements of same individuals. 

***: p<0.001. 
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Table 5.24 - Predictors of T levels in urine samples, used on the second step of the treatment validation process. 

The response variable was ln-transformed and the data analysed in LMM. All variables shown in bold were 

retained in the minimal model. a indicates variables centred and scaled. b indicates p-values computed with 

lmerTest. 

Covariates Estimate SE 
test 

statistic 
p-value 

Intercept 1.197 0.148 8.119   

Condition   16.106 0.001 

- Breeding Female 0.000 0.000   

- Baseline 0.492 0.301 1.599 0.113 b 

- Tlow 7.678 0.316 2.431 0.017 b 

- Thigh 1.241 0.312 3.976 <0.001 b 

Weight a 0.267 0.081 3.300 0.003 

Urination delay 0.003 0.000 2.384 0.022 

 

 

 

Table 5.25 – Predictors of urinary CORT levels to the social isolation test. The response variable was ln-

transformed and the data analysed in LMM. All variables shown in bold were retained in the minimal model.  a 

indicates variables centred and scaled. All model p-values were computed with likelihood ratio test except those 

labelled with b which were calculated with the lmerTest. b indicates p-values computed with lmerTest. 

Covariates Estimate SE 
test 

statistic 
p-value 

Intercept 2.852 0.204 13.957  

Condition   21.425 <0.001 

- Baseline 0.000 0.000   

- Control 0.924 0.229 4.027 <0.001 b 

- Tlow 1.019 0.229 4.442 <0.001 b 

- Thigh 0.864 0.224 3.860 <0.001 b 

Weight a -0.201 0.134 -1.503 0.096 

Urination delay 0.002 0.002 0.983 0.275 

Test number -0.019 0.078 -0.249 0.893 

Generalized Linear Hypotheses 

Control = Tlow -0.095 0.234 -0.406 0.913 

Control = Thigh 0.059 0.229 0.258 0.964 

Thigh = Tlow 0.154 0.229 -0.673 0.779 
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Table 5.26 – Predictors of Total Cooperation during the T manipulation experiment. All variables shown in bold 

were retained in the minimal model. a indicates variables centred and scaled. b indicates p-values computed with 

lmerTest. 

Covariates Estimate SE 
test 

statistic 
p-value 

Model 1. Predictors of relative Total Cooperation 

Intercept 3.665 0.192 19.114   

Activity duration a 1.049 0.103 10.204 <0.001 

(Activity duration)2 a -0.269 0.070 -3.867 <0.001 

Treatment   1.330 0.514 

- Control 0.000 0.000   

- Thigh -0.177 0.166 -1.063 0.298 b 

- Tlow -0.115 0.164 -0.703 0.489 b 

Weight a 0.066 0.156 0.425 0.655 

Treatment x Weight a   2.649 0.266 

Model 2. Predictors of absolute Total Cooperation 

Intercept 3.379 0.408 8.277   

Treatment   1.142 0.565 

- Control 0.000 0.000   

- Thigh 0.092 0.330 0.280 0.781 b 

- Tlow -0.240 0.330 -0.728 0.473 b 

Weight a -0.060 0.323 -0.196 0.916 

Treatment x Weight a   1.336 0.513 
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5.4 Discussion 

Research on cooperative breeders has suggested that helpers may face a life history 

trade-off between investments in current cooperation and future reproduction (Bergmüller et 

al., 2005b; Cant, 2005; Field et al., 2006; Young et al., 2005). This study offers no support to 

the suggestion that T mediates this trade-off: Damaraland mole-rat female helpers did not 

become more aggressive, or more dominant, or more prone to leave a familiar environment 

and they did not decrease their cooperative contributions when their T levels were 

experimentally elevated.  

This study suggests that, in Damaraland mole-rats, increases in T levels may be 

irrelevant for females to transition from helping to breeding. The chances of female helpers to 

secure a breeding position may heavily rely on their fighting abilities (Cooney and Bennett, 

2000; Jacobs et al., 1998). My results suggest that this might be independent of T. Female 

helpers did not become more aggressive and/or less submissive when their T levels were 

elevated to values similar to the ones found in wild breeding females (Tlow= 0.22 ng/ml, 

Thigh=0.42 ng/ml; wild breeding female in the summer =1.1 nmol/l = 0.32ng/ml; maximum T 

levels measured in wild breeding females = 3.7 nmol/l = 1.07 ng/ml; values for wild animals 

were estimated from Lutermann et al., 2013). Helpers did not receive less aggression or more 

submissive calls when they had received T suggesting that they were not perceived as more 

threatening when their T levels were increased. Finally, none of the other investigated 

phenotypical traits that were hypothesized to facilitate the breeding of female helpers away 

from their colony were influenced by T – the tendency to leave a familiar environment, to 

spend time in, and explore, a novel environment, the stress response to social isolation, and the 

motivation to fight a breeding female when intruding in a foreign colony. 

The contributions of female helpers to cooperative activities like burrowing, food 

carrying and nest building were not regulated by T. This absence of T effect on cooperative 

behaviour is consistent with the findings from Chapter 3, which show that individual variations 

in cooperative contributions were not associated with differences in T levels. It also supports 

that the modulation of burrowing behaviours highlighted in Chapter 4 was the consequence of 

the experimental changes in CORT levels rather than the consequence of their associated 

changes in T levels. Earlier findings on the regulation of cooperative activities by T have been 

inconsistent and showed both positive (Desjardins et al., 2008), negative (Young et al., 2005) 
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or no associations (Bender et al., 2008; Raynaud and Schradin, 2015) between T and 

cooperative behaviours. Most of these investigations focused on the expression of direct 

alloparental care (but see: Desjardins et al., 2008) which were never observed over the course 

of the current study and which fitness relevance to both breeders and offspring in Damaraland 

mole-rats is questionable. Therefore, parallels between this study and others may not be 

straightforward. The current study has only been preceded by a single experimental 

investigation on the regulatory effects of T on cooperative behaviours in a cooperative breeder 

(huddling in striped mice Raynaud and Schradin, 2014) and more studies of this kind are 

necessary to better understand the relationship between T and cooperative behaviours. 

My results raise questions on the hormonal basis of dominance in female Damaraland 

mole-rats and other cooperative breeders. Breeding females are dominant over same sex-

helpers but while dominance is accompanied by increased T levels in a variety of species 

(Davies et al., 2016; Desjardins et al., 2008), this is not the case in captive Damaraland mole-

rats (this study; Clarke et al., 2001; Voigt et al., 2014). This highlights that differences in T 

levels between female breeders and helpers should not be interpreted as an indication that 

increased T levels causally support dominance, a suggestion that still needs formal testing. In 

Damaraland mole-rats, female dominance may still be modulated through androgen-dependent 

neuroendocrine pathways since the expression of androgen and oestrogen receptors in several 

brain areas regulating aggressive behaviours is increased in breeding females (Voigt et al., 

2014). Also, my results suggest that differences in breeding output (Damaraland mole-rat 

female helpers never breed in the presence of an established breeding female) may not 

necessarily explain the differences in T levels between breeders and non-breeders.  

The absence of differences in T profiles between female breeders and helpers in 

captivity contrasts with the finding of a study conducted in natural population (Lutermann et 

al., 2013) suggesting that the relationship between T and dominance vary with environmental 

contexts. In the wild, male immigration and female emigration into established colonies 

generate breeding opportunities for female helpers (Bennett et al., 1996; Cooney and Bennett, 

2000; Jacobs et al., 1998; Rickard and Bennett, 1997) which could cause intense reproductive 

conflicts (Cooney and Bennett, 2000; Jacobs et al., 1998). Accordingly, breeding females had 

higher T levels compared to helpers only in the wet season (Lutermann et al., 2013), when 

constraints on dispersal are relaxed (Young et al., 2010), suggesting that increased T levels 

may allow them to successfully defend their status when threatened by helpers (Cooney and 

Bennett, 2000; Lutermann et al., 2013). In my study, dispersal was strictly constrained by the 
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conditions of captivity and T levels were low, raising the possibility that T may support 

aggression only in conflictual situations. The context dependency of T’s actions on aggression 

is well acknowledged (Albert et al., 1989; Soma et al., 2008) and future experiments should 

investigate whether female helpers’ behavioural insensitivity to T is maintained under social 

instability. 
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Chapter 6 

General Discussion  
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Overview 

Large individual differences in contribution to cooperative activities are characteristics 

of cooperative breeding societies (Clutton-Brock, 2016; Clutton-Brock et al., 2001a; Hodge, 

2007; Zöttl et al., 2016b). While the evolutionary and ecological causes of these differences 

are increasingly well understood (Cant, 2005; Clutton-Brock et al., 2002), the physiological 

mechanisms which allow individuals to integrate their internal physiological state and 

environmental stimuli into an adaptive adjustment of their cooperative contributions remain 

largely unknown (Schoech et al., 2004; Soares et al., 2010). Previous investigations of the 

hormonal mechanisms regulating cooperative behaviour have focussed principally on the 

effects of the glucocorticoid (GC) stress hormones (cortisol and corticosterone) and sex 

hormones (especially testosterone) in controlling cooperative behaviours and suggestions 

regarding the directions of these associations have been inconsistent (Bender et al., 2008; 

Carlson et al., 2006a, 2006b; Desjardins et al., 2008; Raynaud and Schradin, 2015, 2014; 

Sanderson et al., 2014; Schoech et al., 2004; Young et al., 2005). Most of these studies have 

been based on correlations between variation in cooperative behaviour and variation in 

hormone levels, which prevents inferring causalities. Thus, it remains unknown whether GC 

and T directly regulates cooperative behaviours or if they are modulated as a response of 

changes in cooperative contributions.   

In this thesis, I explored the role of variation in the GC stress hormone cortisol (CORT) 

and the sex hormone testosterone (T) in controlling cooperative behaviour in Damaraland 

mole-rats, using a combination of correlational and experimental methods. In this species, 

individuals’ main cooperative behaviour consists of burrowing activities which allow them to 

maintain and expand the tunnel system to locate food sources subsequently shared between 
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group-members. I ran three main experiments during which (i) burrowing contributions 

(Chapter 3), (ii) CORT levels (Chapter 4), and (iii) T levels (Chapter 5) were manipulated.  

Overall, my investigations showed that variation in CORT levels can be both a 

consequence and a cause of variation in cooperative behaviours. In Chapter 3, I showed that, 

despite the lack of correlation between CORT and individual cooperative contributions, CORT 

levels tended to be higher in groups where burrowing was experimentally increased, suggesting 

that changes in cooperative contributions can elevate CORT levels. Subsequently, in Chapter 

4, I showed that experimental increases in CORT levels raised the cooperative contributions of 

female helpers. Together, these findings support the view that CORT may be an essential 

modulator of within individual plasticity in cooperative behaviours.  

In contrast, my thesis provides no evidence for a modulatory role of T on cooperative 

behaviours. Indeed, in Chapter 3, I showed that T levels were not correlated with individual 

cooperative contributions and that experimental increases in burrowing did not alter T levels 

while in Chapter 5, I showed that increasing T levels did not affect cooperative behaviours. 

Furthermore, I showed that experimental increases of T levels did not affect investments in 

future reproduction, either within the group of residence (competition for dominance) or 

outside (dispersal and competition). These results provide no support for the hypothesis that 

testosterone mediates a life history trade-off in female helpers, with higher T levels supporting 

investment towards future reproduction at the expense of immediate cooperation.  

In sum, I experimentally showed that increases in individual cooperative contributions 

can raise CORT levels and suggested that elevations in CORT levels can increase individual 

cooperative contributions suggesting a positive reciprocal feedback between the two. In the 

following, I discuss in more depth the implication of each of these results in our understanding 

of the role CORT plays in underlying individual differences in cooperative tendencies in 
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Damaraland mole-rats and cooperative breeders in general. I then discuss how CORT levels 

could explain naturally-occurring interindividual differences in cooperative tendencies 

depending on the developmental and ecological contexts experienced. 

Modulation of cooperative contributions by stress hormones 

Previous studies have shown positive correlations between cortisol levels and 

cooperative behaviour, which have been interpreted as suggestive evidence for a causal role 

for cortisol in the control of cooperative behaviour (Carlson et al., 2006a; Sanderson et al., 

2014). My finding that increases in GC raised female helpers’ burrowing contributions 

confirms the hypothesis that increased GC levels may facilitate the expression of energetically 

demanding cooperative behaviours in Damaraland mole-rats by supporting energy production 

(Landys et al., 2006; Sapolsky et al., 2000). Contrasting with its effect in the regulation of 

burrowing behaviours, CORT had no effect on food carrying and nest building. Although this 

suggests that different cooperative activities may be under the control of different hormonal 

regulatory mechanisms, it is not obvious why food carrying and nest building would not also 

be modulated by CORT. A possibility would be that a modulation of nest building by CORT 

may be non-adaptive since this may cause excessive disturbances to the communal nest where 

most colony members are resting. The alternative explanation that the standard conditions of 

captivity in which the behavioural observations were conducted failed to reveal an effect of 

CORT cannot be rejected. A larger volume of observations and/or the carrying out of 

behavioural tests designed to increase the usually low frequency of nest building and food 

carrying, may be required to reliably test a regulatory role of CORT. This also apply to pup 

carrying which expression was too scarce to be part of any analyses conducted in this thesis. 
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A positive effect of increased GC on parental chick provisioning has recently been 

experimentally supported in macaroni penguins (Eudyptes chrysolophus, Crossin et al., 2012), 

but whether similar effects may apply in alloparents in cooperatively breeding birds is 

unknown. In mammals, none of the only two experimental manipulations of cooperative 

breeders’ hypothalamic–pituitary–adrenal (HPA) axis has supported the hypothesis that 

increased GC favours the expression of alloparental care (Santema et al., 2013, Dantzer et al. 

in prep.). In this species, experimentally induced short-term increases of GC levels in male 

helpers did not increase their cooperative behaviours (pup feeding, sentinel) (Santema et al., 

2013). A subsequent experiment using a treatment with mifepristone, a glucocorticoid receptor 

antagonist, led to an increase in cooperative behaviours (babysitting, pup feeding), suggesting 

that increased GC has an antagonistic effect on cooperative tendencies (Dantzer et al., in 

preparation). 

The causes of differences in results obtained between these two species of cooperative 

breeding mammals might be varied but one possibility is that the disparity comes from a 

fundamental difference in the form of cooperative activities. In meerkats, most cooperative 

activities induce a period of food deprivation through the forgoing of foraging activities 

(babysitting, sentinel) or food sharing (pup feeding) which sharply contrasts with mole-rats in 

which burrowing increases the probability of finding food. Since the release of CORT has a 

positive effect on food intake (Koch et al., 2002; Landys et al., 2006; Strack et al., 1995), 

increases in CORT may have led to a shift in activity towards food acquisition causing a 

decrease in cooperation in meerkat and an increase in mole-rats. The same mechanism could 

also explain the lack of CORT effect on food carrying and nest building (see above), since 

these activities are not directly linked to food acquisition. 

Other explanation for the disparity in the results obtained between meerkats and mole-

rats might come from methodological issues. Firstly, since mifepristone is a potent antagonist 
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of the progesterone receptors (Spitz and Bardin, 1993), the decrease in pup-feeding in response 

to the mifepristone treatment reported in Dantzer’s study could be the consequence of a 

modulation of pup feeding by progesterone, not GC. Also, given that in Santema and 

colleagues’ work (2013), the CORT levels were only raised for a few hours and reaching levels 

beyond those normally encountered in this species, it appears premature to reject a potential 

positive role of CORT in the modulation of meerkat cooperative contributions. 

My thesis offers no support for a regulatory effect of T on cooperative contributions. 

So far, and to my knowledge, only one study has experimentally tested the effect of T on 

alloparental care and found no effect of increased T on huddling in cooperatively breeding 

striped mice (Rhabdomys pumilio) (Raynaud and Schradin, 2014). This contrasted with a 

previous study in Mongolian gerbils (Meriones unguiculatus) where increased T decreased 

huddling, although the breeding status (parents or alloparents) of treated subjects  was unclear 

(Clark and Galef, 1999). Assuming that increased aggression disrupts cooperation, one would 

expect increased T to exert a detrimental effect on cooperative behaviours in species where T 

supports aggression, but my results suggest this is not the case in Damaraland mole-rats.  

More neuroendocrine manipulations must be conducted to elucidate the physiological 

mechanisms regulating cooperative behaviours and explain their differences and similarities 

between species and across different types of cooperative activities. These manipulations 

should simulate physiologically relevant hormone levels and be of sufficient duration to 

confidently interpret an absence of effects as truly negative results. This remark applies to the 

experiment in which I experimentally manipulated the T levels of female helpers (Chapter 5) 

and where the absence of an effect of T on the short term does not exclude an effect of T on 

the longer term. 
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Modulation of stress hormone levels by cooperative contributions 

The finding that experimental increases in cooperative contributions levels raised 

CORT levels strongly suggest that cooperative behaviours can modulate CORT levels and 

emphasize the weaknesses of correlative studies I raised in Chapter 1. The capacity of 

cooperative behaviours to increase CORT levels suggest that variation in cooperative 

contributions alone may have generated the positive correlations between CORT and 

cooperative contributions highlighted in previous studies (Carlson et al., 2006a, 2006b; 

Sanderson et al., 2014). This point is furthered by the fact that I found no positive correlation 

between CORT levels and burrowing contributions, despite the experimental evidence of their 

association. 

Inferring the direct causality of energetically demanding cooperative contributions on 

CORT levels may be complicated by the fact that changes in cooperative behaviours can have 

repercussions on social behaviours and the relationship between CORT and behaviours is 

reciprocal (Landys et al., 2007; Mikics et al., 2004; Summers, 2002). Although almost all group 

members increased their burrowing contributions when their colony was provided with more 

sand, these changes were also accompanied by changes in the social conditions that may have 

contributed to the increases in CORT. Whether direct or not, the effect of cooperative 

contributions on CORT raises the possibility that differences in CORT levels between 

individuals of different social ranks (Creel, 2001) could be caused, at least partially, by 

differences in cooperative contributions.  

Beyond these methodological issues, the finding that increases in CORT levels raised 

burrowing contributions whilst increases in burrowing contributions also raised CORT levels 

leads to the interesting hypothesis that CORT and individual cooperative contributions are part 
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of a positive feedback loop. The functional relevance of such a feedback loop is unknown but 

the possibility that it may enable individuals to better adjust their cooperative contributions is 

worth considering. To test this hypothesis, one would need to demonstrate that experimentally 

induced increases in CORT approximating the increases observed when the sand supply was 

manipulated, would raise individual burrowing behaviours. This cannot be inferred from the 

results presented in this thesis since CORT levels were increased by 25% when the colony sand 

supply was manipulated (Chapter 3) and by over 200% when individuals were treated with a 

CORT implant (Chapter 4; it should be noted that CORT determination in chapter 3 and 4 

followed two distinct analytical methods). The experimental demonstration of a positive effect 

of burrowing contributions on CORT in which the effect of social circumstances could be 

excluded, would lend further support to this hypothesis. Finally, it is unclear whether the 

elevation of CORT induced by the increased sand provisioning was necessary for individuals 

to sustain their higher burrowing contributions. An elegant way to test this possibility would 

be to combine manipulations of the colony sand supply and of individual HPA axis. One would 

predict individuals to increase their cooperative contributions when provided with more sand, 

but not if their CORT signalling pathway is disrupted. Treatment with mineralocorticoid or 

glucocorticoids receptors (MR and GR) antagonists would allow to test this possibility and 

determine whether cooperative contributions are regulated via the MR and/or GR pathways.  

Hormones and consistent individual differences in cooperative 

behaviours  

Although individuals flexibly adjust their cooperative behaviours to internal and 

environmental conditions, there are consistent individual differences in cooperative 

contributions. The existence of cooperative ‘personalities’ has been described in two species 



108 

 

of cooperative breeders, the Kalahari meerkats and the banded mongooses, but their causes and 

adaptive character remain elusive (Carter et al., 2014; English et al., 2010; Sanderson et al., 

2015).  

There is increasing evidence that the environment is a source of epigenetic variation, 

which can have profound and long-lasting effects on offspring phenotypes (social 

competence:Arnold and Taborsky, 2010; maternal behaviour: Champagne, 2008; growth: 

Dantzer et al., 2013; dispersal: Höner et al., 2010; reproductive and aggressive behaviours: 

Kaiser and Sachser, 2005). Such effects are often mediated by the developmental effects of 

steroid hormones such as CORT and T (Dantzer et al., 2013; Eising et al., 2006), but whether 

and through which developmental mechanisms cooperative personalities may be generated is 

unknown. 

In species, such as the Damaraland mole-rat, where within individual flexibility in 

cooperative contributions is regulated by CORT, variation in early-life experiences organizing 

the HPA axis may generate cooperative personalities. Multiple aspects of the HPA axis are 

profoundly affected by endocrine conditions, and the environmental circumstances that 

modulate them, during critical periods of development such as the early-life and the 

adolescence (Liu, 2001). The developmental programming of the HPA axis is particularly 

sensitive to food resources availability and social experiences and variation across individuals 

may generate life-long lasting differences in their HPA axis (Champagne, 2008), and in turn 

of their tendency to cooperate. In Damaraland mole-rat, higher GC levels raise burrowing 

contributions (Chapter 4), leading to the prediction that early environmental conditions 

increasing baseline CORT release and/or the sensitivity to it, may cause individuals to behave 

more cooperatively. Early-life variation in cooperative contributions may contribute to this 

process since increased burrowing may raise CORT and the process further reinforced through 

the hypothesized positive feedback between CORT and burrowing. 
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Interactions between early-life environment conditions, growth and steroid hormones 

may also be relevant since growth can be socially modulated (Huchard et al., 2016) and is 

associated with variation in cooperative contributions (Clutton-Brock et al., 2002). Several 

correlative studies in both the Damaraland and the naked mole-rat (Heterocephalus glaber) 

have suggested that offspring born into small colonies grow faster and in some cases larger 

than pups born into larger colonies (Bennett and Navarro, 1997; O’Riain and Jarvis, 1998; 

Young et al., 2015; Zöttl et al., 2016a), even in the presence of unlimited food resources 

(Bennett and Navarro, 1997; O’Riain and Jarvis, 1998; Zöttl et al., 2016a). In turn, faster 

growing individuals contribute more to cooperative activities in the Damaraland mole-rat while 

the pattern is opposite in the naked mole-rat (Bennett and Faulkes, 2000; Zöttl et al., 

2016b).While growth can be influenced by steroid hormones (Dantzer et al., 2013), whether 

such hormones could exert a pleiotropic effect on growth and cooperative behaviours should 

be determined.  

Towards a more ecologically relevant understanding of the 

regulatory mechanisms of cooperative behaviours 

Developing an understanding of how individuals integrate internal and environmental 

stimuli into an adapted adjustment of their cooperative contributions represents a major 

challenge that relies on the embracement of a more integrated approach than the one I followed 

in this thesis. Once the regulatory actions of a hormone on cooperative behaviours is 

experimentally demonstrated, these actions should be further investigated beyond the context 

in which they were originally revealed to determine their context dependency. CORT and T 

releases being modulated upon the continuous integration of a multitude of cues, it is obvious 

that the great deal of real-world situations modulating their release in the same directions may 
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require distinct adapted behavioural responses. This highlights that predicting behavioural 

effects of a hormone based on conclusions drawn from its experimental manipulation in a very 

specific context is likely to be unsuccessful or incomplete. 

In Damaraland mole-rats, future research should focus on the manipulation of the 

factors shaping CORT release to investigate whether changes in both CORT and burrowing 

contributions support the conclusions from the experimental manipulation of CORT levels 

(Chapter 4). I showed that, in socially stable conditions in which colonies were fed ad libitum, 

the experimental elevation of CORT levels increased burrowing contributions. Therefore, 

internal and environmental factors causing a rise in CORT levels could be predicted to increase 

burrowing contributions. The observation that experimental increases in burrowing 

contributions conducted raised CORT (Chapter 3) suggested that burrowing could be such a 

factor through a positive feedback loop with CORT. I also hypothesized that breeding females 

could behaviourally “manipulate” helpers CORT levels to strategically adjust their cooperative 

contributions. However, even though helpers’ CORT levels may be increased by aggression 

from the breeding female, this may not enforce helpers to increase their cooperative 

contribution. Therefore, experimental manipulations of breeding female’s aggressions should 

be used to specifically test this hypothesis.  

 Food availability may represent a crucial environmental cue susceptible to affect 

cooperative contributions through its effect of CORT release and the investigation of these 

interactions may be invaluable to improve the understanding of the physiology of cooperation. 

The relationship between CORT release and the control of individual energy balance through 

the regulation of appetite, foraging behaviours and individual activity are intertwined (Landys 

et al., 2006; Levay et al., 2010; Sanderson et al., 2014; Sapolsky et al., 2000; Strack et al., 

1995; Stranahan et al., 2009). Elucidating how these intricate relationships affect cooperative 

contribution through carefully designed experiment is especially relevant since examples of 
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cooperative activities which are tightly linked to foraging decisions and individual energetic 

state are ubiquitous in nature. The Bluestreak cleaner wrasse (Labroides dimidiatus) cooperates 

by feeding against their preferences to remove their clients’ ectoparasites (Grutter and Bshary, 

2003), vampire bats (Desmodus rotundus) donate food resources that they could have kept for 

themselves (Wilkinson, 1984). Cooperative breeders forgo their own feeding at the expense of 

dependent pups that they provision and babysit (Clutton-Brock et al., 2001a, 1998), but are 

more likely to do so when they are in good body conditions (Clutton-Brock et al., 2002). 

Building upon the finding that CORT is an essential regulator of individual burrowing 

contributions, Damaraland mole-rats may represent an ideal study system to test the 

interactions between CORT, food availability and cooperative behaviours. The combination of 

food and HPA axis and/or sand provisioning manipulations could determine whether the effect 

or CORT on burrowing and the effect of increased burrowing on CORT are maintained when 

food resources are limited. 

The combined manipulations of environmental context and neuroendocrine pathways 

regulating behaviours generally represents a very promising approach to advance the 

understanding of the physiology of cooperation. The integration of neuro-genomic approaches 

to such experimental paradigm may prove invaluable as it may facilitate the investigation of 

the mechanisms underlying the context dependent effect of apparently uniform release of 

hormone such as CORT and T.  
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