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Abstract	25	

Animal	movement	impacts	the	spread	of	human	and	wildlife	diseases,	and	there	26	

is	 significant	 interest	 in	 understanding	 the	 role	 of	 migrations,	 biological	27	

invasions,	and	other	wildlife	movements	in	spatial	infection	dynamics.	However,	28	

the	 influence	 of	 processes	 during	 the	 transient	 phases	 of	 host	 movement	 on	29	

infection	 is	 poorly	 understood.	 We	 propose	 a	 conceptual	 framework	 that	30	

explicitly	 considers	 infection	 dynamics	 during	 transient	 phases	 of	 host	31	

movement	 to	 better	 predict	 infection	 spread	 through	 spatial	 host	 networks.	32	

Accounting	for	host	transient	movement	captures	key	processes	that	occur	while	33	

hosts	move	between	locations,	which	together	determine	the	rate	at	which	hosts	34	

spread	infections	through	networks.	We	review	theoretical	and	empirical	studies	35	

of	 host	 movement	 and	 infection	 spread,	 highlighting	 the	 multiple	 factors	 that	36	

impact	 the	 infection	 status	 of	 hosts.	 We	 then	 outline	 characteristics	 of	 hosts,	37	

parasites	 and	 the	 environment	 that	 influence	 these	 dynamics.	 Recent	38	

technological	advances	provide	disease	ecologists	unprecedented	ability	to	track	39	

the	fine-scale	movement	of	organisms.	These,	 in	conjunction	with	experimental	40	

testing	 of	 the	 factors	 driving	 infection	 dynamics	 during	 host	 movement,	 can	41	

inform	models	of	infection	spread	based	on	constituent	biological	processes.	42	
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1.	Introduction 48	

Understanding	how	 infectious	diseases	spread	 through	spatial	networks	49	

of	hosts	has	been	called	a	“holy	grail”	of	epidemiology	[1].	Spatial	host	networks	50	

portray	 host	 populations	 as	 a	 set	 of	 nodes	 in	 which	 hosts	 reside,	 and	 host	51	

movement	among	those	locations	serves	as	the	links	(i.e.	edges)	connecting	the	52	

network	 [2,3].	 Since	 most	 disease-causing	 parasites	 cannot	 actively	 disperse,	53	

host	movement	also	provides	critical	 links	 for	parasite	 infections	to	spread	[2].	54	

Characterizing	 these	 links	 is	 not	 straightforward,	 however.	 Multiple	 processes	55	

act	 on	 hosts	 during	movement	 across	 the	 landscape	 that	 potentially	 influence	56	

infections.	Dispersal	ecologists	refer	to	this	period	of	movement	after	organisms	57	

depart	a	discrete	location	(e.g.	household,	habitat	patch),	but	before	arriving	to	a	58	

different	 location,	 as	 the	 transient	 phase	 [4].	 Explicitly	 considering	 transient	59	

movement	 phases	 has	 provided	 a	 deeper	 understanding	 of	 the	 causes	 and	60	

consequences	of	wildlife	movement	[4],	but	this	phase	has	largely	been	ignored	61	

in	studies	of	disease	spread.		62	

Moving	hosts	are	subject	to	changes	in	biotic	and	abiotic	conditions	that	63	

alter	existing	infections	[5],	cause	mortality	[6,7]	or	facilitate	acquisition	of	new	64	

infections	 [8,9].	 The	 infection	 status	 of	 individuals	 arriving	 into	 new	 locations	65	

may	 therefore	 be	 indirectly	 or	 unrelated	 to	 their	 infection	 status	 when	66	

movement	is	initiated.	Here,	we	review	the	limitations	of	current	approaches	to	67	

studying	 infection	 spread	 and	 emphasise	 the	 benefits	 of	 explicitly	 considering	68	

the	 processes	 that	 occur	 during	 transient	 phases	 of	 host	movement	 (hereafter	69	

referred	 to	 as	 “host	 transience”).	 We	 first	 overview	 the	 existing	 methods	70	

examining	 the	 link	 between	 host	 movement	 and	 infection	 spread.	 Second,	 we	71	

propose	 a	 modelling	 framework	 that	 explicitly	 considers	 host	 movement	 and	72	



		

infection	 dynamics	 during	 transient	 phases,	 before	 developing	 testable	73	

hypotheses	 about	 the	 importance	 of	 factors	 influencing	 infection	 dynamics	74	

during	host	transience.	We	conclude	by	discussing	how	our	framework	can	guide	75	

future	 research	 testing	 the	 role	 of	 host	 transience	 in	 the	 spatiotemporal	76	

dynamics	of	wildlife	and	human	disease.	77	

	78	

2.	 Current	 approaches	 for	 investigating	 the	 link	 between	 host	79	

movement	and	infection	spread	80	

Most	 research	 has	 focused	 on	 seasonal	 host	 migrations	 [5,7],	 but	 we	81	

broaden	 this	 perspective	 to	 consider	 any	 movement	 that	 connects	 spatially	82	

discrete	resident	locations	of	hosts.	This	includes	large-scale	seasonal	migrations	83	

between	breeding	and	non-breeding	habitats,	but	also	routine,	local	movements	84	

within	 populations	 (e.g.,	 foraging	 between	 resource	 patches,	 mate	 searching	85	

among	 subgroups)	 or	 more	 regionally	 between	 different	 populations	 (e.g.,	86	

dispersal).	This	definition	of	movement	aligns	well	with	existing	spatial	network	87	

frameworks	 and	 permits	 comparisons	 of	 infection	 dynamics	 during	 host	88	

transience	at	various	scales.		89	

	90	

a)	Theoretical	Studies	91	

	 Spatial	 network	 models	 specify	 the	 geographic	 locations	 of	 hosts	 and	92	

their	 infections	 over	 time	 [3,10].	 We	 define	 four	 broad	 categories	 of	 models	93	

describing	the	spatial	dynamics	of	infection	spread	(Fig.	1),	with	some	examples	94	

of	 each	 type	 provided	 in	 Table	 S1	 (Supplementary	 Material).	 Many	 existing	95	

spatial	network	models	use	metapopulation	approaches	[10],	where	the	unit	of	96	



		

measurement	 is	 the	 resident	 location	 rather	 than	 the	 individual,	 each	 with	97	

standard	 epidemiological	 states	 (e.g.	 susceptible,	 exposed,	 infected,	 and	98	

recovered).	The	simplest	versions	are	phenomenological	metapopulation	models	99	

(Fig.	1a)	[11],	which	do	not	explicitly	parameterise	host	movement,	but	instead	100	

model	 connectivity	 of	 groups,	 with	 rates	 of	 spread	 determined	 by	 physical	101	

processes,	such	as	gravitation	[12],	percolation	[13]	and	radiation	[14].	Despite	102	

their	simplicity,	phenomenological	models	have	accurately	reproduced	patterns	103	

of	disease	spread	in	human	and	wildlife	populations.	For	example,	the	spread	of	104	

plague	 in	 populations	 of	 great	 gerbils	 (Rhombomys	 opimus)	 occurs	 between	105	

resident	 locations	 (burrows)	 that	 are	 in	 closest	 proximity	 to	 one	 another	 [13],	106	

while	the	spread	of	influenza	in	humans	is	explained	by	the	proximity	and	size	of	107	

resident	 locations,	with	 larger	 locations	experiencing	 increased	host	movement	108	

and	higher	rates	of	 infection	[15].	Kernel-based	metapopulation	models	(Fig.	1b)	109	

extend	these	models	by	including	an	explicit	parameter	for	host	movement	(the	110	

mobility	 kernel,	 m,	 [16])	 that	 specifies	 a	 proportion	 of	 hosts	 that	 change	111	

locations	between	time	steps.	The	rate	at	which	infections	spread	to	susceptible	112	

nodes	 (S)	 is	a	 function	of	 the	mobility	kernel,	 the	number	of	 infected	nodes	 (I)	113	

and	the	probability	that	each	movement	successfully	spreads	the	infection	(β*):	114	

𝑑𝑆
𝑑𝑡 =  −𝑚𝛽∗𝐼𝑆	 Eq.	1	

𝑑𝐼
𝑑𝑡 =  +𝑚𝛽∗𝐼𝑆	 Eq.	2	

Kernal-based	metapopulation	models	 have	 seen	widespread	 application	115	

in	disease	ecology	and	have	been	extended	to	consider	effects	of	habitat	quality	116	

in	resident	locations	[17,18],	host	phenotypic	variation	[19],	and	the	presence	of	117	

alternative	hosts	[20].	Simpler	models	assume	a	fixed	rate	of	movement	between	118	



		

locations	[11],	or	 in	proportion	to	the	density	of	hosts	 in	source	 locations	[21].	119	

However,	Levy	or	random	walks	that	characterize	heterogeneities	in	movement	120	

trajectories	of	individuals	are	increasingly	applied	[22].	Coupled	metapopulation	121	

models	 (Fig.	 1c)	 incorporate	 within-location	 infection	 dynamics	 (e.g.,	122	

transmission,	 recovery,	 births	 and	 deaths),	 and	 link	 these	 to	 the	 between-123	

location	 dynamics	 of	 host	 movement	 (m)	 and	 infection	 spread	 (β*IS)	 [23].	124	

Finally,	while	kernel-based	and	coupled	metapopulation	models	track	cohorts	of	125	

hosts	 that	 move	 over	 time,	 individual-based	 (or	 agent-based)	 metapopulation	126	

models	(Fig.	1d)	have	nodes	that	represent	individuals,	permitting	tracking	of	the	127	

movement	 and	 transmission	 of	 each	 individual	 host	 [24].	 Individual-based	128	

metapopulation	models	may	uphold	assumptions	of	homogenous	mixing	within	129	

locations	 [25],	 though	 some	 agent-based	 models	 explicitly	 account	 for	130	

heterogeneous	contact	rates	within	locations	[26].	131	

	 While	 many	 models	 do	 explicitly	 account	 for	 host	 movement,	 infection	132	

spread	 per	 se	 is	 generally	 described	 in	 much	 simpler	 terms,	 typically	 as	 a	133	

constant	 probability	 of	 infected	 hosts	 spreading	 infection	 (β*).	 This	134	

simplification	overlooks	the	potential	for	infections	to	be	acquired	[1,12]	or	lost	135	

[11,21],	 or	 hosts	 to	 die	 [27]	 while	 moving.	 Although	 models	 may	 accurately	136	

reproduce	 spatial	 patterns	 of	 infection,	 ignoring	 the	 underlying	 mechanisms	137	

driving	 those	 patterns	 do	 not	 allow	 extrapolation	 to	 predict	 disease	 spread	138	

under	alternative	environmental	scenarios.	In	subsequent	sections,	we	consider	139	

the	consequences	of	relaxing	these	constraints.	140	

	141	

b)	Empirical	Studies		142	



		

Owing	to	the	difficulty	in	determining	the	location	and	infection	status	of	143	

moving	hosts,	many	empirical	approaches,	such	as	mark-recapture	(MR)	surveys	144	

and	genetic	analyses	(Table	S2),	infer	movement	and	infection	spread	from	data	145	

collected	 at	 resident	 locations.	 Ultimately,	 the	 lack	 of	 information	 on	 host	146	

transience	 poses	 limitations	 that	 cannot	 be	 overcome	 without	 additional	147	

approaches.	 	 For	 example,	 MR	 surveys	 of	 cliff	 swallows	 (Petrochelidon	148	

pyrrhonota)	showed	 that	prevalence	of	parasites	 in	swallow	colonies	 rose	with	149	

increased	 arrivals	 by	 non-residents.	 However,	 colonies	 with	 the	 highest	150	

prevalence	 were	 also	 those	 with	 the	 most	 nests	 [28],	 highlighting	 how	 the	151	

contribution	 of	 movement	 to	 infection	 spread	 is	 difficult	 to	 disentangle	 from	152	

within-location	 factors	 solely	 through	 MR.	 Correlations	 between	 host	 arrival	153	

rates	 and	 prevalence	 may	 also	 reflect	 increases	 insusceptible	 hosts	 if	 many	154	

arriving	are	uninfected	[29].	Studies	have	also	found	weak	[9]	and	even	negative	155	

associations	between	host	arrival	and	infection	prevalence,	for	example	after	fish	156	

migrations	[30].	157	

Population	 genetics	 has	 revealed	 congruent	 patterns	 of	 gene	 flow	158	

between	 hosts	 and	 parasites.	 These	 overlaps,	 which	 have	 been	 found	 for	159	

parasites	of	both	humans	[31,32]	and	wildlife	(reviewed	by	[33]),	are	considered	160	

as	evidence	of	the	 link	between	infection	spread	and	host	movement.	Sampling	161	

of	 rapidly	 evolving	RNA	viruses,	which	have	 generation	 times	 short	 relative	 to	162	

the	 rate	of	host	movement	 [34,35]	have	 improved	 the	 temporal	 scale	 at	which	163	

genetic	analyses	can	focus.	Streicker	et	al.	[35]	used	this	approach	to	reconstruct	164	

the	recent	spread	of	rabies	in	populations	of	vampire	bats	(Desmodus	rotundus),	165	

and	higher	rates	of	viral	gene	flow	than	maternally	inherited	bat	genes	suggested	166	

male-biases	 in	 spread.	 Whereas	 the	 above	 techniques	 cannot	 distinguish	167	



		

individual	movements,	Bayesian	assignment	 tests,	which	use	host	 and	parasite	168	

genotypes,	 allow	 for	 individual-based	 assessments	 of	 host	movement	 between	169	

resident	locations	[36].	Assignment	tests	have	also	proved	useful	for	determining	170	

how	landscape	features	affect	infection	spread	by	impeding	host	movement	[36],	171	

but	this	technique	is	error	prone	[37].		Any	genetic	approach	cannot	reconstruct	172	

the	path	travelled	by,	and	infection	status	of,	hosts	during	transience.	173	

Biologging	 techniques,	 such	 as	 radio	 telemetry	 and	 GPS	 tags,	 can	174	

overcome	these	issues	by	providing	a	more	complete	picture	of	host	movement	175	

[38].	Craft	et	al.	[19]	used	GPS	devices	on	nomadic	and	terrestrial	lions	(Panthera	176	

leo)	 in	 a	 spatial	 network	 of	 prides	 in	 the	 Serengeti,	 which	 provided	 data	 for	177	

disease	 simulations	 that	 explicitly	 included	 host	 transience.	 Other	 biologging	178	

studies	linked	GPS	locations	to	environmental	data	to	assess	effects	of	elevation	179	

[39]	 and	 landscape	 structure	 [26]	 on	 infection	 spread.	 A	 key	 challenge	 of	180	

biologging	is	acquiring	infection	data	from	hosts	in	transience.	Capturing	hosts	to	181	

obtain	samples	may	be	dangerous	and	disrupt	natural	movement	behaviours.	As	182	

a	result,	remote	tracking	has	provided	detailed	empirical	data	for	modelling	host	183	

movement	 in	 host	 networks,	 but	 infection	 spread	 must	 be	 inferred	 [19].	 In	184	

addition,	 remote	 tracking	 is	 feasible	 for	 relatively	 few	 wildlife	 host-parasite	185	

systems,	and	remains	costly.		186	

The	 long	distances	 travelled	by	many	migratory	hosts	allow	researchers	187	

to	survey	infections	in	hosts	along	different	points	in	the	migratory	route,	which	188	

perhaps	 has	 provided	 the	 most	 insight	 into	 infection	 dynamics	 during	 host	189	

transience	(Table	S2).	Positive	associations	between	host	migration	and	spatial	190	

expansion	 of	 infections	 have	 been	 reported	 [40].	 However,	 reduced	 infection	191	

prevalence	 among	 migrating	 animals	 have	 also	 been	 widely	 observed	 [7,30]	192	



		

(Table	S2),	possibly	due	to	increased	mortality	of	infected	hosts	[7],	avoidance	of	193	

infection	 through	 “migratory	 escape”	 [7],	 or	 recovery	 from	 infection	 while	194	

moving	[5])	(see	Section	4	for	further	discussion).	Direct	quantification	of	any	of	195	

these	processes	in	the	wild	is	currently	lacking.		196	

	197	

3.	 Framework	 for	 integrating	 host	 transience	 into	 spatial	198	

network	models	of	infection	spread	199	

To	better	understand	how	transient	phases	of	host	movement	factor	into	200	

spatial	 infection	 dynamics,	 we	 propose	 a	 framework	 that	 integrates	 concepts	201	

from	dispersal	ecology	and	spatial	disease	modelling	(Fig.	2a).	We	conceptualize	202	

our	framework	as	an	individual-based	metapopulation,	but	it	could	be	applied	to	203	

any	 of	 the	 spatial	 network	 models	 shown	 in	 Fig.	 1.	 Briefly,	 host	 movement	204	

between	 spatially	 discrete	 locations	 is	 broken	 into	 three	 phases:	 departure,	205	

transience,	 and	 arrival.	 While	 in	 transience,	 hosts	 can	 acquire	 infections	206	

(transmission)	or	recover	from	infections	(recovery),	and	all	hosts	are	subject	to	207	

mortality,	potentially	at	different	rates	for	infected	and	uninfected	hosts.	208	

	To	 illustrate	 mathematically	 the	 effect	 of	 these	 processes	 on	 host	 and	209	

infection	dynamics,	and	the	factors	affecting	them,	we	describe	the	dynamics	of	a	210	

cohort	 of	moving	hosts	of	 size	M,	 comprising	 I	 infected	hosts	 and	S	 uninfected	211	

hosts	(M=S+I).	Here	we	used	a	simple	host-microparasite	framework	[41],	which	212	

ignores	the	infection	load	of	hosts,	for	ease	of	illustration.	More	complex,	tailored	213	

models	could	be	developed	as	required.	Host	and	infection	dynamics	during	the	214	

transient	phase	can	be	described	by:	215	



		

𝒅𝑴
𝒅𝒕 =  −𝑴 𝒅+ 𝑰 𝑴𝜶+ 𝝊 	

	
Eq.	3	

𝑑𝐼
𝑑𝑡 =  𝛬 𝑀 − 𝐼 − 𝐼 𝑑 + 𝛼 + 𝜐 + 𝜎 	 Eq.	4	

where	 d	 is	 the	 background	 host	mortality	 rate,	 α	 is	 the	 parasite-induced	 host	216	

mortality	rate,	𝜐	is	the	host	arrival	rate	at	the	recipient	location	(i.e.,	1/duration	217	

spent	moving)	and	σ	is	the	host	recovery	rate	from	infection	(for	simplicity	here,	218	

we	assumed	infected	hosts	recover	to	be	susceptible	to	reinfection,	but	this	could	219	

be	relaxed).	Finally,	𝛬	represents	the	force	of	infection	on	susceptible	individuals	220	

during	 the	 transient	 phase,	 and	 can	 take	 different	 forms	 depending	 on	 the	221	

transmission	mode	 of	 the	 parasite.	 For	 example,	 for	 a	 parasite	 that	 undergoes	222	

direct	transmission	within	the	cohort	of	hosts,	𝛬=βI	(where	β	is	the	standard	per	223	

capita	transmission	rate).	However	for	a	parasite	that	infects	from	a	pre-existing	224	

environmental	 reservoir	𝛬	 will	 simply	 be	 a	 constant,	 reflecting	 the	 number	 of	225	

infectious	 stages	 in	 the	 environment	 encountered	 per	 unit	 time.	 Given	 this	226	

framework,	 the	 dynamics	 of	 hosts	 that	 successfully	 arrive	 at	 the	 recipient	227	

location	(total:	A;	infected:	AI)	is	given	by:	228	

𝑑𝐴
𝑑𝑡 = 𝜐𝑀 and 

𝑑𝐴!
𝑑𝑡 = 𝑣𝐼	 Eq.	5	

such	that	the	total	number	of	individuals	arriving	 𝐴 ! 	and	number	of	infected	229	

individuals	arriving	 𝐴! ! 	is:	230	

𝑑𝐴 !

𝑑𝑡 = 𝜐 𝑀(!)𝑑𝑡
!

!
 and 

𝑑𝐴! !
𝑑𝑡 = 𝜐 𝐼(!)𝑑𝑡

!

!
.	 Eq.	6	

Example	 dynamics	 for	 this	 model	 are	 shown	 in	 Fig.	 3.	 Using	 this	 general	231	

framework,	models	can	be	developed	that	are	tailored	to	the	dynamics	of	specific	232	

host-parasite	 systems	 while	 meeting	 logistical	 constraints	 or	 data	 limitations.	233	



		

We	emphasise	that	we	do	not	aim	here	to	provide	a	comprehensive	analysis	of	234	

the	dynamical	properties	of	this	model,	which	is	beyond	the	scope	of	this	review.		235	

Instead,	we	present	this	 framework	to	clarify	the	occurrence	and	connection	of	236	

the	various	processes	that	affect	infection	spread	during	host	transience.			237	

Importantly,	the	parameters	in	this	framework	are	likely	to	be	influenced	238	

in	different	ways	by	host	(H),	parasite	(P)	and	environmental	(E)	factors,	and	any	239	

interactions	between	 them.	As	such,	 these	parameters	should	be	considered	as	240	

functions,	dependent	on	H,	P	and	E;	for	example:	241	

𝑑 = 𝑓! 𝐻,𝐸 ,𝛼 = 𝑓! 𝐻,𝑃 , 𝜐 = 𝑓! 𝐻,𝐸 ,𝜎 = 𝑓! 𝐻,𝑃,𝐸 ,𝛬 = 𝑓! 𝐻,𝑃,𝐸 	 Eq.	7	

We	 argue	 that	 closer	 attention	 to	 each	 of	 these	 functions	 and,	 ideally,	242	

parameterising	 (at	 least	 some	 of)	 the	 host,	 parasite	 and	 environmental	243	

dependencies	 within	 them,	 will	 lead	 to	 a	 clearer	 and	 more	 mechanistic	244	

understanding	of	spatial	host	and	infection	dynamics	than	currently	exists.	In	the	245	

following	 sections	 we	 consider	 existing	 empirical	 evidence	 for	 these	246	

dependencies,	and	highlight	gaps	where	further	information	is	required.	247	

	248	

4.	Factors	influencing	transient	phase	infection	dynamics		249	

a)	Recovery	(𝝈)	and	relation	to	host	arrival	rate	(𝝊)	250	

Recovery	 from	 infections	 during	 host	 transience	 acts	 to	 decouple	251	

infection	 spread	 from	 host	movement.	 As	 a	 consequence,	 so	 called	 “structural	252	

delay	 effects”	 [42],	 whereby	 parasite	 circulation	 predominantly	 occurs	 within	253	

resident	 locations,	 may	 occur	 even	 in	 host	 networks	 highly	 connected	 by	254	

movement.	 Since	 a	 given	 time	 period	 (on	 average	 1/σ time units in our 255	

framework) is	 required	 before	 recovery	 occurs	 [11],	 rates	 of	 recovery	 during	256	



		

transience	 depend	 fundamentally	 on	 the	 amount	 of	 time	 the	 hosts	 spend	 in	257	

transience	(on	average,	1/𝜐 time units).	The	duration	of	transience	is	at	least	in	258	

part	related	to	the	linear	distance	travelled,	and	so	simpler	models	may	account	259	

for	variation	in	recovery	rates	by	considering	differences	in	movement	distances.	260	

Growing	empirical	evidence	of	infection	recovery	during	long-distance	seasonal	261	

migrations	 (Table	S2)	 [7]	 suggests	 that	decoupling	effects	of	host	 recovery	are	262	

particularly	pronounced	with	longer	linear	distances.	Substantial	variation	in	the	263	

direction	 and	 velocity	 of	 intergroup	 movements	 can	 also	 occur	 within	264	

populations	[49],	so	in	many	cases	the	time	that	hosts	spend	in	transience	may	265	

not	 correspond	 to	 the	 linear	 distance	 travelled.	 Characterizing	 variation	 in	266	

movement	trajectories	may	therefore	be	important	for	parameterizing	recovery	267	

rates.	Even	if	the	time	that	hosts	spend	in	transience	is,	on	average,	longer	than	268	

the	infectious	period,	outlying	cases	of	rapid	movement	or	longer	persistence	of	269	

infection	 may	 sustain	 infection	 spread	 between	 resident	 locations.	 Thus,	 the	270	

degree	 of	 overlap	 in	 the	 variation	 in	 transient	 phase	 duration	 and	 infectious	271	

period	should	more	accurately	estimate	rates	of	spread	throughout	spatial	host	272	

networks.		273	

Factors	 related	 to	 hosts	 and	 the	 environment	 that	 affect	 the	 time	 that	274	

hosts	 spend	 in	 transience	 may influence rates of spread.	 For	 example,	275	

behavioural	 responses	 to	 mitigate	 risks	 and	 costs	 of	 infection	 are	 well-276	

documented	 in	 wildlife	 and	 can	 be	 manifested	 through	 changes	 in	 host	277	

movement	patterns	[44].	Landscape	structure	can	also	influence	the	duration	of	278	

host	 transience	 with	 implications	 for	 infection	 spread	 [45].	 Behavioural	 and	279	

landscape	 effects	 on	 host	 movement	 can	 be	 captured	 in	 our	 framework	 by	280	



		

allowing	 arrival	 rates	 (𝜐)	 to	 vary	 with	 infection	 loads	 and/or	 the	 presence	 of	281	

habitat	features	in	the	movement	path.		282	

Since	most	local	movements	between	nearby	resident	locations	are	likely	283	

too	 brief	 for	 infection	 recovery	 to	 occur,	 infection	 spread	 may	 be	 better	284	

predicted	 by	 transmission	 during	 host	 transience	 or	 by	 characteristics	 of	285	

resident	 locations	 (e.g.	 infection	 status	 [21],	 population	 size	 [1],	 spatial	286	

arrangement	 [13]).	 Recovery	 should	 not	 be	 completely	 disregarded	 for	 local	287	

dynamics,	however.	Abrupt	changes	in	abiotic	conditions	that	often	occur	when	288	

entering	transience	could	result	in	rapid	recovery	events,	for	example,	when	fish	289	

move	 through	 saline	 waters	 [30,46].	 Livestock	 lose	 ectoparasites	 during	 daily	290	

ranging	 movements	 between	 woodlands	 (favourable	 for	 ticks)	 and	 pasture	291	

(unfavourable	 for	 ticks),	 which	 modelling	 suggests	 can	 modulate	 infection	292	

prevalence	in	the	broader	population	(Fig.	2c)	[47].		293	

	294	

b)	Host	mortality	(background,	d,	or	parasite-induced,	α)	295	

Mortality	of	hosts	during	transience	clearly	will	affect	the	number	of	hosts	296	

that	 arrive	 (A).	 However,	 if	 infected	 hosts	 are	 differentially	 affected	 [via,	 for	297	

example,	 increased	 pathogenic	 effects	 (α)	 during	 movement]	 host	 mortality	298	

during	 transience	 will	 also	 affect	 the	 proportion	 of	 immigrants	 that	 carry	299	

infections	 to	 the	 destination	 (AI).	 This	 process	 may	 therefore	 inhibit	 parasite	300	

persistence	 both	 through	 reductions	 in	 infection	 spread	 and	 reductions	 in	301	

susceptible	 hosts	 available	 for	 infection	 in	 recipient	 locations.	 Experimental	302	

work	 supports	 the	 hypothesis	 that	 infection-induced	mortality	 is	 a	mechanism	303	

underlying	observed	decreases	in	protozoal	infections	with	distance	migrated	by	304	

monarch	 butterflies	 (Danaus	 plexippus,	 Fig.	 2b)	 [48].	 Immunological	 factors	305	



		

should	 play	 a	 role	 in	 this	 process.	 Some	 species	 balance	 the	 energetic	 costs	 of	306	

prolonged	 movement	 with	 immunosuppression	 [49],	 which	 clearly	 increases	307	

infection	 risk,	 and	 likely	 mortality,	 during	 host	 transience.	 Alternatively,	308	

adaptations	that	enhance	immune	function	during	periods	of	travel,	particularly	309	

tolerance	responses	that	aid	host	survival	without	resulting	in	parasite	clearance	310	

[50]	 could	 facilitate	 infection	 spread.	 Such	 adaptations	 are	 evidenced	 by	311	

migratory	birds	 that	 experience	 immune	activation	when	preparing	 to	migrate	312	

(Fig.	2d)	 [51]	and	by	 larger	 immune	defences	organs	of	migratory	versus	non-313	

migratory	bird	species	[52].		314	

In	 addition	 to	 host-related	 factors,	 both	parasite-related	 factors	 (rate	 of	315	

host	 exploitation)	 and	 environmental	 conditions,	 may	 also	 affect	 infection-316	

induced	(α)	and	background	(d)	mortality	rates	of	moving	hosts	at	both	local	and	317	

regional	 scales.	Traversing	habitats	with	unfavourable	 conditions	 (e.g.	 extreme	318	

temperatures)	 or	 high	 densities	 of	 predators	 could	 drive	 host	 deaths	 during	319	

transience,	irrespective	of	the	distance	travelled.	Similarly,	infections	from	highly	320	

virulent	 parasites	 acquired	 within	 source	 locations	 could	 conceivably	321	

compromise	 host	 health	 to	 an	 extent	 that	 even	 modest	 energy	 expenditures	322	

during	local	movement	could	cause	death	in	transit.		323	

	324	

c)	Force	of	Infection	(𝛬)	325	

In	contrast	to	recovery	and	mortality,	transmission	during	host	transience	326	

(either	 among	moving	 hosts,	 at	 per	 capita	 rate	β,	 or	 from	 the	 environment,	 at	327	

rate	𝛬)	generally	facilitates	infection	spread	among	host	networks.	This	process	328	

therefore	strengthens	the	link	between	infection	spread	and	host	movement	but	329	

weakens	 the	 link	 between	 spread	 and	 prevalence	 in	 source	 resident	 locations.	330	



		

Since	 gains	 in	 infection	 are	 contingent	 on	 susceptible	 hosts	 encountering	331	

infective	 stages,	 either	 from	 other	 infected	 hosts	 or	 in	 the	 environment,	 we	332	

expect	 that	 the	 rate	 of	 acquisition	 of	 new	 infections	 during	 host	 transience	 is	333	

most	 dependent	 on	 parasite	 transmission	mode,	 the	 habitats	 traversed	 in	 the	334	

transient	 phase,	 and	 the	 grouping	 patterns	 of	 moving	 hosts.	 For	335	

environmentally-transmitted	 parasites,	 acquisition	 of	 infection	 during	 host	336	

transience	 results	 when	 moving	 hosts	 traverse	 habitats	 supporting	 infective	337	

stages.	Primates	typically	acquire	helminth	infections	during	daily	ranging	[53],	338	

and	 modelling	 suggests	 that	 transmission	 during	 local	 ranging	 of	 primate	339	

individuals	can	allow	parasites	 to	 invade	and	expand	 in	 their	populations	 [54].	340	

Acquisition	 of	 infection	 during	 host	 transience	 may	 also	 explain	 the	 apparent	341	

importance	 of	 inter-burrow	movement	 of	 pygmy	 blue-tongued	 lizards	 (Tiliqua	342	

adelaidensis)	for	local	infection	spread	(Fig.	2g)	[9].		343	

At	 broader	 scales,	 the	 epidemiological	 relevance	 of	 transmission	 during	344	

host	transience	is	well-illustrated	by	seasonal	migrations	of	Saiga	(Saiga	tatarica,	345	

[8].	 Saiga	 acquire	 infections	while	moving	 through	 pastures	 with	 sheep	 faecal	346	

matter	 that	 harbour	 infective	 nematode	 stages	 (Fig.	 2f).	 For	 nematodes	347	

therefore,	 spatial	 spread	 is	 contingent	 on	 transmission	 in	 Saiga	 during	 the	348	

transient	 phase	 rather	 than	 transmission	 within	 resident	 locations	 [8],	349	

emphasizing	again	how	habitats	traversed	during	host	transience	can	factor	into	350	

spatial	 infection	dynamics.	Energy	expenditure	and	immunosuppression	during	351	

regional	 movements	 may	 amplify	 transmission	 by	 activating	 infections	 from	352	

dormant	 parasite	 stages.	 Outbreaks	 of	 latent	 bacterial	 (Borrelia	 garinii)	353	

infections	 occurred	 in	 redwing	 thrushes	 (Turdus	 iliacus)	 when	 migratory	354	

restlessness	 was	 induced	 (Fig.	 2h)	 [55].	 Activation	 of	 latent	 fungal	 infections	355	



		

have	 also	 been	 reported	 in	 natterjack	 toads	 (Epidalea	 calamita)	 when	moving	356	

from	terrestrial	to	aquatic	habitats	[56].		357	

For	vector-borne	infections,	transmission	during	host	transience	depends	358	

on	 moving	 hosts	 encountering	 habitats	 favourable	 for	 vectors	 as	 well	 as	 the	359	

parasites	 they	 harbour.	 Daily	 movements	 of	 humans	 can	 increase	 time	 in	360	

habitats	 harbouring	 mosquito-borne	 dengue	 virus	 [57]	 and	 result	 in	 spatial	361	

patterns	 of	 infection	 risk	 that	 diverge	 from	 those	 predicted	 by	 abundance	 of	362	

mosquitoes	 in	 households	 [57].	 These	 findings	 support	 the	 hypothesis	 that	363	

exposure	during	host	transience	(captured	by	the	force	of	infection	parameter,	Λ,	364	

in	our	framework)	may	decrease	the	influence	of	resident	locations	on	patterns	365	

of	infection	spread.		366	

Grouped	 travel	 likely	 enhances	 transmission	 of	 directly-transmitted	367	

parasites	 among	 moving	 hosts.	 Studies	 of	 shoaling	 movements	 in	 fish	368	

demonstrate	that	parasitic	infections	can	be	transmitted	in	traveling	groups	[58].	369	

Documentation	 of	 avian	 influenza	 virus	 transmission	 during	 stopovers	 along	370	

bird	migration	routes	lend	further	support	for	the	potential	of	grouped	travel	to	371	

promote	 transmission	 during	 host	 transience	 (Fig.	 2i)	 [59].	 Alternatively,	372	

assortative	grouping	patterns	could	 inhibit	 transmission	among	transient	hosts	373	

(i.e.	 migratory	 allopatry).	 Migration	 by	 juvenile	 pink	 salmon	 (Oncorhynchus	374	

gorbuscha)	 prevents	 acquisition	 of	 infection	 through	 separation	 from	 infective	375	

adults	 (Fig.	 2e)	 [60].	 This	 case	 is	 represented	 in	 our	 framework	 through	 a	 β	376	

parameter	equal	 to	zero	and	would	result	 in	 structural	 trapping	of	 infection	 to	377	

locations	occupied	by	adult	hosts.		378	

	379	

5.	Future	Direction 380	



		

This	 review	 highlights	 that	 obtaining	 field	 data	 on	 infection	 dynamics	381	

during	 the	 transient	 phase	 of	 movement	 presents	 a	 key	 challenge	 to	382	

understanding	 the	 mechanistic	 links	 of	 host	 movement	 and	 infection	 spread.	383	

Owing	 to	 recent	 innovations	 of	 tracking	 and	 computational	 technology	 that	384	

permit	detailed	individual-based	tracking	of	wildlife	systems	[38],	we	argue	that	385	

collection	of	 such	data	 is	 now	 feasible	 for	 some	wildlife	 systems.	Utilization	of	386	

automated	image-based	tracking	methods	[69]	allows	ecologists	to	characterize	387	

at	high	resolutions	the	behavioural	patterns	of	 infected	and	uninfected	hosts	 in	388	

controlled	 environments	 that	 mimic	 transient	 phases.	 These	 approaches	 also	389	

provide	 the	 opportunity	 to	 quantify	 effects	 of	 host	 grouping	 on	 transmission	390	

during	 transient	 phases.	 A	 key	 advantage	 of	 these	 experimental	 approaches	 is	391	

the	 feasibility	 of	 monitoring	 changes	 in	 infections	 in	 individual	 hosts	 at	 fine	392	

temporal	 scales,	which	 can	 be	 directly	 linked	 to	 environmental	 conditions	 and	393	

host	behaviours.	Nevertheless,	owing	 to	costs	and	 logistical	 constraints,	 image-394	

based	tracking	is	typically	performed	in	small	experimental	units.	Distinguishing	395	

departure,	transience	and	arrival	in	small	units	can	be	problematic.	Future	effort	396	

can	 be	 made	 to	 develop	 larger	 experimental	 tracking	 systems,	 such	 as	397	

mesocosms,	 capable	 of	 capturing	 all	 phases	 of	 hosts	 movement	 and	 infection	398	

spread.		399	

The	 radio-tracking	 and	 GPS	 studies	 highlighted	 above	 [19,39,61]	 are	400	

strong	initial	attempts	at	directly	quantifying	transient	phase	host	movements	in	401	

the	wild.	Future	work	can	improve	on	these	approaches	by	combining	movement	402	

paths	with	 individual	 infection	data	at	multiple	points	during	transience.	Doing	403	

so	can	better	identify	factors	that	decouple	rates	of	infection	spread	from	linear	404	

host	 movement	 assumed	 in	 conventional	 models,	 which	 might	 resolve	405	



		

unexpected	 and	 inconsistent	 findings	 of	 prior	work	 [9,19].	 For	 organisms	 that	406	

cannot	 be	 feasibly	 surveyed	 for	 infection	 during	 transient	 phases,	 biologging	407	

devices	may	be	developed	that	remotely	assay	infection	status	of	moving	hosts	in	408	

the	 wild.	 This	 could	 also	 be	 done	 indirectly.	 Since	 immune	 function	 in	409	

ectothermic	 animals	 is	 strongly	 linked	 to	 body	 temperature,	 fitting	 migratory	410	

ectotherms	 such	 as	 amphibians	 and	 snakes	 with	 temperature	 sensors	 may	411	

provide	insights	into	how	host	susceptibility	varies	during	periods	of	movement.	412	

For	 larger-bodied	 mammals,	 GPS	 devices	 combined	 with	 accelerometers	 can	413	

identify	 critical	 periods	 of	 movement	 during	 which	 increased	 energy	414	

expenditure	poses	heightened	infection	risk	[38].		415	

Considering	the	importance	of	the	structure	and	abiotic	conditions	of	the	416	

habitat	 matrix	 surrounding	 resident	 locations	 for	 transient	 phase	 infection	417	

dynamics,	 approaches	 used	 by	 landscape	 epidemiologists	 can	 benefit	 spatial	418	

network	 models	 of	 infection	 spread.	 Landscape	 epidemiologists	 apply	419	

environmental	 data	 from	 satellite	 imagery	 to	 identify	 the	 habitats	 in	 which	420	

diseases	 proliferate.	 Integrating	 habitat	 data	 into	 metapopulation	 models	 has	421	

been	 carried	 out	 extensively	 [45,62,63],	 but	 models	 have	 typically	 only	422	

considered	 effects	 of	 habitat	 on	 host	 movement.	 Future	 work	 can	 advance	 by	423	

considering	realistic	effects	that	differential	quality	of	habitats	in	the	matrix	have	424	

on	 transmission	 and	 host	 recovery	 during	 periods	 of	 movement	 [17,18].	425	

Additionally,	 the	 coarse	 resolution	 of	 much	 environmental	 data	 used	 in	426	

landscape	 epidemiological	 studies	 limits	 the	 utility	 of	 these	 data	 to	 regional	427	

movements	 such	 as	 migrations	 and	 dispersal.	 Local	 scale	 heterogeneities	 in	428	

external	conditions	(e.g.	moisture	levels	[64],	vegetation	cover	[65],	temperature	429	

[64,66],	 predation	 risk	 [67])	 are	 known	 to	 affect	 infection	 risk	 and	 prevalence	430	



		

and	may	 also	 affect	 host	 infections	 during	 local	movements.	 Experiments	 that	431	

manipulate	habitat	can	complement	landscape	ecological	approaches	by	testing	432	

how	 movement	 through	 the	 habitat	 matrix	 alters	 courses	 of	 infection	 within	433	

hosts.	In	addition,	field	and	experimental	data	on	the	abundance	and	persistence	434	

of	 parasite	 infective	 stages	 and/or	 infection	 vectors	 in	 the	 habitat	 matrix	 can	435	

inform	 parameterization	 of	 rates	 of	 environmental	 transmission	 in	 transient	436	

hosts.	Theoretical	work	has	begun	to	use	these	types	of	data	to	explore	infection	437	

dynamics	in	single	locations	[68],	and	our	framework	can	guide	spatially	explicit	438	

extensions	of	these	models	that	distinguish	environmental	transmission	rates	at	439	

each	phase	of	host	movement.	Finally,	human	alteration	of	habitats	comprising	440	

host	 networks,	 while	 posing	 various	 potentially	 detrimental	 consequences	 for	441	

population	 viability,	 may	 afford	 natural	 experiments	 for	 testing	 the	 abiotic	442	

factors	 involved	 in	 transience	 phase	 infection	 dynamics.	 Satterfield	 et	 al.	 [70]	443	

were	 able	 to	 use	 human-mediated	 amplification	 of	 exotic	 milkweed	 (Asclepias	444	

curassavica)	 in	the	United	States,	a	preferred	breeding	and	nutrient	resource	of	445	

monarch	 butterflies,	 to	 model	 how	 loss	 of	 migratory	 behaviour	 in	 monarch	446	

populations	caused	by	year-round	resource	availability	altered	population-level	447	

infection	dynamics.	Human	activities	that	alter	the	habitats	spanning	spatial	host	448	

networks	 may	 allow	 ecologists	 to	 measure	 the	 effects	 of	 habitat	 structure,	449	

temperature,	moisture	and	other	abiotic	variables	on	infection	in	transient	hosts.	450	

Such	data	would	enhance	the	ability	to	predict	patterns	of	disease	spread	amid	451	

environmental	change.		452	

	453	

6.	Conclusion	454	



		

Identification	of	relevant	biological	processes	is	the	first	step	in	building	455	

mechanistic	models	of	ecological	dynamics.	With	an	explicit	transient	phase,	our	456	

conceptual	 framework	 unpacks	 infection	 spread	 into	 its	 constituent	 biological	457	

processes:	 transmission,	 infection	 recovery,	 and	 infection-induced	mortality.	 In	458	

so	doing,	our	framework	links	patterns	of	infection	spread	described	by	existing	459	

spatial	 models	 to	 specific	 mechanisms	 that	 otherwise	 are	 hidden	 in	 their	460	

assumptions.	 While	 our	 framework	 can	 be	 simplified	 as	 needed,	 evidence	 of	461	

these	 processes	 from	 the	 empirical	 studies	 reviewed	 here	 provides	 a	 strong	462	

rationale	 for	 building	 this	 added	 complexity	 into	 disease	 models.	 Owing	 to	463	

technological	 developments,	 movement	 ecology	 is	 experiencing	 an	 exciting	464	

renaissance	of	big	data	that	is	affording	new	insights	in	the	mechanisms	driving	465	

animal	 movements	 as	 well	 as	 their	 ecological	 consequences.	 These	466	

advancements	 provide	 equally	 exciting	 opportunities	 for	 disease	 ecologists	 to	467	

advance	our	mechanistic	understanding	of	the	consequences	of	host	movement	468	

for	 infection	 spread,	 the	 factors	 that	 determine	 those	 consequences,	 and	 an	469	

advanced	ability	to	model	spatial	infection	dynamics.		470	

	471	

Acknowledgements	472	

We	 thank	 Benjamin	 Jarrett,	 Kirsty	 MacLeod,	 Amy	 Pedersen	 and	 the	 EGLIDE	473	

group	 (Amy	 Sweeny,	 Saudamini	 Venkatesan,	 Dishon	 Muloi,	 Alexandra	 Morris,	474	

Shaun	 Keegan	 and	 Kayleigh	 Gallagher),	 and	 the	 EEGID	 group	 at	 University	 of	475	

Liverpool	(Mike	Begon,	Greg	Hurst,	Steve	Parratt,	Gabriel	Pedra,	Thomas	Lilley)	476	

for	 comments	 on	 earlier	 drafts	 of	 this	 paper.	 This	 work	 was	 funded	 by	 the	477	

Cambridge	Trusts	and	a	grant	 from	 the	Natural	Environment	Research	Council	478	

UK	(NE/N009800/1	and	NE/N009967/1)	awarded	to	AF,	TWJG	and	AM.		 	479	



		

References	480	

1.	 Xia	Y,	Bjørnstad	ON,	Grenfell	BT.	2004	Measles	metapopulation	dynamics:	A	481	

gravity	model	for	epidemiological	coupling	and	dynamics.	Am.	Nat.	164,	267–482	

281.	(doi:10.1086/422341)	483	

2.	 Riley	S.	2007	Large-scale	spatial-transmission	models	of	infectious	disease.	484	

Science	316,	1298–1301.	(doi:10.1126/science.1134695)	485	

3.	 Danon	L,	Ford	AP,	House	T,	Jewell	CP,	Keeling	MJ,	Roberts	GO,	Ross	JV,	486	

Vernon	MC.	2011	Networks	and	the	Epidemiology	of	Infectious	Disease.	487	

Interdiscip.	Perspect.	Infect.	Dis.	2011,	1–28.	(doi:10.1155/2011/284909)	488	

4.	 Clobert	J,	Le	Galliard	J-F,	Cote	J,	Meylan	S,	Massot	M.	2009	Informed	dispersal,	489	

heterogeneity	in	animal	dispersal	syndromes	and	the	dynamics	of	spatially	490	

structured	populations.	Ecol.	Lett.	12,	197–209.	(doi:10.1111/j.1461-491	

0248.2008.01267.x)	492	

5.	 Shaw	AK,	Binning	SA.	2016	Migratory	recovery	from	infection	as	a	selective	493	

pressure	for	the	evolution	of	migration.	Am.	Nat.	187,	491–501.	494	

(doi:10.1086/685386)	495	

6.	 Bartel	RA,	Oberhauser	KS,	De	Roode	JC,	Altizer	SM.	2011	Monarch	butterfly	496	

migration	and	parasite	transmission	in	eastern	North	America.	Ecology	92,	497	

342–351.		498	

7.	 Altizer	S,	Bartel	R,	Han	BA.	2011	Animal	migration	and	infectious	disease	499	

risk.	Science	331,	296–302.	(doi:10.1126/science.1194694)	500	



		

8.	 Morgan	ER,	Medley	GF,	Torgerson	PR,	Shaikenov	BS,	Milner-Gulland	EJ.	2007	501	

Parasite	transmission	in	a	migratory	multiple	host	system.	Ecol.	Model.	200,	502	

511–520.	(doi:10.1016/j.ecolmodel.2006.09.002)	503	

9.	 Fenner	AL,	Godfrey	SS,	Michael	Bull	C.	2011	Using	social	networks	to	deduce	504	

whether	residents	or	dispersers	spread	parasites	in	a	lizard	population:	505	

social	networks	and	parasite	transmission.	J.	Anim.	Ecol.	80,	835–843.	506	

(doi:10.1111/j.1365-2656.2011.01825.x)	507	

10.	Parratt	SR,	Numminen	E,	Laine	A-L.	2016	Infectious	disease	dynamics	in	508	

heterogeneous	landscapes.	Annu.	Rev.	Ecol.	Evol.	Syst.	47,	283–306.	509	

(doi:10.1146/annurev-ecolsys-121415-032321)	510	

11.	Cross	PC,	Lloyd-Smith	JO,	Johnson	PLF,	Getz	WM.	2005	Dueling	timescales	of	511	

host	movement	and	disease	recovery	determine	invasion	of	disease	in	512	

structured	populations.	Ecol.	Lett.	8,	587–595.	(doi:10.1111/j.1461-513	

0248.2005.00760.x)	514	

12.	Balcan	D,	Colizza	V,	Gonçalves	B,	Hu	H,	Ramasco	JJ,	Vespignani	A.	2009	515	

Multiscale	mobility	networks	and	the	spatial	spreading	of	infectious	diseases.	516	

Proc.	Natl.	Acad.	Sci.	106,	21484–21489.		517	

13.	Davis	S,	Trapman	P,	Leirs	H,	Begon	M,	Heesterbeek	JAP.	2008	The	abundance	518	

threshold	for	plague	as	a	critical	percolation	phenomenon.	Nature	454,	634–519	

637.	(doi:10.1038/nature07053)	520	



		

14.	Dalziel	BD,	Pourbohloul	B,	Ellner	SP.	2013	Human	mobility	patterns	predict	521	

divergent	epidemic	dynamics	among	cities.	Proc.	R.	Soc.	B	Biol.	Sci.	280,	522	

20130763–20130763.	(doi:10.1098/rspb.2013.0763)	523	

15.	Charu	V,	Zeger	S,	Gog	J,	Bjørnstad	ON,	Kissler	S,	Simonsen	L,	Grenfell	BT,	524	

Viboud	C.	2017	Human	mobility	and	the	spatial	transmission	of	influenza	in	525	

the	United	States.	PLOS	Comput.	Biol.	13,	e1005382.	526	

(doi:10.1371/journal.pcbi.1005382)	527	

16.	Riley	S,	Eames	K,	Isham	V,	Mollison	D,	Trapman	P.	2015	Five	challenges	for	528	

spatial	epidemic	models.	Epidemics	10,	68–71.	529	

(doi:10.1016/j.epidem.2014.07.001)	530	

17.	Becker	DJ,	Hall	RJ.	2016	Heterogeneity	in	patch	quality	buffers	531	

metapopulations	from	pathogen	impacts.	Theor.	Ecol.	9,	197–205.	532	

(doi:10.1007/s12080-015-0284-6)	533	

18.	Leach	CB,	Webb	CT,	Cross	PC.	2016	When	environmentally	persistent	534	

pathogens	transform	good	habitat	into	ecological	traps.	R.	Soc.	Open	Sci.	3,	535	

160051.	(doi:10.1098/rsos.160051)	536	

19.	Craft	ME,	Volz	E,	Packer	C,	Meyers	LA.	2011	Disease	transmission	in	537	

territorial	populations:	the	small-world	network	of	Serengeti	lions.	J.	R.	Soc.	538	

Interface	8,	776–786.	(doi:10.1098/rsif.2010.0511)	539	

20.	Gog	J,	Woodroffe	R,	Swinton	J.	2002	Disease	in	endangered	metapopulations:	540	

the	importance	of	alternative	hosts.	Proc.	R.	Soc.	B	Biol.	Sci.	269,	671–676.	541	

(doi:10.1098/rspb.2001.1667)	542	



		

21.	Hess	G.	1996	Disease	in	metapopulation	models:	implications	for	543	

conservation.	Ecology	77,	1617.	(doi:10.2307/2265556)	544	

22.	Fofana	AM,	Hurford	A.	2017	Mechanistic	movement	models	to	understand	545	

epidemic	spread.	Philos.	Trans.	R.	Soc.	B	Biol.	Sci.	372,	20160086.	546	

(doi:10.1098/rstb.2016.0086)	547	

23.	Jesse	M,	Heesterbeek	H.	2011	Divide	and	conquer?	Persistence	of	infectious	548	

agents	in	spatial	metapopulations	of	hosts.	J.	Theor.	Biol.	275,	12–20.	549	

(doi:10.1016/j.jtbi.2011.01.032)	550	

24.	Ajelli	M,	Gonçalves	B,	Balcan	D,	Colizza	V,	Hu	H,	Ramasco	JJ,	Merler	S,	551	

Vespignani	A.	2010	Comparing	large-scale	computational	approaches	to	552	

epidemic	modeling:	agent-based	versus	structured	metapopulation	models.	553	

BMC	Infect.	Dis.	10,	190.		554	

25.	Riley	S,	Ferguson	NM.	2006	Smallpox	transmission	and	control:	spatial	555	

dynamics	in	Great	Britain.	Proc.	Natl.	Acad.	Sci.	103,	12637–12642.		556	

26.	Tracey	JA,	Bevins	SN,	VandeWoude	S,	Crooks	KR.	2014	An	agent-based	557	

movement	model	to	assess	the	impact	of	landscape	fragmentation	on	disease	558	

transmission.	Ecosphere	5,	art119.		559	

27.	Fulford	GR,	Roberts	MG,	Heesterbeek	JAP.	2002	The	metapopulation	560	

dynamics	of	an	infectious	disease:	Tuberculosis	in	possums.	Theor.	Popul.	561	

Biol.	61,	15–29.	(doi:10.1006/tpbi.2001.1553)	562	

28.	Brown	CR,	Brown	MB.	2004	Empirical	measurement	of	parasite	transmission	563	

between	groups	in	a	colonial	bird.	Ecology	85,	1619–1626.		564	



		

29.	van	Dijk	JGB,	Hoye	BJ,	Verhagen	JH,	Nolet	BA,	Fouchier	RAM,	Klaassen	M.	565	

2014	Juveniles	and	migrants	as	drivers	for	seasonal	epizootics	of	avian	566	

influenza	virus.	J.	Anim.	Ecol.	83,	266–275.	(doi:10.1111/1365-2656.12131)	567	

30.	Poulin	R,	Closs	GP,	Lill	AWT,	Hicks	AS,	Herrmann	KK,	Kelly	DW.	2012	568	

Migration	as	an	escape	from	parasitism	in	New	Zealand	galaxiid	fishes.	569	

Oecologia	169,	955–963.	(doi:10.1007/s00442-012-2251-x)	570	

31.	Linz	B	et	al.	2007	An	African	origin	for	the	intimate	association	between	571	

humans	and	Helicobacter	pylori.	Nature	445,	915–918.	572	

(doi:10.1038/nature05562)	573	

32.	Tanabe	K	et	al.	2010	Plasmodium	falciparum	accompanied	the	human	574	

expansion	out	of	Africa.	Curr.	Biol.	20,	1283–1289.	575	

(doi:10.1016/j.cub.2010.05.053)	576	

33.	Mazé-Guilmo	E,	Blanchet	S,	McCoy	KD,	Loot	G.	2016	Host	dispersal	as	the	577	

driver	of	parasite	genetic	structure:	a	paradigm	lost?	Ecol.	Lett.	,	336–347.	578	

(doi:10.1111/ele.12564)	579	

34.	Biek	R,	Henderson	JC,	Waller	LA,	Rupprecht	CE,	Real	LA.	2007	A	high-580	

resolution	genetic	signature	of	demographic	and	spatial	expansion	in	581	

epizootic	rabies	virus.	Proc.	Natl.	Acad.	Sci.	104,	7993–7998.		582	

35.	Streicker	DG	et	al.	2016	Host–pathogen	evolutionary	signatures	reveal	583	

dynamics	and	future	invasions	of	vampire	bat	rabies.	Proc.	Natl.	Acad.	Sci.	584	

113,	10926–10931.	(doi:10.1073/pnas.1606587113)	585	



		

36.	Remais	JV,	Xiao	N,	Akullian	A,	Qiu	D,	Blair	D.	2011	Genetic	assignment	586	

methods	for	gaining	insight	into	the	management	of	Infectious	disease	by	587	

understanding	pathogen,	vector,	and	host	movement.	PLoS	Pathog.	7,	588	

e1002013.	(doi:10.1371/journal.ppat.1002013)	589	

37.	Berry	O,	Tocher	MD,	Sarre	SD.	2004	Can	assignment	tests	measure	dispersal?	590	

Mol.	Ecol.	13,	551–561.		591	

38.	Kays	R,	Crofoot	MC,	Jetz	W,	Wikelski	M.	2015	Terrestrial	animal	tracking	as	592	

an	eye	on	life	and	planet.	Science	348,	aaa2478-aaa2478.	593	

(doi:10.1126/science.aaa2478)	594	

39.	Mysterud	A,	Qviller	L,	Meisingset	EL,	Viljugrein	H.	2016	Parasite	load	and	595	

seasonal	migration	in	red	deer.	Oecologia	180,	401–407.	596	

(doi:10.1007/s00442-015-3465-5)	597	

40.	Hosseini	PR,	Dhondt	AA,	Dobson	AP.	2006	Spatial	spread	of	an	emerging	598	

infectious	disease:	conjunctivitis	in	house	finches.	Ecology	87,	3037–3046.		599	

41.	Anderson	RM,	May	RM.	1981	The	population	dynamics	of	microparasites	and	600	

their	invertebrate	hosts.	Proc.	R.	Soc.	B-Biol.	Sci.	291,	452–491.		601	

42.	Sah	P,	Leu	ST,	Cross	PC,	Hudson	PJ,	Bansal	S.	2017	Unraveling	the	disease	602	

consequences	and	mechanisms	of	modular	structure	in	animal	social	603	

networks.	Proc.	Natl.	Acad.	Sci.	,	201613616.		604	

43.	Delgado	M	del	M,	Penteriani	V,	Revilla	E,	Nams	VO.	2010	The	effect	of	605	

phenotypic	traits	and	external	cues	on	natal	dispersal	movements.	J.	Anim.	606	

Ecol.	79,	620–632.	(doi:10.1111/j.1365-2656.2009.01655.x)	607	



		

44.	Hoverman	JT,	Searle	CL.	2016	Behavioural	influences	on	disease	risk:	608	

implications	for	conservation	and	management.	Anim.	Behav.	120,	263–271.	609	

(doi:10.1016/j.anbehav.2016.05.013)	610	

45.	Real	LA,	Biek	R.	2007	Spatial	dynamics	and	genetics	of	infectious	diseases	on	611	

heterogeneous	landscapes.	J.	R.	Soc.	Interface	4,	935–948.	612	

(doi:10.1098/rsif.2007.1041)	613	

46.	Rogowski	DL,	Stockwell	CA.	2006	Parasites	and	salinity:	costly	tradeoffs	in	a	614	

threatened	species.	Oecologia	146,	615–622.	(doi:10.1007/s00442-005-615	

0218-x)	616	

47.	Hoch	T,	Monnet	Y,	Agoulon	A.	2010	Influence	of	host	migration	between	617	

woodland	and	pasture	on	the	population	dynamics	of	the	tick	Ixodes	ricinus:	a	618	

modelling	approach.	Ecol.	Model.	221,	1798–1806.	619	

(doi:10.1016/j.ecolmodel.2010.04.008)	620	

48.	Bradley	CA,	Altizer	S.	2005	Parasites	hinder	monarch	butterfly	flight:	621	

implications	for	disease	spread	in	migratory	hosts.	Ecol.	Lett.	8,	290–300.	622	

(doi:10.1111/j.1461-0248.2005.00722.x)	623	

49.	Owen	JC,	Moore	FR.	2008	Swainson’s	thrushes	in	migratory	disposition	624	

exhibit	reduced	immune	function.	J.	Ethol.	26,	383–388.	625	

(doi:10.1007/s10164-008-0092-1)	626	

50.	Raberg	L,	Graham	AL,	Read	AF.	2009	Decomposing	health:	tolerance	and	627	

resistance	to	parasites	in	animals.	Philos.	Trans.	R.	Soc.	B	Biol.	Sci.	364,	37–49.	628	

(doi:10.1098/rstb.2008.0184)	629	



		

51.	Buehler	DM,	Piersma	T,	Matson	K,	Tieleman	BI.	2008	Seasonal	redistribution	630	

of	immune	function	in	a	migrant	shorebird:	Annual-cycle	effects	override	631	

adjustments	to	thermal	regime.	Am.	Nat.	172,	783–796.	632	

(doi:10.1086/592865)	633	

52.	Moller	AP,	Erritzoe	J.	1998	Host	immune	defence	and	migration	in	birds.	Evol.	634	

Ecol.	12,	945–953.		635	

53.	Nunn	CL,	Dokey	AT-W.	2006	Ranging	patterns	and	parasitism	in	primates.	636	

Biol.	Lett.	2,	351–354.	(doi:10.1098/rsbl.2006.0485)	637	

54.	Nunn	CL,	Thrall	PH,	Leendertz	FH,	Boesch	C.	2011	The	spread	of	fecally	638	

transmitted	parasites	in	socially-structured	populations.	PLoS	ONE	6,	639	

e21677.	(doi:10.1371/journal.pone.0021677)	640	

55.	Glyfe	H,	Bergstrom	S,	Lundstrom	J,	Olsen	B.	2000	Reactivation	of	Borrelia	641	

infection	in	birds.	Nature	403,	724–725.		642	

56.	Minting	PJ.	2012	An	investigation	into	the	effects	of		Batrachochytrium	643	

dendrobatidis	(Bd)		on	natterjack	toad	(Bufo	calamita)	populations	in	the	UK.		644	

57.	Stoddard	ST,	Morrison	AC,	Vazquez-Prokopec	GM,	Paz	Soldan	V,	Kochel	TJ,	645	

Kitron	U,	Elder	JP,	Scott	TW.	2009	The	Role	of	Human	Movement	in	the	646	

Transmission	of	Vector-Borne	Pathogens.	PLoS	Negl.	Trop.	Dis.	3,	e481.	647	

(doi:10.1371/journal.pntd.0000481)	648	

58.	Richards	EL,	van	Oosterhout	C,	Cable	J.	2010	Sex-specific	differences	in	649	

shoaling	affect	parasite	transmission	in	guppies.	PLoS	ONE	5,	e13285.	650	

(doi:10.1371/journal.pone.0013285)	651	



		

59.	Krauss	S,	Stallknecht	DE,	Negovetich	NJ,	Niles	LJ,	Webby	RJ,	Webster	RG.	652	

2010	Coincident	ruddy	turnstone	migration	and	horseshoe	crab	spawning	653	

creates	an	ecological	‘hot	spot’	for	influenza	viruses.	Proc.	R.	Soc.	B	Biol.	Sci.	654	

277,	3373–3379.	(doi:10.1098/rspb.2010.1090)	655	

60.	Krkosek	M,	Gottesfeld	A,	Proctor	B,	Rolston	D,	Carr-Harris	C,	Lewis	MA.	2007	656	

Effects	of	host	migration,	diversity	and	aquaculture	on	sea	lice	threats	to	657	

Pacific	salmon	populations.	Proc.	R.	Soc.	B	Biol.	Sci.	274,	3141–3149.	658	

(doi:10.1098/rspb.2007.1122)	659	

61.	Springer	A,	Kappeler	PM,	Nunn	CL.	2017	Dynamic	vs.	static	social	networks	660	

in	models	of	parasite	transmission:	predicting	Cryptosporidium	spread	in	661	

wild	lemurs.	J.	Anim.	Ecol.	86,	419–433.	(doi:10.1111/1365-2656.12617)	662	

62.	Remais	J,	Akullian	A,	Ding	L,	Seto	E.	2010	Analytical	methods	for	quantifying	663	

environmental	connectivity	for	the	control	and	surveillance	of	infectious	664	

disease	spread.	J.	R.	Soc.	Interface	7,	1181–1193.	665	

(doi:10.1098/rsif.2009.0523)	666	

63.	Biek	R,	Real	LA.	2010	The	landscape	genetics	of	infectious	disease	emergence	667	

and	spread:	Landscape	genetics	of	infectious	diseases.	Mol.	Ecol.	19,	3515–668	

3531.	(doi:10.1111/j.1365-294X.2010.04679.x)	669	

64.	Raffel	TR,	Halstead	NT,	McMahon	TA,	Davis	AK,	Rohr	JR.	2015	Temperature	670	

variability	and	moisture	synergistically	interact	to	exacerbate	an	epizootic	671	

disease.	Proc.	R.	Soc.	B	Biol.	Sci.	282,	20142039–20142039.	672	

(doi:10.1098/rspb.2014.2039)	673	



		

65.	Khalil	H,	Olsson	G,	Magnusson	M,	Evander	M,	Hörnfeldt	B,	Ecke	F.	2017	674	

Spatial	prediction	and	validation	of	zoonotic	hazard	through	micro-habitat	675	

properties:	where	does	Puumala	hantavirus	hole	–	up?	BMC	Infect.	Dis.	17.	676	

(doi:10.1186/s12879-017-2618-z)	677	

66.	Murdock	CC,	Evans	MV,	McClanahan	TD,	Miazgowicz	KL,	Tesla	B.	2017	Fine-678	

scale	variation	in	microclimate	across	an	urban	landscape	shapes	variation	in	679	

mosquito	population	dynamics	and	the	potential	of	Aedes	albopictus	to	680	

transmit	arboviral	disease.	PLoS	Negl.	Trop.	Dis.	11,	e0005640.	681	

(doi:10.1371/journal.pntd.0005640)	682	

67.	Byers	JE,	Malek	AJ,	Quevillon	LE,	Altman	I,	Keogh	CL.	2015	Opposing	selective	683	

pressures	decouple	pattern	and	process	of	parasitic	infection	over	small	684	

spatial	scale.	Oikos	124,	1511–1519.	(doi:10.1111/oik.02088)	685	

68.	Satterfield	DA,	Altizer	S,	Williams	M-K,	Hall	RJ.	2017	Environmental	686	

persistence	influences	infection	dynamics	for	a	butterfly	pathogen.	PLOS	ONE	687	

12,	e0169982.	(doi:10.1371/journal.pone.0169982)	688	

69.	Dell	AI	et	al.	2014	Automated	image-based	tracking	and	its	application	in	689	

ecology.	Trends	Ecol.	Evol.	29,	417–428.	(doi:10.1016/j.tree.2014.05.004)	690	

70.	Satterfield	DA,	Maerz	JC,	Altizer	S.	2015	Loss	of	migratory	behaviour	691	

increases	infection	risk	for	a	butterfly	host.	Proc.	R.	Soc.	B	Biol.	Sci.	282,	692	

20141734–20141734.	(doi:10.1098/rspb.2014.1734)	693	

694	



		

Tables	and	Figures	695	

	696	

Fig.	1.	Metapopulation-based	spatial	disease	models	track	locations	of	hosts	697	

and	 either	 simulate	 infection	 spread	 based	 on	 connectivity	 measures	698	

without	 explicitly	 considering	 host	movement	 (a)	 or	 define	 proportion	 of	699	

hosts	 change	 locations	 between	 time	 steps	 (white	 arrow)	 with	 infection	700	

spread	 occurring	 from	 a	 proportion	 of	 hosts	 that	 change	 from	 infected	701	

locations	 to	 susceptible	 locations	 (b,	 red	 arrow).	 Coupled	 metapopulation	702	

models	 link	 local	 processes	 such	 as	 transmission	 (thin	 red	 arrow)	 to	 the	703	

between-location	 processes	 of	 host	 movement	 and	 infection	 spread	 (c).	704	

Individual-based	network	models	track	movements	of	each	host	(denoted	by	705	

subscripts	i,j)	(d).		706	

	707	

Fig.	2a.)	Framework	 for	 capturing	 transient	phase	 infection	dynamics.	The	708	

movement	 path	 of	 hosts	 and	 their	 infections	 (intensity/probability	709	

represented	 by	 shading	 of	 arrow	 with	 darker	 red	 being	 higher	710	

intensity/probability)	 are	 categorized	 into	 three	 phases:	 departure,	711	

transience	 and	 arrival.	 During	 transience,	 infections	 are	 lost/reduced	712	

through	 background	 or	 disease-induced	 mortality	 of	 infected	 hosts,	 or	 as	713	

conditions	during	transience	decrease	exposure	and/or	cause	deterioration	714	

of	 infections	 (i.e.	 recovery).	Mechanisms	 that	drive	 recovery	 include:	 (b-c)	715	

movement	through	habitats	unsuitable	for	infections,	which	may	occur	with	716	

protozoal	 infections	during	monarch	butterfly	migrations	[6]	and	with	tick	717	

infections	during	ranging	movements	of	livestock	[47];	(d)	enhancement	of	718	

immune	 function	 during	 periods	 of	 movement,	 which	 may	 occur	 in	719	



		

migratory	 red	 knots	 [51];	 (e)	 dispersion	 of	 hosts	 that	 reduces	 contact,	 as	720	

evidenced	by	sea	lice	infections	in	migratory	pink	salmon	[60].	Mechanisms	721	

that	 increase	 the	 force	 of	 infection	 during	 transience	 include:	 (g-f)	722	

movement	through	habitats	with	viable	infective	stages,	which	occurs	with	723	

parasitic	 nematodes	 in	 migratory	 saiga	 [8]	 and	 dispersing	 pygmy	 blue	724	

tongue	 lizards	 [9];	 (h)	 immunosuppression,	 such	 as	 the	 proliferation	 of	725	

latent	bacterial	 infections	 in	migratory	redwing	thrushes	[55];	and	(i)	host	726	

aggregation,	 which	 occurs	 with	 Avian	 Influenza	 Virus	 (AIV)	 infections	727	

during	stopovers	by	migrating	sandpipers	[59].		728	

	729	

Figure	3.	Dynamics	of	the	total	number	of	hosts	and	the	number	of	infecteds	730	

during	the	transient	moving	phase	as	predicted	from	a	mathematical	model,	731	

assuming	parasite	transmission	from	the	environment.	(a)	total	number	of	732	

individuals	(M)	and	number	of	infected	individuals	(I)	undergoing	transient	733	

movement	through	time.	(b)	cumulative	total	number	of	individuals	(A)	and	734	

number	of	infected	individuals	arriving	at	the	destination	location	through	735	

time	(AI).		We	emphasise	this	figure	is	for	illustrative	purposes	only,	created	736	

using	arbitrary	parameter	values	that	do	not	relate	to	values	from	any	737	

particular	empirical	system	(d=1,	α=0.1,	𝛬=1,	σ=0.1,	υ=0.2).	738	


