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Abstract 21 

The evaluation of accuracy is essential for assuring the reliability of ecological models. Usually, 22 

the accuracy of above-ground biomass (𝐴𝐺𝐵) predictions obtained from remote sensing is 23 

assessed by the mean differences (𝑀𝐷), the root mean squared differences (𝑅𝑀𝑆𝐷), and the 24 

coefficient of determination (𝑅2) between observed and predicted values. In this article we 25 

propose a more thorough analysis of accuracy, including a hypothesis test to evaluate the 26 

agreement between observed and predicted values, and an assessment of the degree of 27 

overfitting to the sample employed for model training. Using the estimation of forest 𝐴𝐺𝐵 from 28 

LIDAR and spectral sensors as a case study, we compared alternative prediction and variable 29 

selection methods using several statistical measures to evaluate their accuracy. We showed that 30 

the hypothesis tests provide an objective method to infer the statistical significance of 31 

agreement. We also observed that overfitting can be assessed by comparing the inflation in 32 

residual sums of squares experienced when carrying out a cross-validation. Our results suggest 33 

that this method may be more effective than analysing the deflation in 𝑅2. We proved that 34 

overfitting needs to be specifically addressed since, in light of 𝑀𝐷, 𝑅𝑀𝑆𝐷 and 𝑅2 alone, 35 

predictions may apparently seem reliable even in clearly unrealistic circumstances, for instance 36 

when including too many predictor variables. Moreover, Theil’s partial inequality coefficients, 37 

which are employed to resolve the proportions of the total errors due to the unexplained 38 

variance, the slope and the bias, may become useful to detect averaging effects common in 39 

remote sensing predictions of 𝐴𝐺𝐵. We concluded that statistical measures of accuracy, 40 

precision and agreement are necessary but insufficient for model evaluation. We therefore 41 

advocate for incorporating evaluation measures specifically devoted to testing observed-versus-42 

predicted fit, and to assessing the degree of overfitting. 43 

Key words: model assessment; overfitting; Theil’s partial inequality coefficients; LIDAR. 44 
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Introduction 45 

The evaluation of accuracy is an essential step indicating the reliability of a given prediction 46 

method, thereby informing researchers about the level of confidence they should place in their 47 

predictions and allowing them to compare alternatives (Tedeschi, 2006). Accuracy assessment 48 

must be supported by rigorous statistical inference, with the ultimate target of evaluating the 49 

ability to generalize from the sample data to the population of interest (Särndal et al., 1992; 50 

Naesset, 2002; McRoberts et al., 2013; Asner & Mascaro, 2014; Chen et al., 2015; Mauro et 51 

al., 2016). Several quantitative techniques can be used to verify if the predicted values differ 52 

significantly from the observed, including squared sums of prediction errors (Wallach and 53 

Goffinet, 1989), coefficient of determination (𝑅2) or other correlation-like measures (Willmott, 54 

1981), a reliability index (Leggett & Williams, 1981), distribution hypothesis testing (Freese, 55 

1960), and regression of predicted versus observed (Theil, 1958; Graybil, 1976; Reynolds & 56 

Chung, 1986) or vice versa (Piñeiro et al 2008). The advantages and disadvantages of these 57 

approaches have been evaluated (e.g., Fox, 1981; Willmott, 1982).  Since each scientific 58 

application has its own particularities, it is recognised that no single measure of model 59 

performance is appropriate in all circumstances (Smith & Rose, 1995). This article explores 60 

open questions on accuracy assessment in the context of predicting forest above-ground 61 

biomass (𝐴𝐺𝐵) from remote sensing sources. The accuracy assessment measures proposed here 62 

can nonetheless be generalizable to many other contexts where predictions of ecological 63 

variables from different sources of auxiliary information are sought. 64 

Common measures for accuracy assessment and aspects needing revision 65 

When assessing the performance of their methods, remote sensing researchers usually report: 66 

(1) mean difference between observed and predicted values, which evaluates the degree of 67 

under- or over-prediction of the dependent variable, 𝐴𝐺𝐵 in this case; (2) the precision of the 68 
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prediction, often reporting the root mean squared differences (𝑅𝑀𝑆𝐷); and (3) the level of 69 

agreement between observed and predicted values, commonly considered by indicating their 70 

𝑅2 (e.g., Zhao et al., 2009; Erdody & Moskal 2010; McInerney et al., 2010; d’Oliveira et al 71 

2012; Chen & Zhu, 2013; Straub et al., 2013; Asner & Mascaro, 2014; Valbuena et al., 2014). 72 

There is, however, no strong consensus, and it is not uncommon to find studies reporting 73 

alternative or complementary measures, for instance analysing the regression of predicted 74 

versus observed (Bright et al., 2012; Wing et al. 2012) or alternatives to 𝑅2 (Yebra & Chuvieco, 75 

2009; García et al., 2010; Almeida et al., 2016). Some studies (e,g, d’Oliveira et al., 2012; 76 

Estornell, et al. 2014) perform hypothesis tests comparing distributions, similar to those 77 

suggested by Freese (1960). Moreover, the degree of overfitting is rarely accounted for 78 

(Valbuena et al., 2013a; Latifi et al., 2015a; Almeida et al., 2016), despite of being a common 79 

pitfall in predictive modelling (Weisberg, 1985; Hurvich & Tsai, 1989; Hawkins, 2004). In the 80 

context of remote sensing prediction of forest 𝐴𝐺𝐵, we detected two key aspects of accuracy 81 

lacking consensus (plus a third additional one, see Valbuena et al., 2018): 82 

Evaluating regression of observed versus predicted. Piñeiro et al. (2008) argued that the correct 83 

assessment is done by setting the predicted values as independent variable (in the x-axis) and 84 

the observed values as dependent variable (in the y-axis), to properly evaluate their regression 85 

coefficients (Reynolds & Chung, 1986). However, when evaluating remote sensing predictions 86 

of forest attributes, many authors have presented predicted (in the y-axis) vs. observed (in the 87 

x-axis) instead (e.g., McRoberts et al., 2002; Holmgren et al., 2008; Zhao et al., 2009; 88 

McInerney et al., 2010; Chen & Zhu 2013; Valbuena et al., 2014). Furthermore, they usually 89 

lack reporting the regression of observed against predicted (e.g., Naesset, 2002; García et al. 90 

2010; Straub et al., 2013). Although some report the coefficients (e.g., Yebra & Chuvieco, 91 

2009; Bright et al., 2012; Wing et al. 2012), they may still miss the hypothesis test suggested 92 

by Piñeiro et al. (2008). There have therefore not been reports on the importance of carrying 93 



5 
 

out these hypothesis tests in the context of remote sensing predictions of 𝐴𝐺𝐵. Complementary 94 

statistics may also be included in order to fully comprehend the source of prediction errors, 95 

such as Theil’s (1958) partial inequality coefficients (Smith & Rose, 1995). They disaggregate 96 

the total error into model variance (unsystematic error), bias (systematic error), and slope 97 

(averaging effects) (Paruelo et al., 1998). To our knowledge, these coefficients have not been 98 

employed in the context of remote sensing estimates of forest characteristics before.  99 

The degree of overfitting to the sample. Franco-Lopez et al. (2001) argued that statistical 100 

measures to assess model overfitting should be included when reporting the accuracy 101 

assessment of remote sensing estimates. Those measures of overfitting have been, however, 102 

largely overlooked in remote sensing estimations of forest attributes (Latifi et al., 2015a). 103 

Overfitting is usually prevented beforehand by avoiding over-parameterization with variable 104 

selection methods (e.g., Naesset, 2002; Hudak et al., 2006; García et al., 2010; Wing et al., 105 

2012; Spriggs et al., 2015). These methods, however, have been suspected of being insufficient 106 

to truly avoid model overfitting (Allen, 1974; Vanclay & Skovsgaard, 1997; Hurvich & Tsai, 107 

1989; Rencher & Pun, 1993). As an alternative, some authors recommend preventing model 108 

overfitting using replication methods such as cross-validation, and compare their results against 109 

model residuals (Weisberg, 1985; Hawkins, 2004). These would also be particularly convenient 110 

for non-parametric machine learning methods, whose flexibility makes them especially prone 111 

to overfitting (Franco-Lopez et al., 2001; Hawkins, 2004), and which are of widespread use in 112 

remote sensing predictions of forest attributes (McRoberts et al., 2002; Hudak et al., 2008; 113 

Packalén & Maltamo, 2008; McInerney et al., 2010). However, overfitting is rarely addressed 114 

in the context of remote sensing predictions of forest variables (Franco-Lopez et al., 2001; 115 

Valbuena et al., 2013a; Latifi et al., 2015a; Almeida et al., 2016).  116 

These alternative methods for testing the reliability of 𝐴𝐺𝐵 predictions obtained by using 117 

remotely sensed sources may also be employed to minimise errors in the estimation of 118 
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ecological variables in general. Results may therefore be relevant to other contexts too, for 119 

example studies on ecosystem management responses to climate change or habitat suitability 120 

for fauna, where the use of models to predict ecological attributes from auxiliary variables is 121 

common. 122 

Objectives 123 

The objective of this research is to call into question the sufficiency of statistical measures 124 

commonly used for accuracy assessment of predictions of ecological variables from auxiliary 125 

information, and suggest the convenience of incorporating additional ones, with a focus on 126 

remote sensing estimations of forest 𝐴𝐺𝐵. Our hypothesis is that the statistics usually reported 127 

in 𝐴𝐺𝐵 assesments may be insufficient for accepting the degree of agreement between predicted 128 

and observed as reliable, and also that the fact that overfitting effects may remain undetected. 129 

This article therefore aspires to present a thorough analysis of accuracy that applies to 130 

ecological modelling in general, and to explain how to interpret the suggested statistical metrics 131 

for readers unfamiliar to them in the given context. 132 

Material and Methods 133 

Field and Remote Sensing Datasets 134 

The field datasets consisted of 𝑛 = 37 plots surveyed during summer 2006 in the Scots pine 135 

(Pinus sylvestris L.) dominated forests of Valsaín (Spain, approx. lat.: 41°04’ N, lon.: 4°09’ W; 136 

1.3-1.5 km a.s.l.). These plots consisted of two concentric circles of radii 10 and 20 m. 137 

Diameters at breast height (𝑑𝑏ℎ, cm) were measured for every tree located within the inner sub-138 

plot, whereas at the outer sub-plot only those with 𝑑𝑏ℎ > 10 cm were measured (Valbuena et 139 

al., 2013b). Differentially-corrected global navigation satellite systems (GNSS) were used to 140 
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obtain the positions of these plots with centimetre accuracy (Valbuena et al., 2012), enabling to 141 

link the field and remote sensing information.  142 

Locally-adjusted tree allometry specific for P. sylvestris was employed to obtain the above-143 

ground biomass (𝑎𝑔𝑏, kg) of each individual tree from the field measurements (Montero et al., 144 

2005): 145 

𝑎𝑔𝑏 = 0.08439 ∙ 𝑑𝑏ℎ2.41194 (1) 146 

These tree-level 𝑎𝑔𝑏 estimations were aggregated to plot-level totals (𝐴𝐺𝐵, Mg·ha-1), after 147 

referring each of them to per-hectare equivalents according to the differing size of the sub-plot 148 

from which each tree was sampled (inner or outer). In this study, we used 𝐴𝐺𝐵 as a response 149 

variable to be predicted throughout the target forest by using the remote sensing predictor 150 

variables. 151 

The predictor variables were statistical metrics describing the distributions of signals received 152 

at those same field plots from both active LIDAR and passive multispectral sensors. This 153 

remotely sensed information was acquired on September 10, 2006, from a laser scanner ALS50-154 

II (Leica Geosystems, Switzerland) and a digital mapping camera system (Zeiss-Intergraph, 155 

Germany). Simultaneously operating onboard a plane flying at a height of 1500 m, the LIDAR 156 

dataset was obtained with an average scan density of 1.15 pulses·m-2, whereas images had 157 

spatial resolutions of 15 cm from panchromatic and 60 cm for multispectral. A back-projection 158 

data fusion algorithm using information from on-flight GNSS and inertial navigation systems 159 

assured a nearly perfect fit of all the sensor and field information (Valbuena, 2014). Back-160 

projecting consists in mathematically rendering the position of each LIDAR return onto the 161 

camera at the time of exposure, retrieving back its radiometric information and effectively 162 

colouring the LIDAR return with an accuracy close to pixel size (Valbuena et al., 2011). Returns 163 

obtained from the LIDAR sensor, considered to represent the ground – by means of Axelsson’s 164 
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(2000) classification algorithms –, were interpolated into a digital terrain model, which was 165 

used as a reference from which to calculate the heights above ground (h, m) for every single 166 

LIDAR return. The radiometric information acquired from the digital camera system was 167 

employed to calculate a value of normalised difference vegetation index (NDVI; Rouse et al., 168 

1974) correspondent to each LIDAR first return. Using FUSION software (USDA Forest 169 

Service; McGaughey, 2012), the returns backscattered from each field plot were extracted, and 170 

several metrics describing the distributions and relative proportions of h and NDVI with each 171 

plot were computed (Manzanera et al., 2016). All these metrics were employed as initial dataset 172 

of predictors in all the predictive procedures. 173 

Modelling biomass from airborne remote sensing data 174 

Three prediction methods commonly employed for forest 𝐴𝐺𝐵 predictions from remote sensing 175 

were compared within the R statistical environment (version 3.3.1; R Development Core Team, 176 

2016):  177 

Non-parametric modelling based on the most similar neighbour (MSN) method to obtain 𝐴𝐺𝐵 178 

predictions (Moeur & Stage, 1995) was applied using the “yaImpute” package of R (version 179 

1.0-18; Crookston & Finley, 2007). MSN belongs to a type of non-parametric imputation 180 

approaches known as nearest neighbour methods and commonly abbreviated as 𝑘-NN (Franco-181 

Lopez et al., 2001; McRoberts et al., 2002; McInerney et al., 2010), 𝑘 being the number of 182 

neighbours used in the algorithm. In the particular case of MSN, the feature space – where 183 

distances to neighbours are measured – is modified according to canonical correlation 184 

projectors (Hudak et al., 2008; Packalén & Maltamo, 2008). The nearest neighbour algorithm 185 

was set for 𝑘 = 3 and averaging by inverse distance weighting, also including a prior variable 186 

selection based on variance-weighted canonical correlation analysis (CCA). The value of 𝑘 was 187 

kept low due to the small 𝑛 available since, although a higher 𝑘 may improve the precision of 188 
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the estimation, it can also have an averaging effect (i.e., bias extreme values toward the average) 189 

(Eskelson et al., 2009; Almeida et al., 2016). The selection was done by recursively restricting 190 

the number of predictors (𝑝) from 𝑝 = 30 to 𝑝 = 1, on the grounds of the absolute values of 191 

their coefficients in the canonical regression (Cohen et al., 2003; Manzanera et al., 2016). The 192 

highest 𝑝 was intentionally left unrealistically large, given the subsequent low 𝑛/𝑝 ratio, to test 193 

the results that accuracy measures could provide in such an extreme case. An optimal 𝑝 was 194 

selected according to a combination of accuracy measures, which restricted the 𝑝 on the basis 195 

of a hypothesis test (Piñeiro et al., 2008) and avoiding model overfitting (Weisberg, 1985; 196 

Hawkins, 2004), as explained below. This same approach for restricting 𝑝 (see “restricted” 197 

alternatives below) was also incorporated to optimize the best-subset and step-wise variable 198 

selection procedures typically used in parametric modelling for remote sensing prediction of 199 

𝐴𝐺𝐵. 200 

Parametric modelling based on variable selection via step-wise regression (Weisberg, 1985). 201 

A linear model was fitted using a natural logarithm transform of the response variable, as it is 202 

typically done in remote sensing predictions of forest attributes (e.g., Naesset, 2002; Hudak, 203 

2005; Asner & Mascaro, 2014). Baskerville’s (1972) correction for bias in log-transformed 204 

responses was applied taking into account the number of fitted parameters when calculating the 205 

standard error of the estimate (Sprugel, 1983). Function “stepAIC” of R was used for applying 206 

a backward selection of independent variables in linear regression models (Venables & Ripley, 207 

2002). The final 𝑝 was limited on the basis of the delta parameter (Δ; Burnham & Anderson, 208 

2002), which measured the relative increase in Sugiura’s (1978) corrected AIC (Akaike 209 

Information Criterion) at each step (Valbuena et al., 2013b) (hereafter denominated “step-210 

wise”). The result was compared to an alternative incorporating the above-mentioned 211 

restrictions – hypothesis test plus avoided overfitting –, which modified the 𝑝 derived from the 212 

step-wise procedure (hereafter denominated “step-wise restricted overfitting”). 213 
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Parametric modelling based on variable selection via best-subset regression (Miller, 1984; 214 

Hudak et al., 2006).  This approach also consisted of a linear model with log-transformed 215 

responses and bias correction (Baskerville, 1972; Sprugel, 1983). In this other case, package 216 

“leaps” of R (Lumley & Miller, 2009) was employed for this modelling approach. This 217 

approach exhaustively searches for all variable combinations. The limiting criterion for 𝑝 was 218 

set to be based on minimization of Mallows’ Cp (Mallows, 1973) (hereafter denominated “best-219 

subset”). Its result was also compared to a version incorporating the novel restrictions – 220 

hypothesis test plus avoided overfitting – to the best subset procedure for predictor variable 221 

selection (hereafter denominated “best-subset restricted overfitting”). 222 

Statistical measures for accuracy assessment of 𝐴𝐺𝐵 predictions 223 

Leave-one-out cross-validation was carried out to assess all the prediction methods considered. 224 

Thus, after removing one case (𝑖) from the total 𝑛, the remaining were used to calculate a new 225 

𝐴𝐺𝐵 prediction of the response for that given case (𝑝𝑟𝑒𝑖
𝑐𝑣). Hereafter, the superscript/subscript 226 

𝑐𝑣 is used to distinguish measures calculated after the cross-validation procedure, as opposed 227 

to the superscript/subscript 𝑓𝑖𝑡 which will denote non-cross-validated measures, for instance 228 

the predictions that yield model residuals (𝑝𝑟𝑒𝑖
𝑓𝑖𝑡

). The result was evaluated with observed 229 

versus leave-one-out predicted plots, from which we evaluated:  230 

(1) The mean difference (𝑀𝐷) between the predicted minus the observed values: 231 

𝑀𝐷 = ∑ (𝑝𝑟𝑒𝑖
𝑐𝑣 − 𝑜𝑏𝑠𝑖)𝑛

𝑖=1 𝑛⁄  , (2) 232 

which evaluates the degree of under- or over-prediction of the method employed. Eq. (2) is 233 

equivalent to the difference between the means of the observed and predicted (e.g., 234 

McInerney et al., 2010; Wing et al. 2012). 𝑀𝐷 was expressed in 𝐴𝐺𝐵 units, whereas relative 235 

mean difference (𝑀𝐷%) was calculated by dividing 𝑀𝐷 by the observed mean 𝐴𝐺𝐵 (𝑜𝑏𝑠̅̅ ̅̅ ̅).  236 
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 (2) The precision of the prediction, considered as the mean of absolute differences (𝑀𝐴𝐷): 237 

𝑀𝐴𝐷 = ∑ |𝑝𝑟𝑒𝑖
𝑐𝑣 − 𝑜𝑏𝑠𝑖|

𝑛
𝑖=1 𝑛⁄ , (3) 238 

and also the root mean squared differences (𝑅𝑀𝑆𝐷) of predicted values with respect to the 239 

observed ones: 240 

𝑅𝑀𝑆𝐷 = √𝑆𝑆𝑐𝑣 𝑛⁄ , (4) 241 

where 𝑆𝑆𝑐𝑣 was the sum of the squared differences between the observed values and the 242 

predicted values obtained by cross-validation (a.k.a. predicted sum of squares 𝑃𝑅𝐸𝑆𝑆; Allen, 243 

1974; Geisser & Eddy, 1979; Weisberg, 1985: 217; e.g., Valbuena et al., 2013a): 244 

𝑆𝑆𝑐𝑣 = ∑ (𝑝𝑟𝑒𝑖
𝑐𝑣 − 𝑜𝑏𝑠𝑖)

2𝑛
𝑖=1 . (5) 245 

Both 𝑀𝐴𝐷 and 𝑅𝑀𝑆𝐷 represent the error in 𝐴𝐺𝐵 units, the latter being more prone to the 246 

presence of outliers (e.g., García et al., 2010). Their respective relative counterparts, 𝑀𝐴𝐷% 247 

and 𝑅𝑀𝑆𝐷% (a.k.a the coefficient of variation of 𝑅𝑀𝑆𝐷; e.g. Valbuena et al., 2014), were 248 

also calculated by dividing them by 𝑜𝑏𝑠̅̅ ̅̅ ̅. 249 

(3) A hypothesis test testing whether observed and predicted values follow the 1:1 250 

correspondence line (Graybill, 1976; Leite & Oliveira, 2002), was assessed from the 251 

intercept (𝛼) and slope (𝛽) of the linear regression model between the observed and predicted 252 

(Piñeiro et al., 2008): 253 

𝑜𝑏𝑠𝑖 = 𝛼 + 𝛽𝑝𝑟𝑒𝑖
𝑐𝑣 , (6) 254 

which is proven by not rejecting the null hypotheses that H0: 𝛼 = 0 and H0: 𝛽 = 1 for 255 

𝑝𝑟𝑒𝑖
𝑐𝑣 − 𝑜𝑏𝑠𝑖 = 𝛼 + 𝛽𝑝𝑟𝑒𝑖

𝑐𝑣 (Eq. 9 in Piñeiro et al., 2008). Hence, this is a means for 256 

assessing the residual distribution analytically, instead of evaluating it visually from a 257 

residuals versus predicted scatterplot (e.g., Mauro et al., 2016: Fig. 2). 258 
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(4) The proportions of the total errors which are due to the unexplained variance (𝑈𝑒𝑟𝑟𝑜𝑟), 259 

the slope (𝑈𝑠𝑙𝑜𝑝𝑒), and the bias (𝑈𝑏𝑖𝑎𝑠), which were evaluated from Theil’s (1958) partial 260 

inequality coefficients (Paruelo et al., 1998): 261 

𝑈𝑒𝑟𝑟𝑜𝑟  = ∑ (𝑒𝑠𝑡𝑖
𝑐𝑣 − 𝑜𝑏𝑠𝑖)2𝑛

𝑖=1 𝑆𝑆𝑐𝑣⁄  , (7) 262 

where 𝑒𝑠𝑡𝑖
𝑐𝑣 = �̂� + �̂� ∙ 𝑝𝑟𝑒𝑖

𝑐𝑣 were the values estimated by the regression model (Eq. 6);  263 

𝑈𝑠𝑙𝑜𝑝𝑒  = [(𝛽 − 1)2 ∑ (𝑝𝑟𝑒𝑖
𝑐𝑣 − 𝑝𝑟𝑒𝑐𝑣̅̅ ̅̅ ̅̅ ̅)2𝑛

𝑖=1 ] 𝑆𝑆𝑐𝑣⁄  ; (8) 264 

and 265 

𝑈𝑏𝑖𝑎𝑠  = [𝑛 ∙ 𝑀𝐷2] 𝑆𝑆𝑐𝑣⁄ . (9) 266 

We multiplied the values of Theil’s (1958) partial inequality coefficients by 100, to make it 267 

straightforward to the reader that they express the percentage of the total error which is due 268 

to either an overall bias of the model (𝑈𝑏𝑖𝑎𝑠), the presence of trends in the residuals (𝑈𝑠𝑙𝑜𝑝𝑒) 269 

or just the residual variance of the model (𝑈𝑒𝑟𝑟𝑜𝑟). 270 

(5) The degree of overfitting to the sample, which we assessed using a replication method 271 

comparing cross-validation results against model residuals (Allen, 1974; Snee, 1977; 272 

Vanclay & Skovsgaard, 1997; Geisser & Eddy, 1979; Hawkins, 2004). Most studies assume 273 

that overfitting is avoided if over-paramaterization of the prediction model is prevented by 274 

using condition number (κ; Weisberg, 1985; e.g., Naesset, 2002), variance inflaction factor 275 

(VIF; Fox & Monette, 1992; e.g., García et al., 2010), Mallows’ (1973) Cp statistic (e.g., 276 

Hudak et al., 2006), or information criterion indices: Akaike (1992) (AIC; e.g., Bright et al., 277 

2012), Bayesian (BIC; e.g., Wing et al., 2012) or deviance (DIC; e.g., Spriggs et al, 2015). 278 

Many authors deem these insufficient, however, advocating for methods dealing with 279 

overfitting directly (Allen, 1974; Snee, 1977; Hurvich & Tsai, 1989; Rencher & Pun, 1993). 280 
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Moreover, Hawkins (2004) argued in favour of using replication methods for non-parametric 281 

machine learning approaches like MSN, which may lack the theoretical basis on which κ, 282 

VIP, Cp or AIC are grounded. For this reason, we alternatively assessed overfitting directly 283 

from the sums of squares ratio (𝑆𝑆𝑅) and 𝑅2 ratio (𝑅2𝑅) (Ehrenberg, 1982; Weisberg, 1985: 284 

68-69, 217; Lipovetsky, 2013), both obtained by comparison of a same measure acquired by 285 

model fit against cross-validation.  286 

The ratio between the square root of the sums of squares attained in the cross-validation 287 

(𝑆𝑆𝑐𝑣) (Eq. 5) and that using the whole dataset (𝑆𝑆𝑓𝑖𝑡) (Snee, 1977; e.g., Valbuena et al., 288 

2013a) yielded the 𝑆𝑆𝑅: 289 

𝑆𝑆𝑅 = √𝑆𝑆𝑐𝑣 √𝑆𝑆𝑓𝑖𝑡⁄ , (10) 290 

where 𝑆𝑆𝑓𝑖𝑡 was the sum of squares of the model residuals (𝑗), i.e. the values fitted without 291 

cross-validation (Hawkins, 2004): 292 

𝑆𝑆𝑓𝑖𝑡 = ∑ (𝑝𝑟𝑒𝑗
𝑓𝑖𝑡

− 𝑜𝑏𝑠𝑗)2𝑛
𝑗=1 . (11) 293 

On the other hand, a similar measure was obtained using the 𝑅2 of the regression of observed 294 

versus predicted values (Piñeiro et al., 2008). This was the ratio between the one obtained 295 

by cross-validation and that from model residuals: the 𝑅2 ratio (𝑅2𝑅). Equation (5) derives: 296 

𝑅𝑐𝑣
2 = 1 − 𝑆𝑆𝑐𝑣 𝑆𝑆𝑡𝑜𝑡⁄ ,  (12) 297 

where 𝑆𝑆𝑡𝑜𝑡 was the sum of squared differences of each observation from the overall mean:  298 

𝑆𝑆𝑡𝑜𝑡 = ∑ (𝑜𝑏𝑠𝑖 − 𝑜𝑏𝑠̅̅ ̅̅ ̅)2𝑛
𝑖=1 . (13) 299 

Whereas from model residuals the coefficient of determination obtained is derived from Eq. 300 

(11) instead: 301 
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𝑅𝑓𝑖𝑡
2 = 1 − 𝑆𝑆𝑓𝑖𝑡 𝑆𝑆𝑡𝑜𝑡⁄ . (14) 302 

Then, the deflation observed by the cross-validation in the coefficient of determination can 303 

be then assessed as (Rencher & Pun, 1993; e.g., Latifi et al., 2015a): 304 

𝑅2𝑅 = 𝑅𝑓𝑖𝑡
2 𝑅𝑐𝑣

2⁄ = (1 −
𝑆𝑆𝑓𝑖𝑡

𝑆𝑆𝑡𝑜𝑡
) (1 −

𝑆𝑆𝑐𝑣

𝑆𝑆𝑡𝑜𝑡
)⁄ , (15) 305 

Comparing these two functions, Eqs. (10) and (15), it can be seen that 𝑆𝑆𝑅 and 𝑅2𝑅 do, in 306 

essence, very similar tasks. While 𝑅2𝑅 is a ratio of decrease in explained variance 307 

experienced when cross-validating, 𝑆𝑆𝑅 is a ratio of increase in unexplained variance 308 

(square-rooted, in this case). These two measures can therefore be employed to adjust the 309 

inflation of the unexplained variance (𝑆𝑆𝑅) or deflation of explained variance (𝑅2𝑅) in the 310 

cross-validation to a desirable limit, for example 5% or 10% (Lipovetsky, 2013) (i.e., 𝑆𝑆𝑅 311 

or 𝑅2𝑅 would be lower than e.g. 1.05 or 1.10 – numerator and denominator in Eq. (15) have 312 

been swapped compared to Eq. (10), so that both 𝑆𝑆𝑅 and 𝑅2𝑅 rise for increasing 313 

overfitting). It may be worthwhile to mention that although in the univariate case the cross-314 

validation necessarily leads to an increase in the sums of squares and a decrease in the 𝑅2 315 

(Ehrenberg, 1982; Weisberg, 1985), Lipovetsky (2013) showed that this property does not 316 

necessarily always hold in the multivariate case.  317 

Comparing alternatives 318 

The relative merits of each of the proposed statistical measures – 𝑀𝐷, 𝑀𝐷%, 𝑀𝐴𝐷, 𝑀𝐴𝐷%, 319 

𝑅𝑀𝑆𝐷, 𝑅𝑀𝑆𝐷%, 𝛼, 𝛽, 𝑈𝑒𝑟𝑟𝑜𝑟, 𝑈𝑠𝑙𝑜𝑝𝑒, 𝑈𝑏𝑖𝑎𝑠, 𝑆𝑆𝑅 and 𝑅2𝑅  – were evaluated by analysing the 320 

results provided when applying different alternative prediction methods to the same dataset, 321 

and also by comparing their corresponding scatterplots of observed versus predicted values. 322 

Firstly, we compared results obtained while increasing the number of predictors in MSN. We 323 

purposely included unrealistically low 𝑛/𝑝 ratios, with the intention to realize which statistical 324 
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measures would flag up their unreliability. Additionally, we observed the correlations between 325 

pairs of statistical measures to prove whether they are simply redundant or provide additional 326 

information, using Spearman’s rank correlation coefficient (𝜌) because it could prove that two 327 

methods would rank alternatives in a similar manner. Secondly, we compared automatic 328 

variable selection procedures commonly employed in the assessment of remote sensing assisted 329 

𝐴𝐺𝐵 estimations: step-wise and best subset. The additional statistical measures were 330 

incorporated into these algorithms, showing that improvements in overfitting and avoiding 331 

systematic errors may be achieved without excessively compromising the overall precision of 332 

the estimates. 333 

Results 334 

Estimation with different number of predictors  335 

Let us first analyse the results observed when modifying the number of predictors 𝑝 during the 336 

variable selection procedure for MSN imputation. Figure 1 shows the evolution of the statistical 337 

measures for increasing 𝑝, grouped by the characteristics they describe: mean difference and 338 

precision of predictions, their 1:1 correspondence with the observed values, and the degree of 339 

overfitting. Table 1 summarizes the numerical results attained for a relevant selection of these: 340 

𝑝 = 2,3, 5, 8, 10, 15, 20 and 30. Their corresponding observed versus predicted plots are 341 

shown in Fig. 2. Results obtained from the hypothesis tests applied to the fit of observed versus 342 

predicted rejected the reliability of accepting the options using either 𝑝 = 1-4, 8, 12, 29 or 30 343 

(denoted with asterisks in Figs. 1c), whereas every other option passed the test successfully. 344 
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 345 

Figure 1. Statistical evaluation of MSN predictive method for increasing the number of 346 

predictors (𝑝), grouped according to whether they define (a) the mean difference or (b) 347 

precision of predictions, (c) their 1:1 correspondence or (d) the degree of overfitting. 348 

  349 

(a) (b)  

(c)  (d)  
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Table 1. Summary diagnosis of most similar neighbour (MSN) predictions for above-ground 350 

biomass (𝐴𝐺𝐵, Mg·ha-1) using an increasing number of predictors (𝑝). 351 

  Number of predictors (𝑝) 

 

 

2 3 5 8 10 15 20 30 

Prediction 

bias 

𝑀𝐷 -.98 .34 -.08 -.17 .28 .24 .17 1.35 

𝑀𝐷% -3.75 1.31 -.29 -.66 1.09 .93 .66 5.20 

Prediction 

precision 

𝑀𝐴𝐷 5.33 5.08 3.09 4.00 3.93 2.26 2.60 6.23 

𝑀𝐴𝐷% 20.5 19.5 11.8 15.5 15.1 8.7 9.60 23.9 

 𝑅𝑀𝑆𝐷 6.63 6.26 3.75 4.90 4.65 2.72 3.01 7.68 

𝑅𝑀𝑆𝐷% 25.4 24.0 14.4 18.8 17.9 10.4 11.5 30.0 

Hypothesis 

test 

𝛼 10.3** 9.06** 2.93NS 6.36* 3.51NS .66NS 1.17NS 12.5*** 

𝛽 .63** .64*** .89NS .76** .86NS .97NS .95NS .49*** 

Partial 

inequality 

coefficients 

𝑈𝑒𝑟𝑟𝑜𝑟 (%) 78.8 78.2 95.1 84.3 94.7 98.3 98.0 61.9 

𝑈𝑠𝑙𝑜𝑝𝑒 (%) 18.9 21.5 4.84 15.6 4.9 .88 1.59 35.1 

𝑈𝑏𝑖𝑎𝑠 (%) 2.16 .38 .01  .01 .02  .79  .40  3.00 

Agreement 𝑅𝑐𝑣
2  (%) 38.7 45.8 76.3 64.2 63.7 87.1 84.3 33.1 

Overfitting 𝑆𝑆𝑅 1.07 1.01 .89 1.24 1.38 1.09 1.52 7.69 

 𝑅2𝑅 1.15 .99 .91 1.15 1.26 1.02 1.11 2.97 

𝑀𝐷: mean differences (Eq. 2). 𝑀𝐷%: relative 𝑀𝐷. 𝑀𝐴𝐷: mean absolute differences (Eq. 3). 

𝑀𝐴𝐷%: relative 𝑀𝐴𝐷. 𝑅𝑀𝑆𝐷: root mean squared differences (Eq. 4). 𝑅𝑀𝑆𝐷%: relative 

𝑅𝑀𝑆𝐷.  𝛼/𝛽 : intercept/slope of observed versus predicted regression (Eq. 6) (levels of 

significance for rejecting H0: *:.05; **:.01; ***:.001; NS: non-significant). 

𝑈𝑒𝑟𝑟𝑜𝑟/𝑈𝑠𝑙𝑜𝑝𝑒/𝑈𝑏𝑖𝑎𝑠: Theil’s (1958) partial inequality coefficients for error 

variance/slope/bias (Eqs. 7-9). 𝑅𝑐𝑣
2

: cross-validated coefficient of determination (Eq. 12). 

𝑆𝑆𝑅: sum of squares ratio (Eq. 10). 𝑅2𝑅: 𝑅2 ratio (Eq. 15). Relative figures and 

agreement/inequality coefficients have been multiplied by hundred to yield percentage units. 
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 (a) 𝑝 = 2

 

(b) 𝑝 = 3 

 

(c) 𝑝 = 5 

 

(d) 𝑝 = 8 

 
(e) 𝑝 = 10 

 

(f) 𝑝 = 15 

 
(g) 𝑝 = 20 

 

(h) 𝑝 = 30 
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Figure 2. Observed versus predicted plots of most similar neighbour (MSN) imputation 352 

models for above-ground biomass (𝐴𝐺𝐵, Mg·ha-1) using an increasing number of predictors 353 

(𝑝). The solid red line represents the 1:1 correspondence. Dashed line is the linear regression 354 

fit between observed and predicted 𝑜𝑏𝑠𝑖 = 𝛼 + 𝛽 ∙ 𝑝𝑟𝑒𝑖. 355 

 356 

Mean differences, i.e. over- or under-prediction, were negligible in most cases (Table 1; Fig. 357 

1a), usually below |𝑀𝐷| = 2% (which in practice implies an approximate deviation of 0.5 358 

Mg·ha-1). Therefore, in almost every case the prediction methods would yield an unbiased 359 

estimation of the mean 𝐴𝐺𝐵 for the population. The absolute value of 𝑀𝐷 has been depicted in 360 

Fig. 1a in order to express its magnitude regardless of whether it implies under- or over-361 

prediction. The results obtained by |𝑀𝐷| were also corroborated by the low proportions of error 362 

due to bias, as shown by its corresponding Theil’s partial inequality coefficient (𝑈𝑏𝑖𝑎𝑠). These 363 

two measures were very highly correlated 𝜌(|𝑀𝐷|,𝑈𝑏𝑖𝑎𝑠) = 0.94, and hence reiterative. The 364 

largest over-predictions resulted from the MSN model with 𝑝 = 30, which showed a 𝑀𝐷 =365 

5.20% with a proportion of the total error due to bias reaching 𝑈𝑏𝑖𝑎𝑠 = 3.00%. Any other 366 

alternative 𝑝 = 1-29 could have been deemed as providing a reliable 𝐴𝐺𝐵 prediction. However, 367 

scatterplots in Fig. 2a-b show examples of some cases were the unreliability of predictions 368 

could also have been perceived visually. Alternatively to visual assessment, lack of reliability 369 

may also be automatically detected via significance of hypothesis tests (denoted by asterisks in 370 

Fig. 1c). 371 

With regards to the precision of predictions, results were also reasonably acceptable, ranging 372 

𝑅𝑀𝑆𝐷 = 10.4-18.8% for 𝑝 = 5-28. Higher (𝑝 = 29-30) or lower (𝑝 = 1-4) number of 373 

predictors reached larger 𝑅𝑀𝑆𝐷 = 24.0-30.0% (Fig. 1b). 𝑅𝑀𝑆𝐷 and 𝑀𝐴𝐷 changed very 374 

similarly for different 𝑝, 𝑀𝐴𝐷 being systematically lower than 𝑅𝑀𝑆𝐷, as it could be expected 375 
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from Eqs. 3-5. As a result, MSN imputations using 𝑝 = 1-4 seemed apparently better when 376 

evaluated by their 𝑀𝐴𝐷 = 17.4-20.5%, as compared to observing their higher 𝑅𝑀𝑆𝐷 =377 

24.0-25.4%. In fact 𝜌(𝑀𝐴𝐷,𝑅𝑀𝑆𝐷) = 0.99, and hence there is no need to report both measures. 378 

Moreover, Theil’s partial inequality for error (𝑈𝑒𝑟𝑟𝑜𝑟) and the slope of the regression 𝛽 also 379 

showed similar patterns as 𝑅𝑀𝑆𝐷, being 𝜌(𝑅𝑀𝑆𝐷,𝑈𝑒𝑟𝑟𝑜𝑟) = −0.92 and 𝜌(𝑅𝑀𝑆𝐷,𝛽) = −0.85. 380 

Significances in the test of lack of fit to the 1:1 correspondence were therefore closely 381 

associated to low precisions in the 𝐴𝐺𝐵 prediction (Fig. 2). The use of 𝛽, however, provided 382 

the added value of incorporating a significance test that can be used as an objective threshold 383 

for rejecting excessively low precision in prediction error (denoted with asterisks in Fig. 1c).  384 

For assessing the degree of overfitting to the sample, the suggested statistical measures –  385 

𝑆𝑆𝑅 and 𝑅2𝑅 – yielded diverging results for high values of 𝑝 (Fig. 1d). Results in Table 1 and 386 

Fig. 1d revealed that, for many of the alternatives, the ‘real’ (cross-validated) precision 387 

exceeded 10% of model residual variance (denoted by values of 𝑆𝑆𝑅 or 𝑅2𝑅 < 1.1). Among 388 

all the alternatives considered, only those MSN imputations using 𝑝 = 1-7, 11 and 15 obtained 389 

values of 𝑆𝑆𝑅 < 1.1. Being 10% a fairly acceptable level of divergence, if such criterion is set 390 

in conjunction with the hypothesis tests for rejecting a given 𝐴𝐺𝐵 estimation, then only the 391 

MSN predictions using 𝑝 = 5-7, 11 and 15 would be acceptable options. On the other hand, 392 

𝑅2𝑅 was generally less sensitive to overfitting than 𝑆𝑆𝑅 (Table 1). Fig. 1d shows that 𝑅2𝑅 393 

was critically low at elevated values of 𝑝, which is in disagreement with what would have 394 

intuitively be assumed by the subsequent low 𝑛/𝑝 ratios, whereas 𝑆𝑆𝑅 unveiled a dramatical 395 

increase in the overfit for most alternatives above 𝑝 = 7. In fact, 𝑆𝑆𝑅 correlated to the 𝑝 itself 396 

– 𝜌(𝑝,𝑆𝑆𝑅) = 0.93 –, while 𝑅2𝑅 has a weaker relationship to the number of predictors used – 397 

𝜌(𝑝,𝑅2𝑅) = 0.62  –, which indicates that comparing the deflation in 𝑅2 may be not useful to 398 

avoid over-parameterization. 399 
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In light of our results, Theil’s partial inequality coefficients can be useful for a detailed 400 

evaluation of results. 𝑈𝑏𝑖𝑎𝑠 may detect systematic differences between observed and predicted 401 

values. Additionally, large values for 𝑈𝑠𝑙𝑜𝑝𝑒, such as those obtained for 𝑝 = 3 or 𝑝 = 8-10, 402 

indicated a tendency for predicting towards the average 𝐴𝐺𝐵 (Fig. 2) (i.e., over-predicting low 403 

𝐴𝐺𝐵 areas and under-predicting large ones). Hence, even if the overall population mean may 404 

be assumed unbiased in light of 𝑀𝐷 or 𝑈𝑏𝑖𝑎𝑠, there is still a chance for the values shown at the 405 

scale of the estimation units (the pixels in the remote sensing case) to be selectively under- or 406 

over-predicted for certain values within the range of observed 𝐴𝐺𝐵. Our results showed that 407 

this was indeed the case, since large values of 𝑈𝑠𝑙𝑜𝑝𝑒 = 10.4-11.3% were associated to 408 

significant test results for either the 𝛼 or 𝛽 coefficient, or both (Table 1). On the other hand, 409 

the alternatives for which the null hypotheses were not rejected by the tests (signified by non-410 

significances for the coefficients) obtained much lower values, such as 𝑈𝑠𝑙𝑜𝑝𝑒 = 7.09% for 𝑝 =411 

5 and 𝑈𝑠𝑙𝑜𝑝𝑒 = 0.51-4.22% for 𝑝 = 15-25. For instance, Theil’s partial inequality coefficients 412 

were particularly relevant for 𝑝 = 3, (Fig. 2b), since its 𝑈𝑠𝑙𝑜𝑝𝑒 = 21.5% revealed and averaging 413 

effect which remained concealed by its low 𝑀𝐷 = 1.31% (Table 1). 414 

Comparison of alternative modelling methods  415 

We also wanted to use the proposed measurements of accuracy to compare the results obtained 416 

by the MSN imputation with two other modelling alternatives commonly employed in remote 417 

sensing-assisted predictions of 𝐴𝐺𝐵: best-subset and step-wise regression (Table 2). Based on 418 

the results detailed on the previous sub-section, we decided to incorporate two additional 419 

constraints on variable selection (called ‘restricted’ in Table 2) on top of their original 420 

limitation criteria (i.e., Cp for best-subset and Δ for step-wise). These were the hypothesis tests 421 

and the degree of overfitting, i.e. a model would be declined if either of the null hypotheses H0: 422 

𝛼 = 0 or H0: 𝛽 = 1 were rejected, or 𝑆𝑆𝑅 > 1.1. Table 2 compares all these versions against 423 
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the previously-selected MSN imputation model for 𝑝 = 5, which was selected as the optimal 424 

MSN predictions under the same criteria. Figure 3 shows the observed versus predicted plots 425 

corresponding to each of these alternatives. 426 

In a similar manner to the previous comparison of MSN imputation, all the alternatives resulted 427 

in unbiased predictions of population mean (|𝑀𝐷| = 0.10-1.32% and 𝑈𝑏𝑖𝑎𝑠 = 0.01-0.79%) 428 

performing a reasonable error variance (𝑅𝑀𝑆𝐷 = 9.67-15.3%) and good agreement between 429 

observed and predicted (see Valbuena et al., 2018). In this case they all passed the hypothesis 430 

tests, as most of the overall errors were simply due to unsystematic sources affecting the error 431 

variance of the model itself (𝑈𝑒𝑟𝑟𝑜𝑟𝑠 = 94.7-98.9%). None of the models therefore had to be 432 

declined due to failing the hypothesis test on the correspondence between observed and 433 

predicted. However, we detected an overfitting effect at both the best-subset model selected on 434 

the grounds of Mallow’s Cp (𝑆𝑆𝑅 = 1.28) and also at the step-wise regression selected via Δ’s 435 

difference in Sugiura’s corrected AIC (𝑆𝑆𝑅 = 2.90). It is noteworthy to point out that this 436 

contingency could have simply remained overlooked if overfitting had been analysed according 437 

to the deflation in 𝑅2, which was only 𝑅2𝑅 = 1.04 for best subset and 𝑅2𝑅 = 1.17 for the 438 

step-wise regression model. Accordingly, we imposed the criterion of 𝑆𝑆𝑅 ≤ 1.1 to further 439 

constrain the prediction dataset of these models. This resulted in unbiased models including just 440 

𝑝 = 2 independent variables, which avoided overfitting (𝑆𝑆𝑅 = 1.08) while not excessively 441 

compromising model precision (𝑅𝑀𝑆𝐷 = 15.3% and 𝑅𝑀𝑆𝐷 = 14.3%, respectivelly). 442 

 



23 
 

Table 2. Comparison of diagnoses for different prediction method and variable selection 

alternatives to obtain above-ground biomass (𝐴𝐺𝐵, Mg·ha-1) predictions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑀𝐷: mean differences (Eq. 2). 𝑀𝐷%: relative 𝑀𝐷. 𝑀𝐴𝐷: mean absolute differences (Eq. 3). 

𝑀𝐴𝐷%: relative 𝑀𝐴𝐷. 𝑅𝑀𝑆𝐷: root mean squared differences (Eq. 4). 𝑅𝑀𝑆𝐷%: relative 

𝑅𝑀𝑆𝐷.  𝛼/𝛽 : intercept/slope of observed versus predicted regression (Eq. 6) (levels of 

significance for rejecting H0: *:.05; **:.01; ***:.001; NS: non-significant). 

𝑈𝑒𝑟𝑟𝑜𝑟/𝑈𝑠𝑙𝑜𝑝𝑒/𝑈𝑏𝑖𝑎𝑠: Theil’s (1958) partial inequality coefficients for error variance/slope/bias 

(Eqs. 7-9). 𝑅𝑐𝑣
2 : cross-validated coefficient of determination (Eq. 12). 𝑆𝑆𝑅: sum of squares 

ratio (Eq. 10). 𝑅2𝑅: 𝑅2 ratio (Eq. 15). Relative figures and agreement/inequality coefficients 

have been multiplied by hundred to yield percentage units. 

 Best-

subset  

Best-subset 

restricted  

Step-wise Step-wise 

restricted  

MSN 

restricted  

Number of predictors (𝑝) 8 2 23 2 5 

Prediction 

bias 

𝑀𝐷 -.06 -.02 .34 -.16 -.08 

𝑀𝐷% -.24 -.10 1.32 -.63 -.29 

Prediction 

precision 

𝑀𝐴𝐷 2.09 3.32 2.26 2.87 3.09 

𝑀𝐴𝐷% 8.01 12.7 8.69 11.0 11.8 

 𝑅𝑀𝑆𝐷 2.52 3.99 3.07 3.73 3.75 

𝑅𝑀𝑆𝐷% 9.67 15.3 11.8 14.3 14.4 

Hypothesis 

test 

𝛼 .96NS 3.21NS .13NS 1.71NS 2.93NS 

𝛽 .97NS .87NS .98NS .94NS .89NS 

Partial 

inequality 

coefficients 

𝑈𝑒𝑟𝑟𝑜𝑟 (%) 98.9 94.7 98.6 98.5 95.1 

𝑈𝑠𝑙𝑜𝑝𝑒 (%) 1.04 5.30 .17 1.30 4.84 

𝑈𝑏𝑖𝑎𝑠 (%) .06 .01  .01 .19  .01  

Agreement 𝑅𝑐𝑣
2  (%) 88.9 73.4 83.6 75.7 76.3 

Overfitting 𝑆𝑆𝑅 1.28 1.08 2.90 1.08 .89 

 𝑅2𝑅 1.04 1.05 1.17 1.04 .91 
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(a) Best subset

 

(b) Step-wise 

 
(c) Best subset restricted 

 

(d) Step-wise restricted 

 
Figure 3. Observed versus predicted plots of different modelling and variable selection 443 

alternatives to obtain above-ground biomass (𝐴𝐺𝐵, Mg·ha-1) predictions. The solid red line 444 

represents the 1:1 correspondence. Dashed line is the linear regression fit between observed 445 

and predicted 𝑜𝑏𝑠𝑖 = 𝛼 + 𝛽 ∙ 𝑝𝑟𝑒𝑖. 446 

Discussion 447 

Importance of adding complementary analyses for assessing the accuracy of models 448 

The most important implication of the present results is that most of the alternatives contrasted 449 

could have been reasonably judged as reliable when observing only statistical descriptors for 450 

mean difference, precision and agreement. These three types of statistics are the ones most 451 

commonly employed for assessing accuracy in this field (e.g., Zhao et al., 2009; Erdody & 452 
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Moskal 2010; McInerney et al., 2010; d’Oliveira et al 2012; Chen & Zhu, 2013; Straub et al., 453 

2013; Valbuena et al., 2014). In our analysis, by looking only at 𝑀𝐷%, 𝑅𝑀𝑆𝐷% and 𝑅𝑐𝑣
2 , and 454 

also most scatterplots in Figs. 2-3, it could be rationally deduced that any option including a 455 

MSN imputation with 𝑝 = 1-28 would yield reliable accuracies, including the best-subset and 456 

step-wise models as well. The suggested complementary analyses however, showed that many 457 

more of the presented alternatives for 𝐴𝐺𝐵 prediction should in fact be discarded. 458 

Significances in the hypothesis tests suggested by Piñeiro et al. (2008) demonstrated that MSN 459 

imputations using 𝑝 = 3 or 𝑝 = 8 gave an insufficient fit between observed and predicted 460 

values. This diagnosis may have been difficult to make by merely observing the scatterplots 461 

(Figs. 2b,d). Although testing the regression of observed versus predicted values is a well-462 

settled practice in ecological modelling (Graybill, 1976; Reynolds & Chung, 1986; Leite & 463 

Oliveira, 2002; Piñeiro et al., 2008), to our knowledge, hypothesis tests have never before been 464 

included in the evaluation of forest 𝐴𝐺𝐵 using remote sensing, and they have seemingly been 465 

simply overlooked. The results presented in this article suggest that there may be a need to 466 

include them in future accuracy assessment procedures in this field as well. Furthermore, we 467 

also wish to seek consensus and promote the arguments advanced by Piñeiro et al. (2008) in 468 

favour using observed (on the y-axis) versus predicted (on the x-axis) – and not predicted versus 469 

observed (e.g., McRoberts et al., 2002; Holmgren et al., 2008; Zhao et al., 2009; McInerney et 470 

al., 2010; Chen & Zhu 2013; Valbuena et al., 2014) – for reporting the accuracy of remote 471 

sensing-assisted 𝐴𝐺𝐵 estimates. Piñeiro et al. (2008) showed that such distinction matters since 472 

it may change the result and conclusions of model evaluation. 473 

Regarding the overfitting tests based on cross-validation (Allen, 1974; Snee, 1977; Geisser & 474 

Eddy, 1979; Weisberg, 1985; Hawkins, 2004), we wish to emphasize that 𝑆𝑆𝑅 succeeded in 475 

revealing both the best-subset and the step-wise models initially considered, and also any MSN 476 
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imputation using 𝑝 ≥ 8, as being unreliably overfitted to the sample and therefore hardly 477 

generalizable. The described step-wise and best subset approaches to variable selection are very 478 

frequently employed in remote sensing-assisted estimations of forest attributes (e.g., Naesset, 479 

2002; Hudak et al., 2006; Wing et al., 2012; Straub et al., 2013; Estornell, et al. 2014). We 480 

therefore suggest that accuracy assessment procedures for 𝐴𝐺𝐵 predictions obtained from 481 

remote sensing should be improved by using hypothesis testing and overfitting evaluation. 482 

Unveiling averaging effects: unbiased means, and yet over/under-predicting 483 

Even having an unbiased prediction method and a robust sampling design, the outcome is still 484 

susceptible to under- and over-prediction within specific ranges of 𝐴𝐺𝐵 values. Sometimes the 485 

discrepancy between observed and predicted is due to an averaging effect, which in practice 486 

translates into an underestimation of large 𝐴𝐺𝐵 values and an overestimation at areas of lesser 487 

𝐴𝐺𝐵, which in turn may remain concealed if only observing the bias of the population mean. 488 

The averaging effect is a typical and intrinsic weakness of nearest neighbours methods (Franco-489 

Lopez et al., 2001; McInerney et al., 2010). It is caused by the lack of available neighbours 490 

beyond the limits of the observed 𝐴𝐺𝐵 range, hence tending to shift the predictions towards the 491 

average for values located in the borderline of that range. This effect therefore becomes more 492 

accentuated as the 𝑛/𝑝 ratio decreases (McRoberts et al., 2002). Our results indicate this 493 

shortcoming may be detected with the assistance of hypothesis tests suggested by Piñeiro et al. 494 

(2008) and Theil’s (1958) partial inequality coefficients (Smith & Rose, 1995; Paruelo et al., 495 

1998). Taking our results and as a rule of thumb, we would suggest that the proportions of error 496 

due to causes other than the residual variance must not exceed the thresholds 𝑈𝑠𝑙𝑜𝑝𝑒 ≤ 10%  497 

and 𝑈𝑏𝑖𝑎𝑠 ≤ 1%, and in general the model error itself should be no lesser than 𝑈𝑒𝑟𝑟𝑜𝑟 ≥ 90%.  498 

Under-prediction in areas of large 𝐴𝐺𝐵 is a common problem in remote sensing assessments 499 

(e.g., Bright et al., 2012; Asner & Mascaro, 2014), and these areas are of very high importance 500 
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for the purposes of the inventory. To our knowledge, however, these coefficients have not been 501 

employed in the context of remote sensing estimates of forest characteristics before, and only 502 

García et al. (2010) resolved the 𝑅𝑀𝑆𝐷 into systematic and unsystematic portions. 𝑈𝑠𝑙𝑜𝑝𝑒 could 503 

still be useful for identifying these averaging effects, as it was revealed in our results for MSN 504 

imputations using 𝑝 = 3 or 𝑝 = 8 (Table 2), where averaging effects were indeed undergoing 505 

(Fig. 2b,d). This flaw was also detected by significant results in the hypothesis tests. Therefore, 506 

averaging effects may be detected by either large values of 𝑈𝑠𝑙𝑜𝑝𝑒, or via interpretation of 𝛼 or 507 

𝛽 coefficients. When statistical significance proves 𝛼 ≠ 0 but cannot reject 𝛽 = 1, it is an 508 

indication for a source of systematic under- or over-prediction along the full 𝐴𝐺𝐵 range. If 𝛼 =509 

0 cannot be rejected but 𝛽 ≠ 1 significantly, the under-prediction is concentrated in values of 510 

large 𝐴𝐺𝐵 only, for instance due to saturation of the remote sensor. A combination of 𝛼 = 0 511 

and 𝛽 ≠ 1 may as well indicate an over-prediction for small 𝐴𝐺𝐵 values. If both null 512 

hypotheses are rejected and we accept 𝛼 ≠ 0 and 𝛽 ≠ 1, then we are detecting an averaging 513 

effect whenever 𝛽 < 1, as was the case in many of the results presented in this study. 514 

Overfitting to the field sample training the prediction method 515 

We also detected potential problems of overfitting in some of the alternatives proposed. Such 516 

contingency would in practice have a harmful effect when applying the resulting fit to the 517 

predictor variables to obtain 𝐴𝐺𝐵 maps. It is noteworthy that the added value of remote sensing, 518 

compared to traditional design-based sampling using field plots only, is on the capacity to 519 

provide 𝐴𝐺𝐵 predictions throughout large inaccessible forest areas (Naesset, 2002; McRoberts 520 

et al., 2013; Asner & Mascaro, 2014; Chen et al., 2015; Mauro et al., 2016). This advantage is 521 

therefore lost if overfitting to the sample renders 𝐴𝐺𝐵 predictions unreliable at the pixel scale, 522 

even if the population mean estimate is unbiased. We therefore suggest the inclusion of 523 
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overfitting measures in addition to those already widespread: mean difference, precision and 524 

agreement. 525 

The true degree of overfitting will always remain elusive unless an external validation using an 526 

independent field 𝐴𝐺𝐵 dataset is carried out (Allen, 1974; Snee, 1977; Geisser & Eddy, 1979; 527 

Hawkins, 2004). However, even in the event of having the opportunity to acquire a large enough 528 

number of plots from the field, modellers would face trade-offs between the advantages 529 

separating a subset for validation of the main dataset and the gain in incorporating them to the 530 

model for increasing its degrees of freedom, strengthening the certainty of the relationships 531 

found, and the power of their statistical inference (Cohen et al., 2003). As an alternative, the 532 

cross-validation approach seems to provide a good indicative proxy for assessing overfitting 533 

(Weisberg, 1985; Rencher & Pun, 1993; Vanclay & Skovsgaard, 1997; Hawkins, 2004). 𝑆𝑆𝑅 534 

succeeded in identifying risk of overfitting for some of the alternatives in Tables 1 and 2 that 535 

could have otherwise remained undetected. For this reason, we suggest that 𝑆𝑆𝑅 may provide 536 

a useful indication that a given predictive method may undergo overfitting effects. For predictor 537 

variable selection purposes, a desirable limit for model rejection may be chosen, as for instance 538 

we suggested to limit 𝑆𝑆𝑅 ≤ 1.1. It is worth emphasizing that such limit should also be 539 

employed in combination with the suggested hypothesis test, since otherwise MSN imputations 540 

using 𝑝 = 2-3 would have been deemed reliable if judged on the basis of 𝑆𝑆𝑅 only (Table 1). 541 

Surprisingly, decreasing 𝑝 did not univocally lead to a decrease in 𝑆𝑆𝑅 and 𝑅2𝑅, and hence it 542 

may be as detrimental to have either too few or too many predictors. The key question is 543 

possibly to include in the model only non-collinear predictors which truly add separate portions 544 

of explained variance in the observed 𝐴𝐺𝐵 (Ehrenberg, 1982; Weisberg, 1985).  545 

Regarding the choice of either 𝑆𝑆𝑅 or 𝑅2𝑅 for assessing overfitting, our results showed 546 

unexpected differences which may in practice be critical. Fig. 1d demonstrated that the values 547 
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obtained by 𝑆𝑆𝑅 or 𝑅2𝑅 diverged from 𝑝 ≥ 8. As a result, 𝑅2𝑅 was too low at high values of 548 

𝑝, which in practice would imply insufficiently low 𝑛/𝑝 ratios, and therefore the reliability of 549 

𝑅2𝑅 as a measure of overfitting is questionable. We therefore suggest that evaluating the 550 

inflation in the sums of squares of errors (Weisberg, 1985; e.g., Valbuena et al., 2013; Almeida 551 

et al., 2016) may be a more sensible approach to assessing overfitting than analysing the 552 

deflation in 𝑅2 (Rencher & Pun, 1993; e.g., Latifi et al., 2015a). 553 

Most studies assume that avoiding over-parametrized models via κ, VIP, Cp or AIC is sufficient 554 

to avoid overfitting (e.g., Naesset, 2002; Hudak et al., 2006; Erdody & Moskal, 2010; García 555 

et al., 2010; Bright et al., 2012; Wing et al., 2012; Latifi et al., 2015a; Spriggs et al, 2015). 556 

Many of these indices, however, have been suspected in some occasions of being insufficient 557 

to avoid model overfitting (Hurvich & Tsai, 1989; Rencher & Pun, 1993; Vanclay & 558 

Skovsgaard, 1997). In the present research we also detected the need for incorporating further 559 

restrictions to Cp and AIC (Table 2). As an alternative, Weisberg (1985) and Hawkins (2004) 560 

recommended using cross-validation to prevent overfitting. Our results suggest that, while 561 

model precision was not excessively compromised, the assessment of overfitting presented an 562 

opportunity for increased reliability of remote sensing predictions of 𝐴𝐺𝐵 (Franco-Lopez et al., 563 

2001; Valbuena et al., 2013b; Latifi et al., 2015a). We therefore suggest that in addition to the 564 

use of κ, VIP, Cp or AIC, a specific measure devoted to evaluate the degree of overfitting, such 565 

as 𝑆𝑆𝑅, should become a general requirement  566 

Conclusions 567 

Given the results presented in these comparisons, we wish to put forward a suggestion to 568 

perform a more thorough analysis of accuracy in ecological models, which in particular we 569 

wish to address to authors carrying out remote sensing-assisted predictions of 𝐴𝐺𝐵. We may 570 

draw four main conclusions from the discussion of our results (plus an additional one, see 571 
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Valbuena et al., 2018). (1) By simply looking at the most common measures of accuracy 572 

assessment – mean difference, precision and agreement –, there is a risk of interpreting as 573 

reliable 𝐴𝐺𝐵 predictions which are in fact unreliable. 𝑀𝐷, 𝑅𝑀𝑆𝐷 and 𝑅2 are useful statistics 574 

for accuracy assessment, but perhaps not sufficient for truly evaluating the convenience of a 575 

given prediction alternative. (2) Piñeiro et al.’s (2008) hypothesis tests were clearly useful in 576 

providing objective means for inferring the statistical significance of the agreement between 577 

observed and predicted values, which would otherwise be difficult to grasp just by visual 578 

diagnosis of scatterplots. (3) Theil’s partial inequality coefficients can be useful for diagnosis 579 

of the causes leading to disagreement, detecting averaging effects or other types of under- or 580 

over-predictions occurring at specific ranges of 𝐴𝐺𝐵. (4) We also observed that overfitting 581 

effects may remain concealed unless specifically addressed. When comparing the evaluation of 582 

inflation in sums of squares versus deflation of 𝑅2, our results suggested the former to be a 583 

more advantageous approach. We therefore recommend researchers to incorporate the 584 

presented statistical measures for (2), (3) and (4) in their own accuracy assessment protocols. 585 

This recommendation may, of course, be extended to other fields of applied ecological 586 

modelling as well.  587 
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