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Opinion
Mitochondrial Genome Engineering: The
Revolution May Not Be CRISPR-Ized
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Engineering of mammalian mtDNA has
been hampered by an inability to
import nucleic acids into mitochondria.

A limited toolkit exists for manipulation
of mammalian mtDNA, relying on pro-
tein-only nucleolysis and hetero-
plasmy-shifting approaches.

Although present in lower metazoans,
the weight of evidence against an effi-
cient endogenous RNA import
mechanism in mammalian mitochon-
dria is considerable.

Controversially, [89_TD$DIFF]the application of
CRISPR/Cas9 for manipulation of
mammalian mtDNA in human cells
has been reported.
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In recent years mitochondrial DNA (mtDNA) has transitioned to greater promi-
nence across diverse areas of biology and medicine. The recognition of mito-
chondria as a major biochemical hub, contributions of mitochondrial
dysfunction to various diseases, and several high-profile attempts to prevent
hereditary mtDNA disease through mitochondrial replacement therapy have
roused interest in the organellar genome. Subsequently, attempts to manipu-
late mtDNA have been galvanized, although with few robust advances and
much controversy. Re-engineered protein-only nucleases such as mtZFN and
mitoTALEN function effectively in mammalian mitochondria, although efficient
delivery of nucleic acids into the organelle remains elusive. Such an achieve-
ment, in concert with a mitochondria-adapted CRISPR/Cas9 platform, could
prompt a revolution inmitochondrial genome engineering and biological under-
standing. However, the existence of an endogenous mechanism for nucleic
acid import into mammalian mitochondria, a prerequisite for mitochondrial
CRISPR/Cas9 gene editing, remains controversial.

Biological understanding of complex organisms in the modern era relies heavily on reverse
genetics. As an area of interest for many, a robust method for directed genetic manipulation of
mammalian mitochondria has been sought for several decades. More recently, efforts to this
end have largely focused on the search for treatments of mitochondrial disease. Incurable and
largely intractable, mitochondrial [384_TD$DIFF]diseases caused by mutation of the mitochondrial genome
[385_TD$DIFF]affect approximately one in 5000 and represent [386_TD$DIFF]a substantial disease burden [1]. The dawn of
the genome-editing era augurs well for both basic and clinical mitochondrial research, and the
CRISPR/Cas9 revolution in particular seems to bring a paradigm shift within our grasp.
However, fundamental questions regarding the capacity of mammalian mitochondria to import
the guideRNA (gRNA[387_TD$DIFF]; see Glossary) molecules needed for a viable CRISPR/Cas9 system cast
doubt upon such an enterprise. Over recent years evidence against the notion of endogenous
import of nucleus-encoded RNA into mammalian mitochondria has accrued. In this article we
discuss the mitochondrial genetic system, evidence for and against endogenous RNA import
into, and proposed functions within, mammalian mitochondria, and recent efforts towards
genetic manipulation of mitochondria, including the controversial report of a mitochondrial
CRISPR/Cas9 system.

Molecular Biology of Mammalian Mitochondria
From the initial alphaproteobacterial engulfment, that formed the first eukaryote through
endosymbiosis, to the present-day organelle residing in mammalian cells, the relationship
betweenmitochondria and their hosts has evolved substantially. Where once mitochondria-like
symbionts were advantageous principally for their capacity to harness redox chemistries, the
role of mitochondria in diverged eukaryotes, such as mammals, is much more intricately
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Glossary
Adeno-associated virus (AAV): a
widely-used vehicle for gene delivery
in vivo.
Biolistics: delivery of genetic
material to cells or organisms using a
gene gun and (usually gold)
nanoparticles.
Bottleneck: proposed means by
which mitochondrial (mt)DNA
content/heteroplasmy of the oocyte
is defined by replication of only a
subpopulation of mtDNA molecules
in primordial germ cells.
Copy number: the total quantity of
mtDNA molecules within a given cell.
Guide RNA (gRNA): an RNA that is
required for sequence specific
manipulation of DNA by Cas9.
Heavy strand: the G-rich strand of
mtDNA, termed heavy strand owing
to its relative buoyancy on cesium
chloride gradients.
Heteroplasmy: a phenomenon
occurring when multiple mtDNA
haplotypes coexist within a single cell
or organism, for example a mutated
mtDNA and a wild-type mtDNA, as
in many mitochondrial DNA diseases.
Inner mitochondrial membrane
(IMM): the location of the respiratory
chain and translocase/carrier
proteins.
Light strand: the C-rich strand of
mtDNA, termed light strand owing to
its relative buoyancy on cesium
chloride gradients.
Mitochondrial replacement
therapy: an in vitro fertilization (IVF)-
based approach to prevent
mitochondrial diseases in which the
nuclear genetic content of an oocyte
bearing a pathogenic mtDNA
mutation is transplanted into an
enucleated oocyte from a non-
carrier, which, after fertilization,
results in an almost complete purge
of mutant mtDNA from resulting
embryos, but produces offspring with
DNA from three genetic sources:
father, mother, and mitochondrial
donor mother.
Mitochondrial RNase P (mtRNAse
P): a protein-only trimeric protein
complex.
Mitochondrial targeting sequence
(MTS): canonically the MTS is an N-
terminal amphipathic helix.
PiIT N terminus (PIN): nuclease
domain.
embedded in essential organismal function. Facilitation of these functions relies upon an
electrochemical disequilibrium potential across the inner mitochondrial membrane (IMM)
that is generated through proton pumping by respiratory chain complexes I, III, and IV. Taken
together, the respiratory chain and ATP synthase consist of �90 protein subunits, forming
IMM-bound protein complexes. The vast majority of these proteins are encoded in and
expressed from the nuclear genome; however, a subset is encoded within a spatially and
heritably separate genome – the mitochondrial genome.

Mammalian mitochondrial DNA (mtDNA) is a multi-copy, circular, double-stranded DNA
molecule encoding 13 essential membrane-bound polypeptide subunits of the respiratory
chain complexes I, III, IV, and ATP synthase, 22 tRNAs, and two ribosomal RNAs (rRNAs). At
�16.5 kb, mammalian mtDNAs are relatively small and genetically compact, containing very
little non-coding sequence and [388_TD$DIFF]two overlapping genes [2]. The mitochondrial genome is
packaged into individual nucleoids that consist principally of the mitochondrial transcription
factor A (TFAM) [3,4], but likely also contain other factors [5–7], and these nucleoids are tightly
associated with the IMM within the matrix. The mechanism by which mtDNA is replicated has,
over the years, been no small matter of debate [8–10], with recent data pointing towards the
originally proposed strand-displacement mechanism [11–13]. Transcription of mtDNA occurs
from the heavy-strand promoter (HSP) and the light-strand promoter (LSP), resulting in
[389_TD$DIFF]polycistronic transcripts that undergo substantial processing to yield the mature mRNA, tRNA,
and rRNA molecules that are required for translation by mitochondrial ribosomes (mitoribo-
somes) [14,15] [390_TD$DIFF]. A diverse array of DNA repair pathways [391_TD$DIFF]exist in mammalian mitochondria
[16,17], with the notable absence of efficient DNA double-strand break (DSB) repair [18], and
either inefficient or absent homologous recombination (HR) [19]. The mitochondrial genome is,
in mammals, strictly maternally inherited, demonstrating a more stochastic mode of transmis-
sion than Mendelian genetics as a consequence of the mtDNA bottleneck [20]. Diseases
arising from mutations in mtDNA most often present in a heteroplasmic state, where a
substantial proportion of mtDNAmolecules bear a pathogenic mutation that is partially rescued
by the presence of wild-type molecules in the same cell [21].

A Role for Endogenous RNA Import in Mammalian Mitochondria
It is well-established that 11 protein-coding mRNAs, encoding 13 polypeptides of respiratory
chain complexes and ATP synthase, are transcribed from the mitochondrial genome and trans-
lated by mitoribosomes. In placental mammals a full complement of 22 functional tRNA species
capable of recognizing 60 sense codons, and two rRNAs that are required for translation by
mitoribosomes, are also encoded in mtDNA. Considering the substantial structural differences
between mitochondrial and cytosolic tRNAs, the divergence and incompatibility of codon usage
betweenmitochondrial andnuclearmRNAs, the lackofunassignedcodons inmitochondrial open
reading frames (ORFs) [22], and that all othermitochondrial proteins are encoded and expressed
fromthenucleargenome,anymRNA-decoding [392_TD$DIFF]function forRNAimported intomitochondria isnot
immediately apparent. However, various other roles for endogenous[393_TD$DIFF], nuclear-encoded RNAs
imported into mitochondria have been debated (Figure 1A,B).

An unusual, bacteria-like feature of mammalian mitochondrial gene expression is the near-unit
length polycistronic transcripts produced through transcription of mtDNA. Within the polycis-
trons, most gene products are punctuated by one or more tRNAs, which require endonucleo-
lytic processing at both 50 and 30 ends to release individual transcripts, a concept termed ‘tRNA
punctuation’ [23]. Essential to this process is mitochondrial RNase P (mtRNase P). Both
nuclear and mitochondrial RNases P liberate the 50 ends of immature tRNA transcripts through
structure-guided endonucleolytic processing. RNase P is an ancient enzyme, initially identified
2 Trends in Genetics, Month Year, Vol. xx, No. yy
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Polynucleotide phosphorylase
(PNPase): an RNA exonuclease/
polymerase.
Proteinaceous RNase P (PRORP):
the name for both the subclass of
RNase P that does not require RNA
for catalysis and the catalytic protein
subunit contained within PRORPs
(also known as MRPP3).
H1 RNA: nuclear RNase P, catalytic
RNA subunit.
7-2 RNA: RNase MRP, catalytic
RNA subunit.
5S rRNA: 5S ribosomal RNA, a
structural rRNA that is present in
many systems.
RNase MRP: mitochondrial RNA-
processing endonuclease, now
thought to function in nuclear rRNA
processing.
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Figure 1. Overview of Putative RNA Import intoMitochondria. (A) An overview of historically proposedmechanisms
and functional roles of endogenous RNAs imported into mammalian mitochondria. Nucleus-encoded RNA is suggested to
enter the mitochondrial matrix in complex with polynucleotide phosphorylase (PNPase), via the mitochondrial protein
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in bacteria, followed by eukaryotic nuclei and yeast mitochondria [24–26]. Among several
protein subunits, the nuclear (n)RNase P holoenzyme contains a single RNA subunit (H1 RNA)
that is necessary for catalytic function [27,28]. It was shown that mtDNA of some fungi and
protists encode RNase P RNA, therefore it was assumed, and later controversially reported,
that mammalian mtRNase P would require a catalytic RNA subunit to function [29,30].
However, it has since emerged that human mtRNase P, a product of convergent evolution,
bears no relation to nRNase P [31]. Human mtRNase P consists of three protein subunits: a
mitochondrially targeted tRNA m1

[383_TD$DIFF]R methyltransferase, TRMT10C (MRPP1), a member of the
short-chain dehydrogenase/reductase (SDR) family, SDR5C1 (HSD17B10, MRPP2), and a
protein with homology to PiIT N [394_TD$DIFF]terminus (PIN) domain-like metallonucleases, PRORP
(MRPP3) [31,32]. Importantly, the human mtRNase P was shown specifically not to contain
any trans-acting RNA. This paradigm-shifting subclass of proteinaceous RNase P (PRORP)
has since been identified in most eukaryal lineages ([33,34] for an in-depth review on the
discovery and evolution of PRORPs).

A further controversy concerning mitochondrial RNA processing by imported endogenous
RNAs concerns the nRNase P-related endonuclease, the mitochondrial RNA processing
ribonuclease (RNase MRP). Similarly to nRNase P, RNase MRP possesses a RNA subunit
(termed 7-2 RNA in the early literature) and several protein components, most of which are
shared with nRNase P [35]. RNase MRP was first described as a ribonucleoprotein complex
present in mitochondria that is involved in the formation of a RNA primer during initiation of
mammalian mtDNA replication [36]. However, subsequent studies have provided compelling
evidence against a mitochondrial localization of 7-2 RNA in mammalian cells, arguing that
RNase MRP, like nRNase P, is found mainly in the nucleolus [37,38] where it plays an essential
role in pre-ribosomal RNA processing [39]. In addition, in vitro reconstitution experiments have
suggested an RNase MRP-independent mechanism for primer processing in mtDNA replica-
tion, where the 3'-end of the RNA primer is generated by site-specific termination of transcrip-
tion owing to G-quadruplex formation in nascent RNA, rather than [395_TD$DIFF]cleavage by RNase MRP
[40]. These findings point away from the requirement for non-mtDNA transcribed RNA to be
present in mitochondria for RNA processing, suggesting that endogenous RNA import into
mammalian mitochondria is not required for normal cellular functions.

Another area of debate concerning mitochondrial import of endogenous RNA in mammals
focuses on the RNA content of mitoribosomes, specifically the existence of a minor structural
rRNA species analogous to the 5S rRNA that is found in ribosomes from other cellular
compartments and organisms. Several groups have argued in favor of 5S rRNA being present
in mammalian mitochondria [41–44]. Key determinants of efficient 5S rRNA import are sug-
gested to include specific RNA structural folds and protein cofactors [45,46], and incorporation
translocase of outer membrane (TOM) and translocase of inner membrane (TIM), as well as by other undescribed and
undefined mechanisms of transport. Endogenous RNA species with previously proposed functional roles in mammalian
mitochondria are H1 RNA (RNase P), 7-2 RNA (RNase MRP), and 5S rRNA (mt-LSU). (B) A revised overview of the
proposed mechanisms and functional roles of endogenous RNAs imported into mammalian mitochondria, modified to
reflect findings from recent papers concerning (i) the function of PNPase as a key constituent of the mtRNA degradasome
[54,61], (ii) replacement of 5S rRNA in mt-LSU of the mitoribosome bymitochondrial tRNA [49,98], (iii) discovery of protein-
only RNase P (PRORP) in mammalian mitochondria [31], and (iv) reattribution of RNase MRP activity to the nucleolus,
similarly to nuclear RNase P [37,38]. Many of the RNAs ‘detected’ and ascribedmitochondrial functions are predicted to be
false positives as a result of contamination of mitochondrial preparations with cytosolic RNAs or with RNAs associated with
the outer membrane, such as mRNAs encoding mitochondrial proteins that undergo co-translational import into
mitochondria [65,66,99]. A question mark indicates unconfirmed function and/or localization of PNPase. Abbreviations:
mt-LSU, mitoribosome large subunit; mtRNA, mitochondrial RNA; mt-SSU, mitoribosome small subunit.
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of 5S rRNA into the mitoribosome through interactions with proposed mitoribosomal protein
MRPL18 has been described [47]. However, the notion of 5S rRNA incorporation within the
mitoribosome has been categorically disregarded since publication of high-resolution struc-
tures of porcine and human mitoribosomes demonstrating that a mtDNA-encoded tRNA (mt-
tRNA), either mt-tRNAPhe or mt-tRNAVal, is embedded in the large subunit of the mammalian
mitoribosome (mt-LSU), to the exclusion of any 5S rRNA molecule, and that would require
substantial remodeling of the mitoribosomal central protuberance to accommodate 5S rRNA
[48–51]. Further, it has been reported that a homoplasmic disease-causative point mutation in
mt-tRNAVal leads to destabilization of this tRNA and a switch in the structural RNA content of
mt-LSU from mt-tRNAVal to mt-tRNAPhe [52,53]. These data raise questions regarding a
physiological role for imported RNAs in mammalian mitoribosomes.

A factor suggested to directly facilitate endogenous RNA import into mammalian mitochondria
is a component of the mitochondrial RNA degradation machinery, polynucleotide phos-
phorylase (PNPase). PNPase is a homotrimeric 30–50 exoribonuclease which, together with
mitochondrial RNA-specific helicase, hSUV3, forms the RNA degradasome in the mitochon-
drial matrix [54,55]. However, an alternative function and localization of PNPase has been
proposed. Detection of PNPase in the mitochondrial intermembrane space (IMS), rather than in
the matrix, has led to suggestions that it could mediate mitochondrial matrix translocation of 5S
rRNA, H1 RNA, 7-2 RNA, and more recently also microRNAs (miRNAs) by an uncharacterized
mechanism [56,57]. This was surprising because PNPases, an ancient family of enzymes, had
previously been found to reside in the matrix and to be involved in degradation of RNA, rather
than in transport [54,58–60]. Interestingly, pathogenic compound heterozygous mutations in
the PNPase gene (PNPT1), that were predicted to disrupt the homotrimer and therefore abolish
any catalytic or transport function of PNPase, led to an accumulation of aberrantly processed
mitochondrial RNA species withinmitochondria, in line with the expectation of a role for PNPase
in degradation of mitochondrial RNA [61]. Notably, the accumulated RNA intermediates were
correctly processed at 50 tRNA junctions, strongly suggesting that any mitochondrial import of
H1 RNA by PNPase is dispensable for function of mitochondrial RNase P, as previously
discussed. Given the consensus localization of PNPase in the mitochondrial matrix [100],
its well-described role in mitochondrial RNA degradation, the lack of a well-understood RNA
import mechanism, and the likely dispensable role of RNAs it is alleged to transport, PNPase-
mediated RNA import into mammalian mitochondria is not widely accepted, and requires
further exploration and confirmation.

In addition to the research concerning import of endogenous RNAs into mammalian mito-
chondria, discussed above, there also exists a less well interrogated literature suggesting both
import and export of miRNAs [62], long non-coding RNAs (lncRNAs) [63], and tRNAs [64] into
and from mammalian mitochondria, which will not be discussed here because we believe this
requires validation by independent studies.

It is helpful to underscore the often-contradictory findings reported in the studies discussed
above by reference to valuable data from a comprehensive, quantitative analysis of the human
mitochondrial transcriptome [65]. In this study, numerous nucleus-encoded RNA species were
detected in enriched mitochondrial RNA samples, although upon disruption and removal of the
outer mitochondrial membrane these RNAs were almost exclusively found to be less abundant
or only fractionally enriched; by contrast, bona fide mtDNA-encoded RNA species were
enriched by many orders of magnitude. Such outer-membrane contaminants have been long
discussed [66], and are a likely source of confusion and controversy within the field.
Trends in Genetics, Month Year, Vol. xx, No. yy 5
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Manipulation of the Mitochondrial Genome by Protein-Only Nucleases
Despite innumerable innovative investigations that have yielded a substantial but mosaic
literature on the subject, the vast majority of approaches to mitochondrial genome engineering
have failed to be either efficient or robust, and progress has been glacial (as recently reviewed
[67]). Presently, reliable methods for the transformation of mitochondria exist only for yeasts
[68,69] and green algae [70] by means of biolistics in combination with endogenous mtDNA
HR, which is highly active in these organisms. [397_TD$DIFF]As the introduction of exogenous nucleic acids
into mammalian mitochondria has been resoundingly unsuccessful thus far, alternative
approaches to manipulating mtDNA in situ have emerged [398_TD$DIFF], relying on recognition and specific
[399_TD$DIFF]elimination of targetedmtDNAmolecules present in a heteroplasmic [400_TD$DIFF]population. Such develop-
ments hold significant potential for broad application in the treatment of currently incurable
diseases arising from mutation [401_TD$DIFF]of the mitochondrial genome.

Early attempts to manipulate mtDNA heteroplasmy exploited bacterial restriction endonu-
cleases (REs) directed to mitochondria by means of a N-terminal mitochondrial targeting
sequence (MTS). Once imported into mitochondria, these REs (mtREs) bind to and cleave a
DNA recognition site that is present in only one mtDNA haplotype. Because mammalian
mitochondria do not possess any efficient DSB repair pathways, mtDNA molecules bearing
DSBs are rapidly degraded, producing a shift in the heteroplasmic ratio [71,72]. This strategy is
particularly effective because cells typically maintain a steady mtDNA copy number; sudden
depletion of this copy number by DSB-mediated degradation results in replication of the
remaining, intact mtDNA molecules, repopulating cells with the untargeted mtDNA haplotype.
Further work with mtREs demonstrated their mtDNA heteroplasmy-shifting efficacy across
multiple tissues in both transgenic and adeno-associated virus (AAV)-treated mice [73–75].
Despite their capacity to produce large shifts in mtDNA heteroplasmy, the use of mtREs in
mitochondrial genome manipulation is limited by their indisposition to protein engineering,
preventing the development of alternative DNA recognition site specificities and generalization
of this method to diverse genetic variants. As such, a new class of mitochondrially targeted
engineered nucleases has emerged that exploit transcription activator-like effector (TALE) and
zinc-finger DNA-binding technology – mitochondrially targeted TALE nucleases (mitoTALENs)
[76] and mitochondrially targeted [402_TD$DIFF]zincfinger-nucleases (mtZFNs) [77].

These platforms exploit developments in engineered nuclease technology for nuclear DNA
manipulation [78,79], repurposed to function in mitochondria. Both mtZFNs and mitoTALENs
are localized to mitochondria using broadly interchangeable MTS peptides, although mtZFNs
require addition of a nuclear export signal (NES) to overcome intrinsic nuclear localization [80].
Once delivered to mitochondria, both platforms have demonstrated a capacity to induce large
shifts in mtDNA heteroplasmy, with concomitant physiological rescue, across a range of cells
bearing numerous disease-causative genetic variants [76,77,81–85].

Despite being a relatively new addition to the literature, the principles underlying mtZFNs and
mitoTALENs have recently been applied by an independent laboratory to answer questions of
basic mitochondrial molecular genetics [13]. It seems likely that these approaches to mito-
chondrial genome manipulation will be further generalized in both basic and clinical research [403_TD$DIFF].

Import of Exogenous RNA and CRISPR/Cas9 in Mammalian Mitochondria
Over the past two decades a series of reports have suggested that RNA import intomammalian
mitochondria could be facilitated by exogenous factors. One report described that addition of a
multisubunit complex of approximately 500 kDa, isolated from mitochondria of Leishmania, to
cultured human cells facilitatedmitochondrial import of RNA from the cytosol [86,87]. However,
6 Trends in Genetics, Month Year, Vol. xx, No. yy
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Outstanding Questions
Can RNA be imported into mammalian
mitochondria? If so, what is the mech-
anism underlying this process?

Given the dispensable/unknown func-
tion of RNAs proposed to be imported
into mammalian mitochondria, what is
the purpose of RNA import in such a
system?

How could gRNA be delivered to
mammalian mitochondria in a manner
compatible with efficient CRISPR/
Cas9-mediated gene editing?
an editorial expression of concern regarding this study was published by the Proceedings of the
National Academy of Sciences [88]. Two corrections to a subsequent paper describing
Leishmania complex-mediated RNA import [89] have also been published [90,91]. It therefore
remains unclear whether such machinery is effective in mammalian mitochondria.

Other studies have claimed delivery of synthetic RNA to mammalian mitochondria through the
use of two domains from yeast cytosolic tRNALys(CUU)

[396_TD$DIFF], which was demonstrated to partially
localize to yeast mitochondria under stress conditions by the same investigators [92,93]. Import
of this molecule into mitochondria is proposed to be contingent on adoption of a non-canonical
structure, which produces a novel loop known as the F-arm, in addition to the D-loop domain
that is present in both canonical and non-canonical structures, referred to as a D-hairpin.
Through incorporation of F-arm or D-hairpin motifs into synthetic RNA molecules, efficient
delivery of RNA into mammalian mitochondria has been reported, and mtDNA mutation-
specific complementary RNAs were shown to specifically stall mutant mtDNA replication
and shift heteroplasmy [94,95]. Further studies utilizing domains identified in H1 RNA [96]
or 5S rRNA [44] suggested that these could also function as targeting vectors for mitochondrial
import of RNA molecules. However, the lack of any accepted molecular mechanism for RNA
import into mammalian mitochondria, and the lack of proliferation of these methods beyond
their laboratories of origin, preclude general acceptance of effective engineered RNA import.

Given the controversial nature of mammalian mitochondrial RNA import, the publication of a
study from Jo and colleagues, employing CRISPR/Cas9 to successfully manipulate mtDNA,
was surprising [97]. In a series of experiments, despite a lack of MTS peptides, the authors
demonstrated mitochondrial localization of Cas9 bearing a nuclear localization signal (NLS),
and gRNAs specific to mitochondrial sequences appeared to allow specific depletion of
targeted portions of mtDNA while untargeted regions were enriched. Interestingly, no mod-
ifications were made to the gRNAs, and no problems were reported in delivering gRNAs to
mitochondria. A mitochondrially targeted form of Cas9 demonstrated the same specific
depletion of a single locus of mtDNA based on gRNA recognition and cleavage, although
no mtDNA sequencing data were presented for the reportedly modified regions.

Taken together, or separately, these data are extraordinary. The activity of CRISPR/Cas9 in
mitochondria without any additional RNA import sequence implies that gRNAs were sponta-
neously imported into mitochondria from the cytosol. In addition, the data suggest that Cas9
protein has a previously undescribed, potent tropism for mitochondria because Cas9 bearing a
NLS was localized to mitochondria. Further, the observation that targeting a single site in
mtDNA for cleavage by CRISPR/Cas9 leads to depletion of only that locus, but not degradation
of the entire molecule, is difficult to reconcile with the fact that mtDNA behaves as a unit [18]. At
present, the data reported by Jo and colleagues falls well short of providing reasonable
evidence that CRISPR/Cas9 technology can be used to edit the mitochondrial genome in
mammalian systems.

Concluding Remarks and Future Perspectives
Manipulation of mtDNA is an objective sought by many, from the laboratory to the bedside. The
recent CRISPR/Cas9 revolution has transformed nuclear DNA manipulation, heralding the
dawn of a new era in molecular biology and gene therapy. [404_TD$DIFF]Although, given the many questions
that remain regarding effective import of either endogenous or exogenous RNAs into mam-
malian mitochondria, it seems that the genome of this unusual organelle may be one of few
genetic systems beyond the reach of CRISPR/Cas9 [405_TD$DIFF](see Outstanding Questions).
Trends in Genetics, Month Year, Vol. xx, No. yy 7
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Reliable import of nucleic acids into mammalian mitochondria, in concert with molecular tools
currently in hand, would significantly advance the state of the art, and a functional CRISPR/
Cas9 architecture in mitochondria could be revolutionary. However, given current prospects for
efficient import of nucleic acids into mammalian mitochondria, a key prerequisite for genome
editing by CRISPR/Cas9, the dream of a mitochondrial CRISPR/Cas9 panacea appears
[406_TD$DIFF]destined for a rude awakening.
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