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Abstract

Reverse phase protein arrays (RPPA) are an efficient, high-throughput, cost-effective method for the quantification of
specific proteins in complex biological samples. The quality of RPPA data may be affected by various sources of error. One of
these, spatial variation, is caused by uneven exposure of different parts of an RPPA slide to the reagents used in protein
detection. We present a method for the determination and correction of systematic spatial variation in RPPA slides using
positive control spots printed on each slide. The method uses a simple bi-linear interpolation technique to obtain a surface
representing the spatial variation occurring across the dimensions of a slide. This surface is used to calculate correction
factors that can normalize the relative protein concentrations of the samples on each slide. The adoption of the method
results in increased agreement between technical and biological replicates of various tumor and cell-line derived samples.
Further, in data from a study of the melanoma cell-line SKMEL-133, several slides that had previously been rejected because
they had a coefficient of variation (CV) greater than 15%, are rescued by reduction of CV below this threshold in each case.
The method is implemented in the R statistical programing language. It is compatible with MicroVigene and SuperCurve,
packages commonly used in RPPA data analysis. The method is made available, along with suggestions for implementation,
at http://bitbucket.org/rppa_preprocess/rppa_preprocess/src.
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Introduction

In the last decade, the study of cancer biology has been

accelerated by many technological advances, enabling analyses of

the genome at both high resolution and throughput. This has led

to the identification of mutations and biomarkers specific to

various cancer types and patient sub-groups. However, clinical

trials of targeted therapy guided by these studies have met with less

success [1,2]. One of the reasons for this is that while the causes of

cancer are genetic, they result in cellular malfunction at the level of

proteins. While changes in each level may be observed discretely,

they are related intimately through processes such as translation of

mRNA to protein and the control of gene transcription by

proteins. Further, proteins can interact with metabolites post-

translationally. This increases the complexity of the proteome via

the existence of multiple forms of – e.g. phosphorylated,

nitrosylated and methylated – molecules that vary in function.

There is hence a need for reliable and affordable methods for

protein measurement, at a scale capable of complementing today’s

genomics studies, so that together, they may reveal the mecha-

nisms driving cancer.

Reverse phase protein array (RPPA) technology is a powerful

technique for measuring the activities of proteins from tissue- and

cell-derived lysate. It is an inexpensive, high throughput,

quantitative method with low sample requirements, making it

ideal for large-scale proteomic profiling studies. In RPPA, small

(,ml) amounts of lysate extracted from biological samples under

study are evenly spotted onto the surface of glass slides coated with

an absorbent material such as nitrocellulose. A single RPPA slide

of 2 cm65 cm can be used to simultaneously measure the levels of

a protein in thousands of samples at a time, using an automated

and efficient procedure that can be scaled up to hundreds of

proteins [3–5]. Each slide is probed with a primary antibody

against the protein of interest, sensitive to pg-ng of protein [6],

followed by a secondary antibody. A colorimetric or fluorescent

signal is then generated, in proportion with the secondary

antibody bound, and may be quantified to yield estimates of

relative protein concentration in each sample.

RPPA design has several advantages over existing methods for

protein detection. Unlike methods such as Western Blotting and

2D-Gel Electrophoresis, RPPA has high throughput and low

sample requirements. While other assays such as multiplexed flow-

cytometry and microsphere-based assays retain some of these

advantages, they are far more expensive than RPPA and are often

more labor intensive [7]. Mass spectroscopy (MS), which is

another method used in large-scale protein level studies, can

analyze the proteins in a sample using both unbiased and targeted
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approaches. However, current methods for MS require high

sample volumes and the time required for sample analysis can be

high. Reverse Phase Protein Arrays have enabled studies of

protein networks implicated in different cancers [8,9], infectious

disease [10] and the responses of cells to various drugs [11–13].

However, many of the factors that make RPPA an appropriate

choice for proteomics studies also introduce noise into the data.

For example, the use of targeted antibodies enables the

measurement of low-abundance proteins, but low antibody

specificity can lead to promiscuous binding and false positives

[14,15]. Similarly, the handling of low sample volumes can lower

the signal to noise ratio of the results [16]. The reliability and

reproducibility of RPPA data are a key determinant of the utility of

such studies. We examine one factor that contributes to noise in

the RPPA data – spatial heterogeneity – and describe a method for

correcting it, thereby enhancing the quality of the data.

Spatial variation in RPPA slides occurs due to unequal exposure

of the slides to the experimental reagents used. This causes non-

uniform signal generation, resulting in systematic variations across

the area of each slide. Spatial heterogeneity is obvious when

identical samples distributed over a slide produce variable signal

intensities. Consequently, variance across identical samples serves

as a reference with which one can measure and then correct errors

arising from this heterogeneity (Fig. 1). We show that spatial

differences affect the results of RPPA data obtained from diverse

biological datasets. We use a simple, flexible and powerful 2D

interpolation method to normalize the data, resulting in signifi-

cantly enhanced data quality as measured by improvements in

reproducibility and the signal to noise ratio of the results. Also,

data from antibodies that were previously unusable are rescued

with the method, improving the utility of the studies performed. R

code for the method is provided as a package that can be used in

conjunction with MicroVigene, currently a widely used platform

for the analysis of RPPA data.

Materials and Methods

Data sets analyzed using normalization routine
RPPA data for this study were obtained from slides printed with

various human cell-line and tumor derived samples and probed

with antibodies specific to proteins relevant to the study. The

details of the method are provided in the results. We tested this

method on the following data sets.

1) Set A - Quality control samples. This dataset was

comprised of 16 slides, each identically printed with sample and

then queried with a single primary antibody. The samples in these

slides were obtained from a quality control study performed in the

M.D. Anderson Cancer Center RPPA core-facility and a list of the

antibodies used is provided in table S2.

2) Set B - Human melanoma cell line-derived samples. This

data set was obtained from experiments performed in-house in the

Sloan Kettering Institute. The melanoma cell line SKMEL-133, a
V600EBRAF/PTEN null mutant cell line kindly gifted to us by Dr.

David Solit, MSKCC [17], was perturbed with 10 small molecule

inhibitors (table S1) targeting specific kinases that control cell death

and proliferation. Cells were treated with each drug individually as

well as with all pairwise combinations of the drugs. Three biological

replicates of each experimental condition were generated, consti-

tuting approximately 300 samples that were measured with RPPA.

Cell lysate from each sample was spotted onto slides and probed

using 159 antibodies (table S2) to measure the quantities of clinically

relevant proteins or phospho-proteins in those samples. Several of

the slides were probed with the same antibody 2–3 times, resulting

in a total of 238 slides and 53 antibodies with replicate slides.

3) Set C – Miscellaneous anonymized samples. A data set

comprised of 30 slides from cell-line data processed at the M.D.

Anderson Cancer Center.

Preparation, layout, printing and quantification of lysate
array samples

Homogenized cell pellets consisting of cellular proteins are

derived from cells grown in-vitro or from tissue samples in-vivo.

Samples are lysed and the protein extract obtained is diluted based

on the design of each experiment. In the slides comprising the data

sets in this study, each sample undergoes a K serial dilution four

times, leading to a total of 5 concentrations per sample. These

initial serial dilutions are performed manually. Diluted samples are

then robotically spotted onto the surface of slides coated with

nitrocellulose. In our experimental design, each sample and

positive control is printed in five dilutions. The slides are laid out

as grids of 132644 spots, comprised of 48 subgrids containing 121

spots each. Thus, each subgrid accommodates 22 samples and 2

positive control samples, in 5 dilutions each. A subgrid is also

printed with a single buffer spot that serves as a negative or

background control. Each slide thus accommodates 1056 serially

diluted samples and 96 positive control samples (with 5 dilutions

per sample), and an additional 48 negative control spots (Fig. 2).

The positive control spots, are printed at fixed intervals across the

length and breadth of each slide, and are technical replicates of

each other, obtained from a single batch of standard mixed cell

lysate [18]. Since the controls are designed to contain sufficient

amount of each of the proteins in the antibody panel for reliable

detection, similar levels of the concerned protein should also be

detected in experimental samples when the appropriate dilution of

antibody is used. The negative control spots consist of buffer

containing no protein and are hence informative of the level of

background signal generated.

Protein in each sample is quantified by washing the slide with a

solution of primary antibody followed by secondary antibody. The

biotinylated secondary antibody interacts with a streptavidin

bound peroxidase to catalyze the deposition of a biotinylated

brown tyramide compound on the surface of the spot. The

intensity of the colored signal thus generated is proportional to the

amount of secondary antibody and protein bound to the slide.

Signal intensities obtained by scanning images of the slides were

quantified by MicroVigene software [19]. These are then

translated into relative protein concentrations using an R package

called SuperCurve [20]. SuperCurve estimates the concentrations

of all the samples on a slide with respect to one another. The

estimation is based on the assumption that all the samples on a

slide lie on a single dose response curve, since the hybridization

kinetics of all samples have similar chemistry. The curve thus

obtained may be used to obtain the relative concentration of each

sample on the slide.

Assessment of data quality
The effectiveness of normalization was assessed based on the

behavior of biological and technical replicates compared before

and after normalization. Successful normalization should reduce

noise, resulting in improved comparability of data and should

bring replicates closer to each other. We define technical
replicates as spots that are printed from lysate that was obtained

from a single batch of cells in a single experiment. When printed

onto a single slide, they are called intraslide replicates and when

printed onto different slides, they are interslide replicates. For

example, all the positive control spots belonging to a single dilution

on a single slide are intraslide technical replicates because they

were obtained from a single mix of cells and subjected to dilution

Spatial Normalization of RPPA Data
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in a batch before the lysate was printed onto slides. Biological
replicates are spots that are printed from cell lysate obtained

from cells that were subjected to the same experimental

conditions, but in separate batches. For example, in procuring

dataset B, SKMEL-133 cells were grown in 3 different petri-

dishes, and each was subjected to normal medium spiked with a

dose of EGF ligand. They were then used to yield three separate

cell pellets that when lysed and printed onto a slide, gave rise to

biological replicate spots.

We expect technical and biological replicates to have different

degrees of variability. Similarity of technical replicates is indicative

of the reliability and uniformity of steps in the procedure such as

printing, probing and scanning. On the other hand, biological

replicates may vary for a number of reasons. The heterogeneity

inherent to populations of cells obtained from both cell lines and

tumors may make subsets of such populations behave differently

when subjected to the same treatment. Several other factors could

introduce biological variation, such as time to freezing and the

presence of stromal and endothelial cells in tumor-derived

samples, or the sample preparation method used [21–24]. Thus

when technical variability is low, the differences between biological

replicates can yield useful information about cellular variability in

the samples studied.

To determine how spatial normalization improves the quality of

RPPA data, we calculated

1. Agreement between interslide and intraslide technical repli-

cates across 16 pairs of duplicate slides from dataset A, and 53

pairs of duplicate slides from dataset B.

2. Agreement between intra-slide biological replicates in a 238-

slide melanoma cell line study.

Figure 1. Steps in the acquisition and processing of RPPA data. Cells derived from different in vitro and in vivo systems are lysed and protein
extracted (1). Serially diluted extracts are printed onto the surface of slides (2) where primary and secondary antibodies bind to the protein of interest
and generate a signal proportionate to the amount of protein in each sample. Each slide can accommodate 5808 printed spots, for different numbers
of total samples depending on the layout and number of dilutions used (3). Readouts obtained are translated to sample intensities after scanning and
processing of the slides (4). Intensities of positive control spots (horizontal yellow spots in (4)), which are technical replicates of each other, may be
used to evaluate and correct spatial variation observed in each slide. Spatial correction of data can improve data quality resulting in better estimates
of relative protein concentration and improved agreement between inter- and intra-slide replicates from various experiments.
doi:10.1371/journal.pone.0097213.g001
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Agreement was evaluated with the Pearson’s correlation (r)

between corresponding spot intensities (IA and IB) across duplicate

slides and the coefficient of variation (%CV) between replicates

within-slide, where m denotes the mean and s the standard

deviation of the spot intensities (I) or protein concentrations (P)

measured.

rIA,IB
~

cov(IA,IB)

sIA
sIB

~
E½(IA{mIA

)(IB{mIB
)

sIA
sIB

ð1Þ

%CV~
sP|100

mP

ð2Þ

Results

Bilinear interpolation of correction factors to remove
spatial biases in RPPA data

The central assumption is that in the absence of spatial variance

all positive controls of a given dilution should yield equal

intensities. Consequently, observed variability of positive control

intensities is a survey of the spatial bias on the slide. With this

information, we can systematically factor out the spatial bias at any

location based on neighboring positive control intensities.

We define the relationship between the measured sample

intensity I(x,y) and the true intensity I9(x,y) in terms of a correction

factor CF(x,y) that represents spatial variance.

I 0(x,y)~
I(x,y)

CF (x,y)

Correction factors are simply the ratio of positive control

intensities PCI(x,y) to some reference intensity ,PCI..

CF (x,y)~
PCI(x,y)

SPCIT

Here, we choose the mean positive control intensity ,PCI. to

be the reference intensity. CF values above 1 indicate regions on

the slide where there is a bias towards larger intensities. CF values

Figure 2. In the experimental design we use for the analysis of the samples in sets A and B, lysate is spotted in 96 arrays consisting
of 22 samples, two positive controls and one buffer spot each. Each of the samples and the positive controls is printed in five 1:2 serial
dilutions each.
doi:10.1371/journal.pone.0097213.g002
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below 1 indicate regions on the slide where there is a spatial bias

towards smaller intensities.

However, these correction factors are not directly calculable at

sample locations precisely because those locations do not contain

positive controls. To compensate for this missing information, we

use interpolation to approximate pseudo-positive control intensities

at the sample locations.

Interpolation is the calculation to approximate the value of a

function f(x,y) at specific locations (x,y) given fixed knots or

measured function values at neighboring locations f(xc, yc) and is

analogous to ‘‘Connect the Dots’’. Linear interpolation means we

connect the dots with lines. The points lying on the lines between

the dots are the interpolated values, and the dots themselves are

fixed knots or anchor points. The interpolated values are

approximations inferred based on nearest neighbor data. In this

case, we will use the measured positive control intensities to

interpolate or approximate pseudo-positive control intensities at all

locations on the slide.

Consider a location (x,y) that lies between four measured

positive control spots with corresponding intensities PCI(xa,ya),
PCI(xa,yb), PCI(xb,ya), PC(xb,yb).

PCI�(x,ya)~
xb{x

xb{xa

PCI(xa,ya)z
x{xa

xb{xa

PCI(xb,ya)

PCI�(x,yb)~
xb{x

xb{xa

PCI(xa,yb)z
x{xa

xb{xa

PCI(xb,yb)

PCI�(x,y)~
yb{y

yb{ya

PCI�(x,ya)z
y{ya

yb{ya

PCI�(x,yb)

These are pseudo-positive control intensities (indicated by an

asterisk) in that they are approximations for what a control

intensity at that location would have been had it been spotted with

control sample. The correction factors at these locations are

calculable with simple division by the reference positive control

intensity.

CF�(x,y)~
PCI(x,y)

SPCIT

The bilinear interpolation calculation described above reflects

only our assumptions about the smoothness of the spatial bias

between measured positive control locations. It says nothing about

the relationship any sample intensity has to another sample

intensity. A similar correction can be applied after performing a

cubic spline interpolation between the correction factors. Overall,

the results of normalization using spline interpolation are similar to

those with bilinear interpolation (table S3). Hence we use the

simpler of the two, bilinear interpolation, for normalization (Figure

S1). Further, in the sample and control format used in our

experiments, there are 96 sets of positive controls printed in 5

dilutions each. We use the median of each set as anchors for our

interpolation step as this dilution is the most likely to be in the

linear range of the assay for the set of antibodies used in the

experiment. Users of the method are encouraged to design their

experiments such that all the query samples are contained within

the interpolation region of the positive controls. In our design, a

portion of the slide (1/12th) does not have positive controls at its

periphery and hence, each sample in this region was normalized

by the closest correction factor evaluated.

Spatial normalization improves Coefficient of Variation
between biological replicates

Spatial normalization improves agreement between intraslide

biological replicates in dataset B and ‘rescues’ previously discarded

slides enabling further analysis of these proteins. Melanoma cell

line samples were acquired for a large study aimed at

understanding the basis of RAF inhibitor resistance in certain

melanoma cell lines. Cell lysate was obtained from a melanoma

cell line SKMEL-133 and subjected to various drug treatment

conditions in triplicate, resulting in approximately 300 samples

that were then quantified using RPPA. Agreement between the

biological replicates was calculated before and after normalization.

Around 10% of the slides (25/238) show increases of over 5% in

agreement between biological replicates after normalization

whereas only 1.2% (3/238) slides show a worsening of CV by

over 5% with normalization. Despite increased agreement overall,

biological replicates show different degrees of improvement with

spatial normalization (Fig. 3).

The data from this study were used to train a mathematical

model of melanoma biology in SKMEL-133. To maximize model

accuracy, only data points with sufficient reliability were kept for

model incorporation and training. Slides were selected if the

average coefficient of variation (%CV) of biological replicates

within each slide was seen to be less than or equal to 15%. This

threshold was arbitrarily selected by the authors and is left to the

discretion of the user. %CV, which is the ratio of the standard

deviation between observations to the mean of those observations,

expressed as a percentage, is a good measure of signal to noise in

biological data and rises with noise in the data. A set of 168 slides

was originally selected after discarding saturated and defective

slides. Of the 168, when we evaluated %CV across all biological

replicates in each slide, 15 slides were unusable because of %CV

greater than 15%. After normalization, only 7 slides had %CV

greater than 15%. The slides that were rescued by spatial

normalization measured AKT, PARP, BCL2, BIM, ATR, YAP,

IGFBP and FAK (Fig. 4). In certain cases, %CV appears to rise

after normalization. This could reflect real noise present in the

data. However, the cases where this occurs are those where %CV

is significantly below the cutoff of 15% and hence this did not

affect the selection of antibodies in our study. To further verify this

result, we also calculated the Z9-factor [25] of each slide before

and after spatial normalization. In agreement with the %CV

improvements we observed in biological replicates, the per-slide

Z9-factor evaluated in dataset B also improves in .98% of the

slides used in the experiment (details and calculations provided in

Fig. S3).

Spatial normalization modestly improves the agreement
between inter-slide replicates

To evaluate whether spatial normalization improved data

quality significantly, we compared the agreement between

technical and biological replicates before and after normalization.

We compared the Pearson’s correlation of the estimated concen-

trations of samples printed at equivalent locations across 69 pairs

of duplicate slides procured independently from sets A and B to

assess interslide reproducibility. Here, duplicate slides are slides

that were printed with the same samples in equivalent locations on

each slide.

Many slide pairs improve in overall correlation between

concentrations, with only a minority of the slide pairs showing a

Spatial Normalization of RPPA Data
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large such improvement. Further, slides showing a modest

improvement in the behavior of interslide technical replicates

with normalization often show greater improvements in concor-

dance of biological replicates (Fig. 5 and table S4). Earlier studies

using RPPA have consistently shown that such correlations

evaluated between the concentrations of interslide replicates are

generally high [18] but may not be the best measure of

improvement in data quality after normalization.

Spatial normalization improves Intra-slide reproducibility
of technical replicates

The slides evaluated for interslide reproducibility each have 480

positive controls, spotted as 96 sets of 5 dilutions each. The 96

points within a dilution are hence all technical replicates of one

another. While the normalization method uses one of these sets,

the median set, as anchor points for evaluating spatial variation

and correction factors, we can use the remaining dilutions of the

positive controls to measure %CV between each set before and

after normalization. Doing this showed significant improvements

in agreement between each such set of technical replicates, across

most antibodies used. (Fig. 6) In the melanoma data-set, agree-

ment between technical replicates showed an average improve-

ment of 4%, with %CV falling from 12% to 8%, after

normalization across slides probed with different antibodies.

Further, 16 out of the 168 antibodies showed improvements of

10% or above in the coefficient of variation between technical

replicates.

Discussion

RPPA is one of two main techniques used in large-scale

proteomics studies today – array based techniques and mass

spectrometry. High-throughput, low sample requirement and high

sensitivity make it a promising technology with which to examine

protein networks in a variety of systems including cell lines and

tissue samples. However, some of the features that make RPPA an

Figure 3. Coefficient of variation (%CV) of biological replicates across all antibodies before and after normalization clearly improve
with normalization. The degree of improvement varies from antibody to antibody (higher for EGFR-pY992 and cJUN-pS73 than YB1-pS102) and is
significant for many antibodies relevant to signaling in the melanoma cell lines studied.
doi:10.1371/journal.pone.0097213.g003

Spatial Normalization of RPPA Data
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Figure 4. Spatial normalization reduces variance between biological replicates in the majority of the slides comprising a melanoma
cell line study. In the study, a cutoff coefficient of variation (CV) of 15% is used to decide whether slides are retained for biological analysis. After
spatial normalization, CVs in 8 slides (Caspase 9, IGFBP2, ATR, COX2, FAK_pY397, BCL2(mouse), PARP, AKT) that were previously unusable drop to
acceptable values. One slide - PCNA(mouse) - that had earlier been used in analysis is rejected after normalization.
doi:10.1371/journal.pone.0097213.g004

Spatial Normalization of RPPA Data

PLOS ONE | www.plosone.org 7 December 2014 | Volume 9 | Issue 12 | e97213



appropriate choice for several kinds of proteomics studies, such as

antibody-based detection, where antibodies have may different

target-affinities and variable specificities, also add noise to the data

it generates. Hence noise reduction and data normalization are

essential for the successful application of RPPA. Our normaliza-

tion technique evaluates one source of noise in RPPA data –

spatial variation – and uses the measured variation to correct the

data leading to increased reproducibility between duplicates in

various studies. The method also makes the data from previously

discarded, noisy slides usable in analysis, potentially expanding the

scope of the biological questions that a set of RPPA experiments

may address.

Among the genomics platforms, such as DNA microarrays,

standards for experimental design and analysis have greatly

improved the quality of those data and the scope of the studies

that they enable [26–29]. This has lead to collaborative efforts

such as the TCGA that have significantly enhanced our

understanding of various cancers [30]. Among the protein activity

measurement platforms, there are fewer methods that similarly

address data quality. One such method [31], in which control

samples are used to normalize for spatial and scaling errors in

RPPA data successfully reduces intra-array replicate CV by up to

70%. However these improvements were the result of printing of

as many control samples as each slide contained query samples

and is hence expensive. Further, the published method was only

applicable to a specified sample layout. Our method corrects a

significant and systematic source of bias in RPPA data effectively

reducing error in sample sets normalized with relatively few

controls. Among the melanoma data we corrected, for instance,

fewer than 2% of the samples were used to normalize a total of

5808 samples. Further, the method is flexible, allowing the user to

correct for spatial biases in a variety of formats containing identical

control samples that contain a level of the protein of interest that is

within the linear detection range of the assay used. Others in the

research community have similar goals and improved standard-

ization of analysis methods will help realize the potential of RPPA

in, e.g., characterizing the signaling response to drug treatment or

in training mathematical models of biological systems.

As this manuscript was completed, two other alternative

methods for spatial normalization of RPPA data were published

[32,33]. The first, by Troncale et al., uses a non-parametric model

that takes into account every sample’s Row and Column location

while fitting the obtained intensities to relative protein expressions,

thus adjusting for spatial effects along with other sources of

variation addressed by the paper, such as background and total

protein deposited at each spot. The method of Neeley et al. is

similar in ideology to ours, in that it uses the variation observed

between identical controls printed at various locations on each

Figure 5. Correlation between concentrations of samples printed across duplicate slides increases slightly with normalization
(upper panels, LRR, melanoma samples and probed with anti-pMAPK antibody). Coefficient of variation between the concentrations of
biological replicates printed on one of these slides improves after normalization (lower panels, LRR).
doi:10.1371/journal.pone.0097213.g005

Spatial Normalization of RPPA Data
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array to normalize for spatial effects. The correction is model

based, and is specific to an array format that is commonly used in

the community. While a systematic comparison of existing

methods would help a user to select the method best suited to

their experiment and data, this is beyond the scope of our current

work. We compare the changes in reproducibility of data observed

using our method with Neeley et al. across the antibodies in the

melanoma dataset. These results are provided in (Figure S2). More

extensive comparisons of the existing methods may aid in the

selection of a set of standard methods for data normalization, or an

improved understanding of what quantification and normalization

methods work the best for different types of experiments. This

would be beneficial to the RPPA community, where comparisons

Figure 6. Coefficient of variation between intensities of intraslide technical replicates in dataset B decreases significantly with
normalization. One out of 5 dilutions of positive controls is used for spatial normalization. The correlation of the remaining positive controls, which
are technical replicates within each dilution, is observed after normalization. Correlations increase with normalization for each of the observed
dilutions.
doi:10.1371/journal.pone.0097213.g006

Spatial Normalization of RPPA Data
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of experimental results are currently confounded by a lack of

standardization.

A metric frequently used to assess data quality in RPPA is

interslide and intraslide correlation between spot intensities of

technical replicate spots [18]. While this gives us some confidence

about the reliability of the results, it may not be an adequate

measure of reproducibility. Since RPPA has a low dynamic range

as compared to some other proteomics methods, this range is often

expanded by printing multiple dilutions of each sample on the

surface of a single slide. The dilutions of a sample may be widely

separated in intensity, and correlations measured across all spot

intensities on a slide may be biased by the range of intensities

spanned by each slide (Fig. 7). When evaluating interslide

correlations, we attempt to reduce this bias by comparing relative

protein concentrations rather than intensities. Nonetheless, mea-

sures of intraslide technical and biological replicate equality can be

more informative of data quality than Pearson’s correlation. Other

metrics of data quality, such as the Z9factor [25] and a Welch’s t-

statistic [34] to evaluate the mean difference between the positive

and negative controls before and after normalization also showed

Figure 7. Correlation calculations performed using intensities of all spots printed onto duplicate slides may be a misleading
measure of reproducibility because of experimental design that uses multiple dilutions to evaluate sample concentrations. In the
case of two identical slides probed with anti-pBAD antibody, overall correlation coefficient R = 0.82 whereas correlations of the individual dilutions are
lower.
doi:10.1371/journal.pone.0097213.g007
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improvements from normalization for the vast majority of samples.

(figures S3 and S4).

The spatial normalization technique we implemented not only

significantly decreased coefficient of variation improved agreement

between biological and technical replicates within slides, but also

made it possible to analyze the data from many slides that were

previously unusable because of high variation. A particular

example is our use of the antibody for PARP-1 in a study of

melanoma samples subjected to various treatment conditions,

where the %CV between biological replicates decreased from 21%

to 13%, enabling more reliable use in the study after normaliza-

tion. Poly (ADP ribose) polymerase (PARP) proteins (PARP-1 and

PARP-2) play a critical role in controlling necrosis and apoptotic

cell death. These PARP proteins are located inside the nucleus and

take part in DNA-repair in response to DNA breaks and facilitate

transcription, replication and DNA base excision repair [35].

PARP inhibitors (Olaporib, iniparib and veliparib) are undergoing

clinical trials in BRCA mutated ovarian and breast cancer patients

[36]. Furthermore, PARP-1 has been linked to altered control of

p53-mediated DNA response and NFKappa-B response [37].

Consequently, accurate quantification of cleaved PARP-1 could be

critical in understanding the complex signaling mechanisms

involving PARP-inhibition as well as perturbations involving

BRCA1 and BRCA2.

Other proteins similarly rescued in this and other studies could

expand the scope of the biological problems addressed by RPPA.

One context in which spatial normalization could be very relevant

is in the analysis of tumor samples using RPPA, that due to

requirements of throughput, cost and limited availability of patient

material, are often unable to have sample replicates within slides.

One such effort, belonging to the umbrella of TCGA projects,

measures and compares protein abundance data across various

tumors. In cases such as this, spatial variation alone could cause

the appearance of differences that may bias the results. Hence it is

very important that these data be appropriately normalized before

use and analysis in other projects R code for our spatial

normalization method can be used in conjunction with Micro-

Vigene and SuperCurve. It is flexible and may be adapted to

several different kinds of experimental designs, with the user

specifying the locations of positive controls or other identical

samples to be used as reference points for normalization.

Our method is one of several early efforts for the standardiza-

tion and quality control of RPPA data. As data acquisition

methods improve and RPPA moves into more widespread use, we

advocate the adoption of common standards for the evaluation

and correction, where possible, of systematic errors in RPPA data

as well as in the analysis of these data to enable larger, multi-center

studies and improve comparability across individual studies.

Supporting Information

Figure S1 Coefficient of variation between all biological
replicates, and across 237 antibody slides used in a
melanoma study, before and after normalization of
sample intensities using bilinear interpolation and cubic
spline. Both methods result in greater agreement between

replicates due to normalization.

(TIFF)

Figure S2 Coefficient of variation between biological
replicates in the melanoma study (SET B) appears to
worsen for many antibodies when normalization is
implemented using the method of Neeley et al.

(TIFF)

Figure S3 Spatial normalization improves the quality of
the data from almost all the antibodies in a set of slides
(Set B) printed with lysate from the melanoma cell line
SKMEL-133. 30% of the slides which had a Z9-Factor of
lower than 0.5 show Z9..0.5 after normalization. Further,

unusable data from nearly 11% of the slides (26/238) show a Z9.

0.25 after normalization.

(TIFF)

Figure S4 Spatial normalization increases the observed
differences between the positive and negative controls in
a set of slides (Set B). 229 out of 238 slides (96%) of this set

show a clearer separation between the controls after normaliza-

tion.

(TIFF)

Table S1 A list of the drugs used to perturb a melanoma
cell line and the doses used, both singly and in all
pairwise combinations.

(XLSX)

Table S2 All slides in the melanoma study with
antibodies and dilution used in each.

(XLSX)

Table S3 Contains results of a comparison of duplicate
slides obtained form studies conducted in SKI and MDA.
Results of this analysis are reported as interslide and intraslide

replicate CVs in the results section of the paper.

(XLSX)

Table S4 Compares the % CV between the concentra-
tions of biological replicates printed from a melanoma
cell line study. CVs reported correspond to that before

normalization, and to that after normalization with two methods

– bilinear interpolation and cubic spline interpolation.

(XLSX)

Code S1 Contains the R code for the method along with
example data and guidelines for use.

(ZIP)

File S1 Contains details of supplementary performance
assessment of the method.

(DOCX)
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