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Abstract 
This thesis is focused on recapitulating the in vivo processes of mammary gland development and 

breast cancer progression in vitro using engineered collagen scaffolds. 

The adult mammary gland is comprised of a bi-layered epithelium of luminal and myoepithelial cells 

surrounded by an adipocyte-rich fat pad, a highly collagenous extra-cellular matrix (ECM) and a 

number of other stromal and endothelial cell types. Mammary stem cells (MaSCs) reside within the 

epithelium and these are capable of repopulating a mammary fat pad that is devoid of epithelium, 

upon transplantation. It was sought to recapitulate this process of MaSCs repopulating a fat pad 

using a synthetic fat pad, engineered from a collagen scaffold invested with adipocytes, to provide 

an in vitro 3D model. Fluorescently tagged murine Axin2-expressing cells were obtained from 

transgenic mice and seeded into these scaffolds and cultured, mimicking the process of fat pad 

repopulation. Immunohistochemical analysis demonstrated that Axin2+ myoepithelial cells were 

rarely capable of forming bi-layered structures that expressed correct myoepithelial localisation and 

resemblance to a luminal morphology. 

Breast tumours surrounded by anisotropic (directional) collagen fibres running perpendicular to the 

tumour boundary are more aggressive and associated with poor patient prognosis. To recapitulate 

this anisotropic collagen phenotype in vitro, an ice-templating technique was used to modify the 

structure of the collagen scaffolds producing both non-directional (isotropic) and anisotropic internal 

architectures. Tumour cells from various breast cancer cell lines were seeded into both isotropic and 

anisotropic scaffolds to investigate whether this approach could distinguish cell type-specific 

migratory ability and whether anisotropy affected migration efficiency. Following analysis by 

confocal microscopy and ImageJ, anisotropic scaffolds were observed to enhance the migratory 

potential of MDA-MB-231 breast cancer cells. These results highlight the importance of collagen 

alignment and provide a reproducible method to quantitatively measure cell migration in 3D for cells 

derived from different breast cancer subtypes. 

Building on these data, the protocol was adapted to permit the direct investigation of tumour biopsy 

material. Given the heterogeneity of breast tumours, it was considered important to maintain 

tumour architecture and stromal components. Thus, murine mammary tumour fragments from two 

different established mammary cancer models were utilised and cultured in anisotropic collagen 

scaffolds in the presence or absence of adipocytes to allow an investigation of their influence on 

tumour cell migration. Further experiments included addition of various therapeutic drugs followed 

by immunofluorescence microscopy coupled with an optical clearing technique. These data 
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demonstrated the utility of the model in determining both the rate and capacity of tumour cells to 

migrate through the engineered stroma while shedding light also on the mode of migration. 

Moreover, the response of different mammary tumour types to chemotherapeutic drugs could be 

could be readily quantified.  

To humanize the fat pad for subsequent human tissue analysis, human mesenchymal stem cells 

(MSC) were obtained from reduction mammoplasties and immortalised, before differentiating them 

into adipocytes within anisotropic collagen scaffolds. Human breast cancer cells were fluorescently 

tagged for tracking using lentiviral methods and were seeded into scaffolds invested with 

differentiated MSCs. Both cell types were successfully co-cultured for 7 days and imaged using 

multiphoton methods.  

These data demonstrate the utility of novel 3D organotypic in vitro models to provide more 

informative 3D analysis of cancer cells than traditional 2D cell culture models. Future experiments 

combining human tumour biopsies and chemotherapeutics into the system could provide a 

screening platform for breast cancer patients. This would provide in vitro assays for the delivery of 

tailor-made personalised medicines and a valuable addition to the oncologist’s armamentarium.  
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1.1 The mammary gland 

1.1.1 Mammary gland development 

The mammary gland is a secretory organ that is essential for the feeding of new-born infants 

through the provision of milk. This nourishment also provides a source of protective factors to boost 

the infantile immune system during early stages of development post birth. The gland itself 

comprises a number of different cell types: epithelial cells, that make up a bi-layered ductal network; 

adipocytes, the main component of the fat pad; endothelial cells, that line the walls of mammary 

gland vasculature; and a number of other stromal cells, including immune cells and fibroblasts. 

Mammary epithelium comprises bi-layered structures of basal cells (otherwise known as 

myoepithelial) and luminal cells (Fig. 1.1). Luminal epithelial cells are located lining the inner layers 

of alveolar and ductal structures. Surrounding the luminal cells is a layer of thin contractile basal 

cells, otherwise known as myoepithelial cells, which are responsible for the mechanical expelling of 

milk from the ducts. Both epithelial subtypes express intermediate filaments known as cytokeratins 

that form part of their cytoskeletal component. However, in the murine mammary gland, luminal 

cells exclusively express cytokeratin-8 (K8) and cytokeratin-18 (K18), whilst basal cells express 

cytokeratin-5 (K5), cytokeratin-14 (K14). Other exclusive luminal markers include epithelial-cadherin 

(E-cadherin) and membranous β-catenin (Fig. 1.2). Further exclusive basal cell markers include α-

smooth muscle actin (αSMA) and the nuclear marker p63 (Glukhova et al., 1995; Reichardt et al., 

2001) (Fig. 1.2).  

Within the luminal epithelial population there is heterogeneous expression of hormone receptors 

such as the oestrogen receptor (ER) (Shehata et al., 2012). Additionally, luminal cells are polarised; 

with an apical cell membrane facing inward toward the lumen in which milk is secreted during 

lactation and a basolateral surface in contact with basal cells that surround the ducts and alveoli. 

Both this spatial organisation of the epithelial layers and the communication between the two cell 

types, is essential for the correct functioning of the gland (Faraldo et al., 2000; Forster et al., 2014). 

Development of the mammary gland is complex with extensive remodelling events occurring in 

utero, during puberty and in the adult gland. Formation of placodes on the torso of mice is one of 

the first indications of embryonic mammary gland development (Hens et al., 2007; Veltmaat et al., 

2004). Subsequent invagination of placodes to form mammary buds induces the establishment of a 

surrounding mammary mesenchyme. Following this, buds sprout and branch into the mesenchyme 

to form a rudimentary structure that projects into a subdermal fat pad. At this point, growth of the 

gland in arrested and development does not restart until puberty. During puberty, ducts undergo 

extensive elongation accompanied with branching morphogenesis to provide secondary ductal 
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structures that are capped by ‘club-like’ structures known as terminal end buds (Fig. 1.2a). Basal cells 

aligned in the direction of the duct’s long axis surround the luminal cells in these structures (Lloyd-

Lewis et al., 2016) (Fig. 1.2a). Upon pregnancy tertiary branching occurs with the formation of alveoli 

structures at the ends of branches. Within these structures, differentiated milk-producing luminal 

alveolar cells are organised in ‘grape-like’ structures surrounded by basal cells with projections in an 

almost stellate appearance (Fig. 1.2b). During lactation, basal cell contraction enables alveolar cells 

to eject milk into the ducts to the nipple for suckling by new-born infants. Following weaning, the 

gland undergoes remodelling via lysosomal-mediated programmed cell death (LM-PCD) of mammary 

epithelium and subsequent clearing of dead cells by macrophages (Kreuzaler et al., 2011; O’Brien et 

al., 2012; Sargeant et al., 2014). This post-lactational regression of the gland is known as involution. 

At this point gland epithelium returns to a pre-pregnant state of primary and secondary ductal 

branching and an absence of tertiary alveolar structures.   
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Figure 1-1: Ultrastructure of the murine mammary gland. 

(A) Whole-mount adult murine mammary gland (10 day gestation) stained with carmine showing 

branched epithelium (e) stained pink, a prominent lymph node (l) stained dark pink surrounded by 

an adipocyte-rich fat pad (fp) with no staining.  Scale bar = 1mm. (B) Higher power micrograph of an 

adult murine mammary gland (10 day gestation), stained with haematoxylin and eosin. Ductal 

epithelial structures (d) and acini epithelial structures (a) can be observed within an adipocyte-rich 

fat pad. Scale bar = 50 μm (C) Schematic of the micrograph shown in B, showing a branched 

epithelium composed of ducts (d) and acini (a) surrounded by adipocytes (ad). Epithelial structures 

are composed of an inner layer of luminal epithelial cells (le) surrounded by myoepithelial cells (me) 

anchored to a basement membrane (bm). A number of stromal fibroblasts (f) can also be observed 

surrounding ducts and acini (Campbell et al. 2014). 
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Figure 1-2: Basal and luminal epithelial markers of the mammary gland 

Virgin murine mammary gland (a) and lactating murine mammary gland (b) were optically cleared 

using CUBIC and whole mount stained to image the different epithelial lineages of the gland. Smooth 

muscle actin (SMA) positive basal cells can be seen surrounding Keratin-8/E-cadherin positive 

luminal cells in (a) ducts and terminal end buds in the virgin mammary gland and (b) alveoli in the 

lactating mammary gland. Images were provided courtesy of Livvi Harris (Watson laboratory) and 

adapted with permission (Lloyd-Lewis et al., 2016). 
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1.1.2 Mammary stem cells (MaSC) 

The mammary gland is unique in its ability to undergo significant post-natal and post-puberty 

epithelial proliferation, differentiation and regression.  Due to this regenerative potential and also 

the fact that there are multiple epithelial lineages within the gland, such as basal, luminal and 

luminal alveolar cells, a multipotent mammary stem cell (MaSC) has long been hypothesised to be 

implicated in both development and homeostasis of the gland (Daniel et al., 1968; Deome et al., 

1959). Historically, this was investigated using the fat pad transplantation assay. This technique 

required removing the epithelial tree from a developing gland, leaving only stromal cells, injecting 

epithelial fragments from a donor mouse into the recipient gland and investigating the potential for 

fragments to repopulate the donor gland’s with a replacement epithelial tree. Through combination 

of this technique and limiting dilution assays, it was shown that a single cell can repopulate an entire 

gland and regain full functionality (Kordon and Smith, 1998; Shackleton et al., 2006; Stingl et al., 

2006). To identify the cellular subset capable of repopulating the gland, fluorescence-activated cell 

sorting (FACS) protocols were employed. Harvested mammary glands were depleted of CD31+ 

endothelial and CD45+ / TER119+ haematopoietic cells (the CD31- CD45- TER119- population is termed 

Lin- hereafter) using specific cell surface marker antibodies. Following this, epithelial cells were 

identified using CD24 and CD49f or CD29. Using these markers luminal cells were isolated from the 

Lin- CD24+ CD49flow population whilst basal cells were isolated from Lin- CD24+ CD49f+/high population. 

Single cells that were able to repopulate an entire gland were identified as Lin- CD24+ CD49fhigh and 

were therefore identified as a subset of the basal cell population. These cells were termed mammary 

repopulating units (MRUs). These studies also showed that these cells have self-renewal capacity 

and remain MRUs upon serial fat pad transplantation assays (Shackleton et al., 2006). From these 

studies it was hypothesised that these MRUs were the source of MaSC and that therefore MaSC 

were of a basal epithelial origin. More recent studies focussed on further defining the MRUs with cell 

surface markers, such as protein C receptor (Procr), to identify the characteristics and location of the 

elusive MaSC (Wang et al., 2014a).  

Other studies encouraged the investigation of MaSC using in vivo lineage tracing models to reduce 

the influence of external factors (Davis et al., 2016; Van Keymeulen et al., 2011; Lafkas et al., 2013; 

Malhotra et al., 2014; Prater et al., 2014; Rios et al., 2014; Scheele et al., 2017; van Amerongen et 

al., 2012; de Visser et al., 2012; Wuidart et al., 2016). These models enable the tracking of cell 

progeny in vivo to provide valuable information on stem cell biology. In these studies, prospective 

MaSC were permanently fluorescently tagged at various developmental time points and their 

progeny traced to reveal their cell fate in a more physiologically relevant setting.  
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Wnt signalling is required during many different stages of mammary gland development such as 

embryogenesis, branching morphogenesis and alveolar development during pregnancy (Brisken et 

al., 2000; Chu et al., 2004; Kim et al., 2009b). With evidence of Wnt signalling involvement in stem 

cell maintenance of other tissues, one lineage tracing study set out to investigate a subset of Wnt-

responsive Axin2+ cells and their contribution to the mammary gland (Batlle et al., 2002; Choi et al., 

2013; Pinto et al., 2003). They evidenced that Axin2+ cells contributed variably to both luminal and 

basal epithelial lineages throughout different stages of mammary development and that Axin2+ cells 

were capable of repopulating a cleared fat pad (van Amerongen et al., 2012). These data showed 

that Axin2+ cells are MRUs and are a prospective source of MaSC for further investigation. 

In order to determine the progeny of specific epithelial lineages using in vivo lineage tracing, one 

study used transgenic mouse models to fluorescently tag basal or luminal cells by targeting their 

specific cell markers (Van Keymeulen et al., 2011). Using these methods, this study showed that 

MaSC in the adult are unipotent lineage restricted cells and that mutipotent MaSC are not present in 

the adult mammary gland. On the basis of this evidence, they argued that the transplantation assay 

caused a reprogramming event in transplanted epithelial cells inducing multipotency and that this 

artefact was not present in the in vivo scenario. Another study used a number of lineage tracing 

models to target specific epithelial lineages as well as a multi-coloured model to fluorescently tag 

multiple epithelial cells of both lineages and follow their clonal evolution (Rios et al., 2014). During 

their analyses, they showed conflicting results with earlier studies, and claimed the presence of a 

multipotent MaSC exists in the adult mammary gland. Recently, one study aimed to solve this 

controversy by utilising an unbiased approach of fluorescently labelling a single mammary epithelial 

cell and tracking its progeny (Davis et al., 2016). Findings from this study agreed with earlier 

literature and evidenced a unipotent MaSC in the adult mammary gland. Despite a plethora of 

transgenic mouse models the adult MaSC remains a controversial topic, with some arguing for a long 

lived progenitor that is restricted to either luminal or basal lineages, whilst others claim a bi-

potent/multipotent stem cell is present that is able to give rise to both luminal and basal epithelium.  

1.1.3 Epithelial breast cancers 

Breast tumours may arise from a number of different cell sources. Non-epithelial breast tumours 

include lymphomas, melanomas and sarcomas which relate to lymphatic, melanocyte and 

connective tissue tumours respectively.  Although these tumours are potentially malignant, they 

account for less than 1% of all cases and this subject area is thus not within the scope of this 

introduction (reviewed in O’Donnell et al. 2009). Epithelial breast cancers account for the majority of 

breast cancer diagnoses and vary dramatically in a number of characteristics including phenotype, 
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prognosis, genetic signature, subtype, invasive potential and treatment. These tumours arise from 

genetic mutations in epithelial cells that are caused either as a result of environmental factors or 

due to their genetic inheritance. Consequently, these cells acquire the ability to avoid senescence 

and apoptosis, continuously proliferate, and also spread to and propagate in other organs of the 

body. 

 Classifications of breast cancer 1.1.3.1

Commonly, pre-malignant breast cancer is found as a precursor lesion known as a ductal carcinoma 

in situ (DCIS) (Sikandar et al., 2015). DCIS consists of neoplastic cells growing within the ducts of the 

gland and is classed as a non-invasive subtype. This classification is named so due to its inability to 

penetrate the basement membrane surrounding the epithelium and spread to other locations in the 

gland or potentially other organs. DCIS varies in its prognosis ranging from: low risk lesions, that 

pose little or no threat to the patient throughout their lifetime; to high risk lesions, that may 

progress with time into a more aggressive tumour known as an invasive ductal carcinoma (IDC) 

(Virnig et al., 2010). IDCs are the most common invasive breast cancer diagnosed and account for 

approximately 70-80% of cases (Arps et al., 2013; Balekouzou et al., 2016; Elshof et al., 2016). These 

lesions invade from within the ducts into the surrounding breast tissue and can potentially 

metastasize to other sites in the body. An additional breast tumour subset is the invasive lobular 

carcinoma (ILC) which accounts for approximately 5-15% of cases and differs from IDC in phenotype, 

morphology, prognosis and treatment (Sastre-Garau et al., 1996). ILC are defined by small, round 

cells that infiltrate the surrounding stroma in a single file fashion. They are more likely to be ER / 

progesterone receptor (PR) positive and human epidermal growth factor receptor 2 (HER2) / p53 

negative and have an increased incidence in older patients (Arpino et al., 2004). 

To further classify breast cancers, studies have analysed the gene expression profiles of breast 

carcinomas and normal breast tissue samples to define breast cancer subtypes (Perou et al., 2000; 

Sorlie et al., 2001). In these studies, using hierarchical clustering analysis tumours were grouped into 

a number of categories: ‘basal-like’ that showed high expression of basal epithelial cell markers K5 

and K17; ‘HER2-overexpressing’, that showed high expression of HER2 related genes; and ‘Normal’, 

that showed the highest expression of non-epithelial cell types such as adipocytes. All of these 

aforementioned subtypes expressed low to absent levels of ER. Furthermore, two additional 

categories were also defined: Luminal A, that showed the highest levels of ERα expression, other 

luminal-enriched genes and has later been defined as having low expression of the proliferation 

marker Ki67; and Luminal B, that showed low to moderate luminal specific genes and has also been 

further characterised as exhibiting relatively high Ki67 expression (Inic et al., 2014) 
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 Oestrogen receptor (ER) status in breast cancers 1.1.3.2

Alternatively, breast cancers can be subdivided based upon their ER, PR and HER2 status. Using this 

taxonomy, ER+ cancers account for approximately 80% of all breast cancer cases (Lumachi et al., 

2015).  As these tumours are hormone receptor positive, endocrine therapy, such as a treatment 

called tamoxifen, is considered for a large proportion of cases. Tamoxifen is the competitive inhibitor 

of estradiol, the agonist of the ER and is commonly used in the treatment of ER+ breast cancers. This 

cancer therapeutic reduces the risk of an ER+ tumour becoming invasive in approximately 50% of 

cases. Consequently, many of these tumours are readily treatable and have a relatively good 

prognosis compared to other subtypes (Waters et al., 2010).  

For post-menopausal women with ER+ breast cancer the first choice of treatment are aromatase 

inhibitors such as anastrozole, exemestane and letrozole (Breast International Group (BIG) 1-98 

Collaborative Group et al., 2005; Gangadhara and Bertelli, 2009; Goss et al., 2011). Aromatase is an 

enzyme that converts androgen into oestrogen and hence by inhibiting it there are reduced levels of 

ER stimulation in ER+ breast cancer. As the ovaries are also responsible for generating oestrogen and 

aromatase inhibitors cannot prevent this, these inhibitors are more effective in treating 

postmenopausal women whose ovaries have ceased to produce oestrogen. 

To study ER+ cancers in vitro, groups commonly utilise the ER+ MCF7 human breast cancer cell line. 

This is because its ER+ status makes it ideal for hormone response studies (Soule et al., 1973). Breast 

tumours can also be separated on their PR status into ER+PR+, ER+PR-, and ER-PR+ subtypes (Davies et 

al., 2011). ER+PR+ tumours are less aggressive and have better prognosis than ER+PR- tumours. 

Interestingly, there is no correlation between how the two different subsets respond to hormonal 

therapy. Notably, ER-PR+ tumours are very rare making up 0-4% of cases with some studies claiming 

that this subtype only exists as a false negative as a result of technical errors (Hefti et al., 2013).  

 HER2-overexpressing breast cancers 1.1.3.3

HER2, otherwise known as neu or erbB-2 (the rodent analogue of HER2), is amplified in 

approximately 15-20% of breast cancer cases and was historically associated with poor prognosis 

(Slamon et al., 1987). Over amplification of the gene leads to activation of the PI3K pathway and 

results in up-regulated cellular proliferation and suppression of apoptosis, both classic hallmarks of 

cancer (Rusnak et al., 2001). Since the discovery of HER2 specific therapies survival rates have 

significantly improved and it is no longer associated with poor prognosis (Harris et al., 2011). To 

study HER2 in vitro a number of breast cancer cell lines have been utilised. For example, ER+ PR+/- 

HER2+ cells classified as the “Luminal B” subtype, such as the BT474 human cell line and the ER-PR-
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HER2+ “HER2-enriched” subtype, such as SKBR3 and MDA-MB-453 human cell lines have been used 

extensively (Neve et al., 2006; Subik et al., 2010).  

 Triple negative breast cancers (TNBC) 1.1.3.4

Breast tumours that lack ER, PR and HER2 receptors are termed triple negative breast cancers 

(TNBC). This tumour type accounts for approximately 15-20% of all diagnosed invasive breast cancer 

cases (Kwon et al., 2017). Patients with TNBC have lower relapse free survival, preferential 

metastasis to the brain and lungs and a poorer overall prognosis (Gogia et al., 2014; Harrell et al., 

2012). One cause of such poor survival rates is the lack of potential treatments for TNBC as the three 

main receptors ER, PR and HER2 usually targeted with therapeutics are not present within the 

tumour. TNBC can be further subdivided on their molecular signatures into the ‘basal-like’ and 

‘claudin-low’ subsets (Perou et al., 2000). Basal-like TNBC, as defined in section 1.1.3.1, is 

characterised by its gene expression of basal epithelial cell markers K5, cytokeratin-17 (K17), 

integrin-β4 and laminin. For the in vitro investigation of basal-like TNBC the MDA-MB-468 and BT20 

human breast cancer cell lines have commonly been utilised due to similarities with their gene 

expression profiles and that of basal-like TNBC (Filmus et al., 1985; Lebeau and Goubin, 1987; Neve 

et al., 2006). Claudin-low TNBC is typically much rarer and is characterised by a zero to low 

expression of luminal gene expression markers and epithelial-to-mesenchymal transition (EMT) 

markers (Perou et al., 2000). EMT is a process defined as the transition of epithelial cells to a similar 

phenotype to mesenchymal cells, such as the acquisition of long spindle like projections, increased 

migratory potential, increased expression of markers such as vimentin, N-cadherin, twist and snail 

and decreased expression of typical epithelial markers such as E-cadherin and cytokeratins (Smith et 

al., 2014). Interestingly, some cell lines can be induced into an EMT phenotype through chemical or 

environmental pressures. For example, it has been shown that MDA-MB-468 cells express higher 

amounts of vimentin and twist upon epidermal growth factor or hypoxia treatment (Davis et al., 

2013; Lo et al., 2007). The human breast cancer cell line MDA-MB-231 has been shown to have a 

similar gene expression profile to the claudin-low TNBC subtype (Neve et al., 2006). It is therefore 

commonly chosen for in vitro experiments modelling the disease. Overall, there are multiple breast 

cancer subtypes for which a number of human cell lines have been derived for their study in vitro. 

 Intra-tumour heterogeneity (ITH) 1.1.3.5

Cancerous epithelial cells residing within the same tumour can have vast differences in their 

phenotype (Gerlinger et al., 2012; Hernandez et al., 2012; Patani et al., 2011). The resulting intra-

tumour heterogeneity (ITH) can have major implications when treating cancers. For example, 

therapeutics may successfully target and kill one subset of cells whilst other more resistant cells will 

expand, leading to disease relapse (Ng et al., 2015; Nowell, 1976; Wang et al., 2014b). One source of 
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ITH is a process known as clonal evolution. This process initiates when cells acquire a threshold 

number of mutations and become cancerous. As a tumour then progresses some of these cells 

acquire more mutations that are advantageous to their survival. Consequently, they out-compete 

one another and thus sub-clones arise resulting in ITH. Notably, cancer cell lines that are often used 

for in vitro studies to increase reproducibility, are relatively homogenous with regards to the 

phenotype in the cell population and hence often do not address the in vivo reality of ITH. Another 

origin of ITH is cancer stem cells (CSCs). CSCs are defined as tumour initiating cells with stem-cell like 

properties able to propagate and produce daughter cells that are phenotypically distinct. As it has 

been shown that claudin-low TNBCs have a similar gene expression to MaSCs, it has been suggested 

that these tumours may arise as a result of a transforming event in a stem or progenitor 

(Drobysheva et al., 2015; Lim et al., 2010). Of note, unlike what has been proposed for the 

differentiation of MaSCs, evidence shows that CSC progression is not necessarily unidirectional or 

hierarchically organised (Quintana et al., 2010). In xenograft experiments a subset of Lin- CD44+ 

CD24-/low human breast cancer cells injected into murine mammary glands have been shown to form 

tumours with as few as 100 cells (Al-Hajj et al., 2003). These tumorigenic cells have been identified 

to have stem-cell like properties and believed to be one source of CSCs (Ponti et al., 2005).  

 Murine tumour models 1.1.3.6

To investigate breast cancer in vivo, a number of transgenic mouse models have been utilised. For 

example, HER2-overexpressing tumours have been investigated using a number of models that 

overexpress different forms of ErbB-2 (rodent HER2) under the mouse mammary tumour virus 

(MMTV) promoter and result in subsequent mammary tumour formation (Bouchard et al., 1989; Guy 

et al., 1992, 1996; Muller et al., 1988). The HER2-overexpressing murine mammary cancer cell line 

named TUBO, was derived from a mammary carcinoma that developed in a MMTV-Her2/neu 

transgenic mouse of a Balb/c strain (Rovero et al. 2000). In one study, TUBO cells were injected into 

the fat pad of a recipient mouse from a Balb/c background (Koebel et al., 2007). As the recipient 

mouse was syngeneic to the mouse that the TUBO cells were originally derived, it did not reject the 

cells through immune surveillance; a process whereby the immune system destroys cells seen to be 

foreign or a threat. Although the injection did elicit an immune response, TUBO cells were still able 

to seed and propagate in the gland due to the matching of mouse strains. Subsequent tumour 

formation occurred in approximately 5 weeks after cells were inoculated allowing the study of Her2-

overexpressing mammary cancer in vivo. Importantly, as the immune system is implicated in natural 

tumour progression in vivo it is therefore desired to include this feature to accurately model 

tumorigenesis in mouse models (Chen et al., 2017; Cunningham-Rundles et al., 1981; Levy et al., 

1987; Stewart et al., 1995). 
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Some studies utilise mouse models that are immunocompromised, such as the non-obese diabetic 

(NOD)-SCID-Gamma (NSG) strain, to overcome the issue of immunosurveillance and therefore 

permit the injection of human breast cancer cell lines that would otherwise be rejected into the 

mammary fat pad for human tumour studies (Bondarenko et al., 2015; Puchalapalli et al., 2016; 

Zhang et al., 2013). NSG is the most immunodeficient mouse strain to date, with depletion of T and B 

immune cells, low natural killer cell activity and impaired innate immunity. Although these mice 

ensure high engraftment of a number of different tumour cells, the natural immune response during 

tumorigenesis is not factored into the model and it therefore disregards an essential aspect of the 

tumour microenvironment.  

The well-established MMTV-Wnt1 transgenic mouse model has been used extensively to study 

breast cancer (Cho et al., 2008; Monteiro et al., 2014; Oloumi et al., 2010; Teissedre et al., 2009; 

Watanabe et al., 2014). The model comprises the overexpression of the Wnt1 oncogene driven by 

the murine mammary tumour virus (MMTV) promoter and results in adenocarcinoma in 50% of 

friend virus B (FVB) mice (Taketo et al., 1991; Tsukamoto et al., 1988). Commonly, these tumours 

display ductal hyperplasia, mixed basal and luminal characteristics and a reversed bilayer phenotype 

(Monteiro et al., 2014; Teissedre et al., 2009). They also form ER positive tumours and have been 

utilised for the study of hormone receptor positive tumours,  the most common human breast 

tumour subtype (Li et al., 2000; Zhang et al., 2005). However, it should be noted that these tumours 

do not fully recapitulate the ER+ disease as they differ in both morphology and phenotype from the 

human form. Gene expression profiles MMTV-Wnt1 tumours show clustering to the aggressive 

human basal-like tumour subtype (Pfefferle et al., 2013). This model has therefore attracted much 

attention due to its parallels with human tumour subtypes.  

1.1.4 The extra-cellular matrix (ECM) 

 The normal mammary gland ECM 1.1.4.1

The acellular proportion of tissue within the body is known as the extracellular space. Cells secrete a 

range of molecules into this space to construct scaffolding structures that give both mechanical 

support to a tissue and provide an anchorage point on which cells can adhere. Furthermore, these 

structures provide biophysical cues with which cells interact via cell surface receptors which 

subsequently can affect cellular phenotype. These ‘scaffolds’ are known as the extra-cellular matrix 

(ECM) and are integral to the correct functioning of a tissue. In the mammary gland, the ECM can be 

separated into two major components: the basement membrane and the interstitial connective 

tissue. The basement membrane provides an anchorage point for basal cells of the gland and 

separates the epithelium from the surrounding adipocyte-rich fat pad; the stromal component of the 
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gland (Dulbecco et al., 1982; Prince et al., 2002; Yurchenco et al., 1986).  In contrast, the interstitial 

connective tissue matrix, otherwise known as stromal ECM, provides a 3D scaffold for the 

containment of stromal cells which, in the case of the mammary gland, are predominantly 

adipocytes. The majority of this stromal ECM is comprised of the structural protein, fibrillar collagen 

I. 

Cellular interactions with their surrounding ECM influences cell fate, proliferation, survival and 

cellular morphology (Benya and Shaffer, 1982; Hadjipanayi et al., 2009; Wang et al., 2000). As the 

basement membrane surrounds the epithelium, this cell-ECM signalling has important implications 

on the epithelial component of the gland. Epithelial-basement membrane signalling occurs through a 

number of receptors and transmembrane proteoglycans such as dystroglycan and syndecan (Hu et 

al., 2017; Morgan et al., 2007). The basement membrane itself can be further divided into two 

components: the basal lamina, which is in direct contact with the cell membrane and the external 

fibrillar reticular lamina (Bowman, 1840). The basal lamina contains heparan sulphate proteoglycans 

and non-fibrillar polymers of collagen IV and VII (Costell et al., 1999; Ervasti and Campbell, 1991; 

Murshed et al., 2000; Poschl et al., 2004; Smyth et al., 1999). These collagen polymers provide a 

scaffold to bind laminins through the glycoprotein, entactin, and to connect the basal lamina to the 

reticular lamina. Laminins are then able to bind to cell membranes through integrins and 

dystroglycans. More complexity is added through the inclusion of collagen IV with various 

proteoglycan species and various isoforms of laminin, allowing the basal lamina to tailor itself to be 

tissue and function specific. Through this tight control of basal lamina composition, cell signalling can 

be altered to influence cell fate (Streuli et al., 1991). 

 Remodelling of the ECM 1.1.4.2

Remodelling of the ECM is essential during mammary gland development to allow expansion of the 

epithelium. Breakdown of ECM proteins during this process is orchestrated by various enzymes, such 

as collagenase and hyaluronidase, that are involved in the proteolysis of collagen I and hyaluronic 

acid respectively; two major components of the ECM. One group of enzymes that are known to play 

a fundamental role in ECM remodelling are matrix metalloproteinases (MMPs). They encompass the 

proteolysis of a wide range of ECM proteins during various stages of development (Bonnans et al., 

2014). For example, during puberty MMP2, MMP3, MMP9 and MMP14 are required for promoting 

ductal invasion, inhibiting/promoting secondary branching of epithelium and collagen proteolysis 

(Alcaraz et al., 2011; Mori et al., 2013; Wiseman et al., 2003). The process of remodelling the ECM 

through the release of MMPs is carried out by stromal cells of the gland such as resident 

macrophages (Witty et al., 1995). During de novo synthesis of the interstitial ECM, collagen-

producing stromal cells such as fibroblasts are also required (O’Brien et al., 2010). Contrastingly, de 
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novo basement membrane synthesis is orchestrated by epithelial cells in concert with stromal cells 

to ensure correct positioning and polarisation of the epithelial bi-layer (Jalkanen et al., 1988). 

 Collagen 1.1.4.3

Collagen is the most abundant ECM protein of the breast and is therefore of profound importance 

when discussing the structure of the gland (Thompson et al., 2017). Fibrillar collagen is observed in 

the adipocyte-rich interstitial matrix and is formed of three polypeptide α-chains in a triple helix 

(Francis et al., 1981). During early collagen synthesis, cells produce a soluble precursor chain named 

procollagen which is secreted into the extra-cellular space for posttranslational modification. 

Collagen type-specific metalloproteinase enzymes then cleave the propeptide domains at the N and 

C terminals of the molecule to form mature collagen molecules. At the cell surface initial fibrial 

polymerisation occurs as collagen molecules begin to self-assemble (Wenstrup et al., 2004). 

Extracellular lysyl-oxidase (LOX) is then responsible for intermolecular covalent cross-links between 

microfibrils for formation of the supramolecular collagen structure and collagen fibrils (Pinnell and 

Martin, 1968; Rucker and Murray, 1978). The resultant structure of fibrillar collagen is able to 

withstand tensile forces. However, the alignment of a material’s fibres is known to affect its tensile 

strength as well as compressive strength and stiffness (Li et al., 2016; Skedros et al., 2006). If fibres 

are randomly orientated mechanical properties will be equal in all directions and it is then described 

as an isotropic structure. Conversely, if fibres are aligned in a one direction material mechanical 

strength will vary depending on load direction and the structure is termed anisotropic. Collagen 

anisotropy can influence cellular phenotype and migratory potential (Provenzano et al. 2008; 

Conklin et al. 2011b; Riching et al. 2014). Furthermore, throughout different stages of development 

interstitial matrix collagen fibres display localised anisotropy, which suggests that matrix 

organisation and anisotropy influences epithelial growth (Brownfield et al., 2013; Ingman et al., 

2006). 

Of critical importance to cellular adherence to the ECM is the integrin family of cell surface 

receptors. Cells adhere to collagen through these receptors and their interactions can initiate 

various signalling cascades. In succession this can effect cell phenotype and differentiation status 

(Jokinen et al., 2004). Integrin signalling can also induce cellular remodelling of collagens by altering 

the degree of polymerisation and fibril formation within a tissue (Li et al., 2003; Velling et al., 2002). 

The structure and composition of the ECM is therefore closely controlled not only by the cells that 

synthesise it but also by the cells that interact and adhere to it. 
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 Collagen density in breast cancer 1.1.4.4

ECM composition and structure is tightly regulated in the mammary gland. Incorrect ECM 

remodelling frequently occurs during tumorigenesis and can lead to a number of implications. For 

example, increased LOX expression in cancers amplifies collagen cross-linking and causes an 

increased ECM stiffness (Levental et al., 2009). This increased stiffness during tumour progression 

amplifies focal adhesions and consequently integrin signalling. The result is an increased deposition 

of collagen by fibroblasts known as fibrosis and a higher collagen density within the mammary gland 

(Bonnans et al., 2014). Mammographic density measurements and mouse models indicate that 

these higher levels of collagen density correlate with an increased risk of breast cancer (Boyd et al. 

2011; Erler et al. 2006; Provenzano et al. 2006). Furthermore, ECM stiffening has also been 

associated with poor patient prognosis. Conversely, inhibition of LOX supresses fibrosis thus 

decreasing integrin signalling and has been shown to delay tumour onset (Levental et al., 2009). 

Collectively, these data demonstrate the importance of collagen during breast tumorigenesis.  

 Anisotropy in stromal ECM of breast tumours 1.1.4.5

Previously it has been shown that the ECM surrounding breast tumours can be grouped into 3 

different tumour-associated collagen signatures (TACS) (Provenzano et al. 2006). Stromal collagen 

fibres at the tumour boundary are either orientated into an isotropic TACS-1 structure or two 

distinct anisotropic structures; TACS-2 and TACS-3. In the anisotropic cases, fibres may either encase 

the tumour by running parallel to the tumour edge (TACS-2), or run perpendicular to the tumour 

boundary creating a highway for metastatic cells to migrate into the surrounding tissue (TACS-3). 

Using a MMTV-Wnt1 transgenic mouse model that spontaneously forms mammary tumours, 

Provenzano et al. observed the more aggressive tumours generated from this mouse model 

displayed a TACS-3 phenotype (Provenzano et al. 2006). A further study investigated the effects of 

excessive collagen deposition on the TACS phenotype of mammary tumours through use of the 

Col1a1tmJae mouse model (Provenzano et al. 2008). In this study, this transgenic mouse model 

harboured mutations in their collagen I protease cleavage site. Consequently, their collagen I was 

more resistant to degradation and increased collagen deposition and matrix stiffness was observed 

in a number of organs including the mammary gland. When the Col1a1tmJae mouse was crossed with 

the murine mammary tumour model MMTV-PyVT (MMTV-PyVT/Col1a1tmJae), there was increased 

collagen deposition around the tumour. Furthermore, increased tumour incidence, invasion, and 

lung metastasis were observed as well as an increased incidence of the TACS-3 phenotype in these 

mice, as compared to MMTV-PyVT/Col1a1wildtype mice. Importantly, other studies have also 

confirmed the presence of the TACS-3 phenotype in human breast tumours and its association with 

poor patient prognosis (Conklin et al., 2011; Jiang et al., 2016; Kakkad et al., 2016; Yang et al., 2011). 
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This demonstrates the link between increased collagen deposition and anisotropic collagen fibres 

enhancing mammary tumour progression. 

One culprit of the abnormal ECM deposition seen during tumour progression is the cancer-

associated fibroblast (CAFs) (Schor et al., 2003). These are stromal fibroblasts that are located either 

within or in close proximity to a tumour that are continuously activated. CAFs do not undergo 

senescence or apoptosis events normally associated with a typical wound healing scenario and 

aberrantly express a number of proteins involved in ECM signalling such as syndecan-1 (Sdc1) 

(Desmoulière et al., 1995; Mercier et al., 2008; Yang et al., 2011). Sdc1 expressing CAFs have 

previously been shown to display a tendency to organise the surrounding ECM into a parallel fibre 

patterning and increase breast carcinoma cell invasion through increased directional migration (Yang 

et al., 2011). This suggests Sdc1 expressing CAFs may be responsible for the anisotropic TACS-3 

phenotype observed surrounding aggressive breast tumours (Yang et al. 2011; Provenzano et al. 

2006). These studies highlight the importance of stromal collagen surrounding breast tumours and 

the influence of anisotropy on prognosis and metastasis. 

 Matrix Metalloproteinases (MMPs) in breast cancer 1.1.4.6

A crucial component of the aberrant ECM remodelling predominant in breast cancers is the family of 

MMPs. For example, MMP-1, otherwise known as collagenase 1, is involved in the breakdown of 

collagen I and its elevated expression is observed clinically in advanced stage breast cancers (Poola 

et al., 2005). Furthermore, it is a predictive marker for invasive subsets of breast cancers. MMP-3, 

also known as stromelysin, when upregulated in tumour cells, is another prognostic marker of poor 

survival in breast cancer (Mehner et al., 2015). MMP-2 and MMP-9 are both found at elevated levels 

in the circulating plasma of breast cancer patients and are associated with invasion and metastasis – 

processes responsible for the spread of cancer to other organs (Somiari et al., 2006). These MMPs 

are type IV collagenases and are therefore able to degrade a portion of the basement membrane as 

has been previously demonstrated in vitro (Mao et al., 2010; Rider et al., 2013). Overall, MMPs play 

an important role in the regulation of the tumour microenvironment and their dysregulation can 

lead to tumour progression. 

1.1.5 Invasion, migration and metastasis of breast cancer cells 

Primary breast tumours are rarely responsible for mortality. Predominantly, it is the secondary 

tumours that have spread to essential organs of the body that are life-threatening and the 

underlying cause of death (American Cancer Society, 2016). In breast cancer, there is a predilection 

for secondary tumours to arise in the lymph nodes, bone, brain, lungs and liver (Patanaphan et al., 

1988). This process of the spreading and seeding of breast cancer cells preferentially into other 
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organs was first recognised in Paget’s 1889 “seed and soil theory” whereby it was hypothesised that 

cancer cells (the ‘seed’) grow and propagate better in certain organs (the ‘soil’) over others (Paget, 

1889). Later, this mechanism by which cancer cells spread and populate other organs was discovered 

and termed metastasis. In solid tumours, cancer cell spread requires number of processes; invasion 

through a basement membrane, migration through stromal ECM and stromal tissue to a lymph node 

or blood vessel, transport through the lymphatic or blood system and eventual seeding and 

propagation in a target organ. This process of invasion and migration for consequential metastasis is 

accomplished via a range of different routes. Firstly, cancer cells can degrade their surrounding ECM 

through MMP expression; in essence carving out their own path of migration (Bremer et al., 2001; 

Fisher et al., 2009). Secondly, migration can be through following ‘leader’ cancer or cancer-

associated stromal cells along a predefined track or tunnel formed by these leader cells (Fisher et al., 

2009; Gaggioli et al., 2007; Patsialou et al., 2013). Thirdly, cells may migrate along a pre-existing 

structure already present within the tissue such as stromal ECM fibres (Alexander et al., 2008; 

Weigelin et al., 2012). Lastly, ECM surrounding a breast tumour can undergo remodelling to produce 

radially aligned anisotropic collagen fibres at the periphery of the tumour (TACS-3). This provides an 

enhanced migratory phenotype associated with a newly formed ECM structure during tumorigenesis 

(Provenzano et al. 2006). Notably, these processes are not mutually exclusive and can occur in 

unison or consecutively (Carey et al., 2015; Wolf et al., 2003). 

In order to propel themselves forward during migration, cancer cells must adopt a specific migratory 

mechanism to permit cell movement. These migratory mechanisms by which cancer cells typically 

follow is frequently either an adhesive pseudopodal mesenchymal movement or a low-adhesive 

amoeboidal movement (Gao et al., 2017; Ge et al., 2004; Petrie et al., 2012). Mesenchymal 

migration of cancerous epithelium requires an EMT so that cells can acquire mesenchymal 

properties (Saito et al., 2012; Wolf et al., 2003). Following EMT cells display an elongated 

morphology with projections at the leading edge named pseudopods (from the Greek: “fake feet”) 

that bind to the ECM substrate.  Through actin based contraction and the release of the adhesive 

bonds at the trailing edge, the cell is propelled in a direction of travel. In this mode of migration the 

adhesion receptors integrin-β1 and integrin-β3 are principally responsible for the traction and 

interaction with the underlying ECM substrate (Brooks et al., 1996; Palecek et al., 1997; Saito et al., 

2012; Wolf et al., 2003).  

Amoeboidal migration occurs after a mesenchymal cancer cell acquires amoeboidal properties 

following a mesenchymal-to-amoeboid transition (MAT) (Gao et al., 2017). Migratory cells of this 

phenotype often display a rounded morphology with weak ECM interactions and do not rely on ECM 
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remodelling through protease expression to migrate. Migration occurs either by squeezing through 

spaces in the ECM, or through deformation of ECM fibres via an enhanced contractility mechanism 

governed by the Rho/Rho-associated protein kinase (ROCK) pathway (Rosel et al., 2008; Wolf et al., 

2003; Wyckoff et al., 2006). During this process the cytoskeleton contracts resulting in tension in 

cortical actomyosin, causing blebbing and contributing to cellular motility (Keller and Eggli, 1998; 

Ruprecht et al., 2015). Through use of the broad spectrum MMP inhibitor GM6001 and blocking a 

range of other proteases, one study has shown that breast cancer cell migration can be protease 

independent and amoeboidal in mode (Wyckoff et al., 2006). Moreover, another study has shown 

that MAT can be induced in MDA-MB-231 cells through blocking a number of proteases (Wolf et al., 

2003). This suggests that some malignant cells are resistant to protease inhibitor treatments in vivo 

due to their ability to switch migratory mechanism as and when it is required (Liebscher et al., 2017; 

Shim et al., 2012). Importantly, it should be noted that all of these migratory modes have a degree of 

plasticity and that both an amoeboid-to-mesenchymal transition (AMT) and a mesenchymal-to-

epithelial transition (MET) have also been previously described (Gadea et al., 2008; Pinner and Sahai, 

2008; Sanz-Moreno et al., 2008). 

1.1.6 Adipose tissue 

 Adipocytes of the normal mammary gland 1.1.6.1

The murine mammary stroma is predominantly an adipocyte-rich fat pad (Fig. 1.1). Historically, 

adipocytes were considered solely a structural component of the gland. However, thanks to 

evidence from previous studies, it is now well appreciated that adipocytes also have a multitude of 

roles throughout development, such as hormonal signalling (Elias et al., 1973; Marzan et al., 2011; 

Sakakura et al., 1982). These previous studies have shown that mammary adipocytes are hormone 

responsive, particularly during postnatal development. Treatment with the hormones oestrogen and 

relaxin were shown to cause hyperplasia and hypertrophy of adipocytes respectively. Moreover, 

progesterone-treated glands induced the formation of multilocular adipocytes; adipocytes with 

numerous lipid droplets found within the cytoplasm of each cell (Bani-Sacchi et al., 1987; 

Matsumoto et al., 1995). Other studies have further shown that both human and murine adipose 

tissues are not only hormone responsive, but also able to synthesise hormones (Hugo et al., 2008; 

Zinger et al., 2003). Prolactin (PRL) is one such hormone produced by adipocytes and, as both 

mammary epithelium and adipocytes have the prolactin receptor (PRLR), it is not clear whether 

adipocyte-released PRL has an autocrine or paracrine effect (Ling et al., 2003; Morales et al., 2012). 

Others report paracrine effects in the mammary gland from a range of other adipocyte derived 

hormones, such as oestrogen, insulin-like growth factor-I (IGF-I), hepatocyte growth factor (HGF) and 
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leptin (Grodin et al., 1973; Landskroner-Eiger et al., 2010; Morgan and Forsyth, 1999; Tomimatsu et 

al., 1997).  

Adipose tissue can be stratified into three main subtypes: white adipose tissue (WAT), brown 

adipose tissue (BAT) and beige/induced brown adipose tissue (iBAT). WAT is unilocular and therefore 

contains one large lipid droplet within its cytoplasm (Fig. 1B, surrounding epithelial ducts and acini). 

It is involved in both lipid storage and synthesis of a range of endocrine effectors (Cousin et al., 

1992). BAT is characterised as multilocular and is essential for thermogenesis in mammals (Gouon-

Evans and Pollard, 2002). It is characterised by numerous mitochondria containing uncoupling 

protein-1 (UCP1), a protein involved in heat generation (Cypess et al., 2009). Found within WAT, 

iBAT contains cells that, similar to BAT, have a multilocular lipid content (Cypess et al., 2009; Vitali et 

al., 2012). Contrastingly, these cells differ in their ability to respond to various stimuli by expressing 

specific genes, such as Ucp1, only under certain environmental pressures. Interestingly, the thoracic 

murine mammary gland contains BAT whilst the other glands are primarily WAT. However, although 

different in phenotype to WAT, BAT still supports normal mammary gland development. These 

studies highlight the importance and varied roles carried out by adipocytes of the mammary gland. 

Including these cells in the study of the gland is therefore imperative for a fuller understanding of 

the interactions between epithelium and stroma. 

 Adipocytes and breast cancer 1.1.6.2

It is well documented that adipocytes are implicated in breast cancer progression through paracrine 

and endocrine signalling. For example, one study shows the influence of human adipocytes on the 

ER+ MCF7 breast cancer cell line by decreasing both membranous E-cadherin and β-catenin markers 

of luminal epithelium, upregulating MMP-2 and increasing migratory potential (Wang et al., 2015) . 

In the aforementioned study, adipocytes were shown to synthesise the cytokine insulin-like growth 

factor binding protein-2 (IGFBP-2) that was responsible for the increased metastatic ability of MCF-7 

cells. However, the paracrine effect of adipocytes and cancer cells is not necessarily unidirectional. 

Boyden chamber co-cultures have shown that conditioned media from MDA-MB-231 breast cancer 

cells is able to stimulate the lipolysis of differentiated preadipocyte 3T3-L1 cells (Balaban et al., 

2017). This lipolysis then produced a feedback effect on the cancer cells by increasing fatty acid 

uptake, metabolism and mitochondrial oxidative capacity within MDA-MB-231 cells resulting in 

higher proliferation and migratory potential.  

Notably, one study has shown that adipocytes can reduce certain therapeutic efficacy (Duong et al., 

2015). They demonstrated that exposing breast cancer cells to adipocyte conditioned medium 

reduced specific anti-migratory therapeutic effects, evidencing adipokines can interfere with cancer 
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treatments. Furthermore, evidence shows adipocytes can increase stem-like marker expression in 

breast cancer cells when co-cultured in vitro (Picon-Ruiz et al., 2016). Importantly, adipocytes do not 

affect all breast cancers subtypes equally. This was observed in one study through the co-culturing of 

human mammary gland derived adipocytes (MGDA) and a range of breast cancer cell lines. In this 

case adipocytes promoted malignancy in some cell lines but had no effect on others (Huang et al., 

2017). These data show that adipocytes can induce phenotypic changes in cancer cells within the 

tumour niche, they can affect therapeutic efficacy and have differential effects on breast cancer 

subtypes. 

 Mesenchymal stem cells (MSCs) 1.1.6.3

Mesenchymal stem cells (MSCs) are multipotent precursors found in a range of tissues, including 

adipose tissue of the mammary gland, where MSCs can be isolated following procedures such as 

reduction mammoplasties (Beltrami et al., 2003; Duss et al., 2014; Trivanović et al., 2013). These 

cells have the capacity to differentiate into various connective tissues both in vitro and in vivo (Awad 

et al., 1999; Desiderio et al., 2013; Pittenger et al., 1999; Takeda and Xu, 2015). Early in vitro 

experiments induced MSC differentiation into chondrocytes, osteoblasts and adipocytes using a 

range of stimulatory factors (Pittenger et al., 1999). Further in vivo experiments also showed 

differentiation into other tissues such as muscle, tendon and neurons (Awad et al., 1999; Desiderio 

et al., 2013; Takeda and Xu, 2015). Both the ability to harvest MSCs from a number of locations in 

the body and the ability to manipulate their downstream phenotype in vitro has made them an 

attractive candidate for regenerative medicine treatments and in vitro tissue culture models.  

MSCs within the mammary gland are located in WAT and are implicated in adipogenesis (Li et al., 

2013). This adipogenic differentiation of MSC is a two-step process. Firstly, MSCs differentiate into 

adipocyte precursors known as preadipocytes with low levels of peroxisome proliferation-activated 

receptor gamma (PPARγ). Following this, PPARγ is upregulated allowing differentiation into mature 

adipocytes (Lee et al., 2014b). In vitro differentiation of MSCs to adipocytes requires confluent cells 

to be treated with an adipogenic cocktail (Pittenger et al., 1999). This relatively simple technique can 

therefore be utilised as an in vitro model of adipose tissue. Similarly, the immortalised murine 3T3-

L1 preadipocyte cell line is often used for in vitro adipose studies as it also requires comparatively 

simple adipogenic methods (Zebisch et al., 2012). During in vitro adipogenesis of both human MSCs 

and murine 3T3-L1 cells, collagen IV, entactin and laminin are all synthesized and deposited extra-

cellularly, thus evidencing that all the essential structural components of the basal lamina are 

generated during this process (Aratani and Kitagawa, 1988; Mori et al., 2014; Noro et al., 2013; Sillat 

et al., 2012). Studies using immunohistochemistry and proteomics have also show that these basal 

lamina proteins and other ECM proteins are present within human and murine adipose tissue in vivo 
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(Mariman and Wang, 2010; Mori et al., 2014; Vaicik et al., 2014). This demonstrates that the 

basement membrane deposition during adipogenesis is not just an in vitro phenomenon. 

1.2 In vitro models 

1.2.1 2-dimensional (2D) in vitro models of the mammary gland 

 Primary cell lines 1.2.1.1

To investigate mammary gland biology in vitro, a number of models have been developed (Campbell 

et al., 2011, 2014b; Gordon et al., 2000; Montesano et al., 1998; Qu et al., 2015; Romanov et al., 

2001). Historically, 2D cell culture on tissue culture plastic (TCP) has been widely utilised for in vitro 

studies due to its high throughput and relative simplicity. This technique requires the use of either 

primary or immortalised cell lines, both of which have various advantages and limitations. Primary 

cells are derived from living animal tissue and taken directly into culture. As they have spent little 

time in in vitro culture conditions that are abstract from their natural in vivo environment, they have 

had less time to acquire mutations which may alter them from their original in vivo state. They are 

also naturally heterogeneous populations, especially when comparing across individuals, as the 

animals they are derived from have genetic differences altering their phenotype. This means that 

although experimental results are frequently highly variable using primary cell lines, inherent 

differences between individuals are reasonably well represented and consequently a modestly 

realistic in vitro situation can be observed. However, the main caveat of using primary cells as a 

model is that they have a finite life time in vitro and can only undergo a certain number of passages 

in culture before they can no longer divide. At this point cells are no longer able to undergo mitosis 

and enter senescence, a phenomenon known as the Hayflick limit (Hayflick and Moorhead, 1961). In 

this process, fragments of non-coding deoxyribonucleic acid (DNA) within the telomeres are unable 

to copy during DNA replication, resulting in their shortening. Once the telomeres are completely 

depleted the cells are no longer able to divide and the cells enter senescence or undergo apoptosis. 

As a result, cell culture of a primary cell lines is time-dependent, making it harder to reproduce and 

compare results across individuals. 

 Immortalised cell lines 1.2.1.2

To overcome the Hayflick limit and hence surpass senescence, cells can become immortalised to 

permit indefinite cell divisions. Immortalisation can occur through a range of genetic mutations that 

allow cells to avoid apoptosis and continue to proliferate. These mutations may arise spontaneously 

under in vitro culture conditions, ‘naturally’ within cancerous cells or introduced through viral 

insertion of specific genes (Gillio-Meina et al., 2000; Runnebaum et al., 1991; Zhu et al., 1991). As a 
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result, mutations cause the loss of cell cycle checkpoint pathways via inactivation of retinoblastoma 

protein (pRb), p53 or p16 and cells are subsequently immortalised (Hawley-Nelson et al., 1989; 

Tsutsui et al., 2002; Zhu et al., 1991). For example, introduction of the human papillomavirus 

oncogenes E6 and E7, or simian virus 40 into primary cells can lead to inactivation of pRb and p53, 

resulting in the generation of an immortalised cell line. Alternatively, indefinite cell division can also 

be obtained through maintenance or extension of the telomeres. Lengthening of the telomeres 

increases the stability of the chromosomes and therefore induces immortalisation (Morales et al., 

1999). This can be achieved through introduction of either the enzyme telomerase or the catalytic 

subunit of telomerase, telomerase reverse transcriptase (TERT) (Tsai et al., 2010).  

Immortalised cell lines hold a number of advantages as an investigate tool. As the use of primary 

cells limits the time and number of experiments that can be carried out in vitro, immortalisation can 

overcome these hurdles and potentially allow indefinite study. Furthermore, although an 

immortalised cell line can obtain more spontaneous genetic mutations in vitro over time, they are 

frequently more homogeneous than primary cell lines. This allows multiple experiments across a 

number of laboratories to be performed and compared. However, if these genetic mutations are 

significant and undetected, then comparisons across experiments using the same cell line may lead 

to inconsistent results. Another limitation of immortalised cell lines is that through decreasing 

heterogeneity important phenotypic differences present in the in vivo population may also be 

excluded.  

 Mono-cultures versus co-cultures 1.2.1.3

Routine in vitro cell cultures are commonly carried out as 2D mono-cultures in culture flasks or petri 

dishes. Mono-cultures are chosen because different cell types proliferate at different rates and thus 

co-cultures frequently result in one dominant cell type. However, mono-cultures do not address the 

fact that individual cell types in vivo exist alongside multiple other cell types with which they 

interact. Furthermore, cell cultures in flasks or petri-dishes propagate as monolayers as there is no 

ECM present to provide a 3D substrate to which to adhere. Likewise, this contrasts with the in vivo 

scenario whereby cells are located in multi-layered structures surrounded by 3D ECM rather than 

TCP. 

As different cell types communicate with one another through paracrine and endocrine signalling 

and this is not accounted for in mono-cultures, groups have designed methods to investigate 

signalling events between different cell types in vitro (Boyden, 1962; Faber et al., 2012; Hongisto et 

al., 2012; Prater et al., 2014). One such example is through the use of conditioned media 

experiments; this requires the culturing of one cell type, collecting its media (conditioned media) 
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and using this media to culture a target cell type (Faber et al., 2012). Through this method any 

growth factors and signalling molecules that have been secreted into the extra-cellular space and 

therefore into the media, will be passed onto the target cell type. Furthermore, the target cell 

phenotype and the conditioned medium itself can be analysed to provide insight into the signalling 

molecules released. Alternatively, cells can be separated by a microporous membrane that allows 

diffusion of molecules between both cell types, allowing two monolayers of cells to grow on 

separate surfaces but still communicate through the media (Boyden, 1962).  This culture apparatus is 

known as a transwell membrane or Boyden chamber. Although these methods hold significant 

advantages over mono-cultures, neither the use of conditioned media nor using Boyden chamber 

assays takes into account communication through cell-to-cell contact from two different cell types 

and they therefore do not truly replicate this aspect of the in vivo reality. Moreover, they do not 

recapitulate the 3D ECM in which cells reside in vivo. 

Another co-culture method is the use of irradiated feeder cells. In this protocol one cell type is 

irradiated to induce senescence and produce cells that enable another cell type to proliferate 

without competing with it, permitting the co-culture of two different cell types in a 2D mono-layer 

without selective growth issues (Prater et al. 2014). Despite the irradiated feeder cells becoming 

growth arrested they still remain viable and provide growth factors for the maintenance and 

propagation of the other cell type by acting as a ‘feeder layer’. Commonly, the cell lines chosen as a 

feeder layer are the 3T3 murine fibroblast cell line or murine embryonic fibroblasts (MEFs). Using 

this technique studies have shown that embryonic stem cells are more likely to retain their 

differentiation capacity, have increased survival and have increased proliferation in vitro when in the 

presence of irradiated MEFs (Hongisto et al., 2012). Another study has demonstrated that mammary 

basal epithelial cells can be cultured and passaged in the presence of 3T3 feeder cells whilst 

retaining MRU potential (Prater et al. 2014).  This technique is therefore advantageous for the 

expansion of stem cell populations. 

 Additional limitations of 2D cell cultures 1.2.1.4

Mammary luminal epithelial cells are polarized in vivo with an apical membrane orientated towards 

the lumen and a basolateral membrane in contact with the basal cells of the gland (Li et al., 2009; Liu 

et al., 2015). This is imperative to the correct functioning of the cell and the secretion of milk into 

the ducts, as both the location of the internal trafficking machinery and the external cell receptors 

are influenced by this cellular polarization (Druso et al., 2016). One limitation associated with the 2D 

cell culture of epithelial cells is potential incorrect polarization. The hormone receptor PRLR is 

essential for milk production. One study reported that during 2D culture of murine luminal cells the 

PRLR was basolaterally orientated towards the TCP to which they were adhered (Xu et al., 2009). 
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This meant PRLR was not exposed for ligation and consequently the cells could not form milk 

proteins when stimulated. When murine luminal cells were cultured in a 3D laminin rich 

environment polarity and function was restored, highlighting the importance of 3D culture 

techniques (Xu et al., 2009). 

As cells in vivo are not adhered to TCP, studies have investigated the influence of coating TCP with 

ECM proteins to improve the physiological relevance of 2D cell culture (Prater et al. 2014; Wang & 

Rosenberg 1999; Hannink et al. 2013). For example, coating TCP with collagen I promotes the 

survival, adhesion and proliferation of mesenchymal stem cells (Somaiah et al., 2015). Although this 

can improve 2D culture techniques, cells often still do not conform to the correct phenotype, 

signalling or morphology as seen in vivo. In an effort to control cellular morphology, the 2D substrata 

can be engineered to introduce surface micro-patterning (Kim et al., 2014). This process alters the 

surface topography on which the cells adhere. As surface modifications can influence cellular 

alignment, migration and phenotype, engineering this component may provide more insight into 

mammary gland development and more accurately represent the true in vivo environment (Frohlich 

et al., 2012). 

Cell signalling in 2D culture does not necessarily reflect the in vivo reality. For example, Fak, a protein 

involved in integrin signalling, is required for the proliferation of mammary epithelial cells in 2D 

cultures but not within in vivo mammary tissue (Wang et al., 2011).  Moreover, cell motility, 

morphology and adhesions within a 2D environment often bear little similitude to the 3D scenario 

(Grinnell et al., 2003; Meshel et al., 2005). This phenotype has previously been observed in 

fibroblasts that displayed significantly different morphologies and migratory mechanisms on 2D 

collagen coated surfaces compared to 3D collagen matrices. Moreover, embryonic stem cells 

differentiated into hepatocytes form more physiologically relevant morphologies and gene 

expression profiles when cultured in 3D collagen scaffolds compared to 2D collagen coated surfaces 

(Baharvand et al., 2006). Differentiation status can also be incorrectly altered through 2D culture. 

This was previously shown by a study with chondrocytes in 2D culture synthesising ECM proteins 

analogous to their dedifferentiated state and upon 3D culture in agarose, returning to their original 

differentiated phenotype (Benya and Shaffer, 1982). Furthermore, 2D culture can contribute to a 

flattened cell morphology that is not observed in vivo (Soares et al., 2012). It has also been shown 

that altered cell morphology has implications on growth, nutrient uptake and gene expression 

(Bissell et al., 1977; Folkman and Moscona, 1978). From these data it is shown that 2D culture 

systems exhibit distinct limitations to which 3D culture systems may alleviate. 
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1.2.2 2-dimensional in vitro models of cell migration 

Breast cancer cells become lethal when they are able to metastasize to essential organs of the body. 

To do this they must first have the ability to migrate in, along or around obstacles within a tissue. In 

order to facilitate the study of cell migration a number of in vitro culture models have been 

developed, all of which have defined utility (de Both et al., 1999; Boyden, 1962; Chaudhuri et al., 

2014; Poujade et al., 2007; Ray et al., 2017a; Todaro et al., 1965; Wang et al., 2015). One such model 

is the scratch assay (Liang et al., 2007). This involves scratching a line through a monolayer of 

cultured cells using a pipette tip or other apparatus and monitoring the time required for cells to 

migrate or proliferate across the gap. Although this is an inexpensive and simple technique to 

perform it holds a number of caveats. Repeatability is a key concern, as providing the same sized 

scratch between experiments can be difficult to control. Furthermore, scratching removes cells from 

the gap and leaves cell debris and damaged cells at the scratch edge. This can elicit damage response 

pathways, rupturing of cell membranes and the emptying of cellular contents. It therefore 

specifically resembles a healing wound and may not translate to other migratory processes. To 

alleviate these issues a ‘gap closure assay’ was developed which entails the seeding of cells around a 

reproducible virgin surface for the cells to traverse (Poujade et al., 2007). However, the overlying 

limitation with this and other 2D migration studies is that it only encompasses the movement of cells 

in the X and Y axes directions. Boyden chamber/transwell assays have been utilised to overcome this 

issue. Migratory cells are seeded on one side of the chamber and migration to the other side of a 

porous membrane is analysed. Additionally, the Boyden chamber membrane can be coated in ECM 

gels, including the basement membrane rich Matrigel, to more closely mimic in vivo 

migration/invasion through ECM proteins (de Both et al., 1999; Boyden, 1962). 

1.2.3 3-dimensional (3D) in vitro models of the mammary gland 

To better mimic the native environment of the mammary gland a number of 3D models have been 

developed. Cells are cultured in a 3D ECM gels or scaffolds generated from synthetic or naturally 

occurring materials. Synthetic materials must be biocompatible and therefore non-toxic to the cells 

intended to be cultured. Furthermore, they must also be bioinert and not affect cellular phenotype 

or be bioactive and hence encourage cellular growth. For 3D in vitro models, studies often opt for 

the use of naturally occurring ECM polymers so that they can recapitulate the in vivo ECM and 

cellular phenotype more appropriately. Many current 3D epithelial culture models commonly use 

the laminin-rich basement membrane substitute Matrigel (Boj et al., 2015; Drost et al., 2016; 

Kleinman and Martin, 2005; Kleinman et al., 1982). As most epithelia are in contact with a basement 

membrane, Matrigel provides a physiologically relevant environment for the propagation of many 

epithelial cell types in vitro. Therefore, Matrigel is intended to provide the correct structural cues for 
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the propagation of complex epithelial structures in a more organotypic manner (Kleinman et al., 

1982). However, Matrigel has a number of caveats as an ECM substrate. As Matrigel is generated 

from the Engelbreth-Holm-Swarm (EHS) mouse sarcoma cell line, exact synthesis machinery cannot 

be completely controlled and therefore it has substantial batch-to-batch variation and a complex 

protein content (Hughes et al., 2010). To overcome this issue a growth factor reduced variation of 

Matrigel has been manufactured. However, this can still contain over 400 unique protein 

identifications with only 50% matching protein content across different suppliers (Hughes et al., 

2010). This uncertainty associated with its exact composition can cause experimental variation with 

undesired and unquantifiable consequences and a reduced rate of reproducibility. Matrigel also 

poses as a conflicting model when attempting to model the normal mammary gland ECM due to its 

tumour origin.  

Collagen I is often used in 3D culture models due to its relatively high abundance in the majority of 

tissues. It can be easily isolated and processed from a number of species and, because it is a major 

component of the mammary gland ECM, it is highly relevant in the context of 3D in vitro cell culture 

(Hashim et al., 2014; Nagai et al., 2000; Senaratne et al., 2006). Furthermore, because it can be 

extracted from the tissue of animals due for slaughter, such as from bovine Achilles tendon or rat 

tails, it is relatively cheap in comparison to more complex ECM substitutes such as Matrigel (Lam and 

Longaker, 2012). Moreover, the exact protein content can be more tightly controlled compared to 

Matrigel as it does not rely on the EHS cell line to produce the protein. After extraction collagen I can 

be processed into a viscoelastic hydrogel or a scaffold. Processing occurs through the self-assembly 

of collagen monomers and is affected by pH, temperature, ionic strength and the addition of 

chemical or enzymatic cross-linkers (Zhu and Kaufman, 2014). Some studies have utilized a freeze 

drying protocol that uses an ice templating technique to form collagen scaffolds (Davidenko et al. 

2010; Davidenko et al. 2012; Campbell et al. 2011). In these studies, collagen was dissolved and 

homogenised before freezing and sublimation; the process by which a material transitions from a 

solid to a gaseous state, or in this case ice to steam. The ice provided a template which when 

sublimed created a porous collagen internal architecture that was then retained via chemical cross 

linking. In one study the ECM protein hyaluronic acid was also added to the process and 3T3-L1 cells 

were cultured and differentiated in 3D to create a ‘synthetic fat pad’ to mimic the mammary gland 

stroma (Davidenko et al. 2010). In this study, to model the epithelial component of the mammary 

gland an immortalised murine cell line named KIM-2 was added to the cultures. KIM-2 cells are 

capable of generating both luminal and basal epithelial layers making them morphologically relevant 

for investigating mammary gland biology (Gordon et al., 2000). When in the 3D cultures, KIM-2 cells 

formed correctly polarised acini and ductal structures and were able to undergo lactogenesis to 
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produce milk proteins (Campbell et al. 2011). This system was then further developed as a model of 

involution; a developmental process involving post-lactational remodelling of the mammary 

epithelium to a structure similar to the pre-pregnant state. In this study macrophages were also 

added to the model as another stromal component that is implicated in the process of involution 

(Campbell et al. 2014). These data evidence the potential for collagen scaffolds to recapitulate 

complex 3D epithelial structures within stromal ECM and adipose tissue in a physiologically relevant 

setting to study the mammary gland in vitro. 

To improve translatability of 3D models of the mammary gland a number of human in vitro models 

have been generated. One such model uses the human mammary epithelial cell line MCF10A seeded 

in Matrigel (Debnath et al., 2003). In this study cells form single layered acini structures with 

polarized golgi structures similar to luminal acini morphology. However, the use of MCF10A cells as a 

model of breast epithelium comes with limitations. For example, they lack an epithelial bilayer 

comprising both basal cell and luminal cells typical of breast epithelium. Furthermore, despite being 

intended as a luminal epithelial model the cells are positive for a number of basal cell markers (Qu et 

al., 2015). In this way they are luminal in both morphology and in the polarization of internal 

structures but not necessarily with regards to markers and gene expression. 

Another model of the human breast aimed to further improve the aforementioned MCF10A model 

by using primary breast epithelial cell clusters in a tailored ECM hydrogel (Sokol et al., 2016). In this 

study, the aforementioned hydrogel contained fibronectin, laminin and hyaluronic acid loaded with 

growth factors. This was then seeded as cell clusters into the hydrogel and surrounded by a collagen 

I gel. The resulting composite was then detached from the surface to form a floating gel. Structures 

formed by the cell clusters were bi-layered complex branching epithelium that bared similar 

morphology to that of human tissue. Additionally, they also demonstrated significant organoid 

formation and alveolar formation upon PRL stimulation compared to both a pure collagen I gel and 

Matrigel cultures. 

One model of the human breast incorporated a tri-culture of immortalised myoepithelial and 

fibroblast cells obtained from a reduction mammoplasty and the luminal cell line HB2, all seeded 

within a collagen I gel (Nash et al., 2015). After 3 weeks culture, and only when in tri-culture, these 

cells formed correctly polarised bi-layered epithelial structures with hollow lumen and loosely 

distributed fibroblasts throughout the gel. They also formed a layer of basement membrane 

surrounding the myoepithelial cells in a manner that was comparable to human breast tissue in vivo. 
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Carter et al. employed techniques to develop the aforementioned model of the human breast 

previously described by Nash and colleagues, using dissociated primary cells (Carter et al., 2017; 

Nash et al., 2015). Human myoepithelial and luminal breast epithelial cells from reduction 

mammoplasties were FACS sorted based on their cell surface markers CD10 and EpCAM respectively. 

These were taken into culture where they could proliferate and were fluorescently tagged. Through 

recombination of the two cell types in a 1:1 ratio and culture in a collagen gel, complex ductal and 

spheroid structures were formed after 21 days. Immunostaining of a number of basal/luminal cell 

markers and comparison with human breast sections showed the correct positioning of each cell 

type as an epithelial bilayer. Interestingly, the correct polarisation was only achieved in collagen I 

and not Matrigel cultures whereby only spheroid structures were formed. As basal cells are attached 

to basement membrane, one might assume that an ECM containing high amounts of these proteins, 

such as Matrigel, may be most appropriate, however this was not achieved in this case. This may 

suggest that Matrigel bears little resemblance to the in vivo basement membrane surrounding 

epithelium within the human breast. 

Collectively, these studies have highlighted the importance of the choice of ECM for 3D cultures and 

its influence on cell phenotype. Although more complex and requiring more skill than 2D cultures, 

these 3D culture techniques have shown a dramatic improvement with respect to enhanced 

mimicking of in vivo cell morphology, phenotype and particularly epithelial polarisation. 
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1.2.4 3-dimensional in vitro models of cancer and migration 

 Matrigel 1.2.4.1

3D cultures of cancerous epithelial cells demonstrate a higher degree of similarities in morphology, 

signalling pathways, gene expression and phenotype to the in vivo reality when compared with 2D 

culture methods (Baharvand et al., 2006; Benya and Shaffer, 1982; Weaver et al., 1997; Zietarska et 

al., 2007). Many studies have utilised Matrigel for such 3D cancer cultures (Boj et al., 2015; Debnath 

et al., 2003; Drost et al., 2015, 2016; Lee et al., 2007). Although Matrigel has proven incredibly 

important for the advancement of 3D cell culture systems, it comes with a number of caveats as 

outlined in section 1.2.3. Of note, Matrigel is considered a basement membrane ECM and whilst 

initial tumour invasion begins through a basement membrane, it is followed by migration through a 

collagen-rich interstitial matrix ECM (Kaushik et al., 2016). Therefore this latter form of cancer cell 

migration is not truly represented in Matrigel cultures. To address this point, Matrigel has often 

been substituted with collagen gels.  

 Collagen 1.2.4.2

Using collagen gels for the 3D culture of cancer cells comes with advantages and limitations. For 

example, a limitation of collagen gels is that increased contraction with increased cell seeding 

numbers correlates with effects on overall elasticity and ultimate stress (Chieh et al., 2010). This 

makes the morphology and interior structure of the gel difficult to control and predict. However, an 

advantage to collagen gels is that by adjusting their collagen concentration their overall stiffness can 

be controlled. As there is an association between increased collagen density and breast cancer this 

factor can be manipulated for its study in vitro (Paszek et al., 2005). 

 Anisotropy 1.2.4.3

Previously it has been shown that cells can exhibit an enhanced migratory potential on anisotropic 

collagen fibres in vivo (Provenzano et al., 2006). Multiple studies have investigated this phenomenon 

using various 3D in vitro models (Riching et al. 2014; Provenzano et al. 2008; Ray et al. 2017; 

Thomopoulos et al. 2005; Thomopoulos et al. 2007; Dickinson et al. 1994; Ray et al. 2017). By 

employing different protocols to align collagen gels these studies provided anisotropic collagen in 

vitro. One technique involved seeding fibroblasts to remodel collagen gels along the axis of the cell 

body (Ray et al. 2017; Thomopoulos et al. 2005).  Although this may have relevance to the in vivo 

setting, fibroblast remodelling is difficult to control and requires an extra step of decellularisation. 

Therefore these factors reduce reproducibility and are somewhat time consuming. Others used 

magnets to pre-align gels along the axis of a magnetic field (Provenzano et al. 2008; Riching et al. 

2014). However, as with all collagen gels, this system was subject to contraction issues. Nonetheless, 
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these systems have allowed the study of anisotropic collagen in vitro and provided insight into how 

this effects cell migration. 

1.3 3-dimensional imaging techniques 

1.3.1 Confocal microscopy  

To image tissues in 3D there are a number of techniques available. One such technique is confocal 

fluorescence microscopy which obtains z-sectioning capabilities using a single photon laser and the 

inclusion of a spatial pinhole to remove out of focus light (Minsky, 1988). Fluorophores within a 

sample are excited by photons at the wavelength of the incoming laser light. This is followed by 

vibrational relaxation in the system and emission of a photon at a longer wavelength. Although 

confocal microscopy sufficient for imaging thin samples (approximately 100 µm), imaging depths are 

limited due to the scattering of photons in thicker samples.  

1.3.2 Two-photon fluorescence (2pf) microscopy  

To increase imaging depths a number of multi-photon techniques have been developed. Two-

photon fluorescence (2pf) microscopy relies on the two-photon excitation of a fluorophore in a 

single event (Denk et al., 1990). The two photons contain half the energy required for excitation to 

occur and are therefore approximately double the wavelength. Consequently, following vibrational 

relaxation in the system as a by-product of fluorescence, the emitted photons are not at a longer 

wavelength than the incoming two excitation photons. As the event is highly unlikely to occur 

anywhere else other than the illuminated plane of interest, a pinhole to remove out of focus light is 

not required. Therefore more light can be captured and deeper imaging can be carried out. 

Additionally, longer wavelengths are less toxic to tissues and produce less scattering than shorter 

wavelengths also allowing deeper imaging. 

1.3.3 Second harmonic generation (SHG) microscopy 

Another multiphoton microscopy technique is second harmonic generation (SHG) (Heinz et al., 

1982). This is a nonlinear optical technique that enables the imaging of non-centrosymmetric 

structures such as collagen I. As with 2pf, SHG requires two-photon excitation of a structure but 

because there is not vibrational relaxation in the system the emitted photon is exactly half the 

wavelength of the two excitation photons. This provides direct imaging of collagen without the 

requirement of a fluorophore. Moreover, because SHG allows imaging of unlabelled, unaltered 

collagen there are no effects on collagen structure. Furthermore, without the requirement for 

fluorescent dyes there are no issues with photobleaching of samples (Theodossiou et al., 2006). 
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1.3.4 Coherent anti-Stokes Raman scattering (CARS) microscopy 

Like SHG, Coherent anti-Stokes Raman scattering (CARS) microscopy enables dye-free imaging of 

structures and allows samples to remain unaffected (Begley et al., 1974; Jungst et al., 2011; Li et al., 

2011; Zumbusch et al., 1999). It is also a nonlinear technique and allows imaging of structures 

according to their vibrational contrast. For CARS to occur two lasers at different frequencies are 

required; a pump beam with frequency ωp and a Stokes beam with frequency ωs. The vibrational 

contrast from the CARS signal is only detectable when the difference in frequency (ωp- ωs=Δω) is 

equivalent to molecular vibrational frequency of a particular chemical bond. CARS microscopy can be 

used to image lipids and can be combined with SHG and 2pf to image multiple structures 

simultaneously. 

1.3.5 Cleared unobstructed body imaging cocktails and computational 

analysis (CUBIC) 

Deeper imaging can also be achieved through optical clearing techniques. Through reduction of the 

opacity of a tissue, clearing permits deeper laser penetration for confocal or multi-photon laser 

microscopy. Cleared unobstructed body imaging cocktails and computational analysis (CUBIC) is one 

such clearing protocol that relies on matching refractive indices to increase tissue transparency 

(Lloyd-Lewis et al., 2016; Susaki et al., 2014, 2015). It also allows immunostaining in situ to 

fluorescently tag and image proteins using specific antibodies. Furthermore, it has reduced 

quenching of fluorescent proteins compared to other clearing techniques allowing 3D localisation of 

fluorescently tagged proteins. As it is a relatively simple technique it is useful for an increased depth 

of imaging of 3D structures. 

1.4 Aims and objectives of the study 

1.4.1 National Centre for the Replacement, Refinement & Reduction of 

animals in research (NC3Rs) 

According to the National Centre for the Replacement, Refinement and Reduction of animals in 

research (NC3Rs) review it is estimated that >100 million rodents per year are culled worldwide for 

experimentation (Burden et al., 2015). With a paradigm shift in opinions on animal testing alongside 

obvious financial incentives, scientists are being encouraged to minimise in vivo animal 

experimentation. Furthermore, there is a push to use 3D cell cultures as in vitro models as they more 

accurately resemble the in vivo environment in comparison with their 2D counterparts (Baharvand 

et al., 2006; Benya and Shaffer, 1982; Bissell et al., 1977; Campbell et al., 2011; Folkman and 

Moscona, 1978; Kleinman et al., 1982; Soares et al., 2012; Weaver et al., 1997; Zietarska et al., 
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2007). This improvement in mimicking the in vivo environment through 3D culture systems 

inherently improves in vitro data validity, which in turn is informative for the choice of further in vivo 

experiments and consequently reduces unnecessary animal testing. Using this ideology it was sought 

to model mammary gland development and breast cancer cell migration using 3D in vitro systems to 

reduce animal numbers culled in these areas of research. 

1.4.2 Recapitulating the mammary gland in vitro 

This project aimed to develop a bi-layered murine mammary model of both basal and luminal 

epithelial cells derived from a basal epithelial cell subset in a relevant in vitro setting. This intended 

to recapitulate MaSCs potential and the fat pad transplantation assay ex vivo.  Additionally, this 

model aimed to provide researchers with a more malleable system than an in vivo mouse model and 

a more relevant system than 2D cell cultures. Furthermore, it aimed to reduce the number of mice 

required experimentally and therefore the burden on animal testing for mammary gland research. 

To achieve this goal, a previously established synthetic fat pad protocol was utilised for culturing 

adipocytes in a 3D collagen I scaffold. This intended to mimic the adipocyte-rich fat pad of the 

mammary gland and the highly collagenous ECM in which it resides. Subsequently, it was sought to 

harvest and FACS fluorescently tagged prospective MaSCs from the mammary glands of transgenic 

mice. After seeding and culturing MaSCs within synthetic fat pads, immunostaining methods would 

be utilised to conclude whether MaSCs could produce relevant bi-layered epithelium and 3D 

structures. 

1.4.3 Recapitulating breast cancer cell migration in vitro 

This project also aimed to recapitulate the anisotropic collagenous tumour stroma and TACS-3 

phenotype frequently found surrounding breast tumours associated with poor prognosis and 

investigate how this anisotropy effects cancer cell migration. Through modifying a previously 

established ice-templating technique, this project aimed to synthesise collagen scaffolds with an 

anisotropic internal structure to mimic the anisotropic ECM (Davidenko et al. 2010). Following this, it 

was sought to investigate the effects of anisotropy on three breast cancer cell lines and their 

migratory potential using immunohistochemical and ImageJ analysis techniques.  

1.4.4 Mammary tumour cell migration analysis and therapeutic testing 

Subsequent experiments intended to culture mammary tumour fragments from two different mouse 

models with or without murine adipocytes in anisotropic collagen scaffolds in the presence of a 

number of inhibitors. This would elucidate whether adipocytes influence migration in an organotypic 

environment and ascertain if the system is a valid therapeutic testing tool. Through culture of 

tumour fragments it also aimed to model the ITH that is not present in breast cancer cell lines.  Using 
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complex culture techniques, IHC, optical clearing in conjunction with whole mount IHC and 2pf/SHG 

microscopy, and ImageJ analysis, it was sought to analyse tumour cell migration in the model. 

1.4.5 Humanising the synthetic fat pad 

Lastly, it was intended to humanise the synthetic fat pad and investigate whether human breast 

cancer cells could be co-cultured within them. This would be achieved through immortalising human 

MSCs, seeding them in anisotropic scaffolds, differentiating into adipocytes and analysing their lipid 

content using immunostaining and 2pf, SHG and CARS microscopy techniques. Following this, MDA-

MB-231 cells would be fluorescently tagged and seeded into the human adipocyte invested scaffolds 

and their migration imaged using 2fp and SHG. Through future inclusion of human biopsy material 

this model intends to provide a therapeutic testing tool for personalised medicine strategies to 

benefit both patients and oncologists alike. 
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2 Experimental methods 
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2.1 Animals 

All experimental animal work was performed in accordance to the Animals (Scientific Procedures) 

Act 1986, UK and local ethical committee approval. 

2.1.1 Animal models 

K14-creERT2/ROSA26-tdTomato transgenic mice were developed in the Watson laboratory and were 

genotyped by Dr. Sara Pensa (University of Cambridge, Department of Pharmacology) before 

commencing the project. Axin2-creERT2/ROSA26-tdTomato transgenic mice were gifted by Dr. Emma 

Rawlins (University of Cambridge, Gurdon Institute). Mouse ear biopsies from Axin2-creERT2/ROSA26-

tdTomato transgenic mice were obtained by animal technicians at the Gurdon Institute, University of 

Cambridge. 

Both models contain the Cre recombinase enzyme expressed downstream of either a Cytokeratin-14 

(K14) or Axin2 promoter in cells expressing K14 or Axin2 respectively. Upon tamoxifen 

administration, Cre is activated in target cells resulting in the removal of the floxed STOP cassette. 

The STOP cassette is located flanking tdTomato coding sequences on the Rosa26 locus and its 

removal permits subsequent constituent expression of the fluorescent protein tdTomato in target 

cells.  

2.1.2 Genotyping 

 DNA extraction 2.1.2.1

100 µL of chelex solution (0.1 g/mL chelex resin (biorad #142-1253), 0.001% tween-20 (Sigma 

P1379), 100 µg/mL proteinase K (Roche #3115836001), 9.9 mL ddH2O) was added to each ear biopsy 

and incubated at 50°C for 45 mins. Samples were then incubated at 95C for 30 mins to inactivate 

Proteinase K, followed by vortexing for 5 seconds. The biopsy and chelex were then pelleted by 

centrifugation at 2000 rpm for 2 mins. 1 µL of the supernatant was used for each PCR reaction. 

 PCR reactions 2.1.2.2

See Tables 2.1, 2.2 and 2.3. 
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Table 2-1: Primer sequences for genotyping PCR  

Primer Sequence 

Cre Forward 5’-TGCTGTTTCACTGGTTATGCGG-3’ 

Cre Reverse 5’-TTGCCCCTGTTTCACTATCCAG-3’ 

tdTomato wildtype forward 5’-AAGGGAGCTGCAGTGGAGTA-3’ 

tdTomato wildtype reverse 5’-CCGAAAATCTGTGGGAAGTC-3’ 

tdTomato mutant forward 5’-CTGTTCCTGTACGGCATGG-3’ 

tdTomato mutant reverse 5’-GGCATTAAAGCAGCGTATCC-3’ 
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(All PCR reaction mixture reagents were from the Qiagen kit #201205) 

 

Table 2-2: Reaction mixture concentrations for genotyping PCR  

Reaction mixture 

component 

Volume (µL) per 50 µL 

reaction (Cre allele) 

Volume (µL) per 21 µL 

reaction (tdTomato allele) 

10x buffer 5 2 

50mM MgCl2 2.5 0.5 

10mM dNTPs 1 1 

Primer CreF 1 
1 µL of 4 primer mix (10 µM 

each)  

Primer CreR 1 NA 

Taq 0.25 0.1 

dH2O 38.5 15.4 

DNA 1 1 
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*Repeat cycles 2-4, 35 times, for both Cre and tdTomato alleles 

 

Table 2-3: Cycle temperatures and times for genotyping PCR  

Cycle 

number 

Cycle temp (oC) 

(Cre allele) 

Cycle time 

(min:seconds) 

(Cre allele) 

Cycle temp (oC) 

(tdTomato allele) 

Cycle time 

(min:seconds) 

(tdTomato 

allele) 

1 94 5:00 94 3:00 

2* 94 0:30 94 0:20 

3* 55 0:30 61 0:30 

4* 72 1:00 72 0:30 

5 72 8:00 72 2:00 

6 4 Hold 4 Hold 
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 Agarose gel 2.1.2.3

10 µL of each PCR reaction was mixed with 2 µL loading dye, run on a 1% agarose gel at 100 V and 

imaged on a Bio-Rad Gel Doc. 

2.1.3 Tamoxifen preparation and injection 

200 mg of tamoxifen (Sigma #T5648) was added to 1mL of ethanol under sterile conditions, vortexed 

for 5 seconds and heated to 50°C for 10-30 min until fully dissolved. 9 mL of sterile sunflower oil was 

added to dilute the solution and vortexed for 5 seconds. 250 µL aliquots (20mg/mL) were then 

frozen at -20°C until required. Tamoxifen solution was thawed and administered to mice via 

intravenous injection of 200 µL (4mg tamoxifen) every 48 hours a total of 3 times. All tamoxifen 

injections were carried out by animal technicians at the Gurdon Institute, University of Cambridge. 

2.1.4 Harvesting of mammary glands 

72 hours after the final tamoxifen injection, mice were euthanized by dislocation of the neck and 

mammary glands were harvested into 5 mL of Dulbecco’s Modified Eagle’s Media / Ham’s F-12 

nutrient mixture GlutaMAX (DMEM/F-12) (Gibco #41965-039) supplemented with 10% foetal calf 

serum (FCS) (Gibco #10500064) 10 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) 

(Gibco #15630080), 1 mg/mL Collagenase A (Roche, #11088793001), 100 U/mL Hyaluronidase 

(Sigma, #H3506), 100 U/mL penicillin/streptomycin (Invitrogen, #15140122), 5 μg/mL bovine insulin 

(Sigma #11882) and 10 μg/mL murine epidermal growth factor (EGF) (Sigma #E4127). Mammary 

glands were then digested overnight at 37°C in 5% CO2 before processing for fluorescence activated 

cell sorting (FACS). 

2.1.5 Tumour models 

Syngeneic TUBO mammary tumours were established by injection of 5 × 103 TUBO cells into the 

abdominal mammary gland of BALB/c females. Injections were carried out by Dr. Sara Pensa or Dr. 

Jessica Hitchcock (University of Cambridge, Watson Laboratory). The TUBO cloned cell line was 

established from a mammary carcinoma that spontaneously arose in a BALB-neuT mouse and carries 

the Her-2/neu oncogene driven by the MMTV promoter (Rovero et al. 2000; Guy et al. 1992). 

Tumours were harvested before exceeding humane end points (4–5 weeks) and frozen for future 

use. MMTV-Wnt1 mice were crossed onto an FVB background for quicker tumour onset. Tumours 

were harvested at humane end points (2-12 months). Mice were euthanized by dislocation of the 

neck.    
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2.1.6 Tumour freezing  

MMTV-Wnt1 and TUBO tumours were placed in cryovials, covered with freezing medium 

(DMEM/F12 supplemented with 40% FCS and 6% dimethyl sulfoxide (DMSO) (Sigma #276855)), 

placed immediately into a Mr. Frosty freezing container (ThermoFisher #5100-0001) followed by 

overnight incubation at -80oC. Cryovials were then stored in liquid nitrogen until required. 
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2.2 Fluorescent activated cell sorting (FACS) 

2.2.1 tdTomato+ primary mammary basal epithelial cells 

FACS was carried out using a modified previously published method (Stingl et al., 2006). Harvested 

and digested mammary glands from either K14-creERT2/ROSA26-tdTomato or Axin2-creERT2/ROSA26-

tdTomato transgenic mice, were vortexed for 5 seconds. Hank’s Balanced Salt Solution (HBSS) (Gibco 

#24020) supplemented with 1% FCS (termed HF hereafter) was added to samples to a total volume 

of 10 mL. Samples were then centrifuged at 1000 rpm for 5 mins and resuspended in 1 mL HF and 4 

mL ammonium chloride solution (Stemcell technologies #07800). All subsequent centrifugations 

mentioned in this protocol were at 1000 rpm for 5 mins. The samples were then centrifuged and 

resuspended in 1 mL trypsin-EDTA (Sigma #T4174). Samples were pipetted up and down 20 times, 

incubated for 1 min at room temperature, when this step was repeated. 9 ml of HF was then added, 

followed by centrifugation.  Pellets were then resuspended in 1 mL (5 mg/mL) dispase (Sigma 

#D4693), 100 μL (1 mg/mL) DNase (Sigma #D4513) and 10 mL HF, followed by filtration through a 40 

μm cell strainer and subsequent centrifugation.  Cells were then either resuspended in Primary 

Complete media (DMEM supplemented with 10% FCS, 100 U/mL P/S, 5 μg/mL bovine insulin and 10 

μg/mL EGF) and plated for tamoxifen titration experiments (see section 2.9.3.2) or processed for 

FACS.  

For FACS, cells were blocked in DMEM supplemented with 10% normal rat serum (500 µL per 

sample) (Thermofisher Scientific #10710C) and incubated for 30 mins on ice. Antibodies recognising 

blood lineage and epithelial cell types were then added to samples followed by incubation on ice for 

10 mins. For antibody concentrations see Table 2.4. 3 mL of HF was then added to the samples 

followed by centrifugation. Samples were resuspended in 500 µL HF and streptavidin-PE-Cy7 (1:500) 

(BDBioscience #557598) followed by incubation on ice for 10 min. Finally, 3 mL of HF was added to 

samples, followed by centrifugation and resuspension in 500 µL HF, ready for FACS. FACS was carried 

out using the MoJo cell sorter with the assistance of Nigel Miller (University of Cambridge, Pathology 

Department). Single colour controls were used to calibrate the machine. tdTomato+ basal epithelial 

cells were isolated from the entire mammary cell population based on their CD24+ CD49fmed/hi CD45- 

CD31- Ter119- surface marker expression. 
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Table 2-4: Fluorescence activated cell sorting (FACS) antibodies 

  

Antibody 
Cell 

recognition 
Conc. Company Catalogue no. 

CD45-biotinylated Blood lineage 1:500 eBioscience #13-0451-82 

CD31-biotinylated Blood lineage 1:500 eBioscience #13-0311-82 

Ter119-biotinylated Blood lineage 1:500 eBioscience #13-5921-82 

CD24-AlexaFluor488 Epithelial 1:500 Biolegend #101816 

CD49f-AlexaFluor647 Epithelial 1:100 Biolegend #313610 
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2.2.2 tdTomato+ MDA-MB-231 cells 

tdTomato MDA-MB-231 cells were FACS using the MoJo cell sorter with the assistance of Nigel Miller 

based on their tdTomato expression. Uninfected MDA-MB-231 cells were used as a negative control. 

2.3 Collagen scaffold synthesis 

Scaffolds were prepared according to a modified previously published method (Pawelec et al., 2014). 

Collagen from bovine Achilles tendon (Sigma #C4387) was dispersed overnight in 0.05 M acetic acid 

(Sigma #71521) at 4°C to make 1wt% collagen slurry. The slurry was homogenised at 10,000 rpm for 

30 mins using an overhead homogeniser, keeping the container in an ice water bath, followed by 

centrifugation at 2500 rpm for 5 mins to remove air bubbles. The slurry was carefully aspirated into 

scaffold moulds (Fig. 2.1), taking care to completely cover the copper pins with minimal bubble 

formation. A glass cover slide was then placed on top of the mould chamber (Fig. 2.1). To alter the 

seeding funnel morphology, either a cylindrical (Fig. 2.1b) or conical copper pin (Fig. 2.1c) was used 

in moulds. For anisotropic scaffolds (Fig. 2.1b,c, Table 2.5), the freeze dryer shelf was pre-cooled 

prior to use, ensuring a shelf temperature of -40°C and moulds were placed so that the copper pins 

were in direct contact with the metal shelf (Fig. 2.1b,c). For isotropic scaffolds, the freeze dryer shelf 

was cooled from 20°C to -40°C over a 1h period with the moulds in situ. In this case the copper pins 

were thermally insulated with a thin rubber foam mat of less than 1 mm thickness, so that they were 

not in direct thermal contact with the metal shelf (Fig. 2.1d). The freezing protocol was chosen to 

produce pore sizes of around 100 μm away from the funnel (Husmann et al., 2015).  

Following freeze-drying, scaffolds were removed from the mould by carefully lifting the glass cover 

slide to which the collagen scaffolds stuck to. Using a scalpel blade and forceps, scaffolds were 

carefully removed from the glass slide ensuring not to crush or compromise their structure. Scaffolds 

were then immediately submerged in cross-linking solution (70% ethanol, 33 mM 1-ethyl-3-(3-

dimethylaminopropyl)-carbodiimide hydrochloride (Sigma #E6383) and 6 mM N-hydroxysuccinimide 

(Sigma #130672)) for 30 mins with constant agitation on a rotating plate. Following cross-linking, the 

scaffolds were removed to fresh 70% ethanol and degassed under vacuum (approximately 10 kPa) 

for 5 mins. Samples were stored in 70% ethanol to ensure sterility until required. 
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Figure 2-1: Mould design for collagen I scaffolds 

To produce collagen I scaffolds with different geometries and different internal architectures a 

number of mould designs were generated. These were filled with collagen I slurry and placed in a 

freeze drier for thermal cycling. The main body of the mould was machined from 9.6 mm thick 

polycarbonate sheet with evenly spaced 7 mm diameter by 3 mm deep troughs. In the centre of 

each trough, a 3 mm diameter hole was added in which a copper pin with a conical or cylindrical tip 

was inserted. The tip was covered by PTFE tape to prevent contact with the slurry. (a) Mould shown 

as a top down view. (b) Mould side view with cylindrical tipped pin set up for anisotropic scaffolds. 

Copper pin is in thermal contact with the thermal cooling shelf. (c) Mould side view for conical 

tipped pin set up for anisotropic scaffolds. Copper pin is in thermal contact with the thermal cooling 

shelf. (d) Mould side view for conical tipped pin set up for isotropic scaffolds. Copper pin is not in 

thermal contact with the thermal cooling shelf and is thermally insulated by a rubber mat. 
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Scaffold 

type 
Cooling procedure 

Freezing 

procedure 

Subliming 

procedure 

Anisotropic 

Cooling shelf quenched to -40°C, 

moulds added when shelf was cold. 

Copper pins were in thermal contact 

with the cooling shelf. 

Moulds were kept at 

-40°C for 2 hours to 

ensure complete 

freezing. 

Ice was 

subliming for 

18 hours. 

Isotropic 

Cooling shelf cooled from 20°C to -

40°C in 1 hour with moulds in situ, 

Copper pins were thermally insulated 

from the cooling shelf. 

Moulds were kept at 

-40°C for 2 hours to 

ensure complete 

freezing. 

Ice was 

subliming for 

18 hours. 

 

Table 2-5: Two distinct freeze-drying protocols used to synthesise scaffolds with either 

anisotropic or isotropic internal architectures 

Two different freeze drier cooling procedures of collagen slurries within moulds were required to 

produce the two scaffold types. In the anisotropic case, ice nucleated at the pins from which it grew 

in directional channels. In the isotropic case, the slurry was cooled evenly throughout, resulting in 

random locations of ice crystal nucleation points. After ice was nucleated, it grew in a dendritic form 

throughout the slurry (Husmann et al., 2015). 
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2.4 Cell culture 

All cell culture was carried out under sterile conditions in either a laminar flow cell culture hood or in 

a humid incubator at 37°C in 5% CO2. 

2.4.1 3T3-L1 cells 

 3T3-L1 maintenance 2.4.1.1

Cells were passaged when cells were at approximately 70% confluency ensuring cells did not reach 

total confluency. 3T3-L1 Maintenance Media (3T3-L1 MM) comprised DMEM supplemented with 

10% FCS. Cells were maintained up to but not beyond passage 20. 

 Adipogenesis 2.4.1.2

Once cells had reached confluency, maintenance media was removed and replaced with adipogenic 

media (3T3-L1 MM supplemented with 1 μg/ml insulin (Sigma I6634), 0.25 μM dexamethasone 

(Sigma #D4902) and 0.5 mM 3-isobutyl-1-methylxanthine (IBMX) (Sigma #I5879)) replacing every 48 

hours for 1 week. Lipid filled vesicles could be observed under phase contrast light microscopy. 

2.4.2 3T3 cells 

 Maintenance 2.4.2.1

3T3 cells were passaged at approximately 70% confluency. 3T3 Maintenance Media (3T3 MM) 

comprised DMEM supplemented with 10% FCS. 

 Irradiation 2.4.2.2

3T3 cells were trypsinized from sub-confluent (<60%) cultures, resuspended at 106 cells/mL in HF 

and irradiated 220 KV, 14.0 mA on an X-ray machine for 12 mins. Cells were frozen at 2 x 

106 cells/ml/vial in freezing media (DMEM supplemented with 20% FCS and 10% DMSO) until 

required.  

2.4.3 tdTomato+ primary basal mammary epithelial cells  

 Maintenance of tdTomato+ basal epithelial cells isolated by FACS of K14-2.4.3.1

creERT2/ROSA26-tdTomato transgenic mouse mammary glands 

tdTomato+ basal cells were maintained in Primary Complete Media (DMEM supplemented with 10% 

FCS, 100 U/ml P/S, 5 μg/ml bovine insulin and 10 μg/ml EGF) and seeded onto tissue culture plastic 

plates no lower than 50% confluency to ensure viability. 
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 Tamoxifen titration of tdTomato+ basal epithelial cells isolated by FACS of K14-2.4.3.2

creERT2/ROSA26-tdTomato transgenic mouse mammary glands 

tdTomato+ basal cells were titrated in Primary Complete Media supplemented with 0.1-500 μM 

tamoxifen in vitro, to determine the optimal dosage required for in vitro Cre recombination. 

 Expansion of tdTomato+ basal epithelial cells isolated by FACS of Axin2-2.4.3.3

creERT2/ROSA26-tdTomato transgenic mouse mammary glands 

tdTomato+ basal cells were expanded in 2D cultures according to a previously published protocol 

(Prater et al., 2014). Growth factor reduced Matrigel (Corning, #CB-40230A) was defrosted overnight 

at 4oC. PBS, petri dishes, pipettes and pipette tips were all cooled to 4oC prior to the handling of 

Matrigel. Matrigel was mixed with PBS at 1:60 ratio and pipetted evenly onto a cold petri dish at a 

volume that ensured complete covering of the dish surface. This was performed as quickly as 

possible to minimise any warming of Matrigel to room temperature. The dish was then incubated at 

37oC for 1 hour followed by aspirating the remaining liquid to leave a Matrigel coating on the surface 

of the dish. FACS sorted tdTomato+ cells from an Axin2+ basal cell origin were seeded on Matrigel 

coated dishes at 10-204 cells/cm2 mixed with 104/cm2 irradiated 3T3 feeder cells in FAD media 

(DMEM  :Ham’s F12 (3:1) supplemented with 10% FCS, 1.8x10-4 M adenine, 100 IU/mL P/S, 0.5 

μg/mL hydrocortisone, 8.47 ng/mL cholera enterotoxin (Sigma #C8052), 10 ng/mL EGF, 5 μg/mL 

insulin and 10 μM Y-27632 (Cambridge Bioscience #SM02-10)). Prior to passaging, fresh petri dishes 

were pre-coated with Matrigel according to the aforementioned protocol. Cells were then washed 

three times with PBS followed by the addition of trypsin-EDTA. Following 60 seconds incubation, 3T3 

feeder cells detached and were discarded. Additional trypsin was then added to detach tdTomato+ 

cells and left on no more than 5 mins. The cells that had detached in this time period were 

neutralized in fresh FAD media. For any remaining cells that had not detached by this point, more 

trypsin-EDTA was added, incubated and neutralized following detachment. The tdTomato+ cells were 

then centrifuged at 200G for pelleting, resuspended in fresh FAD media and seeded on pre-coated 

Matrigel petri dishes at 10-204 cells/cm2 mixed with 104/cm2 irradiated 3T3 cells. 

2.4.4 Human breast cancer cell lines 

 Maintenance 2.4.4.1

All cell lines were maintained between passages 5 to 15 in their respective maintenance media 

(MM): MCF7 cells were cultured in DMEM media (Gibco #41965) supplemented with 10% FCS in a 

humidified 5% CO2 incubator at 37°C. MDA-MB-468 and MDA-MB-231 were cultured in Leibovitz L-

15 media (Gibco, #11415-064) supplemented with 10% FCS in a humidified air incubator at 37°C. 
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 Epithelial-to-mesenchymal transition (EMT) induction of MDA-MB-468 cells 2.4.4.2

MDA-MB-468 cells were serum starved and treated with epidermal growth factor (EGF) (Leibovitz L-

15 media supplemented with 0.5% FCS and 50 ng/ml EGF) for 12h as previously described (Davis et 

al., 2013). EGF treatment continued for 10 days in normal serum conditions (Leibovitz L-15 

supplemented with 10% FCS and 50 ng/ml EGF). Following this cells were either collected for 

western blotting, fixed for immunocytochemistry, or seeded into anisotropic scaffolds for migration 

assays. 

2.4.5 Human primary mesenchymal stem cells (MSC) 

 Maintenance 2.4.5.1

Human mesenchymal stem cells (MSC) isolated from routine breast reduction mammoplasty surgery 

(passage 0) were gifted by Dr. Mohammed Bentirez-Alj (Friedrich Miescher Institute, Basel, 

Switzerland). MSC were maintained in the following MSC Maintenance media (MSC MM): 

DMEM/F12 supplemented with 20% FCS, 15 mM HEPES (Sigma #83264), 1 nM 17-β-estradiol (Sigma 

#E2758), 100 U/ml P/S, 50 µg/ml gentamicin (Sigma #G1397), 10 ng/ml EGF, 10 ng/ml basic 

fibroblast growth factor (bFGF) (Peprotech #100-18B). Cells were passaged at approximately 70% 

confluency, ensuring 100% confluency was not reached during passage steps.  

 Adipogenesis  2.4.5.2

100% confluent cells had their MSC MM removed and replaced with MSC adipogenic media 

(DMEM/F12 supplemented with 10% FCS, 15 mM HEPES (Sigma #83264), 10 nM 17-β-estradiol 

(Sigma #E2758), 100 U/ml P/S, 50 µg/ml gentamicin (Sigma #G1397), 5 μg/mL insulin, 1 μM 

dexamethasone, 0.5 mM IBMX, 60 μM indomethacin (Sigma #I7378)). Media was replaced with fresh 

MSC adipogenic media every 48 hours for 11 days. 

 Antibiotic titration 2.4.5.3

Primary MSCs were treated with 0-1 µg/mL puromycin (Gibco #A11138), 0-600 µg/mL geneticin 

(Gibco #10131) and 0-1 mg/mL zeocin (Melford Labs #20186) in MSC MM for 7 days to determine 

the minimum concentration of each antibiotic required to kill 100% of primary MSCs. 

2.4.6 Human embryonic kidney 293T (HEK293T) cells 

HEK293T cell maintenance media (HEK293T MM) comprised DMEM supplemented with 10% FCS. 

Cells were passaged at 70-100% confluency. 
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2.5 Viral transductions 

All plasmids were amplified using Qiagen miniprep (#27104) and Quiagen maxiprep (#12362) kits 

according to the supplier’s instructions. 

2.5.1 Lentiviral transduction of MDA-MB-231 cells 

The following protocol is for lentiviral transfection of one 10 cm petri dish of 60% confluent HEK293T 

cells. 1.5 ml of buffered saline (150 mM NaCl, 20 mM HEPES (pH 7.4)) was added into a bijou with 

32.8 μg of DNA (5.84 µg pMD2.G packaging vector, 11.68 µg p8.91 packaging vector and 18.25 µg 

pCDH-EF1-MCS-T2A-tdTomato lentivector (cloned from the pCDH-EF1-MCS-T2A-copGFP lentivector 

(System Biosciences #CD521A-1) by Dr. Michael D’Angelo, University of Cambridge, Watson 

laboratory)) and incubated for 5 mins room temperature. Following this, 82 μL of polyethylenimine 

(PEI) was added dropwise to the mixture followed by a 5 second vortex and incubation for 10 mins 

at room temperature. 4 mL of Opti-MEM media (Gibco #51985) was then added, inverted twice and 

left at room temperature for 10 mins. HEK293T MM was then aspirated from a 10 cm dish of 60% 

confluent HEK293T cells and replaced with the transfection mixture, followed by incubation at 37°C 

for 6 hours in 5% CO2. The transfection mixture was then replaced with 6 mL fresh HEK293T MM and 

left for 48 hours to collect viral particles. Meanwhile, 12 hours before collection of viral particles, 

two wells of a six well plate were seeded with 5x105 MDA-MB-231 cells. HEK293T viral media was 

collected, passed through a 0.45 µm filter and stored briefly in a 50 mL tube. Transfected HEK293T 

cells were replenished with fresh HEK293T MM for further viral particle collection. 8 μg/ml 

polybrene (Sigma #107689) was then added dropwise to filtered HEK293T viral media and dispensed 

onto MDA-MB-231 cells (3 mL per well) to replace their MM. Plates of MDA-MB-231 cells were then 

spin transduced for 80 mins at 173 G and returned to the incubator. After 48 hours the process was 

repeated: viral HEK293T media removed, filtered, ejected onto MDA-MB-231 cells with polybrene 

and spin transduced. 24 hours following this, viral media from MDA-MB-231 cells was aspirated and 

replaced with fresh maintenance media for subculture. Viral transduction of the tdTomato gene was 

assessed with immunofluorescence and FACS analysis (Hsu and Uludag, 2012). 

2.5.2 Retroviral transduction of human mesenchymal stem cells (MSC) for 

immortalisation 

HEK293T cells were transfected using the aforementioned PEI method for lentiviral transfection with 

the exception of using 3 µg of viral DNA (retroviral plasmids used for transfection were the pLXSN-

neo-E6E7 and pBABE-puro-hTERT gifted by Dr. Heike Laman (University of Cambridge, Department 

of Pathology)) and 2 µg of packaging vector pMDG.2. Viral particle collection was also according to 



Experimental methods   

 

70 
 

aforementioned lentiviral methods with the exception that viral collection media for HEK293T cells 

was MSC MM so that it was compatible with MSC during viral infections.  

Following transduction MSCs were passaged to avoid 100% confluency and cell differentiation. They 

were then treated with 600 µg/ml geneticin (pLXSN-neo-E6E7) or 1 µg/ml puromycin (pBABE-puro-

hTERT) for 5 days. Surviving cells were then pooled into smaller wells to increase confluency to 

around 50% and to avoid sparse populations dying out. Cells were then expanded and frozen down 

for future use. MSCs that were transduced with pLXSN-neo-E6E7 were named E6E7-MSC and MSCs 

transduced with pBABE-puro-hTERT were named hTERT-MSC. 
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2.6 Mammary stem cell (MaSC) culture assay 

2.6.1 ‘Synthetic fat pad’ set up 

3T3-L1 cells were cultured in 3T3-L1 MM between passages 4-20. 3T3-L1 cells were seeded and 

differentiated in isotropic collagen scaffolds using a modified previously published method 

(Davidenko et al. 2010). Briefly, 1x106 3T3-L1 cells were seeded into scaffolds, left to proliferate for 7 

days and differentiated using an adipogenic cocktail (3T3-L1 MM supplemented with 1 μg/ml insulin, 

0.25 μM dexamethasone and 0.5 mM IBMX) for 7 days, changing media every other day. At this 

point scaffolds were moved into 6 well plates ready for tdTomato+ primary cell seeding. All cell 

cultures were in 5% CO2 at 37oC in a humid incubator. 

2.6.2 MaSC culture assay – tdTomato+ cells from K14-creERT2/ROSA26-

tdTomato transgenic mice 

tdTomato+ primary basal epithelial cells were isolated by FACS of K14-creERT2/ROSA26-tdTomato 

mouse mammary glands. tdTomato+ cells were seeded in ‘synthetic fat pads’ at a density of 500 cells 

per scaffold. Cultures were maintained for 2 weeks in Primary Complete Media (DMEM 

supplemented with 10% FCS, 100 U/ml P/S, 5 μg/ml bovine insulin and 10 μg/ml EGF) before 4% 

paraformaldehyde (PFA) (Sigma #P6148) fixation overnight for subsequent immunolocalisation 

analysis. 

2.6.3 MaSC culture assay - tdTomato+ cells from Axin2-creERT2/ROSA26-

tdTomato transgenic mice 

tdTomato+ primary basal epithelial cells were isolated by FACS of Axin2-creERT2/ROSA26-tdTomato 

mouse mammary glands, followed by expansion in 2D on Matrigel covered petri dishes with 3T3 

feeder cells. tdTomato+ cells were seeded in ‘synthetic fat pads’ at a density of 5x105 cells per 

scaffold. Cultures were maintained for 2 weeks in Primary Complete Media before 4% PFA fixation 

overnight for subsequent immunolocalisation analysis. 
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2.7 Human breast cancer cell line migration assay 

2.7.1 Human breast cancer cell line migration assay setup 

Collagen scaffolds were washed twice with sterile PBS followed by soaking overnight in the 

appropriate MM for each cell line, as detailed in section 2.4.4, supplemented with 50 μg/ml 

gentamicin to ensure contamination free conditions. Using sterile forceps, scaffolds were moved 

into the upper wells of 6 mm diameter Boyden chambers (0.4 μm pore size, Costar #3470) with 

upward facing seeding funnels. Care was taken to eliminate residual media from the scaffold. 

Migration assays were established under both serum gradient (upper chamber 1%/lower chamber 

10%, Fig. 2.2a) and non-gradient (upper chamber 10%/ lower chamber 10%, Fig. 2.2b) conditions for 

all cell types (MDA-MB-231, MDA-MB-468 and MCF7 cells) and scaffold types (isotropic and 

anisotropic), using maintenance media appropriate for each cell line as detailed in section 2.4.4.  

Cells were trypsinized, checked for viability by Trypan blue exclusion assay (>90% in all cases) and 

resuspended in the appropriate fresh MM for each cell line (1% FCS for gradient samples or 10% FCS 

for non-gradient samples (Fig. 2.2)) at a concentration of 5 × 106 cells/ml. Cells were pipette 

aspirated 5x to minimise cell clumping on suspension. To characterise cell spreading at seeding, 

Countbright microbeads (Life technologies #C36950) were suspended alongside cells at a 

concentration of 5 × 103 /mL. 10 μl (5 × 104 cells) of this cell/bead suspension was then pipetted into 

the nucleation point of each scaffold (Fig. 2.2). The bottom chamber of the Boyden was then filled 

with 750μl MM (10% FCS in all cases) and the cells were left for 4 hours to attach. The upper 

chamber was then filled with 250μl media containing either 1% FCS for gradient samples or 10% FCS 

for non-gradient samples. Samples were left to incubate for either 24 hours or 10 days, with media 

changed every 48 hours in the latter condition (Fig. 2.2). In 10 day samples, media was substituted 

for complete media containing 10 μM EdU for the final 24 hours, in order to quantify cells divided 

over that time period. The provision of a serum gradient was provided to a subset of samples to test 

if a chemokine differential between upper and lower chambers of the supporting transwell plate was 

required to force cell migration within the scaffold depth. Following incubation, scaffolds were fixed 

for analysis in 4% PFA overnight at 4 °C, washed in PBS and segmented in half through the nucleation 

point using a scalpel blade. One scaffold half was processed to paraffin for immunohistochemical 

(IHC) analysis.  
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Figure 2-2: Human breast cancer cell line migration assay schematic 

To test human breast cancer cell line migratory potential within both isotropic and anisotropic 

collagen I scaffolds, an assay was devised. Scaffold seeding procedure consisted of adding a mixture 

of cells (red) and beads (blue) into the funnel of anisotropic and isotropic collagen scaffolds placed 

within a Boyden chamber. (a) For gradient samples, media supplemented with 1% FCS was placed 

into the upper chamber and 10% FCS in the lower chamber. (b) For non-gradient samples media 

supplemented with 10% FCS was placed in both the upper and lower chambers. Scaffolds were 

cultured for 24 hours or 10 days followed by fixation and measurement of the cell migration distance 

from the seeding funnel - r (µm). This was measured as the shortest distance between the cell or 

bead with the line (dotted black line) drawn along the funnel as seen under the microscope.  
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2.7.2 Migration analysis – breast cancer cell line migration 

Using microscopy images of bisected scaffolds or IHC sections and ImageJ image analysis, the 

scaffold nucleation point was marked and segmented into 50 separate points which were then saved 

as individual coordinates. Migratory cells and beads were then marked and saved as coordinates. 

Using Microsoft Excel formulae, the shortest distance of each cell/bead to the closest point on the 

segmented nucleation point, also known as the Euclidian distance, (or r(µm) Fig. 2.2) was calculated. 

Using distance measurements for every migratory cells/bead in one sample, the median distance 

travelled by cells/beads, rmedian(µm), was calculated. 

2.7.3 Statistical analysis – breast cancer cell line migration 

A Wilcoxon rank-test (otherwise known as a Mann-Whitney U test) on unpaired data of median 

distances, rmedian(µm), for each set-up was performed with a confidence value of 95% to check for 

statistically significant results. Relevant parameters were cell line type, scaffold type, serum gradient 

and vimentin expression. 
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2.8 Engineered Tumour-Stroma Interaction Model (ET-SIM) 

cancer therapeutic migration assay 

2.8.1 Engineered Tumour-Stroma Interaction Model (ET-SIM) 

3T3-L1 cells were cultured in MM between passages 4-20. 3T3-L1 cells were seeded and 

differentiated in anisotropic collagen scaffolds using a modified previously published method 

(Davidenko et al. 2010). Briefly, 1x106 3T3-L1 cells were seeded into scaffolds, cultured for 7 days to 

allow proliferation/filling of the scaffold and differentiated using an adipogenic cocktail (MM 

supplemented with 1 μg/mL insulin, 0.25 μM dexamethasone and 0.5 mM IBMX) for 7 days, 

replenishing adipogenic media every other day. At this point scaffolds were moved into 6 well plates 

ready for tumour fragment seeding. All cell cultures were in 5% CO2 at 37oC in a humid incubator. 

Murine adipocytes derived from 3T3-L1 preadipocytes invested in anisotropic collagen scaffolds 

were named ET-SIM, hereafter. 

2.8.2 Tumour fragment seeding and ET-SIM culture 

For resuscitation, cryovials containing frozen MMTV-Wnt1 or TUBO tumours were initially warmed 

by hand. Once thawing was first observed, room temperature medium was added. Tumours were 

decanted into tubes containing fresh tumour medium (DMEM/F12 supplemented with 10% FCS, 1x 

Penicillin/Streptomycin, 5 μg/ml Insulin and 10 ng/ml EGF) making sure not to carry across any 

freezing medium. Decanting was repeated to wash away any remaining freezing medium. Tumours 

were mechanically fragmented using a scalpel into approximately 3 mm3 pieces. Tumour fragments 

were placed into the seeding funnel (vertically facing) of empty scaffolds or ET-SIM using sterile 

forceps and cultured in 6 well plates (Fig. 2.3). 1 mL of tumour media was carefully added so as not 

to dislodge the tumour fragment and left for 4 hours to attach (Fig. 2.3). Following this, an additional 

4 mL of tumour media was added slowly to again avoid displacement of the fragment, covering both 

the scaffold and fragment (Fig. 2.3). A fresh 5 mL of tumour media was replaced each day and 

scaffolds were removed after 72 hours or 10 days, fixed in 4% paraformaldehyde (PFA) and either 

paraffin embedded for immunohistochemistry or the CUBIC whole mount immunostaining protocol 

was applied (see section 2.13.4). 

2.8.3 Therapeutic testing 

After 24 hours of tumour fragment culture as mentioned above, the media was replaced with 5 ml of 

tumour media supplemented with either 35.2 µM DMSO (Sigma Aldrich #D8418), 10 µM Y-27632 

(ROCKi)(Cell Guidance Systems #SM02-10), 10 µM GM6001 (Merck Millipore #364205) or 10 µM 
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Canertinib (Selleckchem, #S1019) (Fig. 2.3). Media was replaced with fresh 5 ml tumour media plus 

an inhibitor every 24 hours until fixation endpoint in 4% PFA. 
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Figure 2-3: Illustration of tumour fragment culture in ET-SIM and therapeutic testing 

In order to test whether collagen I scaffolds were able to support the culture of primary tumour 

fragments, tumours were fragmented and seeded into scaffold funnels before culturing in vitro. A 

schematic of MMTV-Wnt1 and TUBO tumour culture in anisotropic collagen scaffolds is detailed 

above. Prior to tumour seeding scaffolds were either empty prior or filled with mature adipocytes 

(ET-SIM). For therapeutic testing tumour media was then supplemented with DMSO (vehicle 

control), ROCKi, GM6001 or Canertinib and changed daily for 72 hours or 10 days.  
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2.8.4 Migration analysis - ET-SIM cancer therapeutic migration assay 

Tumour cell migration was analysed using a modified version of the migration analysis protocol used 

for the human breast cancer cell line migration assay (section 2.7.2). Using tile scans generated from 

IHC, cell nuclei of migratory cells were marked using Fiji and their coordinates collected. MMTV-

Wnt1 tumour cell nuclei were distinguished from stromal cells using the markers αSMA and β-

catenin and were defined as migratory when found in or on any part of the scaffold away from the 

tumour fragment. The scaffold nucleation point was marked, segmented and saved as coordinates. 

The closest distance from the nucleation point to each migratory nucleus (Euclidian distance) was 

measured using formulae in Microsoft Excel and these results were then combined in GraphPad.  

Along with migration distance, the frequency of cell migration was also recorded. Any αSMA and β-

catenin positive cell that was found within the scaffold was identified as migratory and added to the 

total frequency for that sample. 

2.8.5 Statistical analysis – ET-SIM cancer therapeutic migration assay 

Migration distances and migratory cell frequencies of multiple therapeutics regimes were compared 

to DMSO vehicle controls using the non-parametric unpaired/matching Kruskal-Wallis ANOVA with a 

Geisser-greenhouse correction combined with a Dunn’s multiple comparison test. Migration 

distances and migratory cell frequencies comparing with/without 3T3-L1 for an individual 

therapeutic regime were compared using the non-parametric unpaired Mann-Whitney test using a 

confidence level of 95%. All statistical analyses were carried out using the software GraphPad Prism 

6. 
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2.9 Human Engineered Tumour-Stroma Interaction Model 

(hET-SIM) 

2.9.1 E6E7-MSC seeding and differentiation 

1x106 E6E7-MSC cells were seeded into anisotropic collagen scaffolds, cultured for 7 days to allow 

proliferation/filling of the scaffold and differentiated using MSC adipogenic media  (DMEM/F12 

supplemented with 10% FCS, 15 mM HEPES (Sigma #83264), 10 nM 17-β-estradiol (Sigma #E2758), 

100 U/ml P/S, 50 µg/ml gentamicin (Sigma #G1397), 5 μg/mL insulin, 1 μM dexamethasone, 0.5 mM 

IBMX, 60 μM indomethacin (Sigma #I7378)), for 11 days, replenishing MSC adipogenic media every 

other day. At this point scaffolds were moved into Boyden chambers ready for MDA-MB-231 

migration assays. All cell cultures were in 5% CO2 at 37oC in a humid incubator. Human adipocytes 

(derived from E6E7-MSC) invested in anisotropic collagen scaffolds were named hET-SIM hereafter. 

2.9.2 tdTomato MDA-MB-231 migration assay 

Using sterile forceps, empty anisotropic collagen scaffolds and hET-SIM cultures were moved into 

the upper wells of 6mm diameter Boyden chambers (0.4μm pore size, Costar #3470) with upward 

facing seeding funnels. Care was taken to eliminate residual media from the scaffold. Migration 

assays were established with no serum gradient applied (upper chamber 10% FCS/ lower chamber 

10% FCS, Fig. 2.2b) using MSC MM.  

MDA-MB-231 cells that had been lentivirally transduced to express the tdTomato fluorescent 

protein (tdTomato+ MDA-MB-231 cells) were trypsinized, checked for viability by Trypan blue 

exclusion assay (>90% in all cases) and resuspended in the fresh MSC MM at a concentration of 

5 × 106 cells/ml. Cells were pipette aspirated 5 times to minimise cell clumping on suspension. 10 μl 

(5 × 104 cells) of tdTomato+ MDA-MB-231 cell suspension was then pipetted into the nucleation 

point of each scaffold. The bottom chamber of the Boyden was then filled with 750μl MSC MM and 

the cells were left for 4 hours to attach. The upper chamber was then filled with 250μl MSC MM. 

Samples were left to incubate for 7 days, with media changed every 48 hours. Following incubation, 

scaffolds were fixed for analysis in 4% PFA overnight at 4°C, washed in PBS and segmented in half 

through the nucleation point using a scalpel blade. Cell nuclei were marked with the green 

fluorescent DNA dye, SYTO 16 (ThermoFisher #S7578) and samples were then imaged using multi-

photon microscopy. 
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2.10 Sodium dodecyl sulphate - polyacrylamide gel 

electrophoresis (SDS-PAGE) and western blotting 

2.10.1 Epithelial-to-mesenchymal transition (EMT) induction of MDA-

MB-468 cells 

EpH4 cells (vimentin negative control), MDA-MB-231 cells (vimentin positive control), MDA-MB-468 

cells and MDA-MB-468 cells treated with EGF, were collected in radio immunoprecipitation assay 

(RIPA) buffer. A bicinchoninic acid assay (BCA) assay was then performed and 20 μg of protein was 

added per lane. Blots were blocked in 5% bovine serum albumin (BSA) (Acros organics #240405000) 

in phosphate buffered saline-0.1% Tween-20 (PBST) for 1 hour. Primary antibodies anti-vimentin 

(cell signalling #5741, 1:1000) and loading control anti-tubulin (Abcam #ab6160, 1:10000) were 

diluted in 5% BSA-PBST and left rocking overnight 4oC. Blots were washed 3 times for 5 min in PBST, 

moved into 5% BSA-PBST containing the secondary antibodies horseradish peroxidase (HRP)-anti-

rabbit (Dako #PO448, 1:4000) and HRP-anti-rat (Dako #PO450, 1:2000) and were left rocking at room 

temperature for 1 hour. Blots were then developed using enhanced chemiluminescence (ECL) (GE 

Healthcare #RPN2109) substrate and photographic film. 

2.10.2 Adipogenesis of mesenchymal stem cells (MSC) 

Differentiated MSCs were collected and processed as above with the following exceptions: blots 

were probed with primary antibody perilipin (Cell signalling #3470, 1:1000) and the secondary 

antibody HRP-anti-rabbit (Dako #PO448, 1:4000). 
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2.11 Histology 

2.11.1 Sectioning of scaffolds 

Scaffolds were fixed in 4% PFA and incubated at 4°C overnight. For human breast cancer cell line 

invasion assays, scaffolds were bisected through the nucleation point, dehydrated, infiltrated with 

paraffin wax, placed freshly cut face faced-down and embedded in a paraffin wax block. Resulting 

sections provided a longitudinal profile through the centre of the scaffold and included the 

nucleation point (Fig. 2.4).  

For tumour scaffold cultures, scaffolds with tumour fragments seeded in their nucleation point were 

not chopped in half due to the risk of tumour fragments falling out of the nucleation point. Whole 

tumour/scaffolds were dehydrated, infiltrated with paraffin wax, placed with the side face of the 

scaffold facing down and embedded in a paraffin wax block. The scaffold was then continuously 

chopped in the block until the centre of the tumour fragment, scaffold and nucleation point were 

visible. At this point sections were taken and provided a longitudinal profile through the centre of 

the scaffold and included the nucleation point (Fig. 2.4). 
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Figure 2-4: Embedding and sectioning of collagen scaffolds for histological sections 

Following migration assays of human breast cancer cell lines or tumour cultures in collagen scaffolds, 

sectioning methods were devised to provide longitudinal sections through the centre of the scaffold. 

This required two different paraffin embedding protocols outlined schematically above. (a) Scaffolds 

from human breast cancer cell line migration assays were bisected and embedded in paraffin wax 

with the freshly cut face faced-down to provide longitudinal cross sections through the centre of the 

scaffold. (b) Scaffold / tumour fragment cultures were embedded in paraffin wax with the side face 

faced-down. Unwanted material was removed using a microtome. Sections were taken from the 

centre of the tumour fragment to provide longitudinal cross sections through the centre of the 

scaffold.  
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2.11.2 H&E 

Sections were bathed in the following reagents for the following lengths of time: dewaxing Xylene 6  

mins (100% Xylene) twice, 100% ethanol 3 mins, 95% methylated spirit 2 mins, 70% methylated 

spirit, running tap water 5 mins, Harris’ haematoxylin 3-6 mins , running tap water 5 mins, 1% 

hydrochloric acid in 70% ethanol (acid alcohol) 1 min, running tap water 10 mins, 20% Eosin Y in 

ethanol 1 min, running tap water 40 seconds, 70% methylated spirit 40 seconds, 95% methylated 

spirit 1 min, 100% ethanol 3 mins and 100% Xylene 3 mins. Sections were then mounted in DPX and 

left to dry. 

2.11.3 Masson’s Trichrome 

Sections were bathed in the following reagents for the following lengths of time: dewaxing Xylene 6 

mins (100% Xylene) twice, 100% ethanol 3 mins, 95% methylated spirit 2 mins, 70% methylated 

spirit, running tap water 5 mins, Weigerts haematoxylin 15 mins, running tap water 5 mins, 1% 

hydrochloric acid in 70% ethanol (acid alcohol) 5 seconds, running tap water 5 mins, red mixture 

5mins, rinse in 0.2% glacial acetic acid, filtered orange mixture 5 mins, rinse in 0.2% glacial acetic 

acid, 0.5 g aniline blue in 0.2% glacial acetic acid 2 mins, rinse in 0.2% glacial acetic acid 70% 

methylated spirit 40 seconds, 95% methylated spirit 1 min, 100% ethanol 3 mins and 100% Xylene 3 

mins. Sections were then mounted in Sub-x and left to dry. 

2.11.4 Oil Red O 

To prepare a stock Oil Red O solution, 0.5g Oil Red O (Sigma #O0625) was dissolved in 100mL 

isopropanol (5 mg/mL). The stock solution was incubated at room temperature for 1h, filtered 

through a 0.2-mm filter and stored at room temperature for up to 1 year. To prepare a working 

solution of Oil Red O , 6 mL of stock solution was mixed with 4 mL distilled water. This was incubated 

at room temperature for 1 hour and filtered through a 0.2 mm filter. This working solution is stable 

for approximately 3 hours.  

Differentiated 3T3-L1 cells or MSCs had their adipogenic media removed and gently washed twice in 

PBS. Cells were fixed in 4% PFA at 4°C for 1 hour followed by two more gentle washes in PBS. Oil Red 

O working solution was added, ensuring the entire cell surface was covered and incubated for 15 

mins at room temperature. Cells were then rinsed with distilled water approximately 5 times (until 

the solution is clear) and left in distilled water for light microscope imaging analysis. 

2.11.5 Senescence-associated β-Galactosidase staining 

Mesenchymal stem cells (MSC) were seeded in 6 well culture plates and cultured until approximately 

70% confluent. Media was removed and cells were washed with PBS before fixing with 4% PFA at 
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room temperature for 15 mins. Cells were then washed twice with PBS and covered with β-

galactosidase staining solution (930 μl 1X Staining Solution (dissolve 10X Staining Solution at 37oC 

with agitation and dilute in dH2O to a 1X solution), 10 μl 100X Solution A, 10 μl 100X Solution B, 50 

μl 20 mg/ml X-gal stock solution (20 mg X-gal dissolved in 1 ml DMSO in a polypropylene tube)). 

Plates were then sealed with parafilm and incubated at 37°C in a dry incubator overnight. Cells were 

imaged under a light microscope. Senescent cells stained positive for β-galactosidase and appeared 

a blue/green colour. 

All reagents for this protocol were provided in the β-Galactosidase staining kit (Cell Signalling 

#9680). The protocol and the reagents list are available from the Cell Signalling website 

(https://media.cellsignal.com/pdf/9860.pdf). 10X Staining Solution from this kit contains 5-10wt% 

citric acid, 7-13wt% sodium chloride and 7-13wt% trisodium orthophosphate. 100X Solution A 

contains 10-30wt% tetrapotassium iron (2+) hexacyanide trihydrate. 100X Solution B contains 10-

30wt% tripotassium hexacyanoferrate. 
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2.12 Immunocytochemistry (ICC) 

MDA-MB-231 (control), MDA-MB-468 (control) and MDA-MB-468 + EGF were cultured on glass 

coverslips and fixed in 4% PFA for 10 mins. Permeabilization was carried out for 15 mins in 0.5% 

Triton-X (VWR chemicals #28817.295) / PBS followed by 1 hour blocking in normal goat serum (NGS). 

Primary antibody anti-vimentin (cell signalling, #5741, 1:100) and negative control anti-rabbit IgG 

(Dako, XO936, 1:100) were diluted in blocking buffer and left overnight at 4°C. Secondary goat anti-

rabbit AlexaFluor488 (life technologies, A11008, 1:500) was applied to all samples for 1 hour. DNA 

was marked using Hoechst and cells were visualized using epi-fluorescence. Using 3 separate fields 

of view from three technical repeats, the total number of MDA-MB-468 (+/− EGF) cells were counted 

using ImageJ. Following this the number of vimentin positive cells were also counted and plotted as 

a ratio of vimentin positive to the entire cell population. A statistical comparison was made using an 

unpaired t-test. 
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2.13 Immunohistochemistry (IHC) 

2.13.1 Paraffin embedded slides (IHC-P) 

For immunohistochemical analysis of paraffin embedded samples, sections were deparaffinised, 

rehydrated and boiled under pressure for 11 mins in 10 mM sodium citrate for antigen retrieval 

before blocking in 10% normal goat serum (Sigma) 0.05% triton-X PBS for 1 hour. Primary antibodies 

were incubated overnight at 4°C in a humidified chamber. For primary antibody specifications see 

Table 2.6.  Signal was detected with conjugated secondary antibodies (1:500) and incubated for 

1 hour at room temperature. For secondary antibody specifications see Table 2.7.  DNA was marked 

using Hoechst 33342 2 μg/mL (Thermofisher Scientific) for 10 mins. Slides were mounted in PBS-

glycerol 50:50 and viewed using fluorescence microscopy. 

2.13.2 Bisected scaffolds for human breast cancer cell line migration 

assay (not sectioned) 

Scaffolds were fixed overnight in 4% PFA at 4°C and bisected through the nucleation point. Bisected 

scaffolds were washed in PBS and bathed directly in 2 μg/mL bisbenzimide-Hoechst 33342 

(Thermofisher Scientific #H1399) in PBS for 10 mins or for an assessment of cell proliferation stained 

for EdU incorporation according to the supplier's protocol (Click-iT, Thermofisher Scientific #C10337) 

before proceeding to Hoechst staining. The scaffolds were then washed in PBS three times and 

placed cut face down on a glass slide for epifluorescence imaging. 

2.13.3 Whole scaffold staining (WSS) 

Scaffolds filled with either 3T3-L1s or MSCs were fixed overnight in 4% PFA at 4°C followed by 

overnight permeabilization in 1% Triton-X - 10% BSA - PBS (blocking solution) at 4°C. Primary 

antibodies (see Table 2.6) were diluted in blocking solution, added to samples and agitated on a 

rocker for 4 days at 4°C. Scaffolds were washed thrice for 1 hour in PBS on a rocker at room 

temperature, moved into secondary antibodies (see Table 2.7) diluted in blocking solution and 

agitated on a rocker for 2 days at 4°C. Following this scaffolds were washed sequentially for 1 hour in 

PBS, 1 hour in 10 µM DAPI and 1 hour in PBS, before being moved into fresh PBS for storage. 

Scaffolds were imaged in ibidi petri dishes with a coverslip thickness bottom (ibidi #81158) for 

inverted imaging. 

2.13.4 Whole scaffold/tumour staining using Cleared Unobstructed 

Body Imaging Cocktails (CUBIC) 

Two reagents were required for CUBIC: Reagent 1a (modified from Reagent 1, unpublished, available 

at http://cubic.riken.jp/) and Reagent 2 (Susaki et al., 2015). Reagent 1a was prepared with the 
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following ingredients mixed at room temperature in the order they are written: 10wt% Triton-X, 

5wt% NNNN-tetrakis (2-HP) ethylenediamine (Sigma), 10wt% Urea (Sigma) and 25 mM NaCl in dH2O. 

The cocktail was then mixed on a heated magnetic stirrer at 60oC until dissolved. Reagent 2 was 

prepared with the following ingredients: 50wt% Sucrose (Sigma), 25wt% Urea, 10wt% 

Triethanolamine (Sigma), 0.1wt% Triton-X and dH2O followed by mixing on a heated magnetic stirrer 

at 60oC until dissolved. 

Experiments involving human tumour biopsies, murine MMTV-Wnt1 tumours, murine TUBO 

tumours, scaffolds with murine TUBO tumours and scaffolds seeded with tdTomato MDA-MB-231 

cells/E6E7-MSCs were fixed overnight in 4% PFA at 4°C followed by immersion in Reagent 1a at 37°C 

for three days changing into fresh Reagent 1a each day. Samples were blocked overnight in 0.5% 

Triton-X - 10% NGS - PBS (blocking solution). Primary antibodies (see Table 2.6) were diluted in 

blocking solution and agitated on a rocker for 5 days at 4°C. Samples were washed in PBS briefly 

followed by three 1 hour washes in fresh PBS. Secondary antibodies (see Table 2.7) were diluted in 

blocking solution and agitated on a rocker for 2 days at 4°C. Samples were washed in PBS briefly 

followed by a 1 hour wash in fresh PBS. Nuclei were marked with a 2 hour wash in either 10 µM DAPI 

or 1 µM SYTO 16 green fluorescent nuclear stain (Thermofisher Scientific #S7578). Samples were 

washed in PBS briefly followed by a 1 hour wash in fresh PBS and immersed in Reagent 2 at 37°C in a 

dry incubator for 24 hours before imaging (Lloyd-Lewis et al., 2016; Susaki et al., 2014, 2015). 
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Table 2-6: Primary antibody concentrations for immunolocalisation 

A range of immunolocalisation methods were used throughout the thesis. Concentrations and 

company sources are outlined above. IHC-P = immunohistochemistry paraffin embedded, ICC = 

immunocytochemistry, WSS = whole scaffold immunostaining, CUBIC = whole scaffold 

immunostaining in conjunction with CUBIC optical clearing,  

Primary antibody Application Conc. Company Catalogue 

no. 

anti-Ki67 IHC-P 1:100 Abcam #ab15580 

anti-K18 IHC-P 1:600 Abcam #ab181597 

anti-K14 IHC-P 1:200 Abcam #ab7800 

anti-αSMA IHC-P/CUBIC 1:500/1:50 Abcam #ab7817 

anti-β-catenin IHC-P/CUBIC 1:100/1:200 Cell Signalling #8480S 

anti-E-cadherin IHC-P/CUBIC 1:500/1:100 Cell Signalling #3195 

anti-p63 IHC-P 1:50 Abcam #ab375 

anti-integrin β1 IHC-P 1:35 Abcam #ab3167 

 anti-vimentin  ICC  1:100  Cell Signalling  #5741 

anti-collagen IV ICC/WSS 1:500/1:100 Abcam #ab6586 
 

anti-laminin ICC/WSS 1:500/1:100 Abcam #ab11575 

 anti-perilipin  WSS  1:50  Cell Signalling  #3470S 

 anti-K8 CUBIC  1:150  DSHB  #TROMA-1 

 anti-Her2 CUBIC  1:300  Dako  #A0485 
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Table 2-7: Secondary antibody concentrations for immunolocalisation 

For fluorescent labelling of primary antibodies during immunolocalisation methods, complementary 

fluorescent secondary antibodies were required. Company sources are listed above. All secondary 

antibodies were used at a concentration of 1:500 for all immunolocalisation methods. 

  

Secondary antibody Company Catalogue no. 

goat anti-rabbit AlexaFluor-488  Thermofisher #A-11008 

goat anti-mouse AlexaFluor-488  Invitrogen  #A11001 

goat anti-rabbit AlexaFluor-647  Lifetech #A21245 

goat anti-Mouse AlexaFluor-647 Lifetech #A21237 

goat anti-rabbit-594  Thermofisher #A-11037 

goat anti-rat AlexaFluor647  Lifetech #A21247) 
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2.14 Microscopy 

2.14.1 Epifluorescence 

Automated epifluorescent microscopy was carried out using a Zeiss Observer with 20× objective. Tile 

scans of 10 × 8 × 0.5 mm (x,y,z dimensions) were performed to capture cells within the entire cut 

face of the scaffold presented to the slide. 

2.14.2 Confocal 

Confocal microscopy was carried out on confocal laser scanning Leica TCS SP8 microscope. 

2.14.3 Multiphoton microscopy – Two-photon fluorescence (2pf), 

Second harmonic generation (SHG) and Coherent Anti Raman Spectroscopy 

(CARS) 

2pf and SHG was carried out on the LaVision BioTec TriM Scope II upright 2-photon scanning 

fluorescence microscope using a 25x water dipping objective with a fixed 1040 nm laser and a 

tuneable laser. SHG was excited at 836 nm. CARS microscopy was carried out on the LaVision BioTec 

TriMscope with the assistance of Dr. Lorraine Berry (University of Cambridge, CRUK Cancer 

Institute). To produce a CARS signal a stokes beam from a TiSa laser (835 nm) was generated in 

conjunction with as a pump beam from an OPO laser (1104 nm). Both lasers were collinearly focused 

to provide a strong anti-stokes beam producing a CARS signal for the imaging of lipids. 

2.14.4 Scanning electron microscopy (SEM) 

All SEM images were taken by Dr. Anke Husmann. Scanning electron microscopy micrographs were 

used to visualise the pore structure of the scaffolds at various magnifications. Prior to imaging, 

collagen scaffolds were sputter coated with gold for 2 mins at a current of 20 mA. All micrographs 

were taken on a JEOL 5800, with a tungsten source, operated at 10 kV. 

2.14.5 X-ray micro-computed tomography (µCT) 

All µCT images were taken by Dr. Anke Husmann. Skyscan 1172 μCT scans were taken of the whole 

scaffolds (25 kV, 140μA). Reconstructions were performed with the software program NRecon 

(Skyscan), with a resolution of 6 μm. 
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3 Culture of primary mammary 

epithelial cells from a basal cell 

origin in adipocyte-invested collagen 

scaffolds 
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3.1 Introduction 

A mammary gland divested of its epithelium can be repopulated and regain full functionality upon 

transplantation of a single cell (Kordon and Smith, 1998; Shackleton et al., 2006; Stingl et al., 2006). 

These cells, named mammary stem cells (MaSCs) or mammary repopulating units (MRUs) are 

presumed to be located within the basal epithelial population of the gland and therefore express 

basal cell markers such as K14 and αSMA. Upon transplantation they form an epithelial bilayer of 

both basal and luminal cells, demonstrating their bipotency during this transplantation procedure. 

However, transplantation has been shown to produce a regenerative response and so may not 

reflect the true potential of basal cells in the mammary gland in situ. Further study of MRUs has 

identified other markers to distinguish them from luminal epithelial cells (van Amerongen et al., 

2012; Wang et al., 2014a). Notably, Wnt responsive Axin2-expressing cells are capable of 

repopulating a cleared fat pad and generating both luminal and basal epithelium (van Amerongen et 

al., 2012). The work in this chapter aimed to recapitulate aspects of the process of epithelial cell 

repopulation of the mammary gland in a 3D in vitro cell culture model. Should this model be 

successful it would facilitate future studies of MaSC/MRU potential in a 3D in vitro environment that 

is more amenable to molecular analysis than a murine model. 

Previously it has been shown that 3T3-L1 preadipocytes can be seeded into collagen I scaffolds and 

differentiated into mature adipocytes to synthesise a synthetic fat pad (Davidenko et al. 2010). 

Moreover, this synthetic fat pad has been shown to support 3D culture of the KIM-2 murine 

mammary epithelial cell line that accurately mimics the epithelial and stromal features of the 

mammary gland (Campbell et al., 2011). Using a synthetic fat pad, these experiments aimed to seed 

basal epithelial cells and assess whether they could populate the scaffold with both basal and 

luminal epithelial cells to form bi-layered structures, as obtained with KIM-2 cells, to recapitulate the 

potential of MaSCs/MRUs observed in vivo.  

For these experiments, two mouse models were utilised: K14-creERT2/ROSA26-tdTomato and Axin2-

creERT2/ROSA26-tdTomato transgenic mice. FACS sorted fluorescent basal cells were isolated from 

the mammary glands of these mice and then seeded into synthetic collagen fat pads. Their ability to 

generate both basal and epithelial lineages in a polarized bilayer was then assessed by IHC methods. 
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3.2 Results 

3.2.1 Fluorescence activated cell sorting (FACS) strategy to isolate 

tdTomato+ primary murine basal cells 

The K14-creERT2/Rosa26-tdTomato mouse model is a tamoxifen inducible system (Van Keymeulen et 

al., 2011; Wright et al., 2015). In this model, the enzyme Cre recombinase is expressed downstream 

of the K14 promoter in K14-expressing cells. Upon tamoxifen administration via injection or 

ingestion, Cre is activated in K14+ cells. This results in removal of the floxed STOP cassette flanking 

tdTomato coding sequences inserted at the ‘safe harbor’ Rosa26 locus and subsequent constituent 

expression of the fluorescent protein tdTomato. Consequently, the progeny of K14+ cells are 

permanently fluorescently tagged and their lineage can be traced. As K14 is exclusively expressed in 

basal mammary epithelial cells, fluorescently tagged daughter cells can be assumed to have arisen 

from a basal cell. 

To isolate tdTomato+ cells and to ensure they were from a basal epithelial origin, an established 

FACS protocol was utilized (Stingl et al., 2006). Initially, mice were injected with tamoxifen dissolved 

in sunflower oil to induce Cre-mediated recombination and tdTomato expression in K14+ cells. 

Tamoxifen injections were carried out by Dr. Sara Pensa, University of Cambridge (Department of 

Pharmacology). Glands were then harvested, digested overnight, fat tissue removed, separated into 

single cells and stained for various cell surface markers before FACS.  

Cells were first separated using FACS based on their size and granularity through analysis of their 

forward scatter and side scatter properties, respectively (Fig. 3.1a). As the cells of the mammary 

gland are highly heterogeneous in both size and granularity, no distinct populations of cells could be 

distinguished using this approach. However, cells (Fig. 3.1a, gate i) were able to be discerned from 

cell debris through gating at a minimum forward scatter and side scatter threshold and only sorting 

cells above that threshold. This purified the entire cell population from contaminating and possibly 

cytotoxic cellular debris. 

Different mammary epithelial cell populations can be distinguished based upon their CD24 and 

CD49f cell surface marker expression (Stingl et al., 2006). Luminal cells can be demarcated by their 

CD24hi / CD49flo expression and basal cells based by their CD24+ / CD49fmed/hi expression. Using these 

parameters, basal cells were then sorted from the general cell population (Fig. 3.1b, gate ii). 

For the removal of contaminating blood lineage cells (Lin) and to ensure purity of the basal epithelial 

population, cells were stained for CD31, CD45 and TER119 to mark endothelial cells, leukocytes and 

erythrocytes, respectively (Stingl et al., 2006). The antibodies used for this process were biotinylated 
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and were all conjugated to a secondary PE-Cy7 antibody. This particular antibody was selected to 

avoid spectral overlap, as the Cy7 fluorophore emits in the far red spectra, at 767 nm, well beyond 

the emission spectra of tdTomato, at 581nm. Using this strategy, all cells that were negative for PE-

Cy7 were classified as Lin- and were therefore sorted to enrich the epithelial population (Fig. 3.1c, 

gate iii). Furthermore, tdTomato+ cells were isolated from the Lin- CD24+ CD49fmed/hi basal population 

based on their tdTomato expression (Fig. 3.1d, gate iv). All the aforementioned gating strategies 

were applied simultaneously (Fig. 3.1, gates i-iv) in a single FACS protocol to obtain tdTomato+ Lin- 

CD24+ CD49fmed/hi basal cells from the entire mammary gland cell population. 

 

 

 

 

  



Culture of primary mammary epithelial cells from a basal cell origin in adipocyte-invested collagen scaffolds   

 

95 
 

 

Figure 3-1: Fluorescent activated cell sorting (FACS) of tdTomato+ primary murine basal 

mammary epithelial cells 

Harvested and digested mammary glands from tamoxifen induced K14-creERT2/Rosa26-tdTomato 

mice were FACS sorted to (a) remove cell debris, (b) separate basal epithelial cells from luminal 

epithelial cells, (c) remove hematopoietic lineage cells and (d) separate tdTomato+ cells. (a) Entire 

cell population was gated (i) according to forward scatter and side scatter of incoming FACS laser 

light to remove cell debris. (b) Basal cells were gated (ii) according to their CD24+/CD49fhi expression. 

(c) Blood lineage CD31/CD45/TER119 negative cells (Lin-) cells were gated (iii). (d) tdTomato+ cells 

were gated (iv) according to their tdTomato expression. tdTomato+ Lin- CD24+ CD49fhi primary 

murine basal epithelial cells were collected from the mammary gland population by applying gates i, 

ii, iii and iv simultaneously. 
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3.2.2 Optimising tdTomato+ primary basal epithelial cell yields 

FACS of mammary epithelium obtained from the glands of K14-creERT2/Rosa26-tdTomato mice 

yielded approximately 300 tdTomato+ basal epithelial cells per mouse (Fig. 3.2a). This low yield 

meant low cell numbers were available for 3D culture experiments. In an attempt to resolve this, 

subsequent experiments sought to optimise Cre recombination and therefore the number of 

tdTomato expressing cells in K14-creERT2/Rosa26-tdTomato mice to produce higher yields. 

Initial steps of the protocol to induce Cre recombinase activity in vivo involved dissolving tamoxifen 

in sunflower oil before administering to mice via intraperitoneal injection. Some studies follow this 

protocol whilst others opt for dissolving tamoxifen in corn oil as an alternative (Cellurale et al., 2012; 

Malhotra et al., 2014; Shehata et al., 2014; Wang et al., 2014a). It was therefore investigated 

whether this alternative method could increase yields. Unfortunately, this yielded similar results to 

sunflower oil with approximately 300 tdTomato+ basal cells per mouse (Fig. 3.2b). 

It was then hypothesised that taking the cells into 2D culture and treating in vitro would increase 

tdTomato+ yields as tamoxifen would not have to pass through the murine bloodstream to reach 

target cells. Tamoxifen was therefore titrated in vitro following tamoxifen-sunflower oil injections, 

tamoxifen-corn oil injections or without any previous injections in mice, ranging from 0.1-500 µM for 

24 or 48 hours (Fig. 3.2c, Table 3.1). IHC and FACS analysis all concluded that 10 µM for 48 hours was 

the optimal in vitro treatment regime. However, this only increased yields minimally from 

approximately 300 to 500 tdTomato+ cells per mouse.   
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Figure 3-2: Optimisation of tamoxifen administration in vivo and in vitro 

K14-creERT2/Rosa26-tdTomato mice were injected with tamoxifen to induce Cre recombination and 

tdTomato expression in K14+ basal mammary epithelial cells. K14+tdTomato+ cells were then 

separated from the mammary gland population by FACS. Above are schematics illustrating the 

different techniques involving the optimisation of tamoxifen administration. (a) Initial experiments 

show low yields of tdTomato+ cells from FACS. (b) Comparison of tamoxifen dissolved in cornflower 

oil versus sunflower oil showed no differences in yields. (c) In vitro tamoxifen titration and 

fluorescence microscopy imaging of tdTomato (red) expression and anti-K14 antibody staining 

(green) showed small increase in yields. 
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Table 3-1: Tamoxifen titration of primary mammary epithelial cells from K14-

creERT2/Rosa26-tdTomato mammary glands in vitro 

Table representing the various in vivo tamoxifen treatments (*3 injections, 4 mg/injection over the 

course of 7 days) of K14-creERT2/Rosa26-tdTomato mice and the corresponding in vitro tamoxifen 

titration to optimise tdTomato+ cell yields following FACS. 

  

In vivo 

tamoxifen 

treatment 

In vitro tamoxifen 

treatment (μM) 

Time of 

tamoxifen 

treatment in 

vitro (hours) 

IHC 
Flow 

Cytometry 

Optimal 

tamoxifen 

treatment 

Corn Oil* 

Vehicle, 0.1, 0.25, 

0.5, 1.0, 2.5, 5.0, 

10.0 

24, 48 Yes No 
10 μM, 48 

hours 

Sunflower 

Oil* 

Vehicle, 0.1, 0.25, 

0.5, 1.0, 2.5, 5.0, 

10.0 

24, 48 Yes No 
10 μM, 48 

hours 

None 
Vehicle, 10, 50, 

100, 150, 200, 500 
24, 48 No Yes 

10 μM, 48 

hours 
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3.2.3 tdTomato+ basal cells in collagen scaffolds invested with adipocytes 

Using a previously published protocol in combination with fluorescently tagged copGFP 3T3-L1 

preadipocytes, synthetic fat pads were synthesised (Fig. 3.3, bottom, Fig. 3.4a, green) (Campbell et 

al., 2011; Davidenko et al., 2010). Following this, Lin- CD24+ CD49fmed/hi tdTomato+ basal cells were 

isolated from the glands of K14-creERT2/Rosa26-tdTomato mice by FACS after in vivo tamoxifen 

injections and tamoxifen treatment in vitro (Fig. 3.3, top). These tdTomato+ cells were then seeded 

into the synthetic fat pad, cultured for 2 weeks, fixed and whole mount immunostained for analysis 

(Fig. 3.3, top). 

Confocal microscopy z-stacks revealed that tdTomato+ basal cells were able to form 3D ring-like 

structures (Fig. 3.4a, red) within the synthetic fat pad (Fig. 3.4a, green). The long thin morphology of 

these cells was typical of basal mammary epithelial cells in vivo. However, no cells observed 

exhibited a columnar luminal cell morphology. Interestingly, although cells did not have a luminal 

morphology some tdTomato+ cells (Fig. 3.4b, red) did express the luminal cell marker K18 (Fig. 3.4b, 

green, white arrows). Due to low cell yields and an incomplete epithelial bilayer formation it was 

decided to discontinue experiments involving the K14-creERT2/Rosa26-tdTomato mice. 
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Figure 3-3: Schematic of tdTomato+ basal cell culture in adipocyte invested collagen 

scaffolds 

K14-creERT2/Rosa26-tdTomato mice were injected with tamoxifen to induce Cre recombination and 

tdTomato expression in K14+ basal mammary epithelial cells. tdTomato+ cells were then separated 

from the mammary gland population by FACS and treated in vitro with 10 µM tamoxifen (top left). A 

synthetic fat pad was generated via seeding of 3T3-L1 preadipocyte cells into collagen scaffolds and 

differentiation into mature adipocytes (bottom left). Oil red O lipid soluble dye shows increased lipid 

content in differentiated 3T3-L1 cells during 2D culture (bottom left). tdTomato+ cells were then 

seeded into synthetic fat pads followed by confocal microscopy analysis (top right). 
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Figure 3-4: tdTomato+ basal cells form rings in synthetic fat pads and can express the 

luminal marker cytokeratin-18 (K18) 

tdTomato+ basal cells that had been FACS sorted from tamoxifen induced K14-creERT2/Rosa26-

tdTomato murine mammary glands, were seeded into collagen scaffolds invested with differentiated 

3T3-L1 cells (adipocytes) and showed varying structures during confocal microscopy analysis. (a) 

Confocal microscopy z-stacks show tdTomato+ basal cells (red) with fluorescently labelled copGFP 

3T3-L1 adipocytes (green) formed ring-like structures (dotted white lines). (b) Whole mount 

immunofluorescence on these scaffolds for luminal marker cytokeratin-18 (K18, green) and confocal 

analysis shows dual positive tdTomato+ (red) K18+ (green) cells (marked with white arrows). (a,b) 

DNA is marked with Hoechst dye (blue). 
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3.2.4 Expansion of tdTomato+ cells from an Axin2+ basal mammary 

epithelial cell origin  

During both development and in adult homeostasis, Wnt signalling has been shown to be involved in 

regulating stem cell maintenance and differentiation in a range of tissues (Bowman et al., 2013; Choi 

et al., 2013; Chu et al., 2004; Pinto et al., 2003; Zhang et al., 2008). Previously, lineage tracing has 

shown that Wnt/β-catenin-responsive Axin2+ cells within the mammary gland have a varied 

contribution to both basal and luminal epithelial lineages, that is dependent on developmental stage 

(van Amerongen et al., 2012). Furthermore, it was shown that upon fat pad transplantation, Wnt/β-

catenin responsive Axin2+ cells behave as multipotent MaSC/MRUs, capable of repopulating the 

gland with an epithelial bilayer comprising both basal and luminal cells. 

Subsequent experiments involved the isolation and culture of Wnt-responsive Axin2+ basal epithelial 

cells in synthetic fat pads to assess whether they could provide higher yields during FACS and 

generate bi-layered epithelial structures from a basal cell population. Furthermore, it was intended 

that these cells would be expanded in 2D culture to increase the potential for further 3D 

experiments. For this purpose, the Axin2-creERT2/Rosa26-tdTomato mouse model was utilized 

(van Amerongen et al., 2012; Yan et al., 2017). Upon tamoxifen administration to these mice, Cre 

recombinase was activated in Axin2+ cells resulting in the expression of tdTomato from the Rosa26 

locus. Consequently, tdTomato+ cells and their progeny were permanently fluorescently tagged and 

lineage traced. 

Following intraperitoneal tamoxifen injections, mammary glands from Axin2-creERT2/Rosa26-

tdTomato mice were harvested and Lin- CD24+ CD49fmed/hi tdTomato+ basal cells were sorted using 

the same FACS protocol outlined in Figure 3.1. FACS analysis revealed that yields were improved 

from the 300 cells per mouse observed in K14-creERT2/Rosa26-tdTomato mice (without in vitro 

treatment), to approximately 10,000 cells per mouse in Axin2-creERT2/Rosa26-tdTomato (Fig. 3.5a). 

To expand cells in culture a previously published protocol was utilized (Prater et al., 2014). This 

involved culturing cells on Matrigel coated plates with feeder cells and media containing the rho-

associated protein kinase inhibitor (ROCKi), Y-27632 (Fig. 3.5b). In this study, Matrigel was used to 

increase cell attachment whilst feeder cells provided growth factors to help cells survive and 

proliferate (Hongisto et al., 2012). Media was supplemented with ROCKi because it has previously 

been shown to increase cellular proliferation, reduce apoptosis and maintain stemness in cell 

cultures (Koyanagi et al., 2008; Piltti et al., 2015; Prater et al., 2014; Yu et al., 2012). Using this 

method, cells from 3 mice were expanded and passaged to increase cell numbers 805 times from 

31,068 to 25,020,800 tdTomato+ cells (Fig. 3.5c). Successful expansion of cells permitted 
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considerably higher numbers of cells to be used in 3D cultures to increase the likelihood of organoid 

formation. Moreover, a higher number of repeats could therefore be carried out and vials of 

tdTomato+ cells were frozen for future experiments. 
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Figure 3-5: Expansion of tdTomato+ basal cells from Axin2-creERT2/Rosa26-tdTomato mice 

in vitro 

(a) Axin2-creERT2/Rosa26-tdTomato mice were injected with tamoxifen to induce Cre recombination 

in Wnt-responsive Axin2+ cells and tdTomato expression in this cell population. Mammary glands 

were harvested, digested and FACS sorted for tdTomato+ basal cells, providing yields of 

approximately 10,000 cells per mouse. (b) Schematic showing in vitro expansion of FACS sorted 

tdTomato+ basal cells using a feeder layer, Matrigel coating and FAD media. (c) Number of 

tdTomato+ basal cells following in vitro expansion. 
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3.2.5 tdTomato+ primary cells from Axin2-creERT2/Rosa26-tdTomato mice 

rarely form bi-layered structures in adipocyte invested collagen scaffolds 

As tdTomato+ cells were successfully FACS sorted from the basal population of the Axin2-

creERT2/Rosa26-tdTomato glands, this section focussed on investigating whether tdTomato+ cells 

from an Axin2+ basal cell origin could generate bi-layered epithelial structures in our 3D model. To 

assess this, expanded cells were seeded and cultured in synthetic fat pads. Whole mount 

immunostaining was then applied to fixed scaffolds and imaged using confocal microscopy. The 

basal marker αSMA was used to delineate basal epithelial cells from other cell types (Fig. 3.6-3.11).  

Using the aforementioned 3D culture protocol a number of different structures were formed (Fig. 

3.6-3.11). Notably, tdTomato+ structures that morphologically resembled aspects of in vivo ductal 

structures were observed (Fig. 3.6-3.9). These were relatively infrequent events and were discovered 

approximately 0-1 times per scaffold imaged. Within these structures two cell types emerged: long 

thin cells resembling a basal cell morphology that were dual positive for tdTomato and the basal 

marker αSMA (Fig. 3.6, white arrows) and rounder cells single positive for tdTomato that more 

closely resembled a luminal morphology (Fig. 3.6, white arrowheads). Z-stacks revealed tdTomato+ 

αSMA+ cells were located surrounding single positive tdTomato+ cells in a similar manner to αSMA+ 

basal cells surrounding luminal cells in ductal structures in vivo (Fig. 3.7, Fig. 3.8). A depth colour 

coded z-projection of the tdTomato channel from Figure 3.8 demonstrates tdTomato+ structures 

could reach sizes of >400 µm long, >100 µm wide and >130 µm deep (Fig. 3.9).  

Another notable structure that was observed, although also infrequently at approximately 1 in 5 

scaffolds, was a “terminal end bud” structure. This resembled some aspects of the in vivo 

morphology of a terminal end bud, a structure located at the ends of ductal structures in the virgin 

pubertal gland (Fig. 3.10). Dual positive thin long tdTomato+ αSMA+ cells were observed wrapped 

around single positive tdTomato+ cells in a spherical structure, similar to αSMA+ basal cells wrapped 

around luminal cells at the end of a duct in a terminal end bud (Fig. 3.10). 

The majority of structures formed by tdTomato+ cells from an Axin2+ basal cell origin in synthetic fat 

pads appeared to be disorganised with no visible epithelial bilayer (Fig. 3.11). Long thin tdTomato+ 

cells with a basal morphology were often observed to be single positive and did not express the 

basal marker αSMA (Fig. 3.11a,b). Additionally, long thin dual positive tdTomato+ αSMA+ cells often 

formed long thin structures with no single positive tdTomato+ cells nor any cells resembling a luminal 

morphology (Fig. 3.11c,d). Moreover, disorganised masses of cells were also observed with no 

specific localisation of tdTomato or αSMA expression (Fig. 3.11e-h). 
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Figure 3-6: Bilayered tdTomato+ “ductal-like” structure in adipocyte invested scaffold 

Axin2-creERT2/Rosa26-tdTomato mice were injected with tamoxifen to induce Cre recombination in 

Wnt-responsive Axin2+ cells and tdTomato expression in this cell population. Mammary glands were 

harvested, digested and FACS sorted for tdTomato+ basal cells. These cells were then seeded into 

collagen scaffolds invested with differentiated 3T3-L1 cells, fixed and whole mount 

immunofluorescence stained. Images shown are confocal image channels of (a) DNA marked with 

Hoechst - blue, (b) α-smooth muscle actin (αSMA) - green, (c) tdTomato - red and (d) merged image. 

Dual positive tdTomato+ αSMA+ cells are marked with white arrows. Single positive tdTomato+ cells 

are marked with a white arrowhead. 
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Figure 3-7: Bilayered tdTomato+ “ductal-like” structure in adipocyte invested scaffold – z-

stack 

Axin2-creERT2/Rosa26-tdTomato mice were injected with tamoxifen to induce Cre recombination in 

Wnt-responsive Axin2+ cells and tdTomato expression in this cell population. Mammary glands were 

harvested, digested and FACS sorted for tdTomato+ basal cells. These tdTomato+ cells (red) were 

then seeded into collagen scaffolds invested with differentiated 3T3-L1 cells, fixed, whole mount 

immunofluorescence stained for α-smooth muscle actin (αSMA) – green and imaged using confocal 

microscopy. DNA is marked with Hoechst in blue. A 50 µm z stack is represented as a maximum 

intensity projection (left) and individual z-sections from the top (0 µm), middle (25 µm) and bottom 

(50 µm) of the z-stack (right). 
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Figure 3-8: Bilayered tdTomato+ structure in adipocyte invested scaffold – z-stack 2 

Axin2-creERT2/Rosa26-tdTomato mice were injected with tamoxifen to induce Cre recombination in 

Wnt-responsive Axin2+ cells and tdTomato expression in this cell population. Mammary glands were 

harvested, digested and FACS sorted for tdTomato+ basal cells. These tdTomato+ cells (red) were 

then seeded into collagen scaffolds invested with differentiated 3T3-L1 cells, fixed, whole mount 

immunofluorescence stained for α-smooth muscle actin (αSMA) (green) and imaged using confocal 

microscopy. DNA is marked with Hoechst (blue). A 132 µm z stack is represented as a maximum 

intensity projection. 
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Figure 3-9: Bilayered tdTomato+ structure in adipocyte invested scaffold – pseudo-coloured 

z-depth projection 

The tdTomato channel from Figure 3.8 has been projected alone with its z-depth projected as a 

colour spectrum ranging from 0-132 µm (see colour coded key at the bottom of the image). 
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Figure 3-10: Bilayered tdTomato+ “terminal end bud” structure in adipocyte invested 

scaffold – z-stack 

Axin2-creERT2/Rosa26-tdTomato mice were injected with tamoxifen to induce Cre recombination in 

Wnt-responsive Axin2+ cells and tdTomato expression in this cell population. Mammary glands were 

harvested, digested and FACS sorted for tdTomato+ basal cells. These tdTomato+ cells (red) were 

then seeded into collagen scaffolds invested with differentiated 3T3-L1 cells, fixed, whole mount 

immunofluorescence stained for α-smooth muscle actin (αSMA) (green) and imaged using confocal 

microscopy. DNA is marked with Hoechst (blue). A “terminal end bud” structure is marked with a 

white dotted line. 60 µm z-stack is represented as a maximum intensity projection.  
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Figure 3-11: tdTomato+ cells from an Axin2+ basal cell origin frequently form non-polarized 

disorganised structures in adipocyte invested collagen scaffolds 

Axin2-creERT2/Rosa26-tdTomato mice were injected with tamoxifen to induce Cre recombination in 

Wnt-responsive Axin2+ cells and tdTomato expression in this cell population. Mammary glands were 

harvested, digested and FACS sorted for tdTomato+ basal cells. These tdTomato+ cells (red) were 

then seeded into collagen scaffolds invested with differentiated 3T3-L1 cells, fixed, whole mount 

immunofluorescence stained for α-smooth muscle actin (αSMA) (green) and imaged using confocal 

microscopy. DNA is marked with Hoechst (blue). (a-h) represent various disorganised tdTomato+ 

structures observed during confocal microscopy. 
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3.2.6 Structures formed tdTomato+ cells from an Axin2+ basal cell origin do 

not express luminal cell markers  

Some structures formed by tdTomato+ cells from an Axin2+ basal cell origin comprised cells 

resembling a luminal epithelial morphology and did not express the basal marker αSMA. To verify if 

they were in fact luminal cells that had differentiated from an Axin2+ basal cell origin, samples were 

stained with the luminal markers K18 and β-catenin. Expression of these proteins was expected to 

be located in the cytoplasm and cell membranes of luminal cells for K18 and β-catenin staining, 

respectively. 

Unfortunately, K18 expression was not observed in any sample containing tdTomato+ cells upon IHC 

analysis (Fig. 3.12). In contrast, β-catenin was observed in tdTomato+ structures with some 

anticipated membranous expression (Fig. 3.13). However, this expression was not restricted to cells 

with a luminal morphology and was also observed in cells with a basal morphology (Fig. 3.13). 

Furthermore, there was some cytoplasmic β-catenin expression and no distinct pattern was 

discerned (Fig. 3.13). These data demonstrate that Axin2+ cells from a basal epithelial origin within 

our 3D model were unable to correctly form a bi-layered epithelium with the accurate localisation of 

basal and luminal cell markers.  
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Figure 3-12: tdTomato+ structures do not express luminal marker cytokeratin-18 (K18) 

Axin2-creERT2/Rosa26-tdTomato mice were injected with tamoxifen to induce Cre recombination in 

Wnt-responsive Axin2+ cells and tdTomato expression in this cell population. Mammary glands were 

harvested, digested and FACS sorted for tdTomato+ basal cells. These tdTomato+ cells (red) were 

then seeded into collagen scaffolds invested with differentiated 3T3-L1 cells, fixed, whole mount 

immunofluorescence stained for Cytokeratin-18 (K18, green) and imaged using confocal microscopy. 

DNA is marked with Hoechst (blue). Confocal microscopy images shown are (a) DNA marked with 

Hoechst - blue, (b) K18 - green, (c) tdTomato - red and (d) merged image. No K18+ cells were 

detected. 
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Figure 3-13: tdTomato+ structures do not express β-catenin in a typical luminal location 

Axin2-creERT2/Rosa26-tdTomato mice were injected with tamoxifen to induce Cre recombination in 

Wnt-responsive Axin2+ cells and tdTomato expression in this cell population. Mammary glands were 

harvested, digested and FACS sorted for tdTomato+ basal cells. These tdTomato+ cells (red) were 

then seeded into collagen scaffolds invested with differentiated 3T3-L1 cells, fixed, whole mount 

immunofluorescence stained for β-catenin (green) and imaged using confocal microscopy. DNA is 

marked with Hoechst (blue). Confocal microscopy images shown are (a) DNA marked with Hoechst in 

blue, (b) β-catenin in green, (c) tdTomato in red and (d) merged image. 
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3.3 Discussion 

3.3.1 The K14-CreERT2/Rosa26-tdTomato mouse model 

To determine whether basal epithelial cells seeded into collagen scaffolds invested with adipocytes 

could produce epithelial cells of both basal and epithelial lineages, tdTomato+ K14+ basal cells were 

isolated by FACS sorting glands from tamoxifen-induced K14-creERT2/Rosa26-tdTomato mice (Fig. 

3.1). Unfortunately, the yield of tdTomato+ K14+ cells was extremely low, differing from other 

reports that utilize K14-Cre mouse models crossed with fluorescent reporter strains (Van Keymeulen 

et al., 2011; Rios et al., 2014; Wuidart et al., 2016). Importantly, these previously studied models all 

yielded a greater number of fluorescently tagged basal cells than the K14-CreERT2/Rosa26-tdTomato 

mouse model used in this study. Furthermore, it was not possible to substantially increase 

fluorescent cell numbers following in vitro optimization (Fig. 3.2), suggesting that there were 

underlying issues with that the cells did not cope well with the sorting process and were not 

sufficiently viable.  

Others have shown that upon fat pad transplantation of K14+ basal epithelial cells into a mammary 

gland devoid of its epithelium, a proportion of cells can form both K14+ basal and K18+ luminal cells 

to fully repopulate the gland (Shackleton et al., 2006; Stingl et al., 2006). To test whether this 

process could be modelled in vitro, tdTomato+ K14+ basal cells from K14-creERT2/Rosa26-tdTomato 

mice were FACS sorted and seeded into a ‘synthetic fat pad’ (Fig. 3.3). tdTomato+ ring structures 

formed with cells exhibiting a long thin basal morphology and some cells expressing the luminal 

marker Cytokeratin-18 (K18) (Fig. 3.4). However, K18+ cells observed in tdTomato+ structures did not 

display a luminal morphology, suggesting they may have been cells in the process of transitioning 

between cell types (de Visser et al., 2012). Alternatively, tdTomato+ cells may maintain a degree of 

stemness but were unable to complete correct differentiation into a luminal state within the model 

and remained in a dual luminal/basal-like state (Chakrabarti et al., 2012). Potentially, the cellular 

plasticity exhibited by tdTomato+ cells from a K14+ basal cell origin exhibited could be an artefact of 

the FACS process and/or 3D culture conditions. Ductal and terminal end bud structures typical of 

mammary epithelia were not formed by tdTomato+ cells and hence fat pad repopulation was not 

recapitulated in vitro. These data provided an understanding of the possibilities and limitations of 

the K14-creERT2/Rosa26-tdTomato system; however, this model was not pursued further due to the 

low yield of basal cells obtained. 

3.3.2 The Axin2-CreERT2/Rosa26-tdTomato mouse model 

Previously it has been shown that Axin2+ mammary epithelial cells contribute to both luminal and 

basal cells upon fat pad transplantation (van Amerongen et al., 2012). Therefore it was investigated 
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whether tdTomato+ Axin2+ basal cells isolated from Axin2-creERT2/Rosa26-tdTomato mice would have 

the same potential in vitro. Following results from K14-creERT2/Rosa26-tdTomato mice, the Axin2-

CreERT2/Rosa26-tdTomato mouse was utilized with the aim of improving cell yields and epithelial 

bilayer formation within synthetic fat pads. tdTomato+ Axin2+ basal epithelial cells were successfully 

isolated using the same FACS protocol used for tdTomato+ K14+ cells. This method provided 

tdTomato+ basal cell yields approximately 30 times higher than tdTomato+ K14+ FACS.  

To increase yields further, cells were expanded in 2D culture for subsequent 3D culture experiments. 

Expansion conditions on a layer of Matrigel and feeder cells increased cell numbers sufficiently for 

multiple experiments to be performed (Fig. 3.5). Although this process was effective in increasing 

fluorescent cell yields, it is important to note that it added a further layer of complexity and cost to 

the model. Moreover, in vitro factors such as 2D culture, culture medium and feeder cells have been 

previously associated with cellular reprogramming and altered cell stemness (Liu et al., 2012; Prater 

et al., 2014; Takahashi and Yamanaka, 2006). These factors may have influenced the potency of any 

MaSC present in the system, potentially explaining the absence of properly polarised Axin2 

organoids within collagen scaffolds. 

During 3D culture of of tdTomato+ cells from an Axin2+ basal cell origin in synthetic fat pads, a 

number of structures were formed. Rarely, structures partially resembling the ducts and terminal 

end buds of an in vivo mammary gland were observed with the correct positioning and morphology 

of αSMA+ basal cells (Fig. 3.6-3.10). Cells with a luminal morphology were also observed within these 

structures, however, they did not correctly express luminal markers K18 or β-catenin (Fig. 3.11 – 

3.13). Notably, the vast majority of tdTomato+ structures formed in scaffolds were disorganised and 

did not exhibit a similar morphology to epithelium of the in vivo mammary gland. Collectively, these 

data demonstrated that the model was unable to recapitulate the in vivo fat pad transplantation 

assay in vitro. 

3.3.3 Limitations of the in vitro primary cell seeding assay  

There are multiple factors that could have contributed to the aberrant polarisation of in vitro 

organoids. One such factor may have been the population of Lin- CD24+ CD49fmed/hi basal cells that 

were selected for scaffold experiments. Although a proportion of these cells have been shown to 

form a fully functioning mammary gland upon fat pad transplantation, in vitro manipulation may 

have reduced their repopulating capacity (Shackleton et al., 2006). Future studies could incorporate 

other MaSC markers, such as Procr, to more efficiently purify the MaSC population and therefore 

increase the probability of bi-layered organoid formation (Wang et al., 2014a).  
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In order to retain stemness, MaSCs reside within a niche tightly regulated by multiple signalling 

molecules, receptors and growth factors. These signalling pathways orchestrate quiescence and 

differentiation  and an imbalance can lead to incorrect gland formation (Lane and Leder, 1997; 

Naylor et al., 2005; Sang et al., 2008; Seagroves et al., 2010; Teissedre et al., 2009). In vitro systems 

such as scaffold cultures rely on the supplementation of the culture medium. Neuregulin1 (Nrg1) is a 

member of the epidermal growth factor (EGF) family of ligands. Supplementation with Nrg1 instead 

of EGF has recently been shown to increase cell viability, extend culture periods, permitting 

formation of complex lobular mammary structures in Matrigel culture (Jardé et al., 2016). Addition 

of fibroblast growth factor 2 (FGF2) has been shown to increase branching formation during 

organoid cultures (Zhang et al., 2014). In the current study, scaffold culture media was 

supplemented with EGF. Hence, future replacement of EGF with Nrg1 and the inclusion of FGF2 in 

culture media may permit increased mammary organoid formation. 

Mammary organoid polarisation and formation is also effected by the ECM composition and 

supramolecular organisation in which cells or tissue fragments are cultured (Carter et al., 2017; 

Nguyen-Ngoc and Ewald, 2013; Sokol et al., 2016). Studies involving organoid cultures have shown 

conflicting evidence over preference to either Matrigel or collagen I as the substrate of choice 

(Carter et al., 2017; Gudjonsson et al., 2002; Krause et al., 2008). Accordingly, the use of collagen I to 

synthesise scaffolds, rather than an ECM containing basement membrane proteins such as Matrigel, 

may have been a contributing factor to the absence of organoid formation in the systems used here. 

In both the K14-creERT2/Rosa26-tdTomato and Axin2-creERT2/Rosa26-tdTomato mouse models, Cre 

recombination was induced by tamoxifen administration. However, tamoxifen inducible systems 

come with an important caveat: tamoxifen is an anti-oestrogen prodrug which forms metabolites 

that block the oestrogen receptor (ER) and prevent transcription of oestrogen-responsive genes 

(Wang et al., 2004). It is therefore used in the treatment of ER+ breast cancer by targeting ER+ 

epithelial cells of the gland (Fisher et al., 2005). Hence, using tamoxifen to fluorescently tag 

mammary epithelia may have deleterious effects on the gland and may unintentionally influence the 

population that is to be studied. Accordingly, tamoxifen may have altered the stem cell potential of 

cells isolated from both mouse models used in these scaffold cultures. Whilst tamoxifen dosages 

used in Cre recombination experiments are much lower than those therapeutically, many studies opt 

for alternative models such as the tetracycline inducible system to avoid this issue (Kaanta et al., 

2013; Van Keymeulen et al., 2011; Rios et al., 2014; dos Santos et al., 2013).  
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3.3.4 Conclusion 

Overall, these data show that the process of repopulating a fat pad to form an epithelial bilayer with 

MaSC/MRU cells could not be achieved using basal cells derived from K14-creERT2/Rosa26-tdTomato 

or Axin2-creERT2/Rosa26-tdTomato mice with the synthetic fat pad model. This suggests that 

additional components are present in the mammary fat pad in vivo that cannot presently be 

recapitulated in our scaffold model and further work is required to optimize it for stem cells studies. 
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4.1 Introduction 

The work presented in this chapter was a collaborative effort between this author and materials 

scientists (Professor Ruth Cameron and Dr. Anke Husmann) and Dr. Jonathan Campbell, a 

postdoctoral scientist in the laboratory of the supervisor Professor Christine Watson. Collaborative 

contributions that were not solely the work of this author are clarified in each figure legend and 

marked as †. 

A variety of 3D in vitro culture models have been generated for studies of both the normal and 

malignant breast epithelium, all of which have defined utility (Bissell et al., 2002; de Both et al., 

1999; Boyden, 1962; Chaudhuri et al., 2014; Daniel et al., 1984; Debnath et al., 2003; Lee et al., 

2007; Paszek et al., 2005; Poujade et al., 2007; Ray et al., 2017a; Todaro et al., 1965; Wang et al., 

2015). The majority of these consist of cells traversing an isotropic (non-directional) lattice. 

However, the directional migration of breast tumour cells has been shown to be strongly influenced 

by chemical gradients and/or directional cues provided by the organisational structure of 

extracellular matrix (ECM). Notably, stromal collagen is aligned perpendicular to the tumour edge in 

an anisotropic phenotype that has been named TACS-3, for Tumour Associated Collagen Signature-3 

(Provenzano et al. 2006). Furthermore, this phenotype has been observed frequently in aggressive 

breast tumours and is associated with poor patient prognosis (Jiang et al. 2016; Kakkad et al. 2016; 

Provenzano et al. 2006; Conklin et al. 2011). As collagen is a major structural component of the 

breast stroma, and breast cancer cells must migrate through this stroma, it is of significant interest 

to recapitulate this anisotropic ECM structure in vitro to study cancer cell migration in as realistic a 

context as possible. 

For this purpose, engineered anisotropic collagen I scaffolds were synthesized through modification 

of a previously published freeze drying technique (Davidenko et al. 2010). These structures were 

intended not only to mimic the anisotropic ECM surrounding breast tumours but also increase model 

tractability by providing a controlled internal architecture. The effect of collagen anisotropy on the 

migratory behaviour of three human breast cancer cell lines (MDA-MB-231, MDA-MB-468 and MCF-

7) was then investigated. Furthermore, the influence of collagen anisotropy on cellular proliferation 

was investigated using EdU incorporation combined with IHC analysis for the proliferation marker 

Ki67 (Gerdes et al., 1983). To elucidate whether this collagen model could distinguish more 

aggressive subtypes of the same tumour cell line, an epithelial-mesenchymal transition (EMT) was 

induced in MDA-MB-468 cells and migratory behaviour analysed. 
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4.2 Results 

4.2.1 Synthesis of anisotropic collagen scaffolds 

To synthesize anisotropic collagen I scaffolds, previously established freeze drying techniques were 

adopted and modified (Davidenko et al., 2010, 2012; Pawelec et al., 2014). The original technique 

involved dissolving collagen in acetic acid, homogenising it into a slurry, pouring this slurry into 

polycarbonate moulds then freezing and subsequently subliming ice within the slurry using a freeze 

drier. During the gradual freezing process, ice crystals nucleated at random throughout the slurry 

and an isotropic porous structure was formed within the collagen scaffolds. Through modification of 

this method, the nucleation point was altered in order to manipulate ice crystal growth and generate 

an anisotropic internal architecture (Methods, Fig. 2.1, Table 2.1). This was achieved by pre-chilling 

the freeze drier to -40°C before the moulds were added for the purpose of quenching the slurry 

(Methods, Table 2.1). Additionally, a copper pin was placed within the mould that was in thermal 

contact with the cooling shelf (Methods, Fig 2.1b,c). As copper has a lower specific heat capacity 

than that of the polycarbonate mould and the collagen slurry, the pins cool down more quickly than 

the surrounding materials (Giauque and Meads, 1941; Narijauskaitė et al., 2013; Pawelec et al., 

2014). As a result, ice crystals within the slurry nucleated in the area adjacent to the copper pin and 

grew progressively to the outside of the mould (Fig. 4.1a). Following sublimation of the ice to steam, 

the resulting directional anisotropic collagen pores that were formed during ice crystal growth were 

observed throughout the scaffold using scanning electron microscopy (SEM) and micro-computed 

tomography (µCT) (Fig. 4.2). The presence of the copper pins within the mould also provided a 

funnel at the top of the scaffolds into which cells could be seeded in subsequent experiments (Fig. 

4.2a-f). Two different pin shapes were used in the moulds to synthesise two different shapes of 

seeding funnels: cylindrical and conical tipped pins (Methods, Fig 2.1b,c, Fig. 4.3). 

Photographic images of anisotropic collagen I scaffolds following freeze drying but before cross 

linking, show the two scaffold types with different funnel geometries (Fig. 4.3). For scaffolds 

moulded with conical pins, excess slurry that had flowed out of the moulds onto the surrounding 

glass cover slips was observed (Fig. 4.3b). In this case directional collagen pores were observed 

macroscopically within the excess collagen, emanating from the base of the scaffold (Fig. 4.3b). This 

provided an indication that anisotropic pore growth had occurred internally and was removed and 

discarded using a scalpel blade before cross linking. Photographs also revealed the successful 

formation of the different seeding funnel types moulded from the two copper types of pin within the 

moulds (Fig. 4.3). 
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To produce isotropic, i.e. non-directional collagen scaffolds, the cooling shelf was cooled from 20°C 

to -40°C over a period of 1hr with the moulds in situ and copper pins were thermally insulated from 

the cooling shelf using a rubber mat (Methods, Fig. 2.1, Table 2.1). As a result, ice crystals nucleated 

at random throughout the scaffolds producing an isotropic porous structure (Fig. 4.1b). 

Consequently, anisotropic and isotropic scaffolds were synthesized with the same external 

dimensions but with an altered internal architecture (Fig. 4.2).  

For both anisotropic and isotropic scaffold types, pore size increased with distance from the scaffold 

funnel (Fig. 4.2e-j), with small isotropic pores observed at the funnel edge (Fig. 4.2i-j). Beyond the 

initial funnel region, anisotropic scaffolds exhibited a continuous elongated micro-porous structure 

that was radially orientated from the funnel and extended to the base of the scaffolds (Fig. 

4.2a,c,e,g). In contrast, isotropic scaffolds exhibited a randomly orientated porous structure with a 

more spherical pore morphology (Fig. 4.2b,d,f,h). In both scaffold types finer connections were 

observed in the macro-porous regions demonstrating an inter-communicated structure (Fig. 4.2g,h). 
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Figure 4-1: Schematic illustrating ice crystal growth in collagen scaffolds 

Ice crystal nucleation and growth direction (blue arrows) during freeze drying of collagen I slurries in 

polycarbonate moulds for (a) anisotropic and (b) isotropic collagen scaffolds. (a) Thermal contact 

with a precooled (-40oC) metal freeze dryer shelf cooling shelf cools the copper pin first, allowing 

freezing to first occur in the slurry in proximity to the copper pin. Consequently, ice crystals nucleate 

from this point and propagate in a direction towards the edge of the mould (blue arrows). (b) 

Copper pin is insulated from the freeze dryer shelf using a rubber mat. The freeze dryer is cooled 

gradually with the moulds in situ from room temperature to -40oC. The collagen slurry is cooled 

evenly and random ice crystal nucleation occurs throughout. Ice crystals then propagate in random 

directions (blue arrows).  
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Figure 4-2: Anisotropic and isotropic collagen scaffolds have different internal 

architectures 

Anisotropic (left) and isotropic (right) collagen I scaffold architectures, synthesised using conical-

tipped copper pins (Methods, Fig. 2.1c), were visualized using micro–computed tomography (μCT) 

and scanning electron microscopy (SEM). (a–d) Show reconstructed μCT pictures of transversal and 

horizontal cuts through an anisotropic and an isotropic scaffold. (e–j) Show SEM pictures of the 

whole scaffold as well as a zoomed area showing the different architectures and regions around the 

funnel. †Scaffolds were synthesised by Dr. Anke Husmann and Rob Hume, images were taken by Dr. 

Anke Husmann. (a,c,e,f) have had their brightness increased to allow better visualisation. Scale bars 

(a-f) 1mm, (g-j) 200µm. 
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Figure 4-3: Photograph of anisotropic collagen I scaffolds 

(a) Photograph of anisotropic collagen I scaffold synthesised with cylindrical pin heads. (b) 

Photograph of anisotropic collagen I scaffolds synthesised with conical pin heads attached to glass 

slides following freeze drying and their removal from polycarbonate moulds. Excess collagen is 

observed attached to glass slides due to overflow of collagen slurry during the filling of moulds. 

Seeding funnels formed by copper pins within the mould are also observed.  
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4.2.2 Seeding of breast cancer cell lines into anisotropic collagen scaffolds 

To investigate whether breast cancer cell migration could be assessed in anisotropic collagen 

scaffolds, and if spatial directionality enhanced cell migration, three human breast cancer cell lines 

were selected as candidates for these migration assays. Firstly, the aggressive claudin-low triple 

negative breast cancer (TNBC) cell line MDA-MB-231 was chosen. These cells often exhibit a 

mesenchymal morphology and highly migratory phenotype in vitro (Lundgren et al., 2009; Nurcombe 

et al., 2000; Timoshenko et al., 2003). Secondly, the basal-like TNBC cell line MDA-MB-468 was 

selected, as this cell line is characterised by a lower migratory potential compared to MDA-MB-231 

cells in vitro (Gordon et al., 2003). The third line selected was the ER+ MCF7 cell line, which displays 

little or no migratory potential in vitro in the absence of chemical induction (Prest et al., 1999; 

Rosman et al., 2008; Walsh and Damjanovski, 2011).  

The first scaffolds synthesised were with a cylindrical copper pin in the mould. Preliminary cell 

experiments used these scaffolds with cylindrical seeding funnels (Methods, Fig. 2.1b) to assess 

whether cell migration could be observed (Fig. 4.3a, Fig. 4.4, Fig. 4.5). MDA-MB-231 cells were 

marked with a fluorescent cell dye, seeded into scaffold funnels and after 12 hours the funnels 

imaged (Fig. 4.4a). From a top down view of the funnels, all of the cells imaged were confined to the 

funnel region (Fig. 4.4a). Using a further time point of 48 hours and combining confocal with 

brightfield microscopy to image the cells and scaffold, respectively, a group of migratory MDA-MB-

231 cells were observed at a distance from the nucleation point (Fig. 4.4b, white arrow).  

In subsequent experiments, anisotropic scaffolds moulded with conical funnels were synthesised 

(Methods, Fig. 2.1c, Fig. 4.1, Fig. 4.2, Fig. 4.3), providing a more consistent formation and radial 

distribution of pores around the nucleation point. To investigate whether this scaffold type would 

also permit migration, cells were seeded in funnels (Methods, Fig. 2.1c), cultured for 7 days and 

bisected in half before imaging (Fig. 4.5). Bisected scaffolds permitted the investigation of migration 

below the surface region and the scaffold, thereby allowing for an enhanced analysis of individual 

cell’s migratory response. Additionally, calcein acetoxymethyl (AM), a cell permeant dye that marks 

only viable cells, was added to the cultures to allow the visualisation of viable migratory cells (Fig. 

4.5, white arrows). DAPI was used to mark DNA and hence the cell nuclei of migratory cells (Fig. 4.5, 

blue). Both calcein AM and DAPI non-specifically stained the collagen scaffold (Fig. 4.5, blue/green 

scaffold pores). Serendipitously, this enabled the visualisation of the anisotropic internal 

architecture to which adherent MDA-MB-231 cells migrated (Fig. 4.5, white arrows). As the conical 

funnel type provided a more consistent internal architecture and allowed visible migration in 

anisotropic scaffolds, it was selected for further study. Moreover, using one funnel type also reduced 
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the number of experimental variables to assess and control for, providing a more streamlined 

analysis. In this, and all subsequent chapters of this thesis, scaffolds were synthesised with conical 

funnels. 

Following this, scaffolds were placed in Boyden chambers, with the cell seeding funnel placed 

vertically and cultured with or without a FCS serum gradient (Methods, Fig 2.2). This chemical 

gradient was added to cultures in an attempt to encourage cell migration via chemotaxis. In order to 

control for migration, scaffold funnels were then seeded with MDA-MB-231, MDA-MB-468 and 

MCF7 cells mixed with fluorescent countbright beads (Methods, Fig 2.2). As it was anticipated that 

the fluorescent beads could only be motile if influenced by gravity or agitation of the media, beads 

could therefore be utilised to assess the variability of a dropwise cell seeding method and provide a 

control for migration measurements. Furthermore, if the beads were located predominantly in or 

near the funnel after seeding, then it would indicate an accurate seeding methodology had been 

achieved.  

For migration analysis, bisected scaffolds or IHC sections stained with DAPI were imaged and 

migration was measured using ImageJ and Microsoft Excel analysis (Fig. 4.6). Firstly, the nucleation 

point at the edge of the funnel was marked and segmented to produce a number of individual X, Y 

coordinates along the nucleation point vector (Fig. 4.6b) which was then entered into Excel. Cells 

were then marked, saved as X, Y coordinates (Fig. 4.6c) and also entered into Excel. Using Excel, the 

Euclidian distance, otherwise known as the shortest distance between two points, of each cell from 

its location to the nearest nucleation point segmented coordinate was then calculated.  

Each cell’s Euclidian distance data was then binned into 50 or 100 µm distance intervals. This was 

intended to display the frequency of cells at the varying distances into the scaffold and thus 

represent the complexity of the data. A high variability in the data caused high standard deviations 

in each distance interval and thus this method was deemed unusable to compare samples. As an 

alternative, a more simplistic approach was required whereby the median distance for all migratory 

cells was calculated and plotted graphically (Fig. 4.7, Fig. 4.8). The median was selected over the 

mean due to the relatively high sample sizes of >100 cells per scaffold and its resistance to the 

influence of statistical outliers. 

Following 24hrs post-seeding, cells and fluorescent beads were measured for their median Euclidian 

distance travelled from the nucleation point into the scaffolds (rmedian) (Methods, Fig 2.2) (Fig. 4.6, 

Fig. 4.7). Both cells and beads exhibited a similar distribution within 100 µm of the nucleation point 

in both isotropic and anisotropic scaffold types (Fig. 4.7). This indicated that both cell – scaffold and 
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bead – scaffold interactions were comparable and that beads could be useful for normalisation 

purposes. When distinguishing between cell types it was observed that MDA-MB-231 cells migrated 

further from the initial funnel region within this 24hr period when compared to MDA-MB-468 cells 

which were observed to have a more compact localisation to the funnel region (Fig. 4.7). 
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Figure 4-4: Migration of MDA-MB-231 cells in anisotropic collagen scaffolds 

MDA-MB-231 breast cancer cells fluorescently marked using CellTrackerTM Orange were seeded into 

the seeding funnel of anisotropic collagen I scaffolds containing a cylindrical seeding funnel. (a) 

MDA-MB-231 cells (red) were cultured for 12 hours and the seeding funnel region (white dotted 

line) imaged using confocal microscopy. (b) MDA-MB-231 cells (red) were cultured for 48 hours. 

Confocal and brightfield microscopy were combined to image the cells and scaffold, respectively. A 

group of cells that have migrated away from the seeding funnel are marked with a white arrow.  
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Figure 4-5: MDA-MB-231 cells migrate along orientated fibres of anisotropic collagen 

scaffolds 

MDA-MB-231 breast cancer cells were seeded into the funnel (white dotted line) of an anisotropic 

collagen scaffold synthesized from conical pins, and then cultured for 7 days. Cell viability was 

assessed via the addition of calcein AM dye (green). DNA was marked with DAPI (blue). Scaffolds 

were bisected and imaged freshly cut face down using confocal microscopy. White arrows mark 

viable (calcein AM+) migratory cells.  
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Figure 4-6: Schematic illustrating cell migration measurements (Euclidian distance)  

Breast cancer cells seeded into the seeding funnel of collagen scaffolds were cultured for either 24 

hours or 10 days. To assess migration distances at these time points, a measurement method was 

devised using immunohistochemistry and ImageJ analysis: (a) Paraffin embedded longitudinal 

sections of scaffolds (or bisected scaffolds) were imaged and opened on ImageJ software. (b) The 

edge of the seeding funnel in the scaffold, the nucleation point (white dotted line), was marked and 

segmented into individual points. The coordinates for these points were then saved into an excel 

file. (c) Cell nuclei marked with Hoechst (blue) were then marked individually on ImageJ (yellow). 

These were saved as coordinates and saved into an excel file. The distance for each cell coordinate 

from the nearest coordinate on the segmented nucleation point was then calculated on excel. This is 

defined as the Euclidian distance of each cell to the nucleation point. 
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Figure 4-7: The majority of samples and beads remain within 100 µm distance of the 

seeding funnel in both isotropic and anisotropic collagen scaffolds following 24 hours 

culture 

MDA-MB-231, MDA-MB-468 and MCF-7 breast cancer cells and countbright beads (non-migratory 

control) were seeded into the seeding funnel of collagen scaffolds, cultured for 24 hours, fixed and 

imaged. The Euclidian distance for each cell/bead was calculated on ImageJ and the median 

Euclidian distance for each scaffold calculated from this data. The median Euclidian distance rmedian 

(µm) travelled by MDA-MB-231, MDA-MB-468 and MCF-7 breast cancer cells with respect to the 

median Euclidian distance travelled by countbright beads (non-migratory control) following 24 hours 

culture was then plotted (above). Each point represents one sample. †Scaffold synthesis, cell seeding 

and culturing were carried out by Dr. Jonathan Campbell and Rob Hume. Analysis was carried out by 

Dr. Anke Husmann. 
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4.2.3 Anisotropic collagen scaffolds as a breast cancer cell line migration 

assay 

At longer time points it was predicted that the more migratory breast cancer cells would have 

migrated further from the cell seeding funnel into the bulk of the scaffolds. Therefore, in an attempt 

to capture the extent of migration in scaffolds, a time point of 10 days post-seeding was selected 

and analysed (Fig. 4.8). As anticipated, MDA-MB-231 cells migrated significantly further than MDA-

MB-468 and MCF7 cells when all sample types (anisotropic/isotropic, gradient/non-gradient) were 

pooled and the cell lines compared (Fig. 4.8, significance bars below x-axis). This validated the 

model’s ability to distinguish cell type based on their migratory potential.  

As a TACS-3 phenotype is associated with more aggressive breast cancer subtypes and poor 

prognosis it was also predicted that anisotropic scaffolds would better support the migratory profile 

of these aggressive tumour types (Provenzano et al. 2006; Provenzano et al. 2008; Conklin et al. 

2011b). In order to compare the influence of collagen architecture on cell migration, breast cancer 

cells seeded in anisotropic scaffolds and isotropic scaffolds were analysed and compared for their 

migration distance. Notably, MDA-MB-231 cells exhibited an enhanced migratory phenotype in 

anisotropic scaffolds when compared to isotropic scaffolds, in both gradient and non-gradient 

samples (Fig. 4.8, significance bars above graph). Indeed, migration of MDA-MB-231 cells under a 

serum gradient in anisotropic scaffolds was often observed at all depths of the scaffolds showing the 

large extent of migration (Fig. 4.9a). In contrast, few MDA-MB-468 and MCF-7 cells migrated into the 

body of the scaffold regardless of scaffold type (Fig. 4.8, Fig. 4.9). As neither cell line is highly 

migratory in other in vitro studies this result is not unexpected and any differences that are due to 

anisotropy may therefore be difficult to distinguish (Gordon et al., 2003; Prest et al., 1999; Rosman 

et al., 2008; Walsh and Damjanovski, 2011). 

Through immunohistochemical (IHC) analysis of anisotropic scaffolds, it was observed that the 

different cell lines displayed different morphologies (Fig. 4.10). MDA-MB-231 cells migrated often as 

singular cells with an elongated mesenchymal morphology whereas MDA-MB-468 cells, although 

also often singular, exhibited a rounded morphology. Few migratory MCF7 cells were observed with 

the majority of cells remaining within a cell mass located at or near the top of the scaffold (Fig. 4.10).  

To investigate the effects of migration and anisotropy on cellular proliferation, EdU was added in the 

final 24 hours of culture for 10 day samples. This nucleotide analogue is incorporated into newly 

synthesised DNA and thus enables measurement of proliferating cells within a specified time frame. 

Through combination with a fluorophore, EdU labels replicating cells and can be detected with 

fluorescence microscopy (Salic and Mitchison, 2008). Visual observation of EdU+ cells in scaffolds 
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provided no obvious correlations between depth of migration and proliferation or anisotropy and 

proliferation and further analysis was required (Fig. 4.9).  

In order to further study proliferation effects, paraffin embedded sections were probed for the 

proliferation marker Ki67 by IHC analysis. For both EdU and Ki67, the expression of the marker as a 

ratio of the entire cell population was then analysed and plotted graphically (Fig. 4.11). From these 

data it was observed that anisotropic scaffold culture had no significant effect on proliferation 

compared to isotropic scaffold culture, in any of the breast cancer cell lines (Fig. 4.11). When 

comparing proliferation between cell lines, it was observed that the number of EdU+ and Ki67+ MDA-

MB-231 cells as a ratio of the total cells was lower than for MDA-MB-468 and MCF7 cell ratios (Fig. 

4.11). These data and previous migration distance data, demonstrated that MDA-MB-231 cells 

migrated the furthest of the three breast cancer cell lines but exhibited the lowest levels of 

proliferation. Furthermore, all cell types cultured in 2D tended to proliferate at a higher rate 

compared to 3D scaffold cultures (Fig. 4.11). However, as with scaffold cultures MDA-MB-231 cells in 

2D proliferated at the slowest rate of the three cell lines with approximately 30% of cells expressing 

Ki67. In contrast, MDA-MB-468 and MCF7 cells in 2D displayed higher proliferation rates with 85% 

and 70% expressing Ki67, respectively (Fig. 4.11). 

Previously it has been shown that the cell surface adhesion receptor integrin β1 is involved in the 

binding of cells to collagen (Jokinen et al., 2004; Staatz et al., 1990). Moreover, its expression has 

been shown to reduce proliferation, increase survival and enhance the migration of MDA-MB-231 

cells (Hou et al., 2016). As discussed above, MDA-MB-231 cells exhibited higher levels of migration 

and lower levels of proliferation compared to MDA-MB-468 and MCF7 cells. To examine whether an 

increased expression of integrin β1 was present in MDA-MB-231 cells compared to MDA-MB-468 

and MCF7 cells within our scaffolds, samples were probed for integrin β1 expression by IHC analysis 

(Fig. 4.12). Due to the high concentration required for the antibody staining and the matching of this 

concentration in IgG controls, high levels of background were observed (Fig. 4.12, IgG negative 

controls). Nonetheless, an increase in fluorescent signal was observed in MDA-MB-231 cells 

compared to MDA-MB-468 cells, MCF7 cells and negative controls (Fig. 4.12) suggesting that integrin 

β1 expression was increased in this cell line within scaffolds. This is one possible explanation for the 

migratory and proliferative phenotype of MDA-MB-231 cells in the system. However, further 

confirmation is required as high background levels highlight concerns into the validity of these 

results. 
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Figure 4-8: Migration distance rmedian of human breast cancer cell lines in 

anisotropic/isotropic scaffolds with/without a serum gradient after 10 days 

MDA-MB-231, MDA-MB-468 and MCF-7 breast cancer cells were seeded into the seeding funnel of 

collagen scaffolds, cultured for 10 days, fixed and imaged. The distribution of cells by their median 

Euclidian distance migrated (rmedian) after 10 days was plotted and separated by their cell type (MDA-

MB-231, MDA-MB-468 or MCF-7), scaffold type (isotropic/anisotropic) and serum gradient status 

(see key above graph). Significance bars above x-axis represent MDA-MB-231 anisotropic compared 

with MDA-MB-231 isotropic samples. Significance bars below x-axis represent MDA-MB-231 cells 

versus MDA-MB-468 and MCF7 cells with all scaffold types pooled. †Scaffold synthesis, cell seeding 

and culturing were carried out by Dr. Jonathan Campbell and Rob Hume. Analysis was carried out by 

Dr. Jonathan Campbell, Rob Hume and Dr. Anke Husmann. *p<0.05. 

* 
* 

* 
* 
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Figure 4-9: Heat maps representing the migration and proliferation of human breast 

cancer cell lines in anisotropic/isotropic scaffolds after 10 days 

MDA-MB-231, MDA-MB-468 and MCF-7 breast cancer cells were seeded into the seeding funnel of 

collagen scaffolds, cultured for 10 days, fixed, imaged and converted into heat maps. Heat maps 

show representative images of the distribution of cells and the proliferation marker EdU throughout 

scaffolds with a serum gradient applied for (a) MDA-MB-231, (b) MDA-MB-468 and (c) MCF7 cells. 

†Scaffold synthesis, cell seeding and culturing was carried out by Dr. Jonathan Campbell and Rob 

Hume. Imaging was carried out by Dr. Jonathan Campbell, Rob Hume and Anke Husmann. Heat maps 

were generated by Dr. Anke Husmann. 
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Figure 4-10: Anisotropic collagen scaffolds reveal different cell morphologies 

MDA-MB-231, MDA-MB-468 and MCF7 cells seeded and cultured in anisotropic collagen scaffolds 

show different morphologies. (a) MDA-MB-231 cells migrate into the scaffold from the cell mass and 

have a thin spindle-like morphology. (b) MDA-MB-468 cells migrate into the scaffold, disseminating 

from the cell mass as single cells/small cell clusters whilst maintaining a round morphology. (c) MCF7 

cells are primarily retained as a cell mass on top of the scaffold with few cells showing migration into 

the scaffold. Hoechst (blue) stains cell nuclei whilst β-tubulin (green) stains cell cytoskeleton.   
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Figure 4-11: Anisotropy does not affect the proliferation of MDA-MB-231, MDA-MB-468 or 

MCF-7 cells 

Proliferation of seeded cell lines within 3D collagen scaffolds (EdU and Ki67, paraffin sections, 

immunohistochemical analysis) that are either anisotropic (aniso) or isotropic (iso) and cell lines on 

2D adherent culture on glass cover slips (Ki67, immunocytochemical analysis). Exposure of cell lines 

to EdU during the final 24 hours of culture (total 10 days) during scaffold cultures recorded the 

number of proliferating cells during this period by fluorescence microscopy. Proliferation marker 

Ki67 was measured by IHC analysis following 10 days culture, with counts for the number of Ki67+ 

nuclei on ImageJ. Active mitotic cell frequency recorded by enumeration of EdU+ or Ki67+ cells, are 

expressed as a ratio to total cell number. No statistically significant differences could be recorded 

between scaffold culture analyses between cell lines. †EdU addition to cultures was carried out by 

Dr. Jonathan Campbell. EdU staining was carried out by Dr. Jonathan Campbell and Rob Hume. Ki67 

immunohistochemistry was carried out by Rob Hume. Analysis was carried out by Dr. Jonathan 

Campbell and Rob Hume. 
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Figure 4-12: IHC of integrin β1 suggests expression is increased in MDA-MB-231 cells 

Immunohistochemical analysis of integrin β1 (green) expression in MDA-MB-231, MDA-MB-468 and 

MCF7 when cultured in anisotropic collagen scaffolds. DNA was marked with DAPI (blue). High levels 

of background affected the validity of these results as observed in IgG negative controls. 
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4.2.4 Epithelial-to-mesenchymal transition (EMT) of MDA-MB-468 cells 

and their migration in anisotropic scaffolds 

EMT is a process associated with transformation of normal cells to a malignant phenotype and 

facilitates invasion and metastasis through down-regulation of E-cadherin mediated adhesion and a 

mesenchymal mode of migration (Wang et al., 2016). Additionally, epithelial cells that have 

undergone an EMT frequently have an increased migratory potential (Chakrabarti et al., 2012; Davis 

et al., 2013; Lo et al., 2007; Smith et al., 2014). As MDA-MB-468 cells showed minimal migration in 

the scaffold model, and to further validate the model’s ability to distinguish migratory phenotypes, 

EMT was induced in MDA-MB-468 cells. This was carried out according to a previously published 

protocol using EGF treatment and serum starvation (Davis et al., 2013). EMT was identified by a 

spindle-shaped cell morphology (Fig. 4.13a), upregulated expression of the EMT marker vimentin as 

confirmed by western blotting (Fig. 4.13b) and IHC analysis (Fig. 4.13c,d).  

Following successful EMT induction, EGF-treated MDA-MB-468 cells were seeded and cultured for 

10 days in anisotropic collagen scaffolds to investigate whether this would influence migration 

distances. From these data it was observed that EMT enhanced migration by a small but significant 

distance in anisotropic collagen scaffolds compared to untreated MDA-MB-468 cells (Fig. 4.14).  
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Figure 4-13: Epidermal growth factor (EGF) induced epithelial-to-mesenchymal transition 

(EMT) of MDA-MB-468 cells  

MDA-MB-468 breast cancer cells were chemically induced to undergo an epithelial-to-mesenchymal 

transition (EMT) via epidermal growth factor addition during 2D culture. a) Phase contrast 

microscopy images of MDA-MB-468 cells +/- EGF treatment. b) Western blotting for EMT marker 

vimentin (57kDa) showing higher expression in MDA-MB-468 cells when treated with EGF. A non-

specific band* was observed in the three human cell lines upon higher exposure. EpH4 murine 

mammary epithelial cells were used as a negative control, MDA-MB-231 as a positive control and 

tubulin as a loading control. c) ImageJ analysis of immunocytochemistry for vimentin positive cells as 

shown in d. d) Immunocytochemistry observation of vimentin expression. **p<0.01. 
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Figure 4-14: EGF induced EMT enhances migration of MDA-MB-468 cells in anisotropic 

collagen scaffolds 

a) Median Euclidian cell migration distance (rmedian) after 10 days culture of MDA-MD-468 cells ± EGF 

in anisotropic collagen I scaffolds. There is a statistically significant difference between the two 

distributions by Wilcoxon/Mann-Whitney U test, n=7. b) Detailed heat maps of the distribution of 

cells within representative scaffolds show a more pronounced migration into the scaffold when EGF 

is present. Each heat map shows an area around the scaffold seeding funnel of 2mm × 4mm. 

†Scaffold synthesis, cell seeding, culturing, imaging and analysis were carried out by Rob Hume. Heat 

maps representing images taken by Rob Hume were generated by Dr. Anke Husmann. *p<0.01 
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4.3 Discussion 

4.3.1 Anisotropic collagen scaffold development 

Directional control of the porous architecture of collagen scaffolds has recently been achieved using 

ice templating techniques (Davidenko et al., 2012; Husmann et al., 2015; Pawelec et al., 2014). 

Through the manipulation of ice crystal nucleation and growth described in these studies, and novel 

mould design, whereby a funnel was incorporated to act as a nucleation point for ice crystals to 

initiate, anisotropic collagen I cross-linked scaffolds were synthesised. Moreover, the funnel 

generated an ideal location through which cells could be seeded. The resultant internal architecture 

of these scaffolds was anisotropic collagen pores, radially orientated from the nucleation point that 

provided tracks for cells to migrate. By controlling pore shape and direction, scaffold reproducibility 

and tractability was significantly enhanced, which is vital if the model is to be adopted commercially 

as a future drug discovery platform. 

Others have shown that during the freeze drying process of collagen slurries in polymethyl 

methacrylate moulds, the base of the slurry closest to the freeze drier shelf has a smaller porosity 

compared to that of the top of the slurry (Pawelec et al., 2014). This is due to an increased initial 

cooling rate at the base of the moulds, which was caused by a closer proximity to the freeze drier 

cooling shelf. A similar phenomenon was observed in the scaffolds synthesised in this thesis; pore 

size was smaller at the base of the slurry and increased proportionally with distance to the top and 

edges of the slurry. As the funnel-shape was located at the base of the moulds during freeze drying, 

it was therefore at the funnel edge where the smallest pore sizes were observed (Fig. 4.1, Fig. 4.2). 

This effect was further enhanced by the presence of the copper pin and its contact with the freeze 

drier cooling shelf. As copper has a lower specific heat capacity than that of the polycarbonate 

mould and collagen, slurry adjacent to it had an increased initial cooling rate and hence pore size 

was reduced in this region (Giauque and Meads, 1941; Narijauskaitė et al., 2013; Pawelec et al., 

2014). 

During the setup of scaffolds in the freeze drier, moulds were over-filled with collagen slurry to 

ensure moulds were completely filled. As a result, slurry overflowed onto the glass slips that covered 

the mould and underwent freeze drying, as photographed in Figure 4.3. This excess collagen 

displayed a macroscopically visible anisotropic radially orientated structure on anisotropic scaffolds 

but not isotropic scaffolds. An advantage of this is that it was used as a metric for quality control. For 

example, on occasions that the freeze drier would malfunction and not complete it cycle correctly, 

an absence of visible anisotropy on the excess collagen would provide the first indication that there 

was error during the process and anisotropy had not been achieved. For future development of the 
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protocol to provide high-throughput production of the scaffolds, these extra quality control 

measures would be extremely useful. Additionally, excess collagen around the base of scaffolds was 

not completely removed during tumour culture experiments for two reasons. Firstly, scaffold 

orientation could easily be identified when placing the funnel vertically. Secondly, it enabled extra 

stability in this vertical position to reduce the likelihood of tumour fragments falling out of the 

scaffolds following fragment seeding in later experiments.  

4.3.2 The effects of ECM components on cell migration 

Anisotropic collagen scaffolds were designed to mimic the TACS-3 phenotype described by 

Provenzano et al. surrounding aggressive breast tumours (Provenzano et al., 2006). In this previous 

study, TACS-3 was defined as stromal collagen fibres orientated perpendicular to the tumour edge. 

In Chapter 4, scaffolds recapitulated this ECM characteristic of the tumour microenvironment 

through the radial distribution of collagen perpendicular to the funnel edge. As breast cancer cell 

lines were seeded in these funnels, the scaffolds mimicked the migration of tumour cells from the 

tumour edge into stromal collagen fibres (Provenzano et al., 2006). However, one limitation of the 

anisotropic scaffolds is that they were comprised of elongated collagen pores rather than, as in vivo, 

collagen fibres. Therefore, although they mimic in vivo directionality, they differ in their geometry. 

For example, orientated collagen fibres surrounding breast tumours range between 1-2 µm 

thickness and have a rod-like morphology (Perry et al., 2013; Provenzano et al., 2006) . In contrast, 

the walls of collagen pores ranged between 2 µm thickness at the funnel edge and 5 µm at the edge 

of the scaffold and had a shell-like morphology. Furthermore, the elongated geometry of pores 

varied from micro to macro porous regions dependent on distance from the funnel. This is important 

because cell shape, and subsequently cell phenotype and migration, can be influenced by ECM 

geometry (Bhadriraju et al., 2007; Bissell et al., 1977; McWhorter et al., 2013; Wolf et al., 2013). 

Consequently, the porous structure may influence the migratory potential within scaffolds and 

should be appropriately investigated in future experiments. 

4.3.3 Collagen scaffolds versus hydrogels 

3D in vitro migration studies that utilise collagen as an ECM substrate commonly use collagen 

hydrogels as their model system (Fukuda et al., 2014; Kikuchi et al., 2011; Lee et al., 2014a; Riching 

et al., 2014; Truong et al., 2016). Throughout this thesis, cross-linked collagen scaffolds were used 

instead of collagen hydrogels, as they have a number of advantages. The chemical composition of 

cross-linked scaffolds can be easily manipulated by the addition of other proteins during the 

homogenisation process (Davidenko et al., 2010). For example, proteoglycans, such as heparin 

sulphate or hyaluronic acid, can be added into the collagen slurry and have been shown to effect 
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cellular phenotype (Campbell et al., 2011). Furthermore, by altering the ratios and timing of cross-

linking, the mechanical properties of scaffolds can be manipulated (Grover et al., 2012). These 

tuneable parameters present opportunities for further development of the scaffolds and their 

potential application recapitulating alternative stromal ECM subtypes in vitro. 

Unlike scaffolds, hydrogels can undergo shrinkage upon cross-linking which can result in 

unpredictable cellular remodelling subsequently effecting the mechanical properties of the bulk 

material (Fernandez and Bausch, 2009). Considering the mechanical properties, influenced by 

collagen density, can alter a cell’s migratory phenotype, it is imperative that these material 

properties are controlled for assay robustness (Levental et al., 2009; Paszek et al., 2005). 

Having access to a freeze drier meant that scaffold synthesis was considerably cheaper than 

commercially bought ECM products such as Matrigel (Lam and Longaker, 2012). In-house synthesis 

also meant that quality could be tightly controlled and fresh batches of scaffolds were synthesised 

on demand, rather than being reliant on commercial ordering. The dried collagen I from bovine 

Achilles tendon was out-sourced commercially and may be subject to batch variation and therefore 

future in vitro derivation of collagen I could also be generated in-house tested to ensure absolute 

purity. Furthermore, if anisotropic scaffolds were to become commercially available, the 

understanding of the synthesis process would be valuable intellectual property that may be of 

considerable interest to commercial partners. 

In summary, both isotropic and anisotropic collagen scaffolds were engineered through mould 

design and freeze drying techniques. Equivalent external geometries were achieved for both scaffold 

types with altered internal architectures governed by the manipulation of ice crystal growth. With an 

increasing frequency of publications on collagen anisotropy and its influence in tumours, these 

scaffolds represent an important alternative system to investigate the phenotype in vitro (Conklin et 

al., 2011; Kakkad et al., 2016; Provenzano et al., 2006, 2008a, Ray et al., 2017a, 2017b; Riching et al., 

2014; Stylianopoulos et al., 2010). 

4.3.4 Breast cancer cell lines 

Cancer cell lines adopt specific morphologies in 3D that correlate with their migratory profile (Kenny 

et al., 2007). Monitoring cell migration in this 3D state using collagen scaffolds, rather than relying 

on 2D culture enables an approach which is more reflective of both the in vivo scenario and 

migratory potential of cancer cells. Generating a novel assay for investigating breast cancer cell 

migration in a 3D environment was achieved using engineered anisotropic collagen scaffolds and cell 

lines combined with migration distance analyses. 
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To investigate breast cancer cell migration, three different breast cancer cell lines seeded within 

anisotropic and isotropic collagen scaffold. These cell lines (MDA-MB-231, MDA-MB-468 and MCF7) 

have similar gene expression profiles to human claudin-low triple negative breast cancer (TNBC), 

basal-like TNBC and ER+ breast cancer, respectively (Neve et al., 2006). Previous reports have shown 

that these cell lines exhibit a range of migratory potential; MDA-MB-231 the most aggressive and 

MCF7 the least aggressive (Gordon et al., 2003; Sun et al., 2016). Utilising cell lines associated with 

differing breast cancer subtypes, with a range of invasive potentials, enabled the assay to model an 

assortment of in vivo scenarios in vitro. This study did not aim to investigate all human breast cancer 

subtypes; for example,  HER2+ breast cancers were not addressed (Neve et al., 2006; Subik et al., 

2010).  

The use of human cell lines, originally derived from breast cancer patient samples, infers more 

validity and translation of the assay to human breast cancer than if murine cell lines were used. 

However, breast cancer cell lines are generally considered more homogenous than the in vivo 

tumours they model, due to intra-tumour heterogeneity (ITH). Utilising a larger collection of cell 

lines in breast cancer studies has been shown to better represent inter-tumour heterogeneity 

(between different tumours). Nevertheless this still does not address the ITH (within the same 

tumour) that is frequently observed in vivo (Keller et al., 2010). 

The MDA-MB-231 cell line is associated with the claudin-low TNBC and exhibits mesenchymal 

characteristics when cultured in 2D (Neve et al., 2006). This mesenchymal phenotype was also 

observed during migration assays in collagen scaffolds (Fig. 4.10). Furthermore, anisotropic scaffolds 

frequently supported full depth migration of MDA-MB-231 cells to the edges of the scaffold (Fig. 4.8-

4.11). Although traditionally the MDA-MB-468 cell line is considered an invasive cell line, it did not 

migrate significantly further than the MCF7 cell line in migration assays (Fig. 4.8-4.11) (Gordon et al., 

2003; Sun et al., 2016). It is reported that under ‘normal’ culture conditions, MDA-MB-468 cells 

retain epithelial characteristics (Davis et al., 2013; Jo et al., 2009). However, these same studies 

showed that following EGF treatment MDA-MB-468 cells undergo an epithelial-to-mesenchymal 

transition (EMT) and display an enhanced migratory phenotype. This EGF-mediated EMT in MDA-

MB-468 was demonstrated in Chapter 4 successfully in 2D cultures by an altered cell morphology 

and increased vimentin expression (Fig. 4.15). Furthermore, EGF treated MDA-MB-468 cells also 

exhibited an enhanced migratory phenotype in anisotropic collagen scaffolds (Fig. 4.16). Potentially, 

the enhanced migration of mesenchymal MDA-MB-231 and EMT-MDA-MB-468 cell lines over 

epithelial MCF7 and ‘normal’ MDA-MB-468 cell lines, suggest that anisotropic collagen scaffolds 

support the migration of mesenchymal over epithelial cancer cell types.  
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Tissue disorganisation is a hallmark of cancer and can be regulated by cell-ECM signalling via 

transmembrane receptors, such as integrins (Lee and Vasioukhin, 2008). Integrin signalling is 

dependent on the ECM substrate to which a cell is adhered. Hence, accurate modelling of tissue 

within in vitro 3D models is dependent on the ECM substrate utilised and its spatial organisation (Du 

et al., 2011; Levental et al., 2009). Of note, integrin β1 is required for the correct polarity of 

epithelium in the normal mammary gland in vivo and in vitro 3D cultures (Akhtar and Streuli, 2012). 

Increased integrin β1 signalling can induce tissue disorganisation in vitro and in vivo and is a 

prognostic marker for poor survival (Park et al., 2006; dos Santos et al., 2012; Yao et al., 2007). 

Within anisotropic collagen scaffolds, MDA-MB-231 cells exhibited considerable migration over both 

MDA-MB-468 and MCF7 cell lines (Fig. 4.8, Fig. 11). Interestingly, increased integrin β1 expression 

was also observed in MDA-MB-231 cells as compared to the other two cell lines (Fig. 4.12). However, 

this data should be interpreted with caution due to high background levels present during 

microscopic analysis. It is plausible to hypothesise that the increased integrin β1 signalling of MDA-

MB-231 cells correlates with their increased migration in anisotropic collagen scaffolds. Using 

western blotting techniques or an alternative antibody for IHC, increased integrin β1 expression in 

MDA-MB-231 cells could be confirmed in future experiments. Subsequent experiments could then 

involve genetic manipulation of the cell lines to either increase or decrease integrin expression to 

investigate its effects on migration within scaffolds. A comparison of migration distances, as used in 

Chapter 4, could then confirm any effects of integrin expression within the system. 

Scaffold architecture can affect the biochemical and physical cues that cells respond to in a given 

environment. For example, nutrient diffusion and dissolved oxygen concentration can fluctuate in 3D 

cultures and are dependent on the distance from scaffold edges, scaffold shape, cell density, pore 

size and pore shape (Bian et al., 2009; Bidan et al., 2013; Kasten et al., 2008; Radisic et al., 2006; 

Schwan et al., 2016). Differences in the internal architecture of anisotropic and isotropic collagen 

scaffolds are therefore likely to have played a role in the extent of diffusion observed with different 

scaffold types. Furthermore, any potential compromised diffusion observed in either scaffold type is 

likely to be further compounded by the static nature of the culture system. This therefore adds 

complexity to the influence of anisotropy within the system. It has previously been shown that the 

migratory potential of MDA-MB-231 cells is modulated by fluctuations in nutrient diffusion and 

dissolved oxygen concentration (Nagelkerke et al., 2013). Interestingly, during migration assays, 

MDA-MB-231 cells exhibited an enhanced migratory potential in anisotropic versus isotropic 

scaffolds. Nonetheless, the degree to which enhanced migration in anisotropic scaffolds was a direct 

consequence of altered diffusion characteristics has not been quantified and would require 

extensive testing.  
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4.3.5 Migration distance analysis 

During migration distance analysis of breast cancer cell lines, large data sets were generated 

measuring the Euclidian distance of every migratory cell within each scaffold from the nucleation 

point. Despite the use of cell lines, which are relatively homogeneous compared to primary tumours, 

the data still exhibited a large degree of variation (Fig. 4.8, Fig. 4.9a). Thus, even within a relatively 

homogenous population of cells, there are a range of migratory potentials. Further study of these 

subpopulations may enable investigation of the mechanisms that enhance/supress migration. For 

instance, IHC analysis could determine whether expression of markers of interest differ between 

cells closest to the nucleation point and cells found deep within the scaffolds. In addition, laser 

capture microdissection could be used to investigate varying migratory phenotypes between 

spatially separated cell populations (Espina et al., 2006). This technique can laser-dissect small 

groups of cells or single cells from tissue samples for downstream analysis. For example, changes in 

gene expression can be subsequently analysed using single cell sequencing to detect differences in 

migratory subpopulations (Navin et al., 2011; Wang et al., 2014b; Xu et al., 2012). Moreover, laser 

capture microdissection  can be combined with histological or immunocytochemical analysis to 

identify target populations before cell capture (Vincent et al., 2002). 

Collagen scaffolds were 3 mm deep by 7mm in diameter (Fig. 4.2). In contrast, conventional 3D 

culture is frequently confined to droplets of hydrogel approximately 50-500 µm thick (Casey et al., 

2017; Cavo et al., 2016; Shih and Yamada, 2011; Singh et al., 2015). Initial attempts to use live 

imaging and CellTracker to visualise cells within scaffolds exposed the limitations of imaging 

techniques in relatively thick samples. Confocal lasers could not penetrate far below the funnel and 

scaffold surface and therefore only small depth of view was achieved (Fig. 4.4). Imaging to the full 

scaffold depth was achieved but required fixation and bisecting of scaffolds or embedding in paraffin 

wax, preventing live imaging from being carried out (Fig. 4.5, Fig. 4.9, Fig. 4.10, Fig. 4.12, Fig. 4.14).  

The Euclidian distance (rmedian) was used to quantify cell migration despite not being an exact 

representation of the migratory path travelled. This was done to normalise the data; the same 

metric was applied to all cells in all scaffold types. Distance measurements were collected through 

end-point analysis of fixed samples at either 24 hour or 10 day time points. Hence, exact migratory 

pathways could not be measured with this methodology, as live cell imaging techniques are 

required, another rationale for the use of the Euclidian distance metric (Shih and Yamada, 2011).  

Although Euclidian distance may not be the true distance travelled, it may hold increased validity in 

anisotropic scaffolds. This is because collagen alignment encourages the unidirectional/bidirectional 

movement of cells along the axis of alignment (Ray et al., 2017b). The Euclidian distance from the 
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segmented nucleation point to each migratory cell approximately followed the long axis of the 

radially distributed directional collagen pores orientated from the nucleation point to the edge of 

anisotropic scaffolds. Accordingly, this may have increased the accuracy of the Euclidian distance 

metric to measure the migratory pathway in anisotropic scaffolds and thus showed increased 

tractability within this model.  

In contrast, unidirectional/bidirectional restricted movement cannot be presumed in isotropic 

scaffolds due to the absence of pore directionality. Therefore the Euclidian distance has reduced 

validity in this system. To this point, it may be that the effect of collagen alignment encouraging 

unidirectional/bidirectional movement explains the enhanced Euclidian distance migrated in 

anisotropic versus isotropic scaffolds seeded with MDA-MB-231 cells (Fig. 4.8, Fig. 4.9a) (Ray et al., 

2017b). Hence, the choice of migratory path is reduced and directed away from the nucleation point 

by directional pores, thus increasing migration distance away from that point in anisotropic 

scaffolds. Conversely, the reduced Euclidian distance migrated in isotropic scaffolds may reflect an 

increased likelihood of multidirectional movement from the nucleation point (Fig. 4.8, Fig. 4.9). 

Although this explanation reduces the validity of the Euclidian distance to accurately measure the 

exact path a cell has travelled, it does have relevance to the metastatic ability of a cancer cell. For 

example, if the nucleation point represents the edge of a tumour and the scaffold represents the 

surrounding stroma, the Euclidian distance represents how far a cancer cell has migrated from the 

tumour into the surrounding tissue. Hence, the further a cell has deviated from the tumour edge the 

more likely it is to come in contact with a blood vessel or another organ. A longer Euclidian distance 

is therefore, potentially, an indication of the higher the probability a cell exit the gland and 

metastasize. 

Heat maps were utilised to represent the migration data and compare scaffold/cell types (Fig. 4.9). 

This helped not only to visualise the data but could also be used for high throughput analysis in 

future studies. By automating the analysis protocol using computer programming tools such as 

MATLAB (The MathWorks Inc., 2010), the current more complex ImageJ and Excel analysis could be 

circumvented. Furthermore, automation and high throughput analysis would create a more 

attractive prospect for commercialisation of these models.  

4.3.6 Proliferation of migratory human breast cancer cell lines in collagen 

scaffolds 

Proliferation analyses were used to investigate whether variations in proliferative capacity existed 

between cell lines, if these differences were associated with their migratory potential and whether 

proliferation was influenced by collagen anisotropy. Using both EdU and Ki67 staining, analyses were 
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conducted in both scaffold types and in 2D controls (Fig. 4.11). Differences between EdU and Ki67 

ratios were occasionally observed within the same sample type (Fig. 4.11), for example, although the 

median for the Ki67 ratio was within the interquartile range of EdU ratio for most scaffold types, it 

was not for MDA-MB-468 anisotropic samples. Additionally, the range and interquartile range was 

considerably tighter when measuring Ki67 as compared to EdU in all samples. One factor which may 

attribute to these differences is the number of experimental repeats. However, it would be 

anticipated that the fewer repeats in Ki67 samples would have created a larger interquartile range, 

which was not the case. Alternatively, whilst EdU and Ki67 are both markers of proliferation, they 

indicate different parts of the cell cycle (Gerdes et al., 1983). The Ki67 protein is expressed 

throughout all stages of the cell cycle and is only absent in non-cycling cells, whereas EdU is only 

incorporated into newly synthesised DNA (Bologna-Molina et al., 2013; Salic and Mitchison, 2008). 

Therefore, EdU+ cells represent newly divided cells and are not necessarily still cycling or Ki67+. 

Acellular surfaces can be populated by neighbouring cells through migration, proliferation or a 

combination of the two (De Donatis et al., 2008; Rodriguez et al., 2005; Zahm et al., 1997). MDA-MB-

231 cells showed the furthest median Euclidian distance from the nucleation point (Fig. 4.8, Fig. 4.9) 

but the lowest levels of proliferation (Fig. 4.11), as compared to MDA-MB-468 and MCF7 cells. These 

data confirmed that the distance travelled by cells within collagen scaffolds does not correlate with 

the proliferation rate. Accordingly, the increased distance of MDA-MB-231 cells into scaffolds was 

dependent on their migratory potential rather than their proliferation rate.  

A high metastatic potential but low proliferation rate, as observed in MDA-MB-231 cells (Fig. 4.8, Fig. 

4.9, Fig. 4.11), is a phenomenon that has been observed in other cancer cell populations and has 

been attributed to a number of factors (Ampuja et al., 2013; Evdokimova et al., 2009; Flores et al., 

2016; Hur et al., 2016; Tsai et al., 2012; Vega et al., 2004). For example, it has been shown that 

upregulation of the gene HOXC9, that is associated with poor patient prognosis, increases migration 

and reduces the proliferative capacity of breast cancer cells (Hur et al., 2016). Additionally, growth 

factors such as bone morphogenic protein-4 (BMP4) have been shown to enhance migration whilst 

reducing proliferation (Ampuja et al., 2013). Of note, EMT, a process which can induce a migratory 

phenotype in untransformed cell types, has been shown in some studies to reduce proliferation 

(Evdokimova et al., 2009; Flores et al., 2016; Tsai et al., 2012; Vega et al., 2004). Interestingly, the 

highest migratory potential and lowest proliferation rates were observed in the MDA-MB-231 cells; a 

claudin-low TNBC cell line with a mesenchymal phenotype (Fig. 4.8, Fig. 4.9, Fig. 4.11) (Neve et al., 

2006). It is possible that the proliferation rate of MDA-MB-231 cells may have been affected by the 

original EMT event during its transformation in vivo and thus caused a high migratory/low 
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proliferation phenotype, however this is speculation. MDA-MB-468 cells showed increased 

migration in anisotropic collagen scaffolds upon EGF-mediated EMT induction (Fig. 4.14). Future 

study investigating the proliferative capacity of MDA-MB-468 EMT cells may elucidate whether this 

cell line exhibited an EMT-related reduced proliferation rate, as reported for other cell lines 

(Evdokimova et al., 2009; Flores et al., 2016; Tsai et al., 2012; Vega et al., 2004). 

The proliferation rate of cells measured by Ki67 expression was higher during 2D culture on glass 

cover slips than 3D collagen scaffold cultures for each cell type (Fig. 4.11). However, a number of 

caveats were apparent during this comparison. Cells in 2D culture were stained using an 

immunocytochemistry (ICC) protocol which meant direct fixation, blocking and exposure to the Ki67 

antibody. For 3D scaffolds, samples were stained using an IHC paraffin embedding protocol and 

therefore required a number of extra steps for IHC analysis, such as dewaxing, rehydration and 

antigen retrieval, before exposure to the Ki67 antibody. Although these protocols were staggered so 

that antibody exposure times were equivalent, distinct unavoidable differences in their processing 

and sensitivity may have affected the experimental outcome. Furthermore, cells were cultured and 

exposed to two different materials: glass and collagen I. These two materials hold dramatically 

different mechanical properties which has been shown to effect proliferation rate (Lawyer et al., 

2012). Additionally, due to the surface chemistries of the two materials, integrin binding differs 

between the substrates which can also affect proliferation (Bachhuka et al., 2017; García et al., 

1999). Future studies could reduce these effects of substrate variation by collagen coating and 

chemical cross-linking glass coverslips before cell seeding.  

Another explanation for the differences in proliferation on 2D and 3D scaffolds could be variations in 

waste, nutrient and O2 diffusion. Cells cultured in 2D are in direct contact with culture medium and 

are able to secrete waste products into a relatively diffuse environment. Within 3D cultures, cells are 

situated within a matrix to which diffusion can be compromised. This issue is exacerbated in static 

culture systems and could be partially alleviated with a bioreactor setup that provides a constant 

flow of media and can increase cellular proliferation (Varley et al., 2017; Zhang et al., 2009). 

Bioreactors are, however, complex and expensive and the benefits need be carefully assessed if the 

scaffold system were to be scaled up for commercial purposes. 

4.3.7 ECM substrate 

It has been reported that each cell line used in these migration assays, expresses different levels of 

integrin receptors (Gui et al., 1995; Taherian et al., 2011). Considering integrins are vital to the 

attachment and interaction of cells with the various ECM proteins in vivo, it is likely that the cell lines 

used will attach and interact with the collagen scaffold at different capacities. Furthermore, cells 
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that interact more strongly with other ECM components, such as hyaluronic acid, may exhibit a more 

accurate migratory phenotype in vitro with the inclusion of these ECM proteins into the scaffold. 

Nonetheless, collagen I is the most abundant ECM protein in the interstitial matrix of the mammary 

gland and is often pervasive at the breast tumour–stroma edge (Bonnans et al., 2014; Boyd et al., 

2011; Erler et al., 2006; Provenzano et al., 2006). The model therefore includes the major ECM 

protein surrounding breast tumours but could be improved through the addition of other ECM 

proteins. 

4.3.8 Comparison to the Boyden chamber assay 

In the literature, studies commonly utilise Boyden chambers/transwell inserts to investigate the 

migration of cells in 3D (Boyden, 1962; Chioni and Grose, 2012; Hsieh and Huang, 2016; McSherry et 

al., 2011; Nagelkerke et al., 2013). In Boyden assays cells are seeded in a well separated from 

another well by a porous membrane that permits the passage of cells. Migratory potential can be 

assessed with relative simplicity; the read-out being a count of migratory cells found on the opposite 

side of the membrane. It therefore requires little technical ability as compared to other 3D culture 

analysis and, due to its common use in migration studies, protocols describing its execution are well 

documented (Albini and Benelli, 2007; Chen, 2005; Goncharova et al., 2007). However, although 

cells can move laterally on Boyden chamber membranes via the X- and Y-axes, as well as through it 

on the Z axis, the cell count read-out only measures cell migration on the Z-axis. Furthermore, unlike 

the scaffold migration assay, it only represents the frequency of cells that have traversed the 

thickness of the membrane and gives no indication of the individual distance each cell has travelled.  

The breast cancer cell migration assays described in Chapter 4 are more complex than traditional 

Boyden chamber assays, both in terms of technical skill and analysis/interpretation of results. For 

example, the cell migration assays required extra steps, such as placing the scaffold into a Boyden 

chamber, precise seeding of cells into the scaffold funnel, removing and bisecting the scaffold and 

imaging the cells. Combined with the additional analyses associated with cell migration assays, it 

could be argued that the Boyden chamber assay be the preferred model due to its simplicity. 

However, the employment of a natural polymer such as collagen, found in abundance in stroma 

surrounding breast tumours, displays a level of superiority in recapitulating the in vivo scenario 

when using the cell migration assays. Analyses are more complex and time-consuming compared to 

the simple read-out of the Boyden assay, and data output is more intricate. However, this provides 

the user with a greater level of detail by providing the migratory potential of each individual cell. 

Accordingly, observation of the spread of cells to varying distances within scaffolds and future 
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studies investigating the genetic differences between invasive and non-invasive clones could 

elucidate a deeper understanding of cancer cell migration and its mechanisms.  

4.3.9 Conclusion 

In terms of fully recapitulating the tumour microenvironment in vitro, a number of improvements 

could be applied to the cell migration assay described here. These improvements include, but are 

not restricted to, the addition of growth factors and/or hormones present in vivo, the addition of 

other stromal cell types such as adipocytes and immune cells, and the addition of ECM basement 

membrane proteins. Importantly, however, this would add layers of complexity and expense to the 

system and could reduce the likelihood of either mass production or its use in research laboratories 

as common practice. 

Collectively, this assay demonstrated the cell-type dependent effects of anisotropy on human breast 

cancer cell migration. The vast current and future potential of the assay to analyse migration in a 

number of contexts and to a high level of detail, validates its utility as a sophisticated tool to analyse 

the movement of cancer cells. With the inclusion of either a range of cell lines or possibly cell 

inoculates from a tumour biopsy, automation of analysis and modifications to the scaffold 

composition, the model holds promise in becoming a commonly used assay in the field of cancer 

research and drug discovery.  
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5 Tumour cell invasiveness and 

response to chemotherapeutics in 

adipocyte invested 3D engineered 

anisotropic collagen scaffolds  
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5.1 Introduction 

Breast cancer mortality is a consequence of tumour metastasis to a variety of sites including lung, 

brain and bone.  Distinguishing tumours that will metastasise from those that will not is challenging 

and often results in un-necessary or inappropriate treatment of women with primary breast cancer. 

As a step towards personalised medicine, it is essential to be able to predict the capacity of a tumour 

to metastasise and to respond to particular therapeutic regimes. A further confounding factor is the 

heterogeneous nature of many breast tumours where a subclone of tumour cells may behave 

differently to the bulk tumour. This is unlike the more homogeneous cell populations observed in 

established cell lines. Thus, this chapter sought to develop an in vitro culture model that accurately 

recapitulates the breast stroma in 3D and allows individual cells from a tumour biopsy fragment to 

invade this stromal milieu. In addition, it aimed to develop techniques that permit 

assessment/visualization of this ‘metastatic’ potential and the response of invading cells to a panel 

of therapeutic drugs. 

A crucial component of the breast tumour stroma is the fat pad, which provides an adipocyte-rich 

environment that breast tumour cells must traverse or negotiate. Adipocytes within the fat pad are 

responsive to various hormones and secrete a variety of components, including adipokines, that can 

influence cancer cell migration (Balaban et al., 2017; Picon-Ruiz et al., 2016; Rowan et al., 2014). 

Thus, it was sought to incorporate this stromal component into a 3D model. 

In the previous chapter, 3D anisotropic engineered collagen scaffolds were developed and 

demonstrated their value as a tool to measure the ability of individual cells from established breast 

cancer cell lines to invade the scaffold. However, breast tumours are heterogeneous in nature, and 

metastases arise from a minor yet critical subclone of tumour cells that evolve within a specific 

tumour microenvironment. This chapter reports significant enhancements to the previous migration 

assay and modifies the synthetic fat pad protocol from chapter 3  by introducing pre-adipocytes into 

anisotropic collagen scaffolds and differentiating into lipid-filled adipocytes (Davidenko et al. 2010). 

Further improvements involved implanting primary mammary tumour fragments and measuring 

both the ability of tumour cells to invade the scaffold and their mode of migration. These results 

show that this enhanced 3D model permits the distinct migratory behaviours of cells from different 

types of tumours to be observed and quantitatively analysed. Furthermore, this approach provides a 

rapid screen of the response of invading cells to therapeutic drugs. Thus, this model can provide an 

in vitro platform for drug screening that will be useful in identifying efficacy and toxicity and may be 

utilised for personalised breast cancer medicine.  
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5.2 Results 

5.2.1 Synthesising the Engineered Tumour-Stroma Interaction Model (ET-

SIM) 

To recapitulate the tumour associated collagen signature-3 (TACS-3) that is frequently observed 

surrounding aggressive mammary tumours, 3D anisotropic collagen I scaffolds were synthesised 

using the freeze drying protocol described in chapter 4 (Campbell et al., 2017; Conklin et al., 2011; 

Provenzano et al., 2006). As adipocytes have been implicated in breast cancer progression through 

paracrine and endocrine signalling and can effect breast cancer cell line invasion and migration in 

vitro, it was then intended to also incorporate this stromal component into the model (Balaban et 

al., 2017; Dirat et al., 2011; Duong et al., 2015; Falk Libby et al., 2015; Iyengar et al., 2005; Kim et al., 

2009a; Lee et al., 2015; Picon-Ruiz et al., 2016; Wang et al., 2015, 2017). For this purpose a synthetic 

fat pad within the anisotropic scaffolds was synthesised by seeding 3T3-L1 preadipocytes 

throughout, culturing for 7 days to fill the scaffold and then switching to differentiation media to 

induce their conversion into mature adipocytes (Davidenko et al. 2010). Although this protocol had 

been demonstrated in isotropic collagen scaffolds, it had not been attempted in an anisotropic 

setting. Since cell differentiation can be effected by 3D culture and the morphology of the ECM 

substrate to which cells adhere, analysis of successful differentiation was required (Bachhuka et al., 

2017; Grover et al., 2012; Kasten et al., 2008; Kim et al., 2014). The work flow to generate this model 

that is named “Engineered Tumour-Stroma Interaction Model” (ET-SIM) is illustrated in Fig. 5.1a. 3D 

Immunolocalisation techniques were then utilised to analyse 3T3-L1 differentiation in anisotropic 

collagen scaffolds. 

To ensure that 3T3-L1 preadipocytes could successfully differentiate within anisotropic collagen 

scaffolds, cells were visualised using 3D immunolocalisation and multi-photon microscopy (Fig. 5.1). 

Using a two-photon technique known as second harmonic generation (SHG), the collagen I interior 

of the scaffold could be imaged directly. This technique does not require any prior immunostaining 

or fluorescent tagging of collagen structures to enable collagen I visualisation. Instead, it relies on 

the non-centrosymmetric structure of collagen to allow excitation by two photons of the same 

wavelength and emission of one photon at half the wavelength of the excitation photons (Heinz et 

al., 1982; Theodossiou et al., 2006). As a result, unlabelled and uncompromised collagen I was 

visualised, providing further evidence of the anisotropic collagen structure of the scaffolds (Fig. 5.1). 

Intracellular and extracellular structures can often be altered or destroyed during certain histological 

processes such as paraffin embedding (D’Andrea, 2004; Pudney and Anderson, 1995). Therefore, 
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application of a technique such as SHG that can image unaltered tissue structures in 3D is highly 

advantageous. 

Whole scaffold immunostaining in conjunction with two-photon fluorescence microscopy (2pf) and 

SHG was used to visualise mature adipocytes (Fig. 5.1b, green nuclei, red lipid vesicles) and detect 

the collagen I scaffold (Fig. 5.1b, grey), respectively. As the SHG (Fig. 5.1b,c, grey) emission 

wavelengths has spectral overlap with the emission of typical DNA markers that emit within blue 

wavelengths of light, such as DAPI and Hoechst, the green fluorescent DNA dye SYTO 16 (Fig. 5.1b,c, 

green) was used as an alternative cell nuclei marker. This provided simple distinction between 

collagen and cell nuclei by colour rather than relying on morphology. Combined 3D z-stacks as 

maximum intensity projections show adipocytes located at varying depths in between anisotropic 

collagen I pores (Fig. 5.1b, left). Individual z-sections show mature adipocytes exhibiting intracellular 

immunostaining for the lipid vesicle marker perilipin, within anisotropic collagen pores (Fig. 5.1b, i-

iii). Within these z-sections, perilipin expression can be observed on lipid vesicle membranes and not 

within the vesicle itself (Fig. 5.1b, i-iii). These data demonstrate the ability of 3T3-L1 cells to 

penetrate, proliferate and differentiate to fill anisotropic collagen scaffolds with fat to generate the 

ET-SIM culture system. 

One caveat of the anisotropic collagen I scaffolds synthesised for the cell migration assay described 

in Chapter 4 is that the scaffolds used only contained one ECM protein; collagen I. Although this 

protein is the major constituent of the stromal ECM, other proteins are also present, such as 

collagen IV and laminin which are normally associated with the basement membrane, (Mariman and 

Wang, 2010; Mori et al., 2014; Vaicik et al., 2014). Furthermore, these proteins have been shown to 

influence cancer cell phenotype and migratory potential (Favreau et al., 2014; Ishikawa et al., 2014; 

Öhlund et al., 2013; Sato et al., 2015). The inclusion of other ECM proteins into anisotropic collagen 

scaffolds would therefore increase its capacity to model the tumour microenvironment, including 

the surrounding stroma. Previously, it has been reported that 3T3-L1 cells express the basement 

membrane proteins collagen IV and laminin upon adipogenesis (Aratani and Kitagawa, 1988; Ojima 

et al., 2016). As shown in Fig. 5.1c, both proteins were deposited in a pericellular fashion during 

adipogenesis within anisotropic scaffolds. Therefore, ET-SIM comprised not only directional collagen 

I and adipocytes but also basement membrane proteins. As a result, ET-SIM successfully 

recapitulated the anisotropic TACS-3 collagenous stromal structure surrounding breast tumours 

whilst also incorporating stromal mature adipocytes and other constituent ECM proteins, all key 

components of the mammary tumour stroma (Conklin et al., 2011; Huang et al., 2017; Kusuma et al., 

2011; Provenzano et al., 2006). 



Tumour cell invasiveness and response to chemotherapeutics in adipocyte invested 3D engineered anisotropic collagen 
scaffolds   

 

158 
 

 

 

Figure 5-1: Engineered Tumour-Stroma Interaction Model (ET-SIM) 

(a) Scanning electron micrograph (SEM) of anisotropic collagen scaffold (scaffold nucleation point 

marked with a white dotted line) with directional collagen pores and schematic of ET-SIM 

(Engineered Tumour-Stroma Interaction Model) culture. SEM image taken by Dr. Anke Husmann (b) 

Whole mount immunostained ET-SIM culture imaged using second harmonic generation (SHG, 

collagen I, grey) and two photon fluorescence (2pf) microscopy z-stacks. Nuclei are stained with 

green fluorescent dye SYTO16 (green). Lipids are stained with anti-perilipin (red). Z-stacks are 

displayed as a maximum intensity projections (left) and individual zoomed in z-slices (i-iii, right). (c) 

Whole mount immunostained ET-SIM culture imaged using SHG and 2pf microscopy z-stacks and 

displayed as maximum intensity projections. Nuclei are stained with green fluorescent dye SYTO16 

(green). Basement membrane proteins are stained with anti-collagen IV (red, left) and anti-laminin 

(red, right). Digitally magnified maximum intensity projections shown in (i) and (ii).   
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5.2.2 ET-SIM and tumour fragment culture 

Having shown in Chapter 4 that anisotropic collagen scaffolds are an effective tool for analysing the 

migratory behaviour of cultured breast cancer cell lines, this chapter aimed to extend this to 

investigate the capacity of cells from primary tumours to migrate into a surrounding stroma. This is a 

more relevant comparison to breast tumour growth and metastasis in vivo as the invasive capacity of 

cells is analysed from the context of intact tumour architecture. Furthermore, this preserves the 

immediate surrounding tumour microenvironment comprising of cancer-associated fibroblasts, 

immune cells, cytokines and extracellular matrix. Since there are multiple sub-types of breast cancer 

and individual breast cancers are highly heterogeneous, a comparison was sought between the 

invasive behaviour of tumour cells derived from mouse mammary tumour models initiated by 

different oncogenes. 

To investigate the migration of tumour cells through these 3T3-L1-containing anisotropic scaffolds, a 

protocol was devised to culture primary tumour fragments. Two tumour models were selected for 

their culture in ET-SIM; the MMTV-Wnt1 model and MMTV-Her2/neu tumour-derived TUBO cells 

injected into mammary fat pads (Tsukamoto et al. 1988; Rovero et al. 2000). Once established, 

primary tumours were harvested and frozen for subsequent experiments to provide a biobank of 

near identical tumour biopsies. After thawing, tumours were revived and dissected in a tissue 

culture hood using a scalpel blade and a pair of forceps in a petri dish in sterile air. Due to time 

constraints, as the living tissue was now not contained in culture media and due to the rudimentary 

process of dissection, fragment sizes were approximated by eye to the same dimensions. As a result, 

a degree of variation existed between the size and morphology of each tumour fragment. Tumours 

were dissected to fit within the seeding funnel of ET-SIM cultures as shown schematically in Fig. 5.2. 

Each tumour yielded approximately 30 tumour fragments of a suitable size for scaffold seeding and 

therefore provided approximately 30 experiments per tumour. MMTV-Wnt1 tumours were 

harvested and gifted by Dr. Peter Kreuzaler (Department of Biochemistry, University of Cambridge). 

TUBO cells were injected and tumours harvested by Dr. Sara Pensa and Dr. Jessica Hitchcock from 

the Watson laboratory. 

Previous studies have reproduced collagen anisotropy in vitro using collagen gels that were aligned 

along one axis direction (Thomopoulos et al. 2005; Provenzano et al. 2008; Ray et al. 2017; Riching et 

al. 2014; Stylianopoulos et al. 2010; Dickinson et al. 1994). For anisotropic collagen scaffolds, 

collagen pores were aligned perpendicular to the surface of the nucleation point in all directions. 

Therefore, as tumour fragments were seeded in the funnel / on the nucleation point, the scaffold 

mimicked an anisotropic ECM at the periphery of the tumour in all directions mimicking the TACS-3 
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phenotype (Provenzano et al., 2006). Accordingly, the radial distribution of collagen anisotropy 

therefore enhanced the model’s performance in reproducing the TACS-3 phenotype when seeded 

with tumour fragments. 
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Figure 5-2: Schematic of tumour fragment and ET-SIM co-culture 

Diagram depicting the workflow of tumour fragment culture in the ET-SIM culture system. Tumours 

were generated by either fat pad injection of the Her2-overexpressing TUBO mammary cancer cell 

line into syngeneic mice or spontaneously in MMTV-Wnt1 transgenic mice. These were harvested 

and frozen in liquid nitrogen followed by mechanical dissection and seeding into ET-SIM cultures. 

Tumour fragments were then cultured, fixed and immunostained for confocal microscopy analysis. 
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5.2.3 ET-SIM can distinguish tumour cell migration phenotypes 

The first tumour model analysed was the well-established MMTV-Wnt1 transgenic mouse model 

(Tsukamoto et al., 1988). Within this model, overexpression of the Wnt1 proto-oncogene is driven 

by the MMTV promoter, resulting in mammary adenocarcinoma development in FVB mice. Notably, 

it has been used to study mammary tumorigenesis for decades in a range of different studies 

(Bocchinfuso et al., 1999; Cho et al., 2008; Monteiro et al., 2014; Teissedre et al., 2009; Tsukamoto 

et al., 1988). However, it has been subject to controversy with some debating that the Wnt1 

overexpression subtype does not exist in human tumours. 

Wnt / β-catenin pathway activation leads to the nuclear and cytoplasmic localisation of β-catenin, a 

protein normally located within the cell membrane of luminal cells. It has been shown that this 

enriched nuclear and/or cytoplasmic localisation of β-catenin is observed in basal-like human breast 

cancers (Khramtsov et al., 2010). Furthermore, cytoplasmic β-catenin has been shown to be 

associated with poor patient prognosis (Lopez-Knowles et al., 2010). This indicates that the Wnt1 

pathway is activated in human breast tumour subtypes and therefore the MMTV-Wnt1 mouse 

model bears relevance to the study of the human disease. Moreover, gene expression profiling has 

revealed that MMTV-Wnt1 tumours cluster with human basal-like tumours, further supporting their 

relevance to this disease (Pfefferle et al., 2013). Importantly, Provenzano et al. first described the 

TACS-3 phenotype associated with poor patient prognosis in the MMTV-Wnt1 model. Accordingly, 

this model was optimal for use within the ET-SIM system that aimed to recapitulate the TACS-3 

phenotype in vitro (Conklin et al., 2011; Provenzano et al., 2006). 

To investigate MMTV-Wnt1 tumour survival, fragments were cultured in ET-SIM for 72 hours, fixed, 

paraffin embedded, sectioned and stained with the apoptosis marker cleaved caspase-3 (CC3). IHC 

revealed low levels of CC3 at both the edge of the tumour free from contact with the scaffold as well 

as the edge in contact with the scaffold. This indicated that the majority of tumour cells survived in 

ET-SIM cultures and did not undergo apoptosis (Fig. 5.3iv and Fig. 5.4iv). Therefore, ET-SIM was 

shown to support the culture of MMTV-Wnt1 tumour fragments. 

A typical characteristic of MMTV-Wnt1 tumours is a reverse epithelial bilayer phenotype (Monteiro 

et al., 2014; Teissedre et al., 2009). This is described by a reversed location and polarisation of the 

normal epithelium, whereby basal cells are found lining the lumen of epithelial structures and 

luminal cells surround them. The scaffold-free edge of the tumour retained this architecture showing 

a reverse bilayer phenotype with basal cells, defined by their expression of cytokeratin-14 (K14), α-

smooth muscle actin (αSMA) and nuclear p63, located lining the lumen (Fig. 5.3) (Monteiro et al., 

2014; Teissedre et al., 2009). At the same edge, luminal cells expressing β-catenin and E-cadherin 
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showed a hyperplastic, disorganised cobblestone phenotype (Fig. 5.3). In contrast, where the 

tumour contacted the scaffold, both basal (K14+, αSMA+, p63+) and luminal (E-cadherin+, β-catenin+) 

cells were seen invading collectively into the surrounding stroma (Fig. 5.4). These tumour cells 

migrated parallel to the pores of collagen in the scaffold, demonstrating the directional migratory 

effect of anisotropic ECM architecture on tumour cell movement (Fig. 5.4). The resultant tendril-like 

epithelial formation conformed closely to the anisotropic porous architecture of the scaffold, 

indicating that these scaffolds present 3D surfaces for a structured spatial analysis of tumour 

infiltration (Fig. 5.4). 

The second tumour model utilised was the TUBO tumour model (Rovero et al. 2000). The TUBO 

cancer cell line was derived from a mammary carcinoma that developed in a BALB/c-Her2/neu 

transgenic mouse. It therefore originated from a Her2 overexpressing tumour within a BALB/c 

mouse strain and upon its injection into a syngeneic mouse mammary gland from a BALB/c 

background, mammary tumours are established. This particular model was chosen as overexpression 

of HER2 occurs in approximately 25% of human breast cancers and is related to a poorer prognosis 

than the more common oestrogen receptor positive subtypes (Chavarri-Guerra et al., 2017). 

Therefore, recapitulating its progression and migration in vitro is of profound relevance and 

importance. An advantage to utilising TUBO tumours is that as they arise approximately 5 weeks 

after cell inoculation (Rovero et al. 2000). This allows faster experimental turnaround compared with 

the MMTV-Wnt1 model which requires 2 months to 1 year for spontaneous tumour formation 

(Monteiro et al., 2014; Teissedre et al., 2009; Tsukamoto et al., 1988). Furthermore, TUBO tumours 

are established in syngeneic mice and therefore illicit an immune response but are not immune-

rejected by the host. As the immune system is heavily implicated in breast tumorigenesis, the model 

therefore holds advantages over immunodeficient mouse models, by more accurately modelling the 

immunology component of the disease (Chen et al., 2017; Fujimoto et al., 2009; Georgoudaki et al., 

2016; Sousa et al., 2015; Wculek and Malanchi, 2015) 

Following 72 hours of TUBO tumour fragment culture in ET-SIM, samples were fixed, embedded in 

paraffin and sectioned longitudinally (Fig. 5.5, top, schematic). IHC analysis showed a proportion of 

cells within the tumour fragment and migratory clusters that were negative for CC3 and therefore 

had not undergone apoptosis (Fig. 5.5). This demonstrated that TUBO primary tumour fragments 

and migratory TUBO tumour cells were alive and could be supported in ET-SIM cultures. 

In stark contrast to the collective outpouring of cells from MMTV-Wnt1 tumour fragments, the 

majority of migratory TUBO tumour cells migrated as small clusters (<10 cell) (Fig. 5.5,i-iii) or rarer 

large clusters (>50 cells) separate from the seeded tumour fragment (Fig. 5.5,iv). Stochastic 
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expression of the epithelial-to-mesenchymal (EMT) marker vimentin was observed around one edge 

of cell nuclei in both the seeded tumour fragment and in cells that had migrated into the scaffold 

(Fig. 5.6).  

Thus, through the use of two different tumour models it has been demonstrated that ET-SIM can 

support the culture of primary mammary tumour fragments. Furthermore, their distinct migratory 

phenotypes were readily assessed in ET-SIM cultures. 
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Figure 5-3: MMTV-Wnt1 driven tumour fragment and ET-SIM co-culture – tumour edge 

free from scaffold contact 

Immunohistochemical (IHC) analysis of MMTV-Wnt1 tumour fragment (top), seeded into the 

nucleation point (top, white dotted line) of an anisotropic scaffold filled with adipocytes (ET-SIM), 

cultured for 72 hours, embedded in paraffin and transversely sectioned. Tumour fragment and 

upper section of the scaffold were imaged as depicted in the diagram above (top left). Zoomed in 

images of the edge of the tumour fragment free from contact with the scaffold (top, white box) are 

shown in (i-iv). DNA was marked using Hoechst (blue). Luminal tumour cells are marked with anti-β-

catenin (red, i-iii) and E-cadherin (green, iv). Basal tumour cells are marked with anti-cytokeratin-14+ 

(K14, green, i), anti-α-smooth muscle actin+ (αSMA, green, ii) and anti-p63 (nuclear, green, iii). 

Apoptotic cells are marked with anti-cleaved caspase-3 (CC3, red, iv) 
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Figure 5-4: MMTV-Wnt1 driven tumour fragment and ET-SIM co-culture – tumour edge in 

contact with the scaffold 

Immunohistochemical (IHC) analysis of MMTV-Wnt1 tumour fragment (top), seeded into the 

nucleation point (top, white dotted line) of an anisotropic scaffold filled with adipocytes (ET-SIM), 

cultured for 72 hours, embedded in paraffin and transversely sectioned. Tumour fragment and 

upper section of the scaffold were imaged as depicted in the diagram above (top left). Zoomed in 

images of the edge of the tumour fragment in contact with the scaffold (top left, white box) are 

shown in (i-iv). DNA was marked using Hoechst (blue). Luminal tumour cells are marked with anti-β-

catenin (red, i-iii) and E-cadherin (green, iv). Basal tumour cells are marked with anti-cytokeratin-14+ 

(K14, green, i), anti-α-smooth muscle actin+ (αSMA, green, ii) and anti-p63 (nuclear, green, iii). 

Arrowheads in (iv) show p63+ nuclei. Apoptotic cells are marked with anti-cleaved caspase-3 (CC3, 

red, iv) 
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Figure 5-5: TUBO tumour fragment and ET-SIM co-culture and tumour cell analysis 

Immunohistochemical (IHC) analysis of TUBO (Her2-neu overexpressing) tumour fragments (top), 

seeded into the nucleation point (white dotted line) of an anisotropic collagen scaffold filled with 

adipocytes (ET-SIM), cultured for 72 hours, embedded in paraffin and transversely sectioned. 

Tumour fragment and upper section of the scaffold were imaged as depicted in the diagram above 

(top left).  DNA was marked using Hoechst (blue). TUBO tumour cells are marked with anti-E-

cadherin (green). Apoptotic cells are marked with anti-cleaved caspase-3 (CC3, red). (a) Hoechst and 

CC3 merge. (b) Hoechst, E-cadherin and CC3 merge. Image shown as tile scan of the tumour 

fragment and the top of the scaffold. (i-iv) Magnified images of migratory TUBO cells.  
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Figure 5-6: TUBO tumour fragment and ET-SIM co-culture vimentin expression 

Immunohistochemical (IHC) analysis of TUBO (Her2-neu overexpressing) tumour fragment, seeded 

into the nucleation point of an anisotropic collagen scaffold filled with adipocytes (ET-SIM), cultured 

for 72 hours, embedded in paraffin and transversely sectioned. (a) IHC analysis of TUBO cells within 

the bulk of the seeded tumour fragment free from contact with the scaffold. TUBO cells were 

probed with luminal epithelial cell marker anti-cytokeratin-18 (K18, green) and epithelial-to-

mesenchymal transition (EMT) marker anti-vimentin (red). Stochastic expression of vimentin is 

localised around one edge of TUBO cell nuclei (arrowheads). (b) IHC analysis of migratory TUBO 

tumour cells within an anisotropic collagen scaffold filled with adipocytes (ET-SIM) with similar 

stochastic vimentin expression in K18+ TUBO cells (arrowhead). 
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5.2.4 ET-SIM as a cancer therapeutic testing platform 

Following on from the validation of ET-SIM as a method to distinguish different modes of tumour cell 

migration, subsequent experiments proceeded to test ET-SIM as a cancer therapeutic testing 

platform. For this assessment, three inhibitors of different pathways implicated in a variety of 

migratory mechanisms and processes were selected.  

Rho-associated protein kinase (ROCK) is a kinase that promotes a wide range of cellular processes 

including proliferation, apoptosis, migration, adhesion, oncogenic transformation and the 

cytoskeleton (Bhadriraju et al., 2007; Koyanagi et al., 2008; Mali et al., 2011; Da Silva et al., 2003; Yu 

et al., 2012). Furthermore, inhibition of the ROCK signalling pathway has also been shown to 

promote cell survival and colony forming efficiency when used in human breast, mouse mammary 

and MMTV-Wnt1 cancer organoid cultures (Isobe et al., 2014; Jamieson et al., 2017; Jardé et al., 

2016; Linnemann et al., 2015). The Rho-associated protein kinase (ROCK) inhibitor, Y-27632 

(denoted ROCKi hereafter), was therefore chosen as a candidate inhibitor for testing in ET-SIM due 

to its wide spanning effects. 

As matrix metalloproteinases (MMPs) are implicated in tumorigenesis, a number of MMP inhibitors 

have been developed (Devy et al., 2009; Mao et al., 2010; Mehner et al., 2015; Poola et al., 2005; 

Rider et al., 2013; Somiari et al., 2006; Sparano et al., 2004; Suojanen et al., 2009). The pan-MMP 

inhibitor GM6001 has been used in a number of studies to investigate the role of MMPs in migration 

and was therefore chosen as the second candidate inhibitor (Haeger et al., 2014; Ilunga et al., 2004; 

Peyri et al., 2009; Raviraj et al., 2012).  

The ErbB receptors, epidermal growth factor receptor (EGFR), HER2 and ErbB-4 all play roles in 

breast tumour progression (Ali et al., 2017; Kim et al., 2016; Singh et al., 2014). As HER2 is expressed 

in 30% of breast cancer and due to the influence of other ErbB receptors in breast cancer, inhibitors 

targeting these receptors have been developed (Slamon et al., 1987). Canertinib is one such inhibitor 

that was developed to target EGFR, HER2 and ErbB-4 and has been shown to inhibit proliferation and 

induce apoptosis in breast cancer cells (Galmarini, 2004; Li et al., 2008; Tan et al., 2016). 

Consequently, Canertinib was chosen as the final candidate inhibitor. 

MMTV-Wnt1 tumour fragments were cultured with and without the three candidate inhibitors for 

72 hours or 10 days in either empty scaffolds or ET-SIM to elucidate both therapeutic efficacy and 

adipocyte influence on migration. Use of empty scaffolds provided a negative control to the mature 

adipocytes present in ET-SIM cultures. This allowed the interpretation of adipocyte effects on 

tumour cell migration and on inhibitor efficacy compared to vehicle controls. Furthermore, it 
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permitted the investigation of the adipogenic influence for each individual therapeutic testing 

regime. As all three inhibitors were dissolved in dimethyl sulfoxide (DMSO), this reagent was 

selected as the vehicle control. DMSO has been shown to have anti-tumour effects and its use 

ensured that any deleterious activities of the reagent were controlled for (Wang et al., 2012). 

Migration distance was quantified through analysis of IHC sections of fixed samples, distinguishing 

tumour cells from stroma based upon their αSMA and β-catenin expression. Every migratory cell 

distance from 4 separate scaffold experiments was then pooled and plotted graphically for the 72 

hour (Fig. 5.7, Fig. 5.8) and 10 day time points (Fig. 5.13, Fig. 5.14). Each drug treatment in empty 

scaffolds was then statistically compared with DMSO vehicle controls (Fig. 5.7a, 5.13a), followed by 

the same comparison in ET-SIM cultures (Fig. 5.7b, 5.13b).  

To compare the effects of ET-SIM cultures and therefore adipocytes on each drug treatment, 

migration distance in empty scaffolds was compared with ET-SIM cultures for every individual 

treatment regime (Fig. 5.8, Fig. 5.14). The total frequency of migratory cells was also measured and 

plotted graphically (Fig. 5.9, Fig. 5.10, Fig. 5.15, Fig. 5.16). Again, this was compared to DMSO 

controls (Fig. 5.9, 5.15) or in empty scaffolds versus ET-SIM for each individual drug treatment 

regime (Fig. 5.10, Fig. 5.16). 

At 72 hours, migration distance analysis revealed Canertinib to have an anti-migratory effect on 

MMTV-Wnt1 tumour fragments seeded in empty scaffolds when compared to vehicle (DMSO) 

controls (Fig. 5.7a). IHC analysis of CC3 expression at this time point revealed that this effect could 

have resulted from high levels of cell death, before cells were able to migrate into the scaffold (Fig. 

5.11). In contrast, ROCKi exerted a pro-migratory effect on cancer cells in empty scaffolds, enhancing 

migration distance compared to vehicle controls (Fig. 5.7a).  

Adipocyte signalling has been shown to influence breast tumour progression (Balaban et al., 2017; 

Dirat et al., 2011; Duong et al., 2015; Picon-Ruiz et al., 2016; Wang et al., 2015). To elucidate 

whether adipocytes were affecting migration in our system, the individual inhibitors were compared 

with tumour fragments in empty scaffolds versus ET-SIM scaffolds at 72 hours. ROCKi exerted a pro-

migratory effect when compared to vehicle controls regardless of adipocyte status (Fig. 5.7a,b). 

However, adipocytes enhanced this pro-migratory effect when comparing ROCKi in empty scaffolds 

to ROCKi in ET-SIM cultures (Fig. 5.8b). Interestingly, although adipocytes enhanced migration in 

ROCKi samples compared to ROCKi empty scaffold samples, they also reduced the total frequency of 

cells that had migrated into the scaffold (Fig. 5.10b).  
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The anti-migratory effects of Canertinib observed in empty scaffolds versus vehicle controls (Fig. 

5.7a) were not observed in ET-SIM cultures (Fig. 5.7b). Nevertheless, cells migrated further in 

Canertinib ET-SIM samples compared to Canertinib empty scaffold samples (Fig. 5.8d). The total 

frequency of migratory cells was significantly reduced in Canertinib samples compared to vehicle 

controls regardless of adipocyte status (Fig. 5.9a,b). This reduction in the frequency of migratory 

cells may have been due to the increased CC3 expression and therefore cell death also observed in 

these Canertinib-treated samples (Fig. 5.11).  

In contrast, GM6001 exerted no significant effect on migration in empty scaffolds compared to 

vehicle controls (Fig. 5.7a) but reduced migration a small but significant amount in ET-SIM cultures 

compared to vehicle controls (Fig. 5.7b) at 72 hours. The total frequency of migratory cells was not 

affected in either case (Fig. 5.9a,b). Additionally, an anti-migratory effect of adipocytes was seen 

when comparing GM6001 ET-SIM to GM6001 empty scaffolds (Fig. 5.8c).  

Interestingly, DMSO vehicle controls also revealed a subtle but significant adipocyte-mediated anti-

migratory effect on distance and a reduction in the overall frequency of cells migrated, at 72 hours 

(Fig. 5.8a, Fig. 5.10a). This contrasts with studies showing adipocytes to increase breast cancer cell 

migration in vitro (Balaban et al., 2017; Picon-Ruiz et al., 2016; Wang et al., 2015). 

These data suggest that the influence of adipocytes is complex particularly with regard to their effect 

on the distance migrated and the overall frequency of migratory cells at 72 hours (Fig. 5.7-5.11). 

While a lower frequency of tumour cells migrated in all treatment conditions in ET-SIM cultures 

compared to empty scaffolds, this difference varied between inhibitor treatments and did not reach 

statistical significance in all cases (Fig. 5.10).  

Migration distance was increased in ROCKi and Canertinib ET-SIM cultures (Fig. 5.8b,d) but the 

overall frequency of migratory cells in ROCKi and Canertinib ET-SIM cultures trended to a decrease, 

at 72 hours (Fig. 5.10b,d). This suggests adipocytes may have facilitated the migration of certain 

subsets of tumour cells while suppressing the invasiveness of others. Thus ET-SIM cultures have the 

capacity to reveal the heterogeneity of tumours and allow even small numbers of invasive cells to be 

detected.  

To investigate whether the therapeutic and adipocyte-mediated responses observed at 72 hours 

were restricted to the initiation of migration only, a longer time course was carried out culturing 

tumour fragments for up to 10 days. IHC analysis revealed that the extent of tumour cell migration 

was strikingly increased in ROCKi samples compared to vehicle controls (Fig. 5.12). Tracts of cells can 

be seen protruding in all directions from the tumour fragment into the scaffolds, with some cells 
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migrating more than 20 times the distance of vehicle controls. The most distal cells (>500µm) from 

the tumour fragment showed a thin mesenchymal phenotype and expressed both β-catenin and 

αSMA (Fig. 5.12b, i,ii). Cells found closer to the tumour fragment tended to be more clustered and 

also expressed both β-catenin and αSMA (Fig. 5.12b, iii,iv). 

After 10 days, migration distance analysis and total frequency of migratory cells analysis revealed 

that Canertinib completely abolished cell migration in both empty scaffolds and ET-SIM cultures (Fig. 

5.13, Fig. 5.14, data not shown - absence of distance or frequency data to plot graphically). This 

demonstrated the high efficacy of Canertinib at longer time-points independent of adipocyte status.  

The MMP inhibitor, GM6001, showed anti-migratory effects in both empty scaffold and ET-SIM 

cultures after 10 days culture compared to vehicle controls (Fig. 5.13). Thus, MMP induced matrix 

remodelling was at least partially responsible for MMTV-Wnt1 tumour cell migration and occurred 

irrespective of adipocyte status. This mode of MMP-mediated cell migration has also been observed 

in other studies (Fisher et al., 2009; Somiari et al., 2006). Moreover, ET-SIM culture increased 

migration in GM6001 samples compared to empty scaffolds (Fig. 5.14c). 

ROCKi effects on migration distance were clearly more pronounced in longer term treatments, with 

a subset of cells reaching >3000µm in empty scaffolds and >4000µm in ET-SIM cultures after 10 days 

culture (Fig. 5.13). This was highly significant (p<0.0001) when compared to vehicle controls 

independent of adipocyte status (Fig. 5.13). Furthermore, this ROCKi pro-migratory effect was 

further enhanced in ET-SIM cultures compared to empty scaffolds (Fig. 5.14b). The total frequency of 

migratory cells in ROCKi samples at 10 days was then analysed (Fig. 5.15, Fig. 5.16b). Although not 

significant, these data suggest that ROCKi treatment increases the total number of migratory cancer 

cells and is independent of adipocyte status when compared to vehicle controls (Fig. 5.15). This is 

indicative of a pro-survival/proliferative effect of ROCKi on migratory cells in Wnt1 tumours.  

All drug treatments at 10 days showed a significant increase in migration distance in ET-SIM cultures 

compared to empty scaffolds (Fig. 5.14).  This showed that adipocytes promoted later stages of cell 

migration in all therapeutic regimes tested at 10 days, therefore underscoring the need for 

oncologists and drug discovery laboratories to be conscious of adipocyte influences when selecting 

medicines.  

In concordance with 72 hour data, although not significant, ET-SIM cultures showed a decreasing 

trend in the total frequency of migratory cancer cells compared to empty scaffolds for all 

therapeutic treatments (Fig. 5.16). Interestingly, there was therefore an inverse trend of increased 

migration distance (Fig. 5.14) to a decreased frequency of migratory cancer cells (Fig. 5.16) when 
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comparing ET-SIM to empty scaffold cultures, at 10 days. This indicates that adipocyte pro-migratory 

effects are likely not on the entire population of tumour cells but rather a particular subset. 

Moreover, it also suggests adipocytes are suppressive of certain cellular subsets in the system, 

preventing them from gaining a migratory phenotype. Hence, these data demonstrated the 

influence of intra-tumour heterogeneity and its detection within the ET-SIM culture system. 

In conclusion, adipocytes had an unpredictable and significant effect on the outcome of drug 

treatment and highlight the importance of using an adipocyte invested 3D environment within a 

drug testing platform. 72 hour and 10 day samples demonstrated the time-dependent effects of 

adipocytes and their influence on the efficacy of therapeutic regimes. Importantly, the response of 

invasive cells to therapeutic drugs was readily assessed and the most appropriate drug treatment to 

suppress metastatic tumour cell subpopulations was determined. 
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Figure 5-7: MMTV-Wnt1 tumour fragment culture and therapeutic testing with migration 

distance analysis (72 hours) – comparison to DMSO vehicle controls 

MMTV-Wnt1 tumour cell migration distance from anisotropic collagen scaffold nucleation points 

was measured and plotted graphically after 72 hours culture with ROCKi, GM6001 and Canertinib 

inhibitors. DMSO was used a vehicle control to which all treatments were compared statistically. 

Each migratory cell is marked as an individual point. (a) MMTV-Wnt1 tumour fragments were seeded 

and cultured in empty scaffolds with inhibitors. (b) Tumour fragments were seeded in ET-SIM 

cultures with inhibitors. Samples were compared statistically with the non-parametric 

unpaired/matching Kruskal-Wallis ANOVA and a Geisser-greenhouse correction combined with a 

Dunn’s multiple comparison test. *p<0.05, ****p<0.0001. 
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Figure 5-8: MMTV-Wnt1 tumour fragment culture and therapeutic testing with migration 

distance analysis (72h) – comparison of empty scaffold versus ET-SIM cultures 

MMTV-Wnt1 tumour cell migratory distance from anisotropic collagen scaffold nucleation points 

was measured and plotted graphically after 72 hours culture with ROCKi, GM6001 and Canertinib 

inhibitors. Each treatment was compared individually with/without ET-SIM cultures. (a) DMSO 

vehicle (b) ROCKi (c) GM6001 (d) Canertinib.  Samples were compared statistically with the non-

parametric unpaired Mann-Whitney test (n=4). *p<0.05, **p<0.01, ****p<0.0001. 
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Figure 5-9: MMTV-Wnt1 tumour fragment culture and therapeutic testing with total 

migratory cell frequency analysis (72 hours) – comparison to DMSO vehicle controls 

The total frequency of migratory MMTV-Wnt1 tumour cells in anisotropic collagen scaffolds was 

measured and plotted graphically after 72 hours culture with ROCKi, GM6001 and Canertinib 

inhibitors. DMSO was used a vehicle control to which all treatments were compared statistically. (a) 

Tumour fragments were seeded in empty scaffolds and treated with inhibitors. (b) Tumour 

fragments were seeded in ET-SIM co-cultures and treated with inhibitors. Samples were compared 

statistically with the non-parametric unpaired/matching Kruskal-Wallis ANOVA and a Geisser-

greenhouse correction combined with a Dunn’s multiple comparison test (n=4). *p<0.05. 
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Figure 5-10: MMTV-Wnt1 tumour fragment culture and therapeutic testing with total 

migratory cell frequency analysis (72h) – comparison of empty scaffold versus ET-SIM 

cultures 

The total number of migratory MMTV-Wnt1 tumour cells in anisotropic collagen scaffolds was 

measured and plotted graphically after 72 hours culture with ROCKi, GM6001 and Canertinib 

inhibitors. Each treatment was compared individually in empty scaffolds versus ET-SIM cultures. (a) 

DMSO vehicle (b) ROCKi (c) GM6001 (d) Canertinib.  Samples were compared statistically with the 

non-parametric unpaired Mann-Whitney test (n=4). *p<0.05. 
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Figure 5-11: Apoptosis in MMTV-Wnt1 tumour fragment culture during therapeutic testing 

(72 hours) 

Immunohistochemical analysis of MMTV-Wnt1 tumour fragments in scaffolds, cultured for 72 hours 

with/without 3T3-L1 adipocytes (ET-SIM), treated with DMSO (control), ROCKi (Y-27632), GM6001 or 

Canertinib, and immunostained with apoptosis marker anti-cleaved caspase 3 (CC3, red) and tumour 

cell marker E-cadherin (green). Cell nuclei are stained with Hoechst (blue). 12 random subjects were 

shown IHC of the different therapeutic testing strategies (n=3) in a blinded test. 100% selected 

Canertinib treatment without 3T3-L1 as showing the highest CC3 levels. 
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Figure 5-12: MMTV-Wnt1 tumours have increased migration in anisotropic collagen 

scaffolds when treated with ROCKi (10 days) 

(a) Immunohistochemical analysis of MMTV-Wnt1 tumour fragment seeded into anisotropic collagen 

scaffold nucleation points (white dotted line), cultured for 10 days, embedded in paraffin and 

transversely sectioned. Migratory cancer cells were marked with αSMA (green) and β-catenin (red). 

DNA was marked with Hoechst. (i) shows migratory cells near the nucleation point. (b) As in (a) but 

cultured for 10 days in ROCKi (Y-27632). (i) and (ii) show migratory cells at distances at >500µm. (iii) 

and (iv) show migratory cells at <500µm near the nucleation point. 
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Figure 5-13: MMTV-Wnt1 tumour fragment culture and therapeutic testing with migration 

distance analysis (10days) – comparison to DMSO vehicle controls 

MMTV-Wnt1 tumour cell migratory distance from anisotropic collagen scaffold nucleation points 

was measured and plotted graphically after 10 days culture with ROCKi, GM6001 and Canertinib 

inhibitors. DMSO was used a vehicle control to which all treatments were compared statistically. (a) 

Tumour fragments were seeded in empty scaffolds with inhibitor treatment. (b) Tumour fragments 

were seeded in ET-SIM co-cultures with inhibitor treatment. Canertinib treatment yielded no 

detectable migratory cells and hence data was not shown.  Samples were compared statistically with 

the non-parametric unpaired/matching Kruskal-Wallis ANOVA and a Geisser-greenhouse correction 

combined with a Dunn’s multiple comparison test (n=4). *p<0.05, ****p<0.0001. 
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Figure 5-14: MMTV-Wnt1 tumour fragment culture and therapeutic testing with migration 

distance analysis (10days) – comparison of empty scaffold versus ET-SIM cultures 

MMTV-Wnt1 tumour cell migratory distance from anisotropic collagen scaffold nucleation points 

was measured and plotted graphically after 72hrs culture with ROCKi, GM6001 and Canertinib 

inhibitors. Each treatment was compared individually with/without ET-SIM cultures. (a) DMSO 

vehicle (b) ROCKi (c) GM6001. Canertinib treatment yielded no detectable migratory cells and hence 

data was not shown.  Samples were compared statistically with the non-parametric unpaired Mann-

Whitney test (n=4). ****p<0.0001. 
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Figure 5-15: MMTV-Wnt1 tumour fragment culture and therapeutic testing with total 

migratory cell frequency analysis (10days) – comparison to DMSO vehicle controls 

The total number of migratory MMTV-Wnt1 tumour cells in anisotropic collagen scaffolds was 

measured and plotted graphically after 10 days culture with ROCKi, GM6001 and Canertinib 

inhibitors. DMSO was used a vehicle control to which all treatments were compared statistically. (a) 

Tumour fragments were seeded in empty scaffolds with inhibitor treatments. (b) Tumour fragments 

were seeded in ET-SIM co-cultures with inhibitor treatments. Canertinib treatment yielded no 

detectable migratory cells and hence data was not shown.  Samples were compared statistically with 

the non-parametric unpaired/matching Kruskal-Wallis ANOVA and a Geisser-greenhouse correction 

combined with a Dunn’s multiple comparison test. No significant differences were found (n=4). 
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Figure 5-16: MMTV-Wnt1 tumour fragment culture and therapeutic testing with total 

migratory cell frequency analysis (10 days) – comparison of empty scaffold versus ET-SIM 

cultures 

The total frequency of migratory MMTV-Wnt1 tumour cells in anisotropic collagen scaffolds was 

measured and plotted graphically after 10 days culture with ROCKi, GM6001 and Canertinib 

inhibitors. Each treatment was compared individually with/without ET-SIM cultures. (a) DMSO 

vehicle (b) ROCKi (c) GM6001. Canertinib treatment yielded no detectable migratory cells and hence 

data was not shown. Samples were compared statistically with the non-parametric unpaired Mann-

Whitney test (n=4). 
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5.2.6 Optical clearing allows visualisation of tumour / ET-SIM cultures to 

analyse therapeutic effect 

The CUBIC optical clearing method increases tissue sample transparency by the removal of light 

scattering lipids and matching the refractive indices of a tissue, through immersion in hydrophilic 

agents (Susaki et al., 2014, 2015). Using this process the tissue is optically cleared whilst minimising 

the quenching of any fluorophores in the sample (Lloyd-Lewis et al., 2016; Susaki et al., 2015). CUBIC 

therefore permits the 3D immunolocalisation of protein and allows deeper laser penetration and z-

sectioning by confocal microscopy of whole mounts. Previously it has been reported that TUBO 

tumours can be optically cleared and imaged using this approach (Lloyd-Lewis et al., 2016). In this 

section it was therefore sought to utilise this method to optically clear scaffolds, tumours and their 

combination to enhance the analysis of TUBO tumour cell migration and their responses to 

therapeutics.  

Initial clearing experiments were carried out to confirm the presence of the TACS-3 phenotype in the 

mouse models used throughout this chapter; MMTV-Wnt1 and TUBO tumour models. As TACS-3 was 

first described by Provenzano et al. in MMTV-Wnt1 tumours, it was anticipated that the phenotype 

would be likely observed in those samples (Provenzano et al., 2006). However, for the TUBO tumour 

model it was unknown whether a TACS-3 phenotype would be observed. Following CUBIC clearing 

stereoscopic images showed an increased transparency in both tumour types (Fig. 5.17a). Clearing 

was then used in conjunction with whole mount immunostaining and 2pf to confirm whether 

cancerous epithelial cells could be identified and located within cleared samples (Fig. 5.17b, red). 

TUBO cells were successfully identified with anti-HER2 immunostaining (Fig. 5.17b, i, red) and 

MMTV-Wnt1 cancerous cells were identified with β-catenin immunostaining (Fig. 5.17b, ii, iii, red). 

SHG was then utilised to directly image collagen (Fig. 5.17b, blue) and permitted the 3D visualisation 

of the anisotropic TACS-3 phenotype in both tumour types (Fig. 5.17b, white dotted arrows). 

Subsequent experiments focused on the clearing, immunostaining and imaging of TUBO tumour 

fragments in empty scaffold and ET-SIM after 10 days culture (Fig. 5.18-5.22). Clearing increased 

transparency in scaffold and scaffold / tumour cultures (Fig. 5.18). Combining CUBIC with whole 

mount immunostaining for E-cadherin, TUBO empty scaffold and ET-SIM cultures that were treated 

with the candidate inhibitors ROCKi, GM6001 and Canertinib, were imaged using fluorescent 

stereoscopy (Fig. 5.19a). Macroscopically visible colonies of migratory TUBO cells were observed at 

varying distances from the seeded tumour fragments (Fig. 5.19a, white arrowheads). 

The number of samples with >1 macroscopically visible colony of migratory cells was then quantified 

(Fig. 5.19b). Using this metric, all DMSO vehicle controls and ROCKi treated samples showed 
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migration, independent of their adipocyte status (Fig. 5.19b). In contrast, GM6001 suppressed 

macroscopically visible migration in 50% of samples when seeded in empty scaffolds, indicating an 

anti-migratory effect of MMP inhibition (Fig. 5.19). This effect was reversed when the tumours were 

embedded in ET-SIM cultures, demonstrating that adipocytes exert a pro-migratory effect during 

GM6001 treatment (Fig. 5.19). Similar to effects on MMTV-Wnt1 tumours, Canertinib showed a 

pronounced anti-migratory affect in TUBO tumours with no macroscopically visible migratory 

colonies in 100% of samples, independent of adipocyte status (Fig. 5.19).  

To investigate whether migration was observed microscopically, CUBIC clearing and immunostaining 

were used in combination with confocal microscopy (Fig. 5.20-5.22). TUBO cells were marked with E-

cadherin and HER2 antibodies and imaged using deep 1mm z-stacks. Following Canertinib treatment, 

no migratory cells were observed in either empty scaffold (Fig. 5.20a) or ET-SIM cultures (Fig. 5.20b). 

Non-migratory cells within Canertinib-treated empty scaffolds samples did not express an 

anticipated membranous localisation of E-cadherin or HER2 which may indicate high levels of cell 

death (Fig. 5.20a). Similarly, non-migratory cells within Canertinib-treated ET-SIM exhibited 

unanticipated localisation of E-cadherin and HER2, except in rare small groups of cells (Fig. 5.20b, i, 

ii). 

Confocal microscope tile scan z-stacks revealed that TUBO cells in ROCKi treated tumours migrated 

x-, y- and z-distances ≥ 1000µm (Fig. 5.21, Fig. 5.22) from the seeded tumour fragment (dotted line, 

Fig. 5.21, Fig. 5.22). Furthermore, heterogeneous membranous expression of Her2 and E-cadherin in 

both empty scaffold and ET-SIM cultures was observed (Fig. 5.21, Fig. 5.22). These techniques 

underscore the superiority of the ET-SIM system in combination with tissue clearing and 3D imaging, 

to analyse tumour migration and drug efficacy.   
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Figure 5-17: CUBIC clearing and collagen anisotropy of TUBO and MMTV-Wnt1 tumours 

Tumours were generated by either injection of TUBO (Her2-neu overexpressing) cells into a 

syngeneic mouse or spontaneously in MMTV-Wnt1 transgenic mice. Tumours were then harvested, 

optically cleared and whole mount immunostained. (a) Transmission stereoscopic images of 

uncleared and CUBIC optically cleared TUBO and MMTV-Wnt1 tumours from a top down view (b) 

Whole mount CUBIC cleared tumours immunostained for Her2 (i, red, TUBO) and β-catenin (ii-iii, 

red, MMTV-Wnt1). Immunostaining was imaged using 2-photon fluorescence microscopy (2pf). 

Collagen (blue) was imaged directly using second harmonic generation (SHG). Directional collagen 

fibres surrounding tumour cells are marked with white arrows. Z stacks are displayed as individual z-

slices showing increasing depth from left to right (0-100µm). 
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Figure 5-18: Optical clearing of anisotropic collagen scaffolds, TUBO tumours and TUBO 

tumour fragment cultures 

Tumours were generated by injection of TUBO (Her2-neu overexpressing) cells into a syngeneic 

mouse. Tumours were then harvested and either optically cleared using CUBIC or seeded in 

anisotropic collagen I scaffolds then optically cleared using CUBIC. Transmission stereoscopic images 

were then taken of uncleared and optically cleared (CUBIC): anisotropic collagen scaffold, TUBO 

tumour and their combination, all from a top down view. *Uncleared TUBO/scaffold combination 

image was unintentionally taken with increased light levels. 
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Figure 5-19: Macroscopically visible migration of TUBO tumour cells in empty scaffolds and 

ET-SIM cultures in the presence of candidate inhibitors 

(a) Fluorescent stereoscopic images of TUBO tumour fragments seeded in scaffolds, cultured for 10 

days with/without adipocytes (3T3-L1), treated with DMSO (control), ROCKi (Y-27632), GM6001 or 

Canertinib, CUBIC cleared and immunostained for E-cadherin (green) and Her2 (not shown). Cell 

nuclei are stained with DAPI (blue). Clusters of cancer cells that have migrated away from the central 

tumour fragment are marked with arrowheads. (b) Quantification of the number of 

tumour/scaffolds that contain >1 visible (via fluorescent stereoscopy) migratory cell clusters. One 

DMSO empty scaffold sample was compromised during the clearing and immunostaining stages and 

was not analysed and therefore only 5 repeats were analysed. For all other samples n=6. 
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Figure 5-20: Canertinib abrogates microscopically visible migration of TUBO tumour cells 

in empty scaffolds and ET-SIM cultures 

Primary TUBO tumour fragment seeded into an (a) empty anisotropic collagen scaffold or (b) 

anisotropic collagen scaffold invested with differentiated 3T3-L1 cells (ET-SIM). TUBO-scaffold and 

TUBO-ET-SIM were then cultured for 10 days whilst being treated with Canertinib, CUBIC cleared 

and immunostained for E-cadherin (green) and Her2 (red). Cell nuclei are stained with DAPI (blue). 

The seeded tumour fragment is outlined (white dotted line). (a) No migratory cells were observed 

and no cells with the correct membranous localisation of E-cadherin or Her2 were observed. (b) No 

migratory cells were observed. (b, i, ii) Few cells with the correct membranous localisation of E-

cadherin or Her2 were observed and were only found in the original tumour fragment. Images were 

taken using confocal microscopy tile scan z-stacks (z=1000µm). 
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Figure 5-21: ROCKi allows migration distances of over 1000µm for TUBO tumour 

fragments in empty scaffold cultures 

Primary TUBO tumour fragment seeded into an anisotropic collagen scaffold, cultured for 10 days 

without adipocytes (-3T3-L1), treated with ROCKi, CUBIC optically cleared and immunostained for E-

cadherin (green) and Her2 (red). Cell nuclei are stained with DAPI (blue). The seeded tumour 

fragment is outlined (white dotted line). (i) and (ii) show zoomed in images of migratory clusters of 

Her2 and E-cadherin positive cells. Images were taken using confocal microscopy tile scan z-stacks 

(z=1000µm). 
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Figure 5-22: ROCKi allows migration distances of over 1000µm for TUBO tumour 

fragments in ET-SIM cultures 

Primary TUBO tumour fragment seeded into an anisotropic collagen scaffold, cultured for 10 days in 

ET-SIM (+3T3-L1), treated with ROCKi, CUBIC cleared and immunostained for E-cadherin (green) and 

Her2 (red). Cell nuclei are stained with DAPI (blue). The seeded tumour fragment is outlined (white 

dotted line). (i) shows zoomed in images of migratory clusters of Her2 and E-cadherin positive cells. 

Images were taken using confocal microscopy tile scan z-stacks (z=1000µm). 
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5.3 Discussion 

5.3.1 The Engineered Tumour-Stroma Interaction Model (ET-SIM)  

A previous report has shown breast tumours can be grouped according to three different tumour-

associated collagen signatures (TACS) (Provenzano et al. 2006). In this previous study, invasive 

MMTV-Wnt1 tumours remodel surrounding stromal ECM into a TACS-3 phenotype where collagen 

fibres run perpendicular to the tumour boundary creating localised anisotropy that provides a 

highway for metastatic cells. Importantly, a similar TACS-3 phenotype has been reported in human 

breast tumours that are associated with poor patient prognosis (Conklin et al., 2011). As shown in 

Chapter 4, anisotropic collagen I scaffolds were synthesised to recapitulate the TACS-3 phenotype in 

vitro. The Engineered Tumour-Stroma Interaction Model (ET-SIM) improved upon this system 

through the addition of adipocytes to the anisotropic scaffolds.  

SHG and 2pf were used to confirm whether preadipocytes could differentiate in the collagen 

anisotropic scaffolds of the ET-SIM model. Combination of SHG with immunostaining and two-

photon fluorescence (2pf) microscopy permitted the visualisation of mature adipocytes as well as 

their 3D localisation within the anisotropic collagen pores in which they reside (Fig. 5.1). As the 

anisotropic scaffolds varied in pore size and shape with distance from the nucleation point, future 

experiments could utilise SHG and 2pf microscopy to study the collagen structure surrounding 

individual migratory tumour cells. Interactions with the scaffold ECM could then be probed through 

3D immunostaining of proteins such as integrins. Furthermore, SHG does not damage living cells and 

could be combined with live cell imaging to investigate the mechanism by which a cell migrates 

along anisotropic collagen pores. In addition, live imaging could permit investigation into ECM 

remodelling by migratory cells and/or adipocytes in real-time, however, imaging depths present a 

current restraint of the system without the use of fixation and optical clearing agents. 

During adipogenesis it has been shown that 3T3-L1 cells produce basement membrane proteins 

(Aratani and Kitagawa, 1988; Ojima et al., 2016). Likewise, 3T3-L1 cells in anisotropic scaffolds also 

produced both collagen IV and laminin upon adipogenesis (Fig. 5.1). The ET-SIM model therefore 

included other naturally occurring ECM proteins other than collagen I formed by de novo synthesis, 

that migratory breast cancer cells would likely come into contact with in vivo and could influence 

their migratory phenotype. 

5.3.2 Tumour heterogeneity 

One concern of using fresh tumour fragments for the ET-SIM studies, was that these fragments 

varied in size and morphology, as described in section 5.2.2. Nevertheless, it could be argued that in 
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vivo tumours are also subject to high variability in size and morphology. In vivo tumours are 

frequently measured by callipers or bioluminescence using a luciferase reporter and hence in vivo 

measurements are also an approximation of actual tumour size (Zagozdzon et al., 2012). One 

advantage however of in vitro systems is that they are more malleable; there is a greater degree of 

control over the system. To improve tumour fragment variability, tools to provide tumour fragments 

of similar sizes could be designed, such as a core needle biopsy gun machined to the dimensions of 

the scaffold funnel. This would reduce the human error made by estimating tumour fragment size, 

increasing accuracy and reproducibility within the ET-SIM system to increase assay robustness and 

therefore increase the likelihood of the model’s use in the wider scientific community. 

An inherent variable within the ET-SIM tumour culture system is inter-tumour heterogeneity and 

intra-tumour heterogeneity (ITH) (Gerlinger et al., 2012; Hernandez et al., 2012; Patani et al., 2011; 

Shipitsin et al., 2007). Inter-tumour heterogeneity is defined as differences in cell phenotype 

between different tumours, whereas ITH describes differences in cell phenotype within the same 

tumour which can arise due to processes such as clonal evolution or the cancer stem cell hierarchy 

(Drobysheva et al., 2015; Lim et al., 2010; Ng et al., 2015; Nowell, 1976; Quintana et al., 2010; Wang 

et al., 2014b). For example, the MMTV-Wnt1 tumour model used in ET-SIM has been described in 

the literature to exhibit a number of different phenotypes between different tumours in vivo thus 

showing inter-tumour heterogeneity (Li et al., 2000; Monteiro et al., 2014; Teissedre et al., 2009; 

Zhang et al., 2005). Here, in MMTV-Wnt1 tumour fragments in ET-SIM cultures, ITH was apparent by 

the mixed basal and luminal phenotypes and varied structures observed within the same tumour 

mass (Fig. 5.3). Despite TUBO tumours being established through injection of a relatively 

homogenous mammary tumour cell line, they also displayed ITH, as seen by the varied vimentin 

expression between cells (Fig. 5.6). 

Inter-tumour heterogeneity and ITH are both characteristics that have been described in patient 

samples (Shipitsin et al., 2007). Moreover, they are frequently attributed to poor drug efficacy and 

disease relapse (Moore et al., 2012; Nim et al., 2017; Sharma et al., 2010; Zhao et al., 2014). 

Modelling these factors is therefore paramount to the investigation of tumour cell migration and the 

response to various drugs in vitro. Both tumour models in this study display ITH, therefore increasing 

the system’s ability to recapitulate the in vivo tumour microenvironment. Although ITH introduces 

variation in the data, this variation is inherent within the human population and therefore modelling 

ITH may increase translatability into the clinic.  

After seeding and culturing MMTV-Wnt1 and TUBO tumour fragments in ET-SIM, two different 

migratory phenotypes were observed (Fig. 5.4, Fig. 5.5). Cells from MMTV-Wnt1 tumours collectively 
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migrated into ET-SIM cultures with elongated tendril-like protrusions of cells aligned with collagen 

pores emanating from the tumour mass into the scaffolds (Fig. 5.4). Conversely, TUBO tumour cells 

migrated as singular or small clusters of cells with a round morphology, separated from the tumour 

mass (Fig. 5.5). These differences demonstrate that the model can distinguish these two tumour 

types based on their migratory phenotype. These phenotypes may be a result of different modes of 

migration adopted by each tumour cell type. Based on morphology alone, MMTV-Wnt1 cells 

exhibited similarity with a mesenchymal phenotype and potentially may have undergone an EMT to 

permit a mesenchymal mode of migration (Johansson et al., 2015) (Fig. 5.4). For TUBO tumour cells, 

cell shape resembled an amoeboid mode of migration due to the singular rounded morphology 

observed (Gao et al., 2017) (Fig. 5.5). Amoeboid movement in cancer cells is characterised by low 

adhesion and a higher velocity than mesenchymal movement (Paňková et al., 2010). This may 

explain the larger migration distances achieved by TUBO cells during migration over such a short 

time period (Fig. 5.5). 

5.3.3 Rho-associated protein kinase (ROCK) inhibition effects on MMTV-

Wnt1 tumour cultures 

A striking increase in MMTV-Wnt1 tumour cell migration distance was observed with the ROCK 

inhibitor Y-27632 (ROCKi) treatment. This effect was seen at 72 hours and 10 days both in ET-SIM 

and empty scaffold cultures (Fig. 5.7, Fig. 5.12, Fig. 5.13). Previous literature is divided on the effects 

of ROCKi on cancer cell migration with some studies showing that ROCK inhibition supresses or 

inhibits migration, while others show that ROCK inhibition increases invasive potential (Bhandary et 

al., 2015; Provenzano et al., 2008a; Riching et al., 2014; Vishnubhotla et al., 2012; Yang and Kim, 

2014). These studies vary in the systems used, suggesting that ROCKi exerts cell type specific and 

context dependent effects.  

Previously it has been shown that collagen gels are aligned in vitro by cells within seeded tumour 

explants to produce regions of collagen anisotropy at the tumour edge (Provenzano et al., 2008b). 

Similar to what was observed with MDA-MB-231 cells in Chapter 4 for anisotropic versus isotropic 

scaffolds; this study showed these anisotropic regions of collagen enhanced the migration of tumour 

explant cells over regions of isotropy. Subsequently, they treated explants with H1152; an 

alternative ROCK inhibitor to Y-27632 (ROCKi) used in ET-SIM studies in Chapter 5, and found ROCK 

inhibition decreased matrix reorganisation at the tumour-collagen gel interface and consequently 

reduced migration. Their findings suggest that ROCK signalling is required for the initial 

reorganisation of isotropic ECM into a TACS-3 phenotype at the tumour edge and subsequent 

tumour cell migration. However, as the anisotropic collagen scaffolds used in Chapter 5 were already 
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pre-aligned, ROCK signalling was not required for the remodelling of collagen into an anisotropic 

phenotype and this comparison is therefore not directly applicable. Furthermore, ROCK inhibition in 

ET-SIM cultures produced the opposite effect to the aforementioned study, by increasing migration 

rather than supressing it (Fig. 5.7, Fig. 5.12, Fig. 5.13). 

Additionally, in the aforementioned study on tumour-collagen anisotropy, the effects of ROCK 

inhibition in magnetically pre-aligned collagen gels were examined (Provenzano et al., 2008b). This 

approach is comparable to experiments involving ROCK inhibition in ET-SIM cultures due to the pre-

aligned collagen structures present in both systems. In this example, ROCK inhibition did not affect 

migration, reinforcing that ROCK signalling is only required for initial matrix alignment to increase 

migration. However, this does not explain the increased migration during ROCK inhibition observed 

in ET-SIM cultures (Fig. 5.7, Fig. 5.12, Fig. 5.13). Importantly, there were distinct differences in the 

studies, which may contribute to the varied effects observed with ROCK inhibition. These include the 

use of gels rather than scaffolds, the specific ROCK inhibitors used and the mouse models from 

which tumours were derived. 

ROCKi treated MMTV-Wnt1 tumours exhibited an elongated morphology in cells that had migrated 

furthest in anisotropic collagen scaffolds (Fig. 5.12b,i,ii). Interestingly, it has been shown that 

elongated cells do not require ROCK signalling in order to migrate (Sahai and Marshall, 2003). 

Therefore ROCK inhibition may have favoured the migration of elongated cells from MMTV-Wnt1 

tumours into the scaffold. ROCK inhibition can also enhance the migration of cells with large mature 

focal adhesions attaching them to the surrounding ECM (Goetsch et al., 2014). This is achieved by 

reducing the size and increasing the number of focal adhesions. In this case, cell morphology is 

converted from a more rounded morphology to a compact body with elongated protrusions. This 

conversion of morphological phenotype was also observed in ROCKi treated MMTV-Wnt1 tumour 

cells, specifically in the more migratory population (Fig. 5.12b,i,ii). Therefore, a reduction in the 

number of focal adhesions may serve as an alternative explanation to the increased migratory 

phenotype observed in ROCKi treated MMTV-Wnt1 tumour cultures. 

Additionally, ROCKi has been shown to promote cell survival and colony forming efficiency when 

used in organoid cultures of human breast, mouse mammary gland and MMTV-Wnt1 tumours (Isobe 

et al., 2014; Jamieson et al., 2017; Jardé et al., 2016; Linnemann et al., 2015). Enhanced cell survival 

could explain the increased frequency of migratory cells observed in ROCKi treated samples, by 

providing migratory cells with a survival advantage over vehicle controls (Fig. 5.15). Collectively, 

these data indicate that due to the variation observed with ROCK inhibition across models, their 

therapeutic application should be very carefully considered 
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5.3.4 Matrix metalloproteinase inhibition effects on MMTV-Wnt1 tumour 

cultures 

The broad spectrum matrix metalloproteinase (MMP) inhibitor GM6001 showed varying effects on 

migration distance at different time points. When applied to MMTV-Wnt1 tumour fragments in 

empty scaffolds, no statistically significant difference in migration was observed relative to DMSO 

controls at 72 hours (Fig. 5.7a). The majority of cells showed a decreased migration distance 

compared to DMSO, which may be explained by a small separate highly migratory population of 7 

cells observed at distances over 400 µm and thus affected the average distance calculated (Fig. 

5.7a). This population could reflect a small subset of particularly aggressive tumour cells. At 10 days, 

the suppressive effects of GM6001 compared to DMSO vehicle controls were apparent in both 

empty scaffold and ET-SIM cultures (Fig. 5.13). The discrepancy between the two time points may 

reflect a subtle or delayed effect of GM6001 or a lack of sensitivity in the system to pick up effects at 

the shorter time point.  

When comparing GM6001 treatment in empty scaffolds versus in ET-SIM, adipocytes reduced 

migration at 72 hours (Fig. 5.8c). Interestingly, this effect was reversed at 10 days (Fig. 5.14c). This 

time-dependent adipocyte-mediated effect highlights the importance of both the inclusion of 

stromal cells and the extension of the assay to longer time points.  

Migration distance was decreased at 10 days with GM6001 treatment compared to DMSO controls 

(Fig. 5.13), suggesting migration is partially reliant on ECM remodelling via MMP activity in both the 

ET-SIM and empty scaffold cultures. Importantly, although migration distance was reduced, it was 

not completely abolished, suggesting that another form of migration that is MMP-independent 

occurs. Although MMP activity was inhibited, it cannot be assumed that migration in the presence of 

GM6001 is a completely protease independent mechanism. Other proteases not affected by MMP 

inhibitors which  also remodel ECM, such as serine and cysteine proteases, would still be functional 

(Krepela et al., 1998; Provenzano et al., 2008a; Waxler and Rabito, 2003). To investigate protease 

dependent migration more fully, a cocktail of protease inhibitors would be required. 

5.3.5 ErbB inhibition effects on MMTV-Wnt1 tumour cultures 

Treatment with the pan-ErbB inhibitor Canertinib on MMTV-Wnt1 tumours in empty scaffolds 

significantly reduced migration distance after 72 hours culture (Fig. 5.7a). However, there was no 

difference observed in ET-SIM cultures relative to DMSO vehicle control (Fig. 5.7b). This suggests 

that at this time point, adipocytes provide a pro-migratory phenotype strong enough to reverse the 

effects of Canertinib on migration distance. Indeed, consistent with this notion, exposing breast 
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cancer cells to adipocyte conditioned medium has been shown to reduce the therapeutic efficacy of 

certain cancer drugs (Duong et al., 2015).   

Canertinib-treated empty scaffold samples showed a significant reduction in the frequency of 

migratory cells compared to DMSO vehicle controls after 72 hours (Fig. 5.9a). Furthermore, elevated 

apoptosis was observed in these samples, demonstrated by increased expression of cleaved 

caspase-3 (CC3) (Fig. 5.11). Although there was a reduction in the frequency of migratory cells in 

Canertinib ET-SIM compared to DMSO ET-SIM (Fig. 5.9b), comparably low expression of CC3 was 

observed (Fig. 5.11). It is possible that other CC3-independent cell death mechanisms, such as 

necrosis or necroptosis, may account for the reduced frequency of migratory cells observed (Kim et 

al., 2017; Yang et al., 2013). Alternatively, cell death may have occurred before 72 hours and so CC3 

was either degraded and not detected by IHC or was washed out of the tumours during daily media 

changes. A virally transfected CC3 fluorescent reporter and live cell imaging could be used to 

investigate this further and would provide the assay with a live read-out of apoptotic cell death as it 

occurs.  

By 10 days of culture, no migratory cells were present in any Canertinib-treated samples and 

therefore no migratory distances or frequencies could be recorded. Any migratory cells found at 

earlier time points were therefore killed by Canertinib treatment and were not detected. A limitation 

of the current assay is the use of fixed end-point analysis; and thus development of live imaging 

could vastly increase the analytical power of these studies. If the system were made amenable to 

fluorescent tagging and live imaging, the progression of fluorescent migratory tumour cells during 

treatment could be assessed. For example, TUBO cells could be genetically engineered to express 

tdTomato and imaged using multi-photon techniques in real-time. With future incorporation of 

these techniques into the assay, drug dosages could be investigated to determine the minimal dose 

and timing a drug requires to eliminate tumour cell migration. This would be extremely useful in the 

drug discovery field, whereby determining optimal therapeutic dosages could potentially lessen the 

unwanted side-effects associated with chemotherapy. 

5.3.6 Adipocyte effects on MMTV-Wnt1 tumour cultures 

Comparison of DMSO controls in empty scaffolds versus DMSO controls in ET-SIM cultures at 72 

hours illustrated a subtle but significant suppressive effect of adipocytes at 72 hours (Fig. 5.8a). 

Following 10 days culture, this effect had been reversed with adipocytes providing an enhanced 

migratory effect (Fig. 5.14a). These data may suggest that adipocytes secrete suppressive factors at 

earlier time points and pro-migratory factors at later time points. Collectively, these observations 
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highlight the complex bivalent effects of adipocytes and the need to incorporate stromal cells and a 

range of time-points into drug efficacy studies. 

After 10 days culture, adipocytes enhanced the migration distance of MMTV-Wnt1 tumour cells in all 

DMSO, ROCKi and GM6001 samples (Fig. 5.14). This pro-migratory effect of adipocytes on breast 

cancer cells is aligned with the majority of the literature, despite studies using alternative systems to 

measure migration (Balaban et al., 2017; Falk Libby et al., 2015; Iyengar et al., 2005; Kim et al., 

2009a; Lee et al., 2015; Picon-Ruiz et al., 2016; Wang et al., 2015, 2017). A range of factors could be 

responsible for an adipocyte-mediated pro-migratory phenotype. These include factors secreted by 

adipocytes such as chemokine (C-C motif) ligand 20 (CCL20), the hormone adiponectin and ECM 

protein collagen VI (Falk Libby et al., 2015; Iyengar et al., 2005; Kim et al., 2009a). Furthermore, 

adipocytes can induce a cancer cell EMT resulting in an enhanced migratory phenotype (Lee et al., 

2015). Additionally, breast cancer cells have been shown to induce lipolysis in adipocytes to 

subsequently increase cancer cell metabolism via uptake of adipocyte-derived fatty acids and 

increase cancer cell migratory potential (Balaban et al., 2017). Collection of ET-SIM culture 

supernatants in future studies for enzyme-linked immunosorbent assay (ELISA) analyses could 

enable the system to become amenable to the investigation of adipocyte-tumour signalling analyses. 

Furthermore, immunostaining for EMT markers, other ECM proteins and lipid droplets would enable 

future investigation of these factors which may explain the adipocyte-mediated pro-migratory 

phenotype. 3D immunolocalisation would permit a more detailed analysis of the spatial position of 

these factors and correlate them to the more or less invasive subsets of tumour cells. For example, 

3D imaging could provide information on the size and distribution of lipids in 3T3-L1 cells and 

whether this is affected by proximity to more/less migratory tumour cells. 

Despite adipocytes enhancing the distance that Wnt1 tumour cells migrate after 10 days in culture 

(Fig. 5.14), adipocytes showed a trend (not significant) to reduce the overall number of migratory 

cells (Fig. 5.16). This may suggest that they act as a physical selective barrier or filter – impeding 

some cells while facilitating penetration of more aggressive cancer cells. Alternatively, adipokines 

released by adipocytes may influence the migration of different subpopulations of tumour cells, 

demonstrating the relevance of ITH. Accordingly, ET-SIM cultures reveal heterogeneous cellular 

behaviour. It is therefore ideally suited to identify whether drugs target subpopulations responsible 

for metastatic spread, rather than generically de-bulking a tumour without effectively eliminating 

persistent migratory subsets. 
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5.3.7 Optical clearing of TUBO tumour / ET-SIM cultures 

In chapter 5, it was demonstrated that anisotropic collagen scaffolds, ET-SIM cultures, tumour 

fragments and their combination could be optically cleared and immunostained using CUBIC (Fig. 

5.18). This enabled fluorescent stereoscopic imaging and analysis of TUBO tumour cell migration in 

response to the candidate therapeutics (Fig. 5.19). These aforementioned techniques require low 

skill and little training, as they require moving samples through a number of different reagents and 

imaging on a stereoscope. It is therefore plausible that with the humanisation of the system using 

patient samples, the model could be translated into the clinic for routine diagnostics testing. 

Furthermore, stereoscopic imaging permitted quantitative analysis of the diverse effects of pathway-

specific inhibitory drugs and has significant potential as a tool for rapid ‘first pass’ investigation of 

drug efficacy. Although stereoscopic image analysis permitted macroscopic visualisation of migratory 

colonies of cells, it is important to note that microscopic colonies were not detected with this 

methodology. 

CUBIC enabled deep (1000µm) z-sectioning of TUBO / ET-SIM cultures, which, in conjunction with  

3D immunostaining and confocal microscopy, facilitated visualisation of microscopic colonies of 

migratory cells,  investigating cell phenotype and location (Fig. 5.19 – 5.22).   This approach enabled 

the identification of ITH through stochastic expression of E-cadherin and HER2 in neighbouring TUBO 

cells. As observed with the MMTV-Wnt1 tumours, Canertinib completely abolished TUBO tumour 

cell migration in both empty scaffolds and ET-SIM cultures (Fig. 5.19, Fig. 5.20). Canertinib is a pan-

ErbB inhibitor that blocks HER2 signalling as well as other ErbB signalling pathways (Galmarini, 

2004). TUBO cells were derived from a HER2 overexpressing breast carcinoma and therefore express 

HER2, as observed during microscopic analyses (Fig. 5.19 – 5.22) (Rovero et al., 2000). Potentially, 

Canertinib-mediated abrogation of HER2 signalling may have caused the anti-migratory effects 

observed in TUBO tumours.  

As TUBO tumour cultures were utilised for CUBIC experiments, these samples were unavailable for 

paraffin embedding and subsequent migration distance analysis. Without these measurements, the 

adipocyte-mediated effects on this tumour type in ET-SIM cultures are unknown. Using the same 

Euclidian distance and frequency analyses applied to MMTV-Wnt1 tumours in ET-SIM, future 

experiments could discern any differences between empty scaffold and ET-SIM cultures. 

Nonetheless, scaffolds treated with GM6001 increased the number of macroscopically visible 

colonies of migratory cells when cultured in ET-SIM (Fig. 5.19). This provides an indication of 

adipocyte effects, however, significant confocal analysis is required to confirm whether this 

difference was also observed on a microscopic scale. 
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5.3.8 Limitations of the ET-SIM system 

A limitation of ET-SIM cultures is the possibility that any external factors introduced such as the 

inhibitory drugs used in this study, may not reach the core of the tumour fragment due to inefficient 

diffusion. To address this, media and inhibitors were replaced every 24 hours, encouraging diffusion. 

Further elaboration of the system would involve the use of a bioreactor to maintain a constant 

media flow, mimicking a patient’s blood circulation. Nevertheless, the static system recapitulates a 

feature of many solid tumours where changes in tumour vasculature limit therapeutic efficacy by 

impairing drug penetration into the centre of the tumour (Grantab et al., 2006; Varia et al., 1998; Yu 

et al., 2015). It has been previously shown that collagen fibre anisotropy in proximity to tumours in 

vivo creates diffusion anisotropy, effecting how drugs reach target cells (Stylianopoulos et al., 2010). 

Therefore the anisotropic scaffolds may influence the diffusion of therapeutics and future 

comparison with isotropic scaffolds should address this.  

5.3.9 Conclusion 

ET-SIM is a versatile system, amenable to a number of microscopic techniques and the investigation 

of tumour cell migration in the presence of a range of therapeutic interventions. Its potential use as 

a drug discovery assay makes it an attractive prospect for the field of cancer research. Successful 

long term culture of tumour fragments permitted a complex understanding of adipocyte-mediated 

and therapeutic-mediated effects on migration. Furthermore, inclusion of primary tumour fragments 

that model inter- and intra- tumour heterogeneity facilitated the investigation of therapeutic 

efficacy and cell migration in a more relevant context than conventionally used in vitro assays.  
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6 Development of an in vitro human 

fat pad for breast cancer cell 

migration studies 
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6.1 Introduction 

Mouse models are used extensively in experimental biology to provide insights into human diseases. 

Mice and humans experience a similar cancer incidence of 30% by the end of their respective 

lifetimes (American Cancer Society, 2016; Rabbany et al., 2003). However, several factors limit the 

utility of murine models.  For example, mice live approximately 2-3 years compared to a human 

lifespan of 70-80 years and 30% of human cancers do not develop within this 3 year time frame. 

Furthermore, during drug discovery experiments murine animal models inaccurately predict toxicity 

for humans in over half of cases (Olson et al., 2000). Experiments combining results obtained in mice 

with those from another non-rodent model still only delivers an approximately 70% correct 

prediction for human toxicity. These factors have led this project to seek humanisation of the ET-SIM 

culture system described in chapter 5. 

Initial experiments set out to confirm if the previously described TACS-3 phenotype could be 

observed in a human breast cancer sample (Conklin et al., 2011; Provenzano et al., 2006). Utilising 

histology, CUBIC clearing, whole mount immunofluorescence and multi-photon microscopy, samples 

were analysed for the presence of a TACS-3 phenotype. This rigorous analysis is intended to provide 

a solid rationale for proceeding with humanisation of the scaffold-based system.  

As described in chapters 3 and 5, collagen scaffolds were invested with murine 3T3-L1 preadipocytes 

and differentiated into mature adipocytes, to synthesize a synthetic fat pad or ET-SIM cultures. To 

humanise the fat pad, the murine 3T3-L1 cells were replaced by primary human mesenchymal stem 

cells (MSCs) isolated from a reduction mammoplasty that were immortalised by retroviral insertion 

of either hTERT or the human papillomavirus E6E7 gene. Subsequent experiments tested whether 

these cells could avoid senescence, differentiate into mature adipocytes in 2D, differentiate into 

adipocytes in anisotropic collagen scaffolds and support the migration of the MDA-MB-231 human 

breast cancer cell line. The goal of this work was to progress towards future experiments where 

combination of a humanised ET-SIM (hET-SIM) with human tumour biopsies could be utilized to 

provide a therapeutic drug testing tool and a personalised medicine platform, to combat breast 

cancer. 
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6.2 Results 

6.2.1 Human primary tumour biopsy displays a tumour associated collagen 

signature-3 (TACS-3) phenotype 

Reproducibility has become a subject of concern in recent years with scientists unable to replicate 

the results of other published studies (Begley and Ellis, 2012). Previously it was confirmed that the 

TACS-3 phenotype first described in MMTV-Wnt1 mouse tumours is also found in human breast 

tumours and is associated with a poor prognosis (Conklin et al., 2011; Provenzano et al., 2006). As 

these findings were of profound importance to the latter portion of the project, it was logical to 

attempt to reproduce these results on a human breast cancer biopsy sample. Additionally, using 

CUBIC and 3D immunolocalisation, the TACS-3 phenotype was investigated in an increased level of 

detail. 

A human tumour biopsy, kindly provided by Dr. Jennifer Gomm (Queen Mary University of London 

(QMUL), Bart’s Institute), was analysed for evidence of a TACS-3 phenotype. Pathologists at QMUL 

confirmed that the original tumour was an ER+/HER2- grade 2 invasive ductal carcinoma (IDC). 

Following surgery, the biopsy was fixed and bisected with one half embedded in paraffin for 

histological analyses and the other half processed for CUBIC clearing. In order to visualise collagen 

and assess whether a TACS-3 phenotype was present in fixed histological sections, a Masson’s 

Trichrome stain was employed (Fig.6.1). This stains collagens blue, nuclei dark purple and cytoplasm 

red. Directional anisotropic collagen fibres (Fig. 6.1, arrows) were aligned perpendicular to the 

periphery of the tumour (Fig. 6.1, left, tumour bulk) projecting between the adipocytes constituting 

the surrounding fat pad (Fig. 6.1, right, asterisks, fat pad). Cancerous epithelial cells were identified 

by their round morphology and a cytoplasm that was easily distinguishable from its nucleus. These 

epithelial cells were observed in the tumour bulk, on anisotropic collagen fibres at the tumour 

periphery and in the surrounding stroma (Fig. 6.1). This discrimination of epithelial tumour cells from 

other stromal cell types and structures within the Masson’s Trichrome stained section was further 

confirmed by Dr. Raza Ali (University of Cambridge, CRUK), a trained medical pathologist. 

To investigate the TACS-3 phenotype in 3D, the CUBIC clearing protocol was utilised in conjunction 

with whole mount immunofluorescence and multi-photon techniques. Stereoscopic visualisation of 

the tumour following clearing revealed that CUBIC increased transparency considerably (Fig. 6.2). 

Cells within cleared samples were marked with DAPI and fibres of collagen were imaged using 2pf 

microscopy and SHG, respectively (Fig. 6.3). As the DAPI and SHG signals overlapped in their 

excitation and emission spectra their signal was collected simultaneously (Fig. 6.3, grey). Anisotropic 

collagen fibres running from right to left between cells were observed frequently within the cleared 
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tumour sample (Fig. 6.3). To confirm that these cells located on anisotropic collagen fibres derived 

from the ER+ IDC, samples were also stained with the nuclear marker ER and the cytoplasmic 

epithelial marker K8. Visualising the same z-sections as in Fig. 6.3, tracts of ER+ K8+ cells were often 

observed aligned between anisotropic collagen fibres (Fig. 6.4). 

These data confirm the TACS-3 phenotype reported by Provenzano et al. (Provenzano et al., 2006). 

Thus, clearing, whole mount immunofluorescence and multi-photon techniques facilitated the 

detailed visualisation and permitted 3D localisation of tumour cells associated with anisotropic 

collagen fibres. 
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 Figure 6-1: Human ER+ invasive ductal carcinoma (IDC) with anisotropic collagen fibres at 

the periphery of the tumour - TACS-3 phenotype 

Fresh human oestrogen receptor positive HER2 receptor negative grade 2 invasive ductal carcinoma 

of the breast (ER+/HER2- IDC grade 2) biopsy was fixed, embedded in paraffin, sectioned and stained 

with Masson’s Trichrome (collagens = blue, nuclei = dark purple and cytoplasm = red). Grade, ER 

status and HER2 status was determined by a trained medical pathologist (QMUL, Bart’s Institute) 

and kindly provided by Dr. Jenny Gomm (QMUL, Bart’s Institute). Columns of tumour cells exhibiting 

round morphology with a distinguishable cytoplasm can be seen invading between adipocytes of the 

surrounding fat pad (*) via anisotropic collagen fibres (blue structures marked by black arrows). 

Tumour cells and structures identified by Masson’s Trichrome were confirmed by Dr. Raza Ali 

(University of Cambridge, CRUK), a trained medical pathologist. 
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Figure 6-2: Human ER+/HER2- invasive ductal carcinoma (IDC) optically cleared using 

CUBIC 

A fragment of a fresh human grade 2 ER+/HER2- invasive ductal carcinoma of the breast (IDC) was 

fixed (top), then optically cleared using CUBIC (bottom) and imaged using a stereoscopic microscope. 
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Figure 6-3: Human ER+ IDC with anisotropic collagen fibres – second harmonic generation 

(SHG) 

A fragment of a fresh human ER+/HER2- IDC grade 2 biopsy was fixed, optically cleared using CUBIC 

and whole mount immunostained for keratin-8 (not shown) and ER (not shown). Nuclei were 

marked with DAPI (round, grey) and imaged using two-photon fluorescence microscopy (2pf). 

Collagen was imaged directly using second harmonic generation (SHG, long fibrous, grey). 

Directional anisotropic collagen fibres can be observed running right to left. DAPI and SHG were 

excited and collected at the same wavelengths. A 15µm z-stack is shown as individual z slices. 
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Figure 6-4: Human ER+ IDC has tumour cells aligned with anisotropic collagen fibres 

A fragment of a fresh human ER+/HER2- IDC grade 2 biopsy was fixed, optically cleared using CUBIC 

and whole mount immunostained for cytokeratin-8 (K8, cytoplasmic, green) and ER (nuclei, red). All 

nuclei were marked with DAPI (blue) and imaged using two-photon fluorescence microscopy (2pf). 

Collagen was imaged directly using SHG (long blue fibres). Keratin-8+ ER+ tumour cells can be 

observed often in single file procession directionally aligned with anisotropic collagen fibres. DAPI 

and SHG were excited and collected at the same wavelengths. Z-stack is shown as the same 

individual z slices as in Fig. 6.3.  
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6.2.2 Mesenchymal stem cells (MSCs) can be immortalised by retroviral 

insertion of the E6E7 gene but not the hTERT gene 

The following experiments aimed to replace the murine 3T3-L1 cell line in ET-SIM cultures with an 

equivalent human cell line. For this purpose human MSCs were selected due to their adipogenic 

potential in vitro (Pittenger et al., 1999). MSCs were isolated from a reduction mammoplasty using a 

previously published protocol and kindly provided by Professor Mohamed Bentires-Alj (Universität 

Basel) (Duss et al., 2014). Previously, it was shown that primary MSCs reach senescence in under 10 

passages (Bonab et al., 2006). Due to this limited proliferative capacity and in the interests of 

designing a reproducible human ET-SIM (hET-SIM) system, successive experiments focussed on 

immortalising MSCs via retroviral insertion of either the hTERT or E6E7 genes. 

During cell replication, telomeres that are located at the ends of chromosomes shorten. Once this 

reaches a critical length known as the Hayflick limit, DNA damage occurs and is sensed by proteins 

such as p53 thus causing replicative senescence (Fagagna et al., 2003; Hayflick and Moorhead, 1961; 

Saretzki et al., 1999). The E6 gene is derived from the human papillomavirus (HPV) and its product 

affects the cell cycle through the destruction and therefore inactivation of p53 (Foster et al., 1994). 

Furthermore, the E6 protein also targets other substrates for degradation that repress human 

telomerase reverse transcriptase (hTERT) synthesis (Gardiol et al., 1999; Klingelhutz et al., 1996). As 

hTERT maintains telomere length, this increased expression of hTERT prevents the shortening of the 

telomeres that would normally result in a cell reaching its Hayflick limit.  

Also derived from HPV is the E7 gene, which targets the tumour suppressor retinoblastoma protein 

(pRB) (Chellappan et al., 1992). The E7 protein forms a complex with pRB inactivating its function. As 

pRB is required for cell cycle arrest to prevent a cell from replicating too early or too quickly, its 

inactivation can lead to increased proliferation and immortalisation (Goodrich et al., 1991; Yang and 

Hinds, 2007). Hence, insertion of E6 and E7 genes has been used to generate cell lines that are not 

subject to replicative senescence and provided the rationale for their retroviral insertion into MSCs 

(Lee et al., 2001; Omi et al., 2009). The choice of hTERT gene for retroviral insertion was to induce 

immortalisation by lengthening the telomeres of MSCs and consequently increase chromosomal 

stability (Hayflick and Moorhead, 1961; Morales et al., 1999; Tsai et al., 2010).  

In order to ensure that only successfully transduced cells were cultured following retroviral infection, 

antibiotic selection was carried out to select this population of cells, as the plasmid that contained 

the E6E7 gene also coded for neomycin resistance. Geneticin (G418), an analogue of neomycin 

sulphate, was titrated in a kill curve using uninfected MSCs (Table 6.1). This provided the minimum 

concentration of 600 µg/ml required to kill 100% of uninfected MSCs over a 5 day period (Table 6.1). 
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Following retroviral transduction, antibiotic selection at this concentration was used to purify the 

E6E7-MSC population and kill any uninfected MSCs (Table 6.2). Similarly, the plasmid containing the 

hTERT gene also coded for puromycin resistance (Table 6.1). Puromycin was therefore titrated in a 

kill curve using uninfected MSCs, providing the minimum concentration of 1 µg/ml to kill 100% of 

uninfected MSCs over a 5 day period (Table 6.1). Following retroviral transduction, the hTERT MSC 

population was then purified via puromycin selection (Table 6.2). 

To investigate whether these transduced cells had escaped senescence in vitro, a β-galactosidase 

senescence staining protocol was employed. Using this procedure, senescent cells that were unable 

to overcome their Hayflick limit, and therefore had not been immortalised, stained green. As this 

protocol lacks sensitivity, raw images as well as uniformly enhanced images have been provided to 

enable the visualisation of the distinctions between samples (Fig. 6.5) (Cahu and Sola, 2013). These 

data show that a high proportion of uninfected MSCs (Fig. 6.5, MSC) and MSCs transduced with a 

retrovirus containing the hTERT gene (Fig. 6.5, hTERT MSC) had become senescent. In contrast, MSCs 

transduced with a retrovirus containing the E6E7 gene (Fig. 6.5, E6E7-MSC) were likely immortalised 

as few senescent cells were observed.  

The process of immortalising cells can increase their proliferative capacity (Gong et al., 2011). For 

further confirmation that the E6E7-MSCs had undergone immortalisation, IHC staining for the 

proliferation marker Ki67 was carried out with subsequent ImageJ analysis (Fig. 6.6). MSCs were 

analysed either at pre-confluency or post-confluency plus 11 days of adipogenesis. At pre-confluency 

significantly more proliferating E6E7-MSCs (≈90%) were observed compared to both uninfected MSC 

(≈30%) and hTERT MSC (≈40%) (Fig. 6.6). As adipogenesis induces terminal differentiation, low 

proliferation rates were anticipated in these samples (Estefanía et al., 2012; Jaiswal et al., 2000). 

Interestingly however, after 11 days of adipogenesis a small proportion (≈7%) of E6E7-MSC 

continued to express the proliferation marker Ki67 (Fig. 6.6a, white arrows, Fig. 6.6b, grey bar). 

These are most likely immortalised cells that have not terminally differentiated to adipocytes. 

Collectively, these data demonstrate that MSCs can be successfully immortalised through viral 

insertion of the E6E7 gene. E6E7-MSCs were able to escape senescence and exhibited an enhanced 

superior proliferative capacity. This provides a potentially very useful candidate human cell line to 

replace the 3T3-L1 murine cell line in the ET-SIM system. 
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Table 6-1: Kill curve to determine minimum antibiotic concentration required for the 

selection of immortalised human mesenchymal stem cells (MSC) 

Human mesenchymal stem cells (MSC) isolated from routine breast reduction mammoplasty surgery 

were kindly provided by Dr. Mohammed Bentirez-Alj (Friedrich Miescher Institute, Basel, 

Switzerland). Uninfected mesenchymal stem cells (MSC) were cultured to 75% confluency and 

treated with increasing concentrations of Geneticin/G418 and Puromycin. After 5 days treatment, 

cell death was quantified by an estimation of the percentage of non-attached cells observed using 

light microscopy.  

Antibiotic 
Concentration 

(µg/ml) 

Dead MSC  after 

5 days (approx.) 

Geneticin (G418) 0 1% 

 150 75% 

 300 90% 

 400 98% 

 500 99% 

 600 100% 

Puromycin 0 1% 

 0.05 10% 

 0.1 30% 

 0.2 50% 

 0.5 95% 

 1 100% 
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Table 6-2: Optimal antibiotic concentrations for the selection of immortalised MSC 

The plasmids used for retroviral insertion of the E6E7 and hTERT genes for immortalisation and the 

corresponding antibiotic concentrations used for selection in human mesenchymal stem cells (MSC) 

derived from a reduction mammoplasty. 

 

  

Plasmid name 
Immortalising 
Gene 

Antibiotic resistance 
Concentration for 
selection 

pLXSN-neo-E6E7 E6E7 
Neomycin / G418 
/Genetecin 

600 µg/ml 

pBABE-puro-hTERT hTERT Puromycin 1 µg/ml 
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Figure 6-5: MSCs immortalised via viral insertion of the E6E7 gene (E6E7-MSC) are able to 

avoid senescence 

Human mesenchymal stem cells (MSC) isolated from routine breast reduction mammoplasty surgery 

were kindly provided by Dr. Mohammed Bentirez-Alj (Friedrich Miescher Institute, Basel, 

Switzerland). Human telomerase reverse transcriptase (hTERT) or E6E7 genes were retrovirally 

inserted into MSC to produce immortalised cell lines. Senescent cells were marked using β-

galactosidase staining. Image manipulation (colour saturation and contrast) was applied equally to 

each image to highlight subtle differences in β-galactosidase staining. Cells analysed were at passage 

12. 
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Figure 6-6: E6E7-MSC proliferate at a higher rate than uninfected MSC 

(a) Immunocytochemistry of uninfected MSC, hTERT-MSC and E6E7-MSC for proliferation marker 

Ki67 (green). Nuclei were marked with Hoechst dye (blue). Cells were fixed at approximately 70% 

confluency for undifferentiated samples and 100% confluency after 11 days treatment with an 

adipogenic cocktail for adipogenesis samples. (b) A ratio of Ki67+ nuclei to all cell nuclei was plotted 

for each cell type. Statistical significance was determined using an unpaired one-way ANOVA test 

(n=3, different passages). **p<0.01, ***p<0.001. 
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6.2.3 E6E7-MSCs successfully undergo adipogenesis in 2D 

In order to replace 3T3-L1 cells with human cells in the ET-SIM system, it was necessary to ascertain 

whether immortalised MSCs could successfully undergo differentiation into adipocytes. 

Adipogenesis was first assessed in 2D on tissue culture plastic (TCP). MSCs were cultured to 100% 

confluency and differentiated for 11 days using an adipogenic cocktail. Lipids were then detected 

using the fat soluble dye Oil Red O which produces a red stain (Fig. 6.7a). Undifferentiated MSCs 

were used as a negative control as these cells do not produce detectable lipid droplets. 

Differentiated uninfected MSCs, which have previously been shown to differentiate into adipocytes 

and produce lipid droplets under these conditions, were used as a positive control (Jaiswal et al., 

2000; Pittenger et al., 1999). These data showed that uninfected MSC, hTERT MSC and E6E7-MSC, 

failed to generate lipid droplets in their undifferentiated state (Fig. 6.7a). However, upon 

adipogenesis, both uninfected MSC and E6E7-MSC generated multiple lipid droplets in the cytoplasm 

of the majority of cells (Fig. 6.7a). hTERT MSC produced little to no lipid droplets as detected by Oil 

Red O staining (Fig. 6.7a). 

For further confirmation of adipogenesis, cell lysates of the immortalised cell lines were compared 

by probing for the lipid vesicle membrane marker perilipin using SDS-PAGE and western blotting 

analysis (Fig. 6.7b). In agreement with Fig. 6.7a, perilipin was undetectable in cell lysates of 

undifferentiated uninfected MSC, hTERT MSC and E6E7-MSC (Fig. 6.7b) whereas differentiated 

uninfected MSC and E6E7-MSC both expressed perilipin (Fig. 6.7b). Perilipin was undetectable in 

hTERT MSC regardless of adipogenic induction, indicating that this cell line is unable to differentiate 

successfully (Fig. 6.7b). These data show that E6E7-MSC were able to undergo adipogenesis to 

produce lipid vesicles in a comparable level to that of uninfected MSC and thus immortalisation does 

not have an adverse effect on their ability to differentiate.  

Upon adipogenesis in vitro, both 3T3-L1 cells and MSCs synthesise collagen IV and laminin, two 

major constituent ECM proteins of the basement membrane (Aratani and Kitagawa, 1988; Noro et 

al., 2013; Ojima et al., 2016; Sillat et al., 2012). As the basement membrane surrounds the 

epithelium of the mammary gland, expression of its constituent proteins adds further support for 

this in vitro model’s ability to recapitulate mammary tissue. Therefore, as an additional metric of 

differentiation, subsequent experiments included the immunocytochemistry of MSCs in 2D probing 

for collagen IV and laminin (Fig. 6.8). 

Fluorescence microscopy imaging revealed an increased deposition of laminin (Fig. 6.8a) and 

collagen IV (Fig. 6.8b) in differentiated uninfected MSC, hTERT-MSC and E6E7-MSC compared to 

undifferentiated cells. To quantify expression levels, fluorescence was measured using Image J and 
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displayed graphically as arbitrary units (Fig. 6.8c,d). This analysis confirmed that both uninfected 

MSC and E6E7-MSC expressed significantly higher levels of laminin (Fig. 6.8c) and collagen IV (Fig. 

6.8d) upon adipogenic induction compared to undifferentiated samples. In contrast, although 

hTERT-MSC showed increased expression levels of laminin (Fig. 6.8c) and collagen IV (Fig. 6.8d) 

during adipogenic induction, this result was less dramatic and did not achieve statistical significance. 

This is not surprising given the relative inability of hTERT-MSCs to respond to adipogenic media. 

Overall, these data showed that E6E7-MSCs were able to synthesise lipids, lipid vesicles, laminin and 

collagen IV upon adipogenic induction in 2D at comparable levels to that of uninfected MSCs. 

However, hTERT-MSCs exhibited a limited ability to differentiate and were inferior to uninfected 

MSCs. Thus, E6E7-MSCs were selected as the candidate cell line to replace 3T3-L1 cells in subsequent 

experiments.  
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Figure 6-7: E6E7-MSC successfully undergo adipogenesis in 2D 

(a) Oil red O staining for intracellular lipids (a marker of adipogenic differentiation) in uninfected 

MSC, hTERT-MSC and E6E7-MSC samples that were either undifferentiated or following 11 days 

adipogenic induction. (b) Western blotting of extracts of the cells in (a) for the lipid vesicle marker 

perilipin (62 kDa) (a marker of adipogenic differentiation). GAPDH (37 kDa) was used as a loading 

control. HEK293T cells were used as a negative control. 
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Figure 6-8: E6E7-MSC successfully synthesize basement membrane proteins following 

adipogenesis 

Immunocytochemistry of either undifferentiated or differentiated for 11 days culture in adipogenic 

media of uninfected MSC, hTERT-MSC and E6E7-MSC for basement membrane proteins (a) laminin 

(green) and (b) collagen IV (green). Nuclei were marked with Hoechst dye (blue). Image J analysis of 

detectable fluorescence for (c) laminin and (d) collagen IV. A.U. stands for arbitrary units. One way 

ANOVA statistical test was used to compare samples (n=3, different passages). *p<0.05, **p<0.01, 

****p<0.0001. 
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6.2.4 E6E7-MSC successfully undergo adipogenesis within anisotropic 

collagen scaffolds 

Following successful adipogenesis of E6E7-MSC in 2D conditions, subsequent experiments 

investigated their adipogenic potential in 3D after seeding into anisotropic collagen scaffolds, with 

the aim of creating a humanised 3D model: hET-SIM. E6E7-MSC were cultured in anisotropic 

collagen scaffolds for 1 week to allow proliferating cells to fill the scaffold, and then exposed to an 

adipogenic cocktail for 11 days to induce differentiation to adipocytes. After fixation in PFA, whole 

mount immunofluorescence, confocal microscopy and 2pf microscopy techniques were employed to 

analyse adipogenic differentiation. 

Whole scaffolds were stained with anti-perilipin to mark lipid vesicles and imaged using confocal 

microscopy (Fig. 6.9). Tile scans of bisected scaffolds (Fig. 6.9, dotted line) revealed differentiated 

E6E7-MSC covering large areas of the internal architecture. High magnification images revealed 

perilipin staining around lipid vesicles in the majority of cells (Fig. 6.9i,ii), indicating that E6E7-MSC 

had undergone differentiation into mature adipocytes. 

Multiphoton techniques were employed to further confirm that perilipin positive vesicles contained 

lipids (Fig. 6.10). Two-photon fluorescence (2pf) was used to image both DAPI marked DNA (Fig. 

6.10, grey) and anti-perilipin antibody staining (Fig. 6.10, green). Second harmonic generation (SHG) 

was used to image collagen I directly without the requirement for any dye or marker (Fig. 6.10, 

grey).  Similarly, coherent anti-raman spectroscopy (CARS) was used to image lipids directly without 

markers or dye (Fig. 6.10, red). As DAPI and SHG have overlapping excitation/emission spectra they 

collected in the same image channel on the microscope and hence were represented with the same 

colour visually (Fig. 6.10, grey). These images show a proportion of E6E7-MSC attached to 

anisotropic collagen I pores that contained vesicles with a perilipin positive membrane and an 

interior CARS signal (Fig. 6.10). Smaller vesicles appeared to give a weaker CARS signal (Fig. 6.10). As 

the CARS input signal was specifically adjusted to the molecular vibration of lipids, the output signal 

(red) indicated that lipids were located within perilipin positive vesicles. These data show that E6E7-

MSC successfully undergo adipogenic differentiation in anisotropic collagen scaffolds. CARS imaging 

was carried out with the assistance of Dr. Lorraine Berry (Cambridge Research Institute, University of 

Cambridge). 

As E6E7-MSC express the basement membrane proteins laminin and collagen IV upon adipogenic 

differentiation in 2D cultures, it was investigated if this also occurred in anisotropic collagen 

scaffolds by whole mount immunofluorescence. Laminin expression was observed in all cells with 

some displaying deposition in a surrounding halo (Fig. 6.11). 3D confocal imaging revealed that cells 
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found at different z-depths were able to synthesise laminin generating a 3D lattice (Fig. 6.11, 

pseudo-coloured spectrum image). Likewise, 3D confocal imaging further revealed that collagen IV 

deposition was also observed in all cells (Fig. 6.12, blue and green image) and at different z-depths 

(Fig. 6.12, pseudo-coloured spectrum image). Interestingly, collagen IV deposition appeared to be 

directional, aligning in the direction of anisotropic collagen I pores (Fig. 6.12). 

Taken together, these data demonstrate that E6E7-MSC can successfully differentiate into mature 

adipocytes within anisotropic collagen I scaffolds. E6E7-MSC distributed throughout the scaffold 

synthesized lipid filled vesicles and basement membrane proteins upon adipogenic differentiation. 

Thus it can be concluded that E6E7-MSC are a suitable candidate to replace 3T3-L1 cells in order to 

synthesize a human synthetic fat pad in the hET-SIM culture system. 
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Figure 6-9: E6E7-MSC successfully undergo adipogenesis in anisotropic collagen scaffolds 

Anisotropic collagen scaffolds seeded with E6E7-MSC were cultured for 7 days and then 

differentiated with adipogenic media for 11 days. Scaffolds were fixed and stained for the lipid 

vesicle marker perilipin as a marker of adipogenic differentiation with anti-perilipin antibodies 

(green). DNA was marked with DAPI (blue). (a) Tile scan z-stack of one face of a bisected scaffold. (i) 

Zoomed in image of (a). (ii) Digitally magnified image of (i). Images were taken using a confocal 

microscope. 
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Figure 6-10: Lipids generated by E6E7-MSC in anisotropic collagen scaffolds imaged using 

coherent anti-raman spectroscopy (CARS) 

Anisotropic collagen scaffolds seeded with E6E7-MSC were cultured for 7 days then differentiated 

with adipogenic media for 11 days. Scaffolds were fixed and stained for the lipid vesicle marker 

perilipin (green). DNA was marked with DAPI (grey, round). Fluorescent markers were imaged using 

2pf microscopy. Collagen was imaged directly using SHG microscopy (grey, fibres). Lipids were 

imaged directly using coherent anti-raman spectroscopy (CARS) microscopy. Image is shown as a 

maximum intensity projection of a 34 µm z-stack. 
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Figure 6-11: E6E7-MSC successfully synthesize laminin upon adipogenesis in anisotropic 

collagen scaffolds 

Anisotropic collagen scaffolds seeded with E6E7-MSC were cultured for 7 days then differentiated 

for 11 days in adipogenic media. Scaffolds were fixed and whole mount immunostained for the 

basement membrane protein laminin (green). DNA was marked with DAPI (blue). Images were taken 

using a confocal microscope. Images are shown as maximum intensity projections of the individual 

channels (i) DAPI, (ii) laminin and (iii) merged or as a (iv) z-depth colour coded image of the laminin 

channel. 
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Figure 6-12: E6E7-MSC successfully synthesize collagen IV upon adipogenesis in anisotropic 

collagen scaffolds 

Anisotropic collagen scaffolds seeded with E6E7-MSC were cultured for 7 days then differentiated 

for 11 days in adipogenic media. Scaffolds were fixed and stained for the basement membrane 

protein collagen IV (green). DNA was marked with DAPI (blue). Images were taken using a confocal 

microscope. Images are shown as maximum intensity projections of the individual channels (i) DAPI, 

(ii) laminin and (iii) merged or as a (iv) z-depth colour coded image of the collagen IV channel. 
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6.2.5 E6E7-MSCs support the migration of MDA-MB-231 cells 

Having established a humanised ‘fat pad’, subsequent experiments aimed to evaluate whether hET-

SIM could support the migration of human breast cancer cells. For this purpose, the human breast 

cancer cell line MDA-MB-231 was selected because of its highly migratory phenotype.  

MDA-MB-231 cells were labelled with tdTomato using lentiviral tagging methods to distinguish them 

from E6E7-MSC in the hET-SIM system. The tdTomato fluorophore was selected because it has very 

high fluorescence intensity compared to other fluorophores when imaged with 2pf (Drobizhev et al., 

2011). FACS analysis confirmed tdTomato expression in transduced MDA-MB-231 cells compared to 

negative controls (Fig. 6.13a). Cells with the highest levels of tdTomato expression (top 34.4%) were 

then collected via FACS (Fig. 6.13a) and placed in culture (Fig. 6.13b). Fluorescence microscopy 

demonstrated that transduced cells expressed sufficient levels of tdTomato to allow their 

visualisation and discrimination from uninfected cells, during microscopy (Fig. 6.13b). 

In chapter 4, migration of MDA-MB-231 cells to all depths of anisotropic scaffolds was observed 

after 10 days culture in the presence of a serum gradient (chapter 4, Fig. 4.3, Fig. 4.4a). In the 

following experiments, anisotropic scaffolds invested with differentiated E6E7-MSC (hET-SIM) 

alongside empty scaffold controls were placed into Boyden chambers with no serum gradient. The 

absence of a serum gradient was intended to prevent migration to the extremities of the scaffolds 

and reduce the likelihood of cells exiting the scaffold from the opposite edge to which they were 

seeded. This would permit differences between hET-SIM and empty scaffolds to be more readily 

identified and reduce the possibility of missing data points. hET-SIM and empty scaffolds were 

seeded with tdTomato+ MDA-MB-231 cells and cultured for 7 days. Samples were then fixed, 

bisected and imaged using multiphoton microscopy techniques (Fig. 6.14).  

Collagen I structures within anisotropic collagen scaffolds were imaged directly using SHG (Fig. 6.14, 

blue). As 2pf signals from DAPI and SHG overlapped excitation/emission spectra in previous 

experiments, the green fluorescent DNA dye SYTO16 (Fig. 6.14, green) was utilised to more 

accurately distinguish cell nuclei from collagen. E6E7-MSC were identified by their single positive 

green nuclei from tdTomato+ MDA-MB-231 cells with double positive green/red nuclei and a red 

cytoplasm (Fig. 6.14b). After 7 days of culture, the majority of tdTomato+ MDA-MB-231 cells in 

empty scaffolds were located within close proximity of the funnel in which they were seeded (Fig. 

6.14a). E6E7-MSC in hET-SIM were successfully seeded throughout the scaffold and were observed 

at all depths (Fig. 6.14b). tdTomato+ MDA-MB-231 in empty scaffolds were restricted to an area near 

the seeding funnel and on the outer surface of the scaffold (Fig. 6.14a). A few migratory tdTomato+ 

MDA-MB-231 cells in empty scaffolds were observed at considerable depths within the centre of the 
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scaffold (Fig. 6.14a, white box). In contrast, tdTomato+ MDA-MB-231 in hET-SIM were observed at all 

depths of the scaffold and were not confined to the funnel region (Fig. 6.14b, white box). This 

showed that hET-SIM enhanced the migratory phenotype of MDA-MB-231 cells when compared to 

empty scaffolds. 
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Figure 6-13: Lentiviral transduction of MDA-MB-231 cells with tdTomato expression 

construct and FACS enrichment of tdTomato-expressing cells 

MDA-MB-231 breast cancer cells were lentivirally transduced to express the tdTomato fluorescent 

protein. This virus was genome edited by Dr. Michael D’Angelo (Watson lab, Cambridge). (a) 

Transduced MDA-MB-231 cells were FACS sorted based on their tdTomato fluorescence. Uninfected 

MDA-MB-231 cells were used as a negative control. (b) Immunofluorescence of tdTomato MDA-MB-

231 cells based on tdTomato fluorescence (red). Uninfected MDA-MB-231 cells were used as a 

negative control. DNA was marked using Hoechst dye (blue). 
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Figure 6-14: MDA-MB-231 cells co-cultured with E6E7-MSC in anisotropic collagen 

scaffolds 

Scaffolds were seeded (a) without or (b) with E6E7-MSC throughout the scaffold, cultured for 7 days 

then differentiated for 11 days. Both scaffold types were then seeded with tdTomato MDA-MB-231 

cells (red) into the scaffold funnel and cultured for 7 days. Scaffolds were then fixed and bisected 

and DNA was marked using SYTO16 (green). Collagen was imaged directly using SHG (blue). SYTO16 

and tdTomato were imaged using 2pf. 
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6.3 Discussion 

6.3.1 The Tumour Associated Collagen-3 (TACS-3) phenotype in a human 

tumour biopsy 

To determine whether TACS-3 was present in a human breast tumour biopsy, a histological stain 

called Masson’s Trichrome was used to visualise collagen structures (Fig. 6.1). Collagen fibres aligned 

perpendicular to the tumour edge and protruding into the surrounding stroma were first identified 

and later confirmed by a trained medical pathologist for validation. This meant that identifying the 

phenotype was a relatively simple task as it was recognised by both untrained and trained 

pathologists. Accordingly, it could be plausible to hypothesise that, due to the association of TACS-3 

with poor prognosis and the relative ease in identifying the phenotype histologically, the 

identification of TACS should become part of routine diagnostics in breast cancer clinics. 

CUBIC, in conjunction with immunostaining and multiphoton imaging, were used to identify and 

visualise TACS-3 in greater detail. By avoiding paraffin embedding of tissue samples and through 

direct imaging of collagen with SHG, the structural integrity of the tissue was uncompromised. 

Human epithelial cells within the tumour bulk were identified by immunostaining (Fig. 6.4), 

supporting the potential future study of human tumour cell migration following the seeding of 

human biopsies into anisotropic collagen scaffold cultures. 

6.3.2 The human Engineered Tumour-Stroma Interaction Model (hET-SIM) 

Chapter 6 described the isolation of human mesenchymal stem cells (MSC) from the adipose tissue 

of a reduction mammoplasty and their immortalisation via retroviral transduction of both the E6 and 

E7 genes, simultaneously (Section 6.2.2). E6E7-MSC exhibited an ability to escape senescence and an 

increased proliferative capacity (Fig. 6.5, Fig. 6.6). Retroviral transduction of the hTERT gene into 

MSCs however, did not result in their immortalisation as cells were unable to escape senescence and 

did not exhibit an increased proliferative capacity (Fig. 6.5, Fig. 6.6). One explanation for the success 

of the E6E7 over hTERT immortalisation, is that the combination of both E6 and E7 gene products 

targeted multiple effectors of the cell cycle, increasing the likelihood of immortalisation. This 

method of transducing multiple genes either simultaneously or sequentially to increase 

immortalisation efficiency has been shown in other cell lines (Kyo et al., 2003; Lundberg et al., 2002; 

Zhu et al., 1999). In contrast, hTERT targeted only the maintenance of the telomeres and therefore 

did not meet the threshold required to immortalise the MSCs in this particular case. An alternative 

further explanation may be that DNA damage had already occurred in the majority of cells and 
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therefore p53 activity in these cells caused a senescent phenotype that increased hTERT expression 

alone could not overcome. 

The rationale for inclusion of the hTERT retroviral plasmid in immortalisation experiments was two-

fold. Firstly, to increase the number of separate immortalising agents and subsequently increase the 

likelihood of generating an immortalised cell line. Secondly, viral insertion of genes involved in the 

cell cycle into cultured cells can result in oncogenic transformation of the target cell line (Black and 

Rowe, 1963; Bocchetta et al., 2000; Elenbaas et al., 2001). hTERT transduction however, has been 

shown to be less likely to induce oncogenic transformation and more likely to produce ‘normal’ 

immortalised cell lines with less phenotypic changes (Jiang et al., 1999; Morales et al., 1999; Toouli 

et al., 2002).  

When trying to recapitulate a stromal component of the human breast in vitro, as in hET-SIM, it is 

important to select a cell line that closely mimics the phenotype of native stromal cells. Hence, using 

a non-tumorigenic immortalised cell line is preferred over an oncogenic line. A limitation of E6E7 

immortalisation is the risk of oncogenic transformation. For example, if the differentiated E6E7-MSC 

cell line more closely resembled a tumour of the adipose tissue such as a liposarcoma, it no longer 

exhibits the phenotype of normal adipose tissue. Following adipogenesis, approximately 7% of E6E7-

MSC did not undergo terminal differentiation and continued to proliferate (Fig. 6.6). Although the 

majority of cells did undergo the correct replicative senescence, this sub-population displayed an 

unexpected phenotype. Therefore, future analysis of the tumorigenic potential of E6E7-MSC in vitro 

and in vivo in an appropriate mouse model may be required to confirm the cell line has not 

undergone oncogenic transformation during immortalisation. 

During differentiation experiments E6E7-MSC exhibited an adipogenic potential comparable to 

uninfected MSC, whereas hTERT exhibited impaired adipogenesis (Fig. 6.7). This was not anticipated 

as it has been shown previously that adipose-derived MSC can be immortalised with hTERT without 

adverse effects to their adipogenic potential (Wolbank et al., 2009). An explanation for this 

phenotype may have been that hTERT MSC incurred a mutation during/before the immortalisation 

process and/or during sub culturing, impairing their adipogenic capacity. 

E6E7-MSC synthesised the basement membrane proteins laminin and collagen IV upon adipogenic 

differentiation, a process also observed in uninfected MSC and the murine preadipocyte 3T3-L1 cell 

line (Aratani and Kitagawa, 1988; Noro et al., 2013; Ojima et al., 2016; Sillat et al., 2012). The 

inclusion of these proteins into the model poses a number of advantages, similar to the advantages 

in the ET-SIM model, as outlined in Section 5.3.1. 



Development of an in vitro human fat pad for breast cancer cell migration studies   

 

231 
 

Following their adipogenic induction in 2D, E6E7-MSC were differentiated in anisotropic collagen 

scaffolds to synthesise human ET-SIM (hET-SIM) (Fig. 6.9-6.12). Although 2D adipogenesis was 

successful, it could not be presumed that scaffold culture would produce similar results. This is 

because MSC differentiation potential is affected by factors such as 3D culture, ECM substrate and 

surface topography (Jung et al., 2016; Santiago et al., 2009; Zhang and Kilian, 2013). Synthesis of 

lipids, laminin and collagen IV are all indicative of complete adipogenesis of E6E7-MSC and was a 

milestone in the development of hET-SIM (Fig. 6.9-6.12). 

To investigate human breast cancer migration in hET-SIM, the highly aggressive MDA-MB-231 cell 

line was fluorescently tagged, seeded into scaffold funnels and cultured (Fig. 6.13, Fig. 6.14). 

Multiphoton microscopy was used to distinguish MDA-MB-231 cells from E6E7 MSC and visualise the 

internal collagen structure of the scaffolds. MDA-MB-231 cells migrated further in hET-SIM than in 

empty scaffolds (Fig. 6.14). Quantification of migration distances using methods described in 

Chapter 4, accompanied with therapeutic testing as described in Chapter 5, would elevate the 

significance of hET-SIM as an assay and exhibit its versatility. 

6.3.3 Limitations of hET-SIM 

The human breast and mouse mammary gland differ in their respective anatomies. The breast 

comprises epithelial tissue separated from adipose tissue by a distinct portion of interstitial 

collagenous stroma (Haagensen, 1971). In contrast, the mouse mammary gland comprises ducts and 

alveoli individually surrounded by a relatively small portion of interstitial collagenous stroma all 

located within an adipocyte-rich fat pad and therefore is closely associated with adipocytes 

(Campbell et al., 2014a). A limitation of hET-SIM is that it consisted of adipocytes seeded throughout 

the ECM, similar to the mouse fat pad and was not distinct from ET-SIM in its stromal organisation. 

To improve hET-SIM, a method of seeding E6E7-MSC on one edge of the scaffold could be developed 

to synthesise a distinct region of collagen ECM separating adipose tissue from any cultured epithelial 

tissue. Nonetheless, in the case of a human breast tumour, it is entirely possible that the tumour 

would have expanded into the region of adipose tissue. Hence, the merit of altering the seeding 

methodology for the investigation of human breast cancer migration would have to be assessed and 

could be decided on a case-by-case basis in future studies. 

6.3.4 Conclusion 

It is envisaged that future humanisation of hET-SIM would involve combining human tumour culture 

strategies, similar to murine tumour cultures described in ET-SIM. Biopsies could be initially 

screened for their tumour associated collagen signature (TACS) to determine whether they should 

be seeded into an isotropic or anisotropic version of hET-SIM. Screening of a panel of therapeutics 
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could then inform oncologists of the most effective treatment, thus providing personalised medicine 

to the patient. 
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7 Discussion 
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7.1 Overall context of the thesis 

Traditional cell culture protocols originally employed techniques for the propagation of cells as a 2D 

monolayer on tissue culture plastic (TCP). This provided scientists with a setting to study cell biology 

in vitro and has permitted many seminal works to be performed (Carrel and Burrows, 1911; Russell 

et al., 1977; Scherer et al., 1953). These in vitro systems are more malleable than their in vivo 

counterparts; enabling more direct control over environmental factors by tuning culture conditions 

appropriate for the context of the study. Importantly, however, 2D cell culture is often limited by a 

significant caveat; cells are no longer within their native setting and their in vitro phenotype may not 

reflect the in vivo reality. To increase the relevance of cell culture and thus improve its translation to 

human biology, studies developed 3D culture techniques (Kleinman et al., 1982; Williams et al., 

1978). By propagating cells in a 3D matrix comprising ECM proteins, these studies sought to provide 

a more physiologically relevant model. Likewise, this thesis used collagen scaffolds throughout, with 

the intention of mimicking the mammary gland ECM and stroma using an in vitro model.  

7.2 Stem cell culture assay 

With an ever evolving 3D tissue culture field, new protocols to improve mammary organoid culture 

conditions are continuously being developed (Carter et al., 2017; Jamieson et al., 2017; Jardé et al., 

2016; Nguyen-Ngoc et al., 2015). Chapter 3 aimed to contribute to this area of research by culturing 

FACS sorted mammary stem cells in adipocyte-invested collagen scaffolds. Although mimicking the 

mammary stem cell niche was not achieved during organoid cultures, limitations of cross-linked 

collagen scaffolds as a model system and possible areas for improvement were identified.  

7.3 Collagen scaffolds 

It is estimated that over 1.5 million people are diagnosed with breast cancer per year worldwide 

with over half a million deaths as a result (Ghoncheh et al., 2016). Identifying the mechanisms that 

permit the spread of breast cancer cells to essential organs that is ultimately responsible for the 

lethality of the disease, is therefore of profound importance. It has been shown that breast cancer 

cells move across surfaces and within the ECM by the process of migration which is can be enhanced 

when travelling on directional or anisotropic fibres (Ray et al., 2017a). In breast cancer, the tumour-

associated collagen signature-3 (TACS-3) phenotype, described as anisotropic collagen fibres 

orientated perpendicular to edge of breast tumours, enhances the migration of tumour cells and is 
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associated with a poor patient prognosis (Conklin et al., 2011; Provenzano et al., 2006). Models have 

been developed to investigate this phenomenon in vitro, by aligning collagen gels in one axis 

direction (Provenzano et al., 2008a; Ray et al., 2017a, 2017b; Riching et al., 2014). These collagen 

gels are subject to unpredictable swelling and cellular remodelling. In Chapter 4, cross-linked 

anisotropic collagen scaffolds were developed with a funnel for the seeding of cells in a controlled 

manner. Rather than aligning in one axis direction, the scaffolds exhibited a radial distribution of 

anisotropic collagen and therefore mimicked the TACS-3 phenotype from the seeding funnel in all 

directions, unlike current models. Furthermore, collagen scaffolds are not subject to swelling or 

dramatic cellular remodelling and thus display advantages over current models when considering 

assay reproducibility. It is envisaged that this method of scaffold synthesis, with its versatility in 

regards to mould shape and design, will become a common laboratory investigative tool for the 

study of breast cancer.  

7.4 Human breast cancer cell line migration assay 

During migration assay experiments, isotropic and anisotropic collagen scaffolds facilitated the 

ability to discern the inherent migratory potentials of three different breast cancer cell lines. 

Interestingly, it was demonstrated that anisotropy provided enhanced migration of MDA-MB-231 

human breast cancer cells, highlighting the affect that stromal ECM architecture can have on the 

spread of cancer. Furthermore, anisotropy did not affect the migration of the MDA-MB-468 or MCF7 

cell lines suggesting that anisotropic stromal ECM only enhances migration of certain subtypes of 

breast tumour cells. By extending studies to a larger panel of breast cancer cell lines, and possibly 

other cancer cells that may encounter anisotropic collagen surfaces, future studies propose to 

extend the assay to a wider range of cancer subtypes. 

The triple negative breast cancer (TNBC) cell line, MDA-MB-468, showed minimal migration in both 

isotropic and anisotropic scaffolds. As this may have been a result of their mode of migration and 

migratory potential, subsequent experiments sought to further transform MDA-MB-468 cells by 

inducing an epithelial-to-mesenchymal transition (EMT) and investigating its effects on migration. 

This has been previously studied using Boyden chamber assays but not within the context of 3D ECM 

(Davis et al., 2013). Data from migration assays demonstrated that EMT enhanced migration of 

MDA-MB-468 cells in the model, further validating its ability to distinguish migratory phenotypes in a 

physiologically relevant 3D setting. 
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In summary, a 3D in vitro assay of cancer cell migration has been developed that may be amenable 

to high-throughput analyses with increased reproducibility. This could advance current in vitro 

methods for assessing cancer cell invasiveness and migratory status. Anisotropic collagen scaffolds 

were readily able to support the full depth migration of the invasive breast cancer cell line MDA-MB-

231 over a 10 day time period. Additionally, the model successfully differentiated MDA-MB-468 cells 

on the basis of an induced invasive phenotype by exposure to EGF. This demonstrated the utility for 

anisotropic structures to distinguish these phenotypes in vitro by tracking their effects on migration. 

Furthermore, it is proposed that this model could be developed further in the future for testing of 

cancer therapeutics, drug efficacy and toxicity in this more relevant in vitro setting. 

7.5 Engineered Tumour-Stroma Interaction Model (ET-SIM) 

tumour culture and therapeutic testing assay 

Breast cancer is a highly heterogeneous disease and it is becoming increasingly apparent from 

genome wide sequencing of breast tumours that these differ dramatically in terms of driver and 

passenger mutations (Nik-Zainal et al., 2016). Furthermore, the expansion of individual clones of 

tumour cells results in tumours that are sustained by a number of different stem-like cells (Lee et al., 

2017; Lim et al., 2010; Ponti et al., 2005; Wang et al., 2016). This complex tumour landscape 

presents major challenges for the breast oncologist and there is an urgent need for current 

pathological techniques to be complemented by new approaches that provide whole tumour 

analysis. Furthermore, effective treatments for lethal subtypes, such as triple negative breast 

cancers (TNBC), have yet to be developed and despite the efficacy of anti-oestrogen therapies, a 

considerable proportion of ER+ tumours become resistant to therapy resulting in recurrence of 

disease. Thus, there is a pressing need for new therapeutic drugs and a screening system that mimics 

the in vivo tumour environment. With these aims in mind, Chapter 5 developed an in vitro system 

that can be utilised to assess the invasive/metastatic capacity of breast cancer biopsy material and 

the response of invasive cells to drug treatment. This system, that has been named ET-SIM, could be 

scaled up to provide a medium throughput drug screening approach.  

Current cell culture models are limited in their ability to recapitulate the cellular and ECM complexity 

of the tumour microenvironment. Thus, there is much interest in building 3D culture systems that 

incorporate stromal components that accurately reflect the in vivo environment. In Chapter 5 an 

organotypic in vitro assay has been pioneered that recapitulates essential aspects of the in vivo 

mammary tumour microenvironment. The ET-SIM system improves upon the human breast cancer 
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cell migration assay in Chapter 4 by combining anisotropic 3D spatial ECM architecture with an 

adipocyte rich environment. Furthermore, it was shown that ET-SIM supports culture of tumour 

fragments, permits visualization and quantitative analysis of distinct modes of tumour cell migration, 

reveals tumour heterogeneity, and can be used to test tumour cell responsiveness to drug 

treatments. It is suggested that these features demonstrate potential utility as a drug discovery 

platform. 

In summary, a new enhanced organotypic mammary tumour culture system has been established. It 

has been demonstrated that this system provides both qualitative and quantitative insight into 

mammary tumour cell migration, the complex bivalent effects of adipocytes on this process and the 

effects of anti-metastatic drugs. It is envisaged that humanisation of this model will pave the way for 

improved personalised medicine strategies for patients with breast cancer. Patient derived tumour 

biopsy fragments containing both stromal and tumours cells, derived from different geographical 

regions and cultured in our ET-SIM system, would provide oncologists with another tool to use in 

concert with standard strategies to provide personalised medicine for breast cancers. Furthermore, 

future modifications of the ET-SIM system could include additional or alternative stromal cells to 

mimic the stromal environment of other organs. Inclusion of other ECM proteins during scaffold 

synthesis would also permit the tailoring of ET-SIM to recapitulate the ECM of other stromal 

environments. Development of ET-SIM could therefore potentially allow the investigation of a range 

of cancer types and their surrounding microenvironment. 

7.6 The TACS-3 phenotype in a human breast cancer biopsy 

The work described in Chapter 6 demonstrates that human breast tumour biopsies can be optically 

cleared, whole mount immunostained and imaged using multi-photon microscopy. Using these 

methodologies, the TACS-3 phenotype described by Provenzano et al. was confirmed and observed 

microscopically in much greater detail in a human ER+ IDC biopsy (Provenzano et al. 2006). These 

data further support the relevance and importance of modelling and investigating the TACS-3 

phenotype using in vitro systems. 
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7.7 Human Engineered Tumour-Stroma Interaction Model 

(hET-SIM) assay 

Human and mouse biology vary on a number of levels. As a result, drug discovery experiments often 

have low translation efficiencies when testing between the two organisms. To increase the relevance 

of the ET-SIM model and thus increase potential future translation into the clinic, a human 

mesenchymal cell line was generated for the replacement of the 3T3-L1 cells as the stromal cell 

component in the model. This was used in order to synthesise an in vitro human fat pad that was 

named hET-SIM. Human MSC were immortalised by retroviral insertion of the E6E7 gene, permitting 

cells to escape senescence and exhibit an increased proliferative capacity. Moreover, E6E7-MSCs 

were capable of undergoing adipogenic differentiation and produced basement membrane proteins 

at a comparable level to that of normal MSC. This was demonstrated both in 2D and within 3D 

anisotropic collagen scaffolds (the hET-SIM model).  

The utility of the hET-SIM model was demonstrated using a migration assay with breast cancer cells. 

Fluorescently tagged MDA-MB-231 cells were tracked in the hET-SIM model and could be 

distinguished from adipocytes. These data demonstrated that human breast cancer cells can be 

successfully co-cultured with E6E7-MSC derived mature adipocytes and resulted in enhanced 

migration in the hET-SIM system. These results are in accord with the literature, where migration of 

MDA-MB-231 cells has been shown to be enhanced by their co-culture with adipocytes (Lee et al. 

2015; Kim et al. 2009; Balaban et al. 2017; Libby et al. 2015). Of note, these studies often utilised 

human MDA-MB-231 cells with murine 3T3-L1 cell line in Boyden chamber assays (Balaban et al., 

2017; Lee et al., 2015). This mismatch of cell species potentially presents concerns to the validity of 

the studies in question. hET-SIM overcomes this issue by incorporating cancer and stromal cells that 

are both of a human origin. Furthermore, hET-SIM enables the study of human adipocyte influence 

on breast cancer in a more physiologically relevant environment of anisotropic collagen ECM 

compared with commonly utilised Boyden chamber assays. 

In summary, the hET-SIM model, comprised of an anisotropic ECM invested with human adipocytes 

and therefore successfully recapitulated aspects of the TACS-3 phenotype surrounding aggressive 

human breast tumours in vivo (Conklin et al., 2011). Whilst 3D in vitro culture techniques are 

continuously becoming more popular due to an increased understanding of the impact of 3D versus 

2D culture, it is hoped that hET-SIM will contribute to the field of breast cancer research. With future 

incorporation of patient-derived breast tumour biopsies, the hET-SIM system holds potential as a 

drug discovery platform and a therapeutic assay for personalised medicine strategies. 
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7.8 Implications for the National Centre for the 

Refinement, Reduction and Replacement of animals in 

research (NC3Rs) 

This thesis aimed to develop a number of assays that would reduce or replace the use of animals in 

mammary gland development and cancer research, and hence impact upon the NC3Rs.  

7.8.1 Collagen scaffolds and human breast cancer cell line migration assays 

All scaffolds used throughout this thesis were synthesised with collagen I sourced from bovine 

Achilles tendon. This protein is isolated from cadavers that are primarily used for other purposes, 

such as meat consumption, and thus no additional animals are specifically required or culled for its 

production. During human breast cancer cell line migration assays in collagen scaffolds, no murine 

material was required. Although this method is not sufficient to completely replace any animal 

experimentation in the study of cancer cell migration, it intends to supplement in vitro techniques to 

reduce the burden on in vivo experimentation.  

7.8.2 Stem cell experiments 

Stem cell experiments intended to decrease the frequency of mice required for fat pad 

transplantation assays by replacing recipient mice with collagen scaffolds invested with adipocytes. 

K14-creERT2/Rosa26-tdTomato mice provided insufficient cell yields during FACS and did not form 

organoids within the model during culture. In this case, neither a reduction nor replacement of 

animals was achieved and thus future work with this line was ruled out. Cells isolated from Axin2-

creERT2/Rosa26-tdTomato mice were successfully expanded, enabling multiple experiments to be 

performed from the cells isolated from one mouse. However, with rare organoid formation and non-

physiological organization of these cells, this system did not fulfill its requirements as a valid assay 

and unfortunately did not provide an NC3Rs impact. 

7.8.3 ET-SIM experiments 

For murine tumour ET-SIM experiments, one tumour was dissected into multiple fragments to 

permit numerous experiments and the testing of a selection of candidate inhibitors. Future 

validation of this model with in vivo models would ensure its reliability and accuracy. It is then 

intended that the impact of this work and its implementation in the drug discovery sector, would 

reduce the number of animals required in this field.  
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7.8.4 hET-SIM experiments 

Both immortalised MSC and MBA-MB-231 breast cancer cells utilised in hET-SIM were derived from 

a human origin. Future development of the system envisages inclusion of breast cancer patient 

biopsies and the screening of a panel of cancer therapeutics, to provide personalised treatments. 

This model intends to completely replace animal research in this area by delivering a fully humanised 

assay for the oncologists’ armamentarium. 

7.8.5 Conclusion 

In conclusion, three novel assays were developed for the investigation of breast cancer migration. 

Utilising 3D culture techniques, the native stroma of the human breast and murine mammary gland 

were recapitulated in vitro. Subsequent analysis of cell line and tumour cell migration was achieved 

in a variety of settings and the influence of collagen anisotropy assessed. Furthermore, a range of 

imaging techniques were implemented to investigate migration at different magnitudes and 

resolutions. Additionally, tumour cell migration was challenged with a selection of inhibitors, 

validating the model’s competence for therapeutic assays. These versatile assays investigating 

migratory potentials and therapeutic efficacy hold potential for future use in the fields of cancer 

research, the biotech industry and the clinic.  
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Appendix 1: Rabbit immunoglobulin G (IgG) negative control and Cytokeratin-18 (K18) 

positive control 

A virgin mouse mammary gland was paraffin embedded, sectioned and stained with (a) non-specific 

rabbit IgG (green) or (b) anti-K18 (green) antibody. Both samples were then stained with 

AlexaFluor488 secondary antibody. (a) Used as a negative control to any anti-rabbit primary 

antibodies, IgG shows a small amount of unspecific binding in adipocytes of the gland. (b) Used as a 

positive control, K18 shows expected specificity to luminal cells of the mammary gland. Both (a) and 

(b) were also utilised as negative controls for the tdTomato fluorescent protein (red). DNA was 

marked with Hoechst dye (blue). 
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Appendix 2: Mouse immunoglobulin G (IgG) negative control, α-smooth muscle actin 

(αSMA) positive control and β-catenin positive control 

A virgin mouse mammary gland was paraffin embedded, sectioned and stained with (a) non-specific 

mouse IgG (green), (b) anti- αSMA (green) antibody or (c) anti-β-catenin (green) antibody. All were 

then stained with AlexaFluor488 secondary antibody. (a) Used as a negative control to any anti-

mouse antibodies, IgG shows small areas of unspecific binding with intense patches of green. (b) 

Used as a positive control, αSMA shows expected specificity to basal cells of the mammary gland but 

with similar small patches of unspecific binding observed in IgG negative control. (c) Used as a 

positive control, β-catenin shows expected specificity to luminal cells of the mammary gland.  (a), (b) 

and (c) were also utilised as negative controls for the tdTomato fluorescent protein. DNA was 

marked with Hoechst dye (blue). 
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Appendix 3: Perilipin positive control, undifferentiated 3T3-L1 perilipin control and 

AlexaFluor488 secondary only negative control 

(a) A virgin mouse mammary gland was paraffin embedded, sectioned and stained for anti-perilipin 

antibody as a positive control. As expected perilipin marked adipocyte lipid vesicles within the 

mammary fat pad. (b) 3T3-L1 cells were seeded into collagen scaffolds and fixed before any 

adipogenic media was added. Scaffolds were then whole scaffold stained using an anti-perilipin as a 

primary antibody. Small amounts of unspecific binding can be observed in cell nuclei. (c) 3T3-L1 cell 

seeded into collagen scaffolds and fixed before any adipogenic media was added. Scaffolds were 

then whole scaffold stained without the use of a primary antibody and was used as a secondary only 

control. No unspecific binding was observed. (a-c) were all stained with the secondary antibody 

AlexaFluor488. DNA was marked with DAPI dye (blue). 
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Appendix 4: Undifferentiated E6E7-MSC controls for perilipin, laminin and collagen IV and 

AlexaFluor488 secondary only negative control 

(a-c) E6E7-MSC were seeded into collagen scaffolds and fixed before any adipogenic media was 

added. Scaffolds were then whole scaffold stained using (a) anti-perilipin, (b) anti-collagen or (c) 

anti-laminin as a primary antibody. (a) No perilipin observed. (b) Small amounts of collagen IV 

observed. (c) No laminin observed. (d) E6E7-MSC were seeded into collagen scaffolds and fixed 

before any adipogenic media was added. Scaffolds were then whole scaffold stained without the use 

of a primary antibody. (a-d) All samples were stained with AlexaFluor488 secondary antibody. DNA 

was marked with DAPI dye (blue). 
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Appendix 5: Epithelial-cadherin (E-cadherin) and cleaved caspase-3 (CC3) positive controls 

A TUBO tumour was fixed immediately following excision, paraffin embedded and sectioned. This 

was then stained with E-cadherin (green) and CC3 (red) as a positive control to both markers. As 

anticipated, membranous E-cadherin can be observed in tumour cells and patches of CC3 can be 

observed in regions of the tumour without close proximity to blood vessels. DNA was marked with 

DAPI dye (blue). 
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Appendix 6: p63 and β-catenin positive controls 

An MMTV-Wnt1 tumour was fixed immediately following excision, paraffin embedded and 

sectioned. This was then stained with anti-p63 (green) and anti-β-catenin (red) antibodies as positive 

controls to both markers. As anticipated, nuclear localisation of p63 can be observed in tumour cells 

with a basal epithelial cell phenotype and membranous β-catenin can be observed in tumour cells 

with a luminal epithelial cell phenotype. DNA was marked with DAPI dye (blue). 
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Appendix 7: Her2 positive control 

An MMTV-neu/ErbB2 tumour (gift from Dr. Peter Kreuzaler, Department of Biochemistry, University 

of Cambridge) was fixed immediately following excision, paraffin embedded and sectioned. This was 

then stained with anti-Her2 (red) antibody as a positive control. As anticipated, membranous Her2 

can be observed in all tumour cells. DNA was marked with DAPI dye (blue). 
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Appendix 8: Cytokeratin-8 (K8) positive control and Goat immunoglobulin G (IgG) negative 

control 

A virgin mouse mammary gland was paraffin embedded, sectioned and stained with (a) non-specific 

goat IgG (green) or (b) anti-K8 (green) antibody. Both were then stained with AlexaFluor488 

secondary antibody. (a) Used as a positive control, K8 shows anticipated specificity to luminal cells of 

the mammary gland with low levels of unspecific stromal staining. (b) Used as a negative control to 

any anti-rabbit antibodies such as K18, it shows no unspecific binding. DNA was marked with 

Hoechst dye (blue). 
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Appendix 9: Masson’s Trichrome positive control 

A mouse foot was fixed, embedded in paraffin, sectioned and stained with Masson’s Trichrome stain 

as a positive control. Large areas of fibrillary collagen (blue) can be observed. Cell nuclei (brown/dark 

purple) and cytoplasm (pink) can also be observed.  
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Engineering mammary gland in vitro models for cancer 

diagnostics and therapy (review article) 

During the course of the project a review paper was co-written with Dr. Jonathan Campbell from 

Prof. Christine Watson’s laboratory and was published in the journal Molecular Pharmaceutics in 

2014 (Campbell et al., 2014a). Below is the abstract outlining the content of the aforementioned 

review: 

Breast cancer is a complex disease with many distinct subtypes being recognized on the basis of 

histological features and molecular signatures. It is difficult to predict how cancers will respond to 

therapy, which results in many women receiving unnecessary or inappropriate treatment. Advances 

in materials science and tissue engineering are leading the development of complex in vitro 3D 

breast tissue models that will increase our understanding of normal development and tumorigenic 

mechanisms. Ultimately, platforms that support primary tissue culture could readily be adapted to 

form high-throughput drug screening tools for personalized medicine. This review will summarize 

the control of mammary gland phenotype within in vitro 3D environments, in the context of a 

detailed analysis of mammary gland development and stem and progenitor cell controlled 

tumorigenesis. 
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Tumour cell invasiveness and response to 

chemotherapeutics in adipocyte invested 3D engineered 

anisotropic collagen scaffolds (under peer review) 

The results from Chapter 5 have been converted into a manuscript that is currently undergoing the 

peer review process in the journal Breast Cancer Research. I am the first author of this manuscript.  
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Development of three-dimensional collagen scaffolds with 

controlled architecture for cell migration studies using 

breast cancer cell lines 

Following collaboration with Dr. Jonathan Campbell, Dr. Anke Husmann, Prof. Ruth Cameron, Prof. 

Christine Watson and myself, the results of Chapter 4 were published in the journal Biomaterials in 

2017. Dr. Jonathan Campbell, Dr. Anke Husmann and I contributed equally to the paper and 

therefore shared co-first authorship. Following this statement is the completed published version of 

the aforementioned paper. 

 


