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Abstract 26 

The vertebral column is a key component of the jawed vertebrate (gnathostome) body plan, 27 

but the primitive embryonic origin of this skeleton remains unclear. In tetrapods, all vertebral 28 

components (neural arches, haemal arches, and centra) derive from paraxial mesoderm 29 

(somites). However, in teleost fishes, vertebrae have a dual embryonic origin, with arches 30 

derived from somites, but centra formed, in part, by secretion of bone matrix from the 31 

notochord. Here, we test the embryonic origin of the vertebral skeleton in a cartilaginous fish 32 

(the skate, Leucoraja erinacea) which serves as an outgroup to tetrapods and teleosts. We 33 

demonstrate, by cell lineage tracing, that both arches and centra are somite-derived. We find 34 

no evidence of cellular or matrix contribution from the notochord to the skate vertebral 35 

skeleton. These findings indicate that the earliest gnathostome vertebral skeleton was 36 

exclusively of somitic origin, with a notochord contribution arising secondarily in teleosts. 37 

 38 
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 41 

Introduction 42 

The presence of vertebrae is a defining feature of the vertebrate body plan. A 43 

vertebral skeleton may consist of a series of paired neural arches that cover the spinal cord, 44 

paired haemal arches that enclose the caudal artery and vein, and, in many jawed vertebrates 45 

(gnathostomes), a series of centra that replace the notochord as the predominant support 46 

structure. Vertebral centra are highly variable in terms of morphology and tissue 47 

composition, and likely evolved independently in many different gnathostome lineages, 48 

including tetrapods, teleost fishes, and cartilaginous fishes [1]. This apparent evolutionary 49 
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convergence raises questions about the embryonic origin of vertebral skeletal elements across 50 

gnathostomes.  51 

In tetrapods, all components of the vertebral skeleton derive from somites: transient, 52 

bilateral blocks of segmented paraxial mesoderm that form dorsally within the embryonic 53 

trunk. Somites are subdivided into dorsal and ventral subpopulations that give rise to trunk 54 

connective tissue and musculature (“dermomyotome”) and skeletal tissues (“sclerotome”), 55 

respectively. Cell lineage tracing experiments using chick-quail chimaeras [2–5] and 56 

fluorescein-dextran injections or grafts from GFP-transgenic donor embryos in axolotl [6] 57 

have shown a fully somitic origin of the vertebral skeleton in these taxa, with somite-derived 58 

cells recovered in developing arches and nascent cartilage of the centra.  59 

 Conversely, in teleost ray-finned fishes, the vertebral skeleton appears to have a dual 60 

embryonic origin, with contributions from both paraxial mesoderm and the notochord. 61 

Teleost vertebral centra consist of an inner layer (the chordacentrum) and an outer layer, both 62 

composed of bone that forms by intramembranous ossification [7]. The chordacentrum of 63 

teleosts forms first, by secretion of bone matrix proteins (e.g. SPARC, type I collagen) from 64 

“chordoblast” cells that reside within the notochord epithelium [8–10]. In zebrafish, in vitro 65 

assays have shown that cultured notochord cells have the capacity to secrete bone matrix, and 66 

ablation experiments have demonstrated that in the absence of notochord, chordacentra fail to 67 

form [11]. Teleost chordacentra are subsequently surrounded by a relatively late-developing 68 

layer of paraxial mesoderm-derived membrane bone [7,12]. Additionally, zebrafish mutants 69 

with somite patterning defects possess normally-developing chordacentra, but exhibit 70 

profound neural and haemal arch defects, indicating the likely paraxial mesodermal origin of 71 

arch tissues [11,13,14].  72 

To determine whether the dual origin of vertebral centra is a teleost-specific feature of 73 

the vertebral skeleton, or a general feature for gnathostomes that has been lost in tetrapods, 74 
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data on the embryonic origin of vertebrae from an outgroup to the bony fishes (i.e. 75 

Osteichthyes: the group that includes tetrapods and teleosts) are needed. Cartilaginous fishes 76 

(Chondrichthyes: sharks, skates, rays and holocephalans) occupy a key phylogenetic position 77 

as the sister group to the bony fishes, and data from this lineage may therefore be used to 78 

help infer primitive developmental conditions for the last common ancestor of gnathostomes. 79 

We have previously shown that vertebrae in the little skate (Leucoraja erinacea) each consist 80 

of a dorsal neural spine, two sets of dorsal cartilages that enclose the spinal cord (neural and 81 

intercalary arches), a single haemal arch and spine extending ventrally, and a tri-layered 82 

centrum (Figure 1) [15]. Here, we use somite and notochord fate mapping experiments, as 83 

well as mRNA in situ hybridization for genes encoding skeletal matrix proteins, to test the 84 

embryonic origin of the skate vertebral skeleton. We show that all components of the skate 85 

vertebral skeleton derive from paraxial mesoderm, with no evidence for cellular or matrix 86 

contributions from the notochord. When considered alongside data from bony fishes, our 87 

findings point to a general and likely primitive paraxial mesodermal origin of the vertebrate 88 

column in jawed vertebrates.  89 

 90 

Materials and Methods 91 

Somite fate mapping 92 

L. erinacea embryos were obtained from the Marine Biological Laboratory (MBL) in Woods 93 

Hole, MA and kept in a flow-through sea table at ~16ºC until S24. A flap was cut in the egg 94 

case using a razor blade, and the embryo and yolk were transferred to a Petri dish. Embryos 95 

were anesthetized in a solution of MS-222 (100mg/L Ethyl 3-aminobenzoate 96 

methanesulfonate – Sigma-Aldrich) in seawater. CellTracker CM-DiI (Thermofisher) (5 97 

µg/µL in ethanol) was diluted 1:10 in 0.3 M sucrose and injected into the ventral portions of 98 

the somites (1-3 injections per embryo) using a pulled glass capillary needle and a 99 
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Picospritzer pressure injector (Figure 2a). Embryos were then replaced in their egg cases and 100 

returned to the sea table to develop for approximately 7 or 12 weeks. Embryos were then 101 

fixed with 4% PFA, as described in Criswell et al. [15]. 102 

 103 

Notochord fate mapping  104 

Embryos were kept as described above until S14, at which point a small window was 105 

cut in the egg case over the embryo. CM-DiI was microinjected into the notochord triangle as 106 

described above (Figure 2b). The window was then sealed with donor eggshell and Krazy 107 

Glue™ gel (Figure 2c), and eggs were returned to the sea table to develop for an additional 108 

16-18 weeks prior to fixation (as described in Criswell et al. [15]). 109 

 110 

Validation of CM-DiI injection placement 111 

To verify the correct placement of CM-DiI injections, three somite-injected embryos 112 

were fixed immediately post-injection, and three notochord-injected embryos were fixed five 113 

days post-injection. Embryos were fixed in 4% paraformaldehyde in PBS overnight at 4ºC, 114 

rinsed 3X15 min in PBS, and stained with DAPI at 1ug/mL overnight at room temperature. 115 

Somite-injected embryos were imaged on a Zeiss lightsheet microscope and notochord-116 

injected embryos were imaged on Zeiss lightsheet or LSM 780 confocal microscopes. 117 

 118 

Histology and mRNA in situ hybridization 119 

 CM-DiI-labeled L. erinacea embryos were embedded in paraffin wax and sectioned at 120 

8 µm thickness as described in O’Neill et al. [16] for histological analysis. Prior to 121 

embedding, embryos were demineralized in 10% EDTA (ethylenediaminetetraacetic acid) for 122 

14 days. Histochemical staining was performed following the Masson’s trichrome protocol of 123 

Witten and Hall [17]. In situ hybridization experiments for Col1a1 (GenBank accession 124 
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number MG017616) and SPARC (GenBank accession number MG017615) were performed 125 

on sections as described in O’Neill et al. [16], with modifications according to Gillis et al. 126 

[18]. 127 

Results 128 

Somitic contribution to all components of the skate vertebral skeleton 129 

To test for somitic contribution to the skate vertebral skeleton, we microinjected CM-130 

DiI into ventral portions of the somites (i.e. the presumptive sclerotome – Figure 3a) of skate 131 

embryos at stage (S) 24 (Ballard et al., 1993). Focal labeling of the somites (with no 132 

notochordal contamination) was confirmed by light sheet microscopy, in embryos fixed 133 

immediately post-injection (Figure 3b; n=3). By 50-52 days post-injection (dpi) (S31), 134 

spindle-shaped cells of the developing areolar tissue of the centrum surround the notochord, 135 

and preskeletal mesenchyme has condensed around the neural tube and caudal artery and 136 

vein. In all embryos analyzed at this stage (n=5), CM-DiI was recovered in the spindle-137 

shaped cells of the developing areolar tissue (Figure 3c), indicating their somitic origin.  138 

By 109dpi (S34), vertebrae are fully developed, with neural, intercalary and haemal 139 

arches, and a tri-layered centrum (Figure 1). In embryos analyzed at this stage (n=4), CM-140 

DiI-positive cells were recovered throughout the vertebral skeleton. CM-DiI-positive cells 141 

were recovered in the cartilage of the neural (n=3 vertebrae in three embryos) and haemal 142 

arches (n=6 vertebrae in four embryos; Figure 3d, e), as well as in the inner layer of cartilage 143 

(Figure 3f; n=2 vertebrae in two embryos), the middle areolar tissue (Figure 3g; n=3 144 

vertebrae in three embryos), and the outer cartilage of the centrum (Figure 3h; n=3 vertebrae 145 

in three embryos). Taken together, these findings demonstrate somitic contribution to all 146 

major components of the skate vertebral skeleton. 147 

 148 

No evidence for notochordal contribution to the vertebral skeleton in skate 149 
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To test for cellular contributions of the notochord to the skate vertebral skeleton, we 150 

conducted a series of notochord fate mapping experiments. In cartilaginous fishes, the 151 

notochord derives from a small triangular region of progenitor cells (the “notochord 152 

triangle”) that appears at the posterior margin of the blastodisc at S12 [19]. We focally 153 

labeled the notochord triangle of skate embryos with CM-DiI at S14 (Figure 4a), and we 154 

confirmed localization of the dye to the notochord at 5dpi (approximately S17) using 155 

confocal microscopy. In three embryos examined at S17, CM-DiI was found either only in 156 

the notochord (n=2), or in the notochord and neural tissue (n=1) (Figure 4b). In no cases were 157 

CM-DiI-labeled cells detected in the paraxial mesoderm.  158 

We therefore labeled the notochord triangles of several skate embryos at S14, and 159 

reared these embryos to 116-129dpi (S34 – at which point the vertebral skeleton has fully 160 

differentiated). CM-DiI was recovered within the notochord (Figure 4c, c’) and the notochord 161 

epithelium (Figure 4d, d’) of the intervertebral regions of the axial column (n=5). In three 162 

embryos, CM-DiI-positive cells were recovered in the remnants of notochord epithelium that 163 

persist in the center of the centrum, where the notochord is almost completely replaced by 164 

inner layer centrum cartilage, but no CM-DiI-positive chondrocytes were recovered in the 165 

inner layer of cartilage itself.  No CM-DiI labeled chondrocytes were observed in any other 166 

components of the axial column. These experiments, therefore, provide no evidence for a 167 

cellular contribution from the notochord to the vertebral skeleton. 168 

 In teleosts, chordoblast cells within the notochord epithelium secrete matrix 169 

components that make up the acellular bone of the chordacentrum. Though skates do not 170 

possess a chordacentrum, the areolar tissue of the skate centrum does mineralize, and at its 171 

origin, sits adjacent to the notochord epithelium [15]. To test whether notochord epithelial 172 

cells contribute matrix components to centrum tissue in skate, we characterised the 173 

expression of genes encoding the bone matrix proteins Col1a1 and SPARC in developing 174 
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skate centra. We did not detect transcription of Col1a1 (Figure 5a) or SPARC (Figure 5b) in 175 

the notochord epithelium. Rather, these transcripts localized to the spindle-shaped cells of the 176 

areolar tissue (Figure 5a-b). These findings suggest that the paraxial mesoderm-derived cells 177 

of the areolar tissue itself – and not the notochord epithelium – are the source of extracellular 178 

matrix of the mineralized tissue of the skate vertebral centrum. 179 

 180 

Discussion 181 

 Our somite fate mapping experiments demonstrate that presumptive sclerotome 182 

contributes to all components of the vertebrae in skate, including the neural and haemal 183 

arches, and all tissues of the tri-layered vertebral centrum. While it is possible that DiI could 184 

diffuse through the extracellular matrix after injection to contaminate tissues adjacent to the 185 

intended target (e.g. notochord), we have controlled for this possibility by imaging a subset 186 

of embryos shortly after injection to validate the precision of our labeling, and by performing 187 

complementary notochord fate mapping experiments. In the latter, we find that CM-DiI 188 

labeling of notochord progenitor cells resulted exclusively in labeling of the notochord and 189 

the notochord epithelium, with no contribution to vertebral tissues. In teleost fishes, 190 

chordoblast cells within the notochord epithelium express genes encoding the bone matrix 191 

proteins type I collagen and SPARC [10,20–22], and are likely the source of bone matrix for 192 

the earliest layer of the vertebral centrum [11,23–28]. As skates also possess a mineralized 193 

layer within their vertebral centra, we sought to test for expression of Col1a1 and SPARC 194 

during skate vertebral development by mRNA in situ hybridization. We found these genes to 195 

be expressed exclusively within the somitically-derived spindle-shaped cells of the areolar 196 

tissue (the precursor to the mineralized middle layer of the centrum – Criswell et al. [15]), 197 

and not in the notochord epithelium. These findings suggest that the cells and matrix 198 

components of the skate vertebral centrum are entirely of paraxial mesodermal origin. 199 
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 When considered alongside data from bony fishes, our demonstration of a somitic 200 

origin of the vertebral skeleton of skates suggests that this tissue was likely the sole, primitive 201 

source of vertebral skeletal tissues in gnathostomes, with a notochord contribution to centrum 202 

bone representing a derived condition of teleost fishes (Figure 6). Evidence from early fossil 203 

jawed and jawless fishes strongly suggests that the vertebral skeleton in the last common 204 

ancestor of gnathostomes consisted simply of a series of neural arches and a persistent 205 

notochord, with no centra [29–32]. Several gnathostome lineages, including elasmobranch 206 

cartilaginous fishes, teleosts, and tetrapods, subsequently evolved centra independently of 207 

one another [1]. At their origins, the vertebral centra of elasmobranchs and tetrapods derived 208 

entirely from paraxial mesoderm [3,6,12], but an inner layer of notochord-derived acellular 209 

bone was incorporated into the centrum with the independent origin of teleost centra. 210 

 It is not yet clear, however, if this specialized condition of teleosts is unique among 211 

ray-finned fishes. Despite recent changes to phylogenetic patterns [33] vertebral centra very 212 

likely evolved independently in multiple non-teleost ray-finned fish lineages (e.g. in gars and 213 

bichirs [1,34,35]. But, it is unclear whether the notochord contributes tissue to the different 214 

forms of centra observed in these taxa. Comprehensive analyses of the embryonic origins of 215 

vertebral tissues in strategically selected fish taxa are needed to better resolve the 216 

evolutionary and developmental assembly of the diverse array of axial skeletons, arguably 217 

the key characteristic, of vertebrates in general. 218 

 219 
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  340 

Figures 341 

 342 

 343 

Figure 1. a, Cross section through a skate caudal vertebra (stained with Masson’s trichrome); 344 

a’, magnified cross section illustrating the three layers of the centrum; b, schematic 345 
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illustrating the components and tissues of the skate vertebra; b’ schematic of the tri-layered 346 

centrum. at, areolar tissue; ce, centrum; ha, haemal arch; hsp, haemal spine; il, inner layer of 347 

the centrum; na, neural arch; nc, notochord; ne, notochord epithelium; nsp, neural spine; ol 348 

outer layer of the centrum; sc, spinal cord. Scale bar = 200 µm. 349 

 350 

 351 

Figure 2. Microinjection of skate embryos with CM-DiI. CM-DiI labeling of a, somites at 352 

S24 (three somites are highlighted with dashed lines) and b, notochord progenitor cells at S14 353 

(with the “notochord triangle” of Ballard et al. 1993 outlined). c, sealing of a windowed skate 354 

egg with donor egg shell. Scale bars = 200 µm. 355 
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 356 

 357 

Figure 3. Somitic contribution to the skate vertebral skeleton. a, two CM-DiI injections in 358 

ventral somites; b, confocal image confirming the placement of the dye immediately post 359 

injection in sagittal section; c, CM-DiI labeled cells (indicated by yellow arrowheads) 360 

distributed within the spindle-shaped cells of the areolar tissue (at) at 49 dpi (false colored 361 

pink); d, CM-DiI labeled chondrocytes in the neural arch (na, indicated by yellow arrow) and 362 

outer layer of centrum cartilage (ol, indicated by yellow arrowhead) at 109dpi (cartilage false 363 

colored blue); e, CM-DiI labeled cells in the haemal arch at 112 dpi (ha, false colored blue); 364 

f, CM-DiI labeled chondrocytes (indicated by yellow arrowheads) in the inner layer of the 365 

centrum at 112 dpi (il, false colored white); g, CM-DiI labeled cells (indicated by yellow 366 

arrowhead) in the areolar tissue, the middle layer of the centrum at 109 dpi (at, false colored 367 
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pink); h, CM-DiI labeled chondrocytes in the outer layer of the centrum (ol, indicated by 368 

yellow arrowhead) and in the neural arch (indicated by yellow arrow)  at 112 dpi (na, false 369 

colored blue). ca/v, caudal artery and vein; nc, notochord; sc, spinal cord. Scale bars = 100 370 

µm. 371 

 372 

 373 

Figure 4. No cellular contribution from the notochord to the skate vertebral skeleton. a, 374 

CM-DiI injection of the notochord triangle of a skate embryo at S14; b, confocal image of a 375 

skate embryo at 5dpi, showing CM-DiI-labeled cell in the notochord; c, a section through the 376 

notochord at 116 dpi, showing CM-DiI positive notochord cells at 10x; c’, higher 377 

magnification view of the inset box in c; d, CM-DiI positive cells in the notochord 378 

epithelium; d’ higher magnification view of the inset box in d. Yellow asterisk indicates 379 

notochord epithelium. Scale bars = 100µm.  380 
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 381 

 382 

Figure 5. The notochord is not a source of bone-like tissue in skate vertebral centra. a, 383 

Col1a1 is expressed in the areolar tissue of the developing centrum; a’, a higher-384 

magnification image of Col1a1 expression; a’’ DAPI staining of the same section as depicted 385 

in a’, showing the boundary between areolar tissue and the notochord epithelium (yellow 386 

asterisk); b, SPARC is expressed in the areolar tissue of the developing centrum; b’, a higher-387 

magnification image of SPARC expression, and b’’ DAPI staining of the same section as 388 

depicted in b’, showing the boundary between areolar tissue and the notochord epithelium 389 

(yellow asterisk). at, areolar tissue; nc, notochord; ol, outer layer. Scale bars = 100 µm. 390 

 391 
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 392 

Figure 6. Embryonic origins of the vertebral skeleton across gnathostomes. 393 

Representative sections of lamprey, skate, teleost, salamander, and bird vertebrae, with 394 

paraxial mesodermal derivatives indicated by purple, and notochord derivatives indicated by 395 

yellow. Grey bars indicate independent originations of centra. Schematics redrawn after 396 

Goodrich [36] (lamprey), Criswell [15] (skate), and MacBride [37] (teleost, salamander, and 397 

bird).  398 


