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Human brain is structurally and functionally asymmetrical and the asymmetries of

brain phenotypes have been shown to change in normal aging. Recent advances in

graph theoretical analysis have showed topological lateralization between hemispheric

networks in the human brain throughout the lifespan. Nevertheless, apparent

discrepancies of hemispheric asymmetry were reported between the structural and

functional brain networks, indicating the potentially complex asymmetry patterns

between structural and functional networks in aging population. In this study, using

multimodal neuroimaging (resting-state fMRI and structural diffusion tensor imaging),

we investigated the characteristics of hemispheric network topology in 76 (male/female

= 15/61, age = 70.08 ± 5.30 years) community-dwelling older adults. Hemispheric

functional and structural brain networks were obtained for each participant. Graph

theoretical approaches were then employed to estimate the hemispheric topological

properties. We found that the optimal small-world properties were preserved in both

structural and functional hemispheric networks in older adults. Moreover, a leftward

asymmetry in both global and local levels were observed in structural brain networks

in comparison with a symmetric pattern in functional brain network, suggesting a

dissociable process of hemispheric asymmetry between structural and functional

connectome in healthy older adults. Finally, the scores of hemispheric asymmetry in

both structural and functional networks were associated with behavioral performance

in various cognitive domains. Taken together, these findings provide new insights into

the lateralized nature of multimodal brain connectivity, highlight the potentially complex

relationship between structural and functional brain network alterations, and augment our

understanding of asymmetric structural and functional specializations in normal aging.

Keywords: resting-state fMRI, diffusion tensor imaging (DTI), graph theory, hemispheric asymmetry, brain

networks
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INTRODUCTION

The human brain is structurally and functionally asymmetrical
or lateralized (Galaburda et al., 1978; Toga and Thompson,
2003). Particularly, a number of brain phenotypes have been
shown to exhibit asymmetry, including gray matter volume
(Good et al., 2001; Lancaster et al., 2003; Takao et al., 2011a),
cortical thickness (Zhou et al., 2013), and white matter integrity
(Cao et al., 2003; Takao et al., 2011b; Thiebaut de Schotten
et al., 2011b; Song et al., 2014), which show varying degrees
of correspondence to brain functions (Toga and Thompson,
2003; Herve et al., 2013) and that this asymmetry is hormone
related (Hausmann and Gunturkun, 2000; Hausmann et al.,
2003). For instance, accumulating evidences have revealed a
prominent brain asymmetry—the so-called Yakovlevian torque,
which demonstrates the right frontal and left occipital petalias,
in the development of asymmetry (Toga and Thompson,
2003). Furthermore, leftward volume asymmetries have been
consistently observed in the inferior frontal gyrus and the
superior temporal gyrus, which are believed as an anatomical
marker of left hemispheric functional specialization for language
processing (Geschwind and Levitsky, 1968). While rightward
asymmetry of gray matter volume in the lateral inferior frontal
gyrus and diffusion parameters of frontal white matter tracts
have also been frequently reported (Zhou et al., 2013), indicating
a rightward predilection to processing non-verbal functions,
including spatial attention, and visuospatial memory (Thiebaut
de Schotten et al., 2011a). Moreover, studies have reported that
brain asymmetries would be altered due to behavior changes
in maturation/normal aging (Cabeza, 2002; Zhong et al., 2016),
and in various neuropsychiatry (e.g., schizophrenia) as well
as neurological (e.g., dementia) diseases (Crow et al., 1989;
Thompson et al., 2003; Kim et al., 2012; Wachinger et al., 2016;
Sun et al., 2017).

Notably, age-related thinning of the cortical mantle varies
regionally, which leads to continuous structural and functional
changes of hemispheric asymmetry throughout the lifespan
(Zhou et al., 2013). For instance, convergent evidence showed
that the asymmetry of regional gray matter volume that is present
at birth undergoes a developmental progression in childhood and
adolescence as a result of bilateral cortical maturation (Giedd
et al., 1996, 1999; Reiss et al., 1996). In older adults, however, a
hemispheric asymmetry reduction has been repeatedly revealed
in functional neuroimaging studies (Casey et al., 2005; Colcombe
et al., 2005; Zuo et al., 2010). Particularly, Cabeza introduced a
cognitive neuroscience model, named HAROLD (hemispheric
asymmetry reduction in older adults), which is believed to
be associated with a functional compensation against aging
(Cabeza, 2002). Furthermore, a recent longitudinal study of
cortical thickness in normal aging revealed a general thinning
in the left hemisphere in contrast to a localized thinning mainly
in the parietal regions of the right counterpart (Thambisetty
et al., 2010). Of note, the reported aberrations of hemispheric
asymmetry in normal aging are examined exclusively at a region
level. Until recently, lateralized characteristics of hemispheric
brain networks were beginning to be revealed (Iturria-Medina
et al., 2011; Tian et al., 2011; Ratnarajah et al., 2013; Caeyenberghs

and Leemans, 2014; Zhong et al., 2016). For instance, Iturria-
Medina et al., employed DTI tractography (a technique to
reconstruct white matter fiber pathways) to investigate the
differences in network architecture between the hemispheres in
healthy right-handed adults and found that the right hemisphere
is more efficient and interconnected in comparison with a
more regional central/indispensable architecture in the left
hemisphere (Iturria-Medina et al., 2011). Similar hemispheric
lateralization in structural brain networks was also observed in
Zhong et al. (2016). Using similar graphic analysis framework,
Tian investigated the hemispheric topology of functional brain
networks in healthy right-handed adults and revealed no
significant lateralization (Tian et al., 2011), reiterating the
complex hemispheric asymmetry patterns between structural
and functional brain networks. Despite these recent advances in
brain asymmetry research, however, our understanding about the
topological organization of functional and structural hemispheric
brain network in aging populations is still rudimentary (Yang
et al., 2017).

As illustrated by several of the aforementioned studies,
network analysis is an ideal method for obtaining summary
measures of cortical connectivity to compare hemispheric
topological characteristics. This method allows the measurement
of both the strength of local networks via clustering, as well as
global network integrity via measures of path length (Jahanshad
et al., 2013; Shu et al., 2015). With this in mind, we employed
connectomic techniques on resting-state functional as well as
diffusion imaging data in a sample of healthy older adults. A
graph theory analysis framework was then utilized to investigate
the hemispheric brain network topology in these healthy aging
adults. Given that converging evidence shows small-world
characteristic (as having high local clustering and short paths
between brain regions) in hemispheric networks (Iturria-Medina
et al., 2011; Tian et al., 2011; Zhong et al., 2016; Sun et al., 2017)
and impaired structural/functional connectivity in aging adults
(Ferreira and Busatto, 2013; Zuo et al., 2017), we hypothesized
that: (1) although the optimal small-world topology would be
preserved in the hemispheric networks, different hemispheric
asymmetry patterns would be found between functional and
structural brain networks; (2) there would be an association
between the asymmetry scores and behavioral performance of
cognitive functions at various domains.

METHODS AND MATERIALS

Subjects
Seventy-six community-dwelling older adults [age = 70.08 ±

5.30 years (mean ± S.D.), ranged 60–82 years, male/female =

15/61] were recruited in the western region of Singapore. All
subjects were right-handed according to the Modified Edinburgh
Questionnaire (Schachter et al., 1987). All participants were pre-
screened to ensure that they met all inclusion criteria in the
present study; i.e., participants reporting terminal illness, or
any contraindication to MRI, or participants who obtained a
Clinical Dementia Rating (CDR) global score greater than zero,
or participants with any psychiatric or psychological problems
were excluded for the current study. Assessments of cognitive
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ability administered by trained raters included the mini-mental
state examination (MMSE) (Folstein et al., 1975; Feng et al.,
2012), the Montreal cognitive assessment (MoCA) (Nasreddine
et al., 2005; Liew et al., 2015), the Rey auditory verbal learning
test (Schmidt, 1996), the Digit Span and Block Design tests from
the Wechsler Adults Intelligence Scale (WAIS-III), the Boston
Naming Test, the Color Trials Test (CTT), and the Symbol
Digit Modalities Test (SDMT). Here are brief explanations of the
adopted neuropsychological tests:

• Rey auditory verbal learning test (RAVLT): RAVLT test is
employed here to assess verbal memory. During the test, the
participant was requested to read a semantically unrelated
word list (list A) with 15 words and to recall as many
words from the list as possible (immediate recall, referred
to hereafter RAVLTir). After five trials of immediate recall,
a second interference list (list B) was presented in the same
manner. After a 30min delay, participants were asked to recall
the words from list A (delayed recall, referred to hereafter
RAVLTdr).

• Digit span: after the examiner reads a sequence of numerical
digits, participants were requested to recall the string correctly
(forward, referred to hereafter DigitSpanfwd). The length of the
digit sequence was increasing in each trial. In the backward
condition (referred to hereafter DigitSpanbwd), subjects were
asked to recall the sequence in reverse order. The longest
number of sequential digits that could be corrected recalled
was considered as the participant’s span.

• Block design: the participant is requested to replicate models
or pictures of two-color designs using blocks. Difficulty of
block design was manipulated with block numbers, e.g., from
two-block design to nine-block design in the current work.

• Color trails test (CTT): The test uses numbered colored circles
and universal sign language symbols. For the Color Trails 1
trial, the examinee uses a pencil to rapidly connect circles
numbered 1 through 25 in sequence. For the Color Trials 2
trial, the examinee rapidly connects numbered circles in
sequence, but alternates between pink and yellow colors (Feng,
2017).

• Boston naming test: the examinee is requested to tell the
examiner the name of each of a series of pictures. The
examiner writes down the subject’s responses in detail using
codes.

• Symbol digit modality test (SDMT): in the written version,
the examinee is asked to write as many numbers as he/she
can in the boxes below a series of symbols according to the
key provided at the top of the page within 90 s. In the oral
version, the examiner records the numbers spoken by the
subjects.

The neuropsychological tests were conducted from Sep. 2015
to Oct. 2015 in a quite room at our study center, the Training
and Research Academy at Jurong Point, Singapore, and the
time between testing and the neuroimaging process were 73.0
± 26.3 days. Detailed demographic and neuropsychological
characteristics of the participants are shown in Table 1. The
Institutional Review Board of the National University of
Singapore approved the study protocol as part of baseline

TABLE 1 | Demographics and neuropsychological features of the samples.

Characteristics Mean ± SD Range (Min–Max)

Gender (male/female) 15/61

Age 70.08 ± 5.30 60–82

Years of Education 6.00 ± 3.98 0–15

PSYCHOLOGICAL MEASURES

RAVLTir 47.18 ± 10.76 23–71

RAVLTdr 10.20 ± 3.04 0–15

DigitSpanfwd 10.54 ± 2.65 5–16

DigitSpanbwd 6.08 ± 2.21 2–14

SDMTwritten 31.95 ± 11.56 6–54

SDMToral 39.17 ± 12.89 9–67

BostonNaming 22.13 ± 5.08 10–30

BlockDesign 26.93 ± 9.15 3–49

CTT1 69.34 ± 26.86 33–184

CTT2 136.10 ± 43.56 63–270

MMSE 28.25 ± 1.81 22–30

MoCA 25.75 ± 3.48 17–30

RAVLTir , Rey auditory verbal learning test, immediate recall; RAVLTdr , Rey auditory verbal

learning test, delayed recall; SDMT, symbol digit modalities test; CTT, color trials test;

MMSE, mini-mental state examination; MoCA, Montreal cognitive assessment.

assessments under the Choral Singing for Dementia Prevention
Trial and written informed consent was obtained from all
participants.

Data Acquisition
Data acquisition was performed on a 3-T Siemens Prisma
scanner (Siemens, Erlangen, Germany) at the Clinical
Imaging Research Center (CIRC), National University
of Singapore, Singapore. Participants were instructed to
keep still and remain as motionless as possible before the
scanning. During the data acquisition, no participants
fell asleep which was confirmed by self-reports after
scanning.

One structural T1-weighted MRI, one resting-state fMRI
scanning, and two volumes of diffusion-encoded images were
recorded in a single session. Specifically, structural MRI for
co-registration and normalization were acquired using a high-
resolution T1-weighted magnetization prepared rapid gradient-
recalled sequence with the following parameters (TR= 2,300ms;
TE = 2.03ms; field of view [FOV] = 256 × 256 mm2; slice
number= 176; acquisition matrix= 256× 256; voxel resolution
= 1 × 1 × 1 mm3). Resting-state fMRI data were obtained
using a single-shot echo-planar imaging (EPI) sequence of 210
images and the acquisition parameters consisted of the following
(TR = 2,550ms; TE = 30ms; FOV = 192 × 192 mm2; slice
number = 42, slice thickness = 3mm; acquisition matrix =

64 × 64; voxel resolution = 3 × 3 × 3 mm3). A single-shot
echo-planar sequence (TR = 8,500ms; TE = 96ms, FOV = 192
× 192 mm2; b-factor = [350 650 1,000 1,300 1,600] s/mm2; 1
baseline image with b0= 0 s/mm2) from 12 separate non-parallel
directions was utilized to obtain diffusion-encoded images (slide
number = 63, slice thickness = 2.0mm with no gap; acquisition
matrix = 96 × 96; voxel resolution = 2 × 2 × 2 mm3). The
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diffusion sequences were scanned twice for better signal-to-noise
ratio.

Functional Data Preprocessing and
Network Construction
Functional data preprocessing was performed using the
Statistical Parametric Mapping (SPM12, http://www.fil.ion.ucl.
ac.uk/spm/software/spm12/), resting-sate fMRI data analysis
toolkit (Song et al., 2011), and DPARSF (Yan and Zang, 2010).
Due to instability of the initial signals, the first 10 volumes were
removed for the following analysis. The remaining fMRI images
were then corrected for time offsets between slices. The time
series of images were then realigned to the first volume to correct
the inter-scan head motion using a six-parameter rigid-body
transform. The individual anatomical T1-weighted images were
coregistered to functional images after motion correction using a
linear transformation and were segmented into gray mater, white
matter, and cerebrospinal fluid (CSF) tissue maps according to
DARTEL (Ashburner, 2007). To reduce the variance estimates,
nuisance signal correction was applied on 24 head-motion
profiles, white matter, CSF, and global signals. Subsequently, a
standard template (Montreal Neurological Institute, MNI) was
employed to normalize the resulting motion-corrected volumes,
which were further resampled to a 3-mm isotropic resolution and
spatially smoothed with an isotropic Gaussian kernel (FWHM
= 4.5mm). Previous studies showed that correlated endogenous
dynamics in resting-state functional data are particularly salient
in frequencies below 0.1Hz (Lowe et al., 1998). Therefore, the
resulting images were further band-pass filtered (0.01–0.1Hz)
to minimize the effect of very low frequency drift and high
frequency physiological noise.

To define the network nodes, a previously validated and
widely used automatically labeled template (AAL-90) was
employed in the current work to enable direct comparison with
the existing studies and reduce the potential confounding effect
during a template-to-template mapping between discordant
atlas. Specifically, AAL atlas parcellated the brain into 90
regions of interests (ROIs) with 45 regions in each hemisphere
(Table 2) (Tzourio-Mazoyer et al., 2002). A representative
time series from each ROI was obtained by averaging the
time series of each voxel within that region. Functional
connectivity, which examines interregional correlations in
neuronal variability, was then obtained through Pearson
correlation between any possible pairs of ROIs (Figure 1).
Fisher’s r-to-z transformation was further applied to the
obtained correlation matrices to improve the normality of
the correlation coefficients. Given the ongoing debate about
the physiological meaning of negative correlation (Chang and
Glover, 2009; Anderson et al., 2011), only positive connections
were retained.

It is well-known that head motion can introduce substantial
changes in the time series of resting-state functional connectivity
(Power et al., 2012; Van Dijk et al., 2012; Yan et al., 2013).
Here, two strategies were adopted in the current study to
control for head motion. First, to account for the transient
excessive movement, subjects were excluded for further analysis
if their head moved more than 2mm or 2◦. Additionally, we

TABLE 2 | The names and corresponding abbreviations of the regions of interest.

Region name Abbr. Class

Amygdala AMYG Paralimbic

Angular gyrus ANG Association

Anterior cingulate gyrus ACG Paralimbic

Calcarine fissure CAL Primary

Caudate nucleus CAU Subcortical

Cuneus CUN Association

Fusiform gyrus FFG Association

Gyrus rectus REC Paralimbic

Heschl gyrus HES Primary

Hippocampus HIP Subcortical

Inferior frontal gyrus (opercula) IFGoperc Association

Inferior frontal gyrus (triangular) IFGtriang Association

Inferior occipital gyrus IOG Association

Inferior parietal lobule IPL Association

Inferior temporal gyrus ITG Association

Insula INS Paralimbic

Lingual gyrus LING Association

Middle cingulate gyri MCG Paralimbic

Middle frontal gyrus MFG Association

Middle occipital gyrus MOG Association

Middle temporal gyrus MTG Association

Olfactory OLF Paralimbic

Orbitofrontal cortex (superior) ORBsup Paralimbic

Orbitofrontal gyrus (inferior) ORBinf Paralimbic

Orbitofrontal gyrus (medial) ORBmed Paralimbic

Orbitofrontal gyrus (middle) ORBmid Paralimbic

Pallidium PAL Subcortical

Paracentral lobule PCL Association

Parahippocampal gyrus PHG Paralimbic

Postcentral gyrus PoCG Primary

Posterior cingulate gyrus PCG Paralimbic

Precentral gyrus PreCG Primary

Precuneus PCUN Association

Putamen PUT Subcortical

Rolandic operculum ROL Association

Superior frontal gyrus (dorsal) SFGdor Association

Superior frontal gyrus (medial) SFGmed Association

Superior occipital gyrus SOG Association

Superior parietal gyrus SPG Association

Superior temporal gyrus STG Association

Supplementary motor area SMA Association

Supramarginal gyrus SMG Association

Temporal pole (middle) TPOmid Paralimbic

Temporal pole (superior) TPOsup Paralimbic

Thalamus THA Subcortical

addressed the residual effects of head motion through frame-wise
displacement (FD) derived with Jenkinson’s relative root mean
square algorithm (Jenkinson et al., 2002) as nuisance covariate.
Subjects with mean FD higher than 1mm were discarded. Head
motion was quite small in the current study and no subjects were
removed based upon these two criteria.
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FIGURE 1 | Schematic overview of the formation of the individual hemispheric network for structural (Upper) and functional (Lower) data.

Structural Data Preprocessing and
Network Construction
Structural data preprocessing and brain network construction
were conducted using the FMRIB Software Library (FSL, v5.0,
Smith et al., 2004), diffusion toolkit (Wang et al., 2007), and
PANDA (Cui et al., 2013) and has been described in detail
previously (Sun et al., 2016a, 2017). Here we provide a brief
description about the preprocessing steps.

The distortion of diffusion-weighted images was corrected
for effects of head motion and eddy currents using an affine
alignment of each image to the b0 image. After this process,
the six independent components of the diffusion tensor were
estimated within each voxel. A widely used deterministic
streamline tracking algorithm was then performed to obtain
the whole-brain tractography (Mori et al., 1999). The tracking
procedure started from the deep white matter regions and
terminated if it turned an angle > 45◦ or reached a voxel
with a fractional anisotropy < 0.15. For each participant, the
structural brain network was constructed through combining the
parcellation map with the white matter tractography (Figure 1).
Of note, the individual-based parcellation template that was
obtained through weaving the standard AAL template from
the MNI space to the DTI native space was employed to
define the network nodes. Edge weights were computed as the
streamline density (computed as the ratio between the number of
streamlines and sum of volumes of the two interconnected ROIs

at individual native space) to account for different sizes of the
ROIs (Buchanan et al., 2014).

Graph Theory Analysis
After the network construction, each individual has one
functional brain network and one structural brain network
at the whole brain level (90 × 90). In order to assess the
topology of multimodal hemispheric networks, we eliminated the
interhemispheric connections and only kept intrahemispheric
connections (45 × 45) in functional and structural networks for
both hemispheres.

Graph theory is a natural framework for the mathematical
representation of complex networks, proving a powerful and
quantitative way to describe the segregation and integration
of the brain network form the perspective of its topological
architecture (Sporns, 2011). In this work, we calculated
the small-world parameters (including weighted clustering
coefficient, Cw, weighted characteristic path length, Lw, small-
worldness, σ , global efficiency, Eglobal, and local efficiency
Elocal) for hemispheric brain networks using the Brain
Connectivity Toolbox (Rubinov and Sporns, 2010). Cw, Lw,
and σ were originally introduced in Watts and Strogatz
(1998) for quantitatively assessing the small-world properties
(high local clustering and short paths between brain regions),
whereas Eglobal and Elocal were employed here to provide
comprehensive understanding of small-world architecture
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in terms of information flow (Latora and Marchiori, 2001;
Achard and Bullmore, 2007). Nodal efficiency (Enodal) (Achard
and Bullmore, 2007), which measures the ability of regional
information transmission, was utilized to assess regional
properties. We provided the definitions and formulations of the
network metrics used in Table 3. More detailed description and
usage of the graph theory parameters can be found in Boccaletti
et al. (2006), Bullmore and Sporns (2009), and Rubinov and
Sporns (2010).

Of note, each of the obtained hemispheric functional brain
network was thresholded to a fixed sparsity value, but retaining
the supra-threshold weights, prior to graph theory analysis to
ensure that the wiring cost of each participant was comparable
(Achard and Bullmore, 2007; He et al., 2009). In the current work,
a wide range of sparsity (i.e., 0.1–0.35) with an interval of 1% was
selected for graph theoretical analysis of hemispheric functional
brain network to maintain the reachability of the network and
allow prominent small-world properties. An integrated network
metric was then estimated for all global and regional functional
network metrics over the predefined sparsity range (Achard and
Bullmore, 2007; He et al., 2009).

Statistical Analysis
Interhemispheric Differences

Previous neuroimaging studies showed gender effect in structural
and functional differences in brain asymmetry (Tian et al., 2011;
Ingalhalikar et al., 2014; Sun et al., 2015). To detect whether
there was significant hemispheric effect in any of the network
metrics that were independent of the potential gender influence,
a univariate analysis of covariance (ANCOVA) was performed
separately on network measures of both functional and structural
hemisphere networks with a threshold for significance of p< 0.05
(FDR-corrected). Gender was included as a covariate.

To determine the significance levels of lateralized connections,
a network based statistical (NBS) analysis (Zalesky et al.,
2010) was applied separately on the hemispheric structural
and functional networks. Firstly, we performed a two-tailed
paired t-test for each connection between both hemispheres
and obtained t statistics for each edge. This step enables us
to examine the maximal connected components (subnetworks)
after setting a set of suprathreshold of the statistics. Subsequently,
a non-parametric permutation test with 5,000 iterations was
performed to obtain an empirical null distribution of the
size of the maximal connected components and estimate the
significance for each subnetwork. At each permutation, all of the
hemispheric brain networks were randomly allocated into one of
the two hemispheres. Next, the maximal connected component
size was obtained using the same t-statistic threshold. Then
the NBS-corrected p-value was determined through calculating
the proportion of the 5,000 permutations where the maximal
connected component was larger than that of the original
grouping of left and right hemispheres. Detailed description
about NBS method could be found in Zalesky et al. (2010).

Relationship between the Network Metrics and

Behavioral Measures

In order to assess the relationship between the network metrics
and behavioral measures, an index of asymmetry scores were
calculated (Iturria-Medina et al., 2011; Sun et al., 2017): AS(X)
= 100 × [X(R) – X(L)] / [X(R) + X(L)], where X(R) and X(L)
stand for the network measures of the right and left hemispheres,
respectively. The AS(X) index, ranging between+100 and−100,
incorporated the relative networkmetrics over both hemispheres,
which allow us to uncover the differences between the right and
left hemispheres. Of note, for all network measures except Lw,
positive AS(X) indicates prominent rightward asymmetry and

TABLE 3 | Formulations and description of topological measurements applied in the current work.

Network properties Definitions Measurement and meaning

GLOBAL PROPERTIES

Clustering coefficient (Cw ) Cw = 1
N

∑

i∈N

∑

j,k

(

wijwjkwki
)1/3

(ki(ki−1))
Cw measures the extent of a local clustering or cliquishness of a network G with N nodes. Here

ki is the number of edges connecting to node i, wij is the edge weight between region i and j.

Characteristic path length (Lw ) Lw = 1
N(N−1)

∑

i∈N

∑

i 6=j∈N

min
{

Lij
}

Lw measures the overall routing efficiency of the network. min
{

Lij
}

is the shortest path length

between node i and j. Path length of an edge conceptualized to weight graph is defined as the

reciprocal of the edge weight (Lij = 1/wij ). That is the higher of the edge weight, the shorter

path length.

Small-worldness (σ ) σ =
γ
λ
=

Cw/Crandw

Lw/Lrandw

σ measures the small-world property. Crandw and Lrandw represent the mean indices derived from

100 matched random networks. These random networks were derived from the original brain

network by randomly rewiring the edges between nodes while preserving the degree

distribution and connectedness.

Global efficiency (Eglobal ) Eglobal =
1

N(N−1)

∑

i 6=j∈N

1
min

{

Lij
} Eglobal measures the global efficiency of parallel information transfer in the network and it is

inversely related to Lw.

Local efficiency (Elocal ) Elocal =
1
N

∑

i∈N

Eglobal (i) Elocal measures the mean local efficiency of the network. Eglobal (i) is the global efficiency of the

subgraph of the neighbour of node i.

REGIONAL PROPERTIES

Nodal efficiency (Enodal ) Enodal (i) =
1
N

∑

i 6=j∈N

1
min

{

Lij
} Enodal (i) is the inverse of the harmonic mean of the shortest path length between node i and all

other nodes. It measures the ability of information transmission of node i in the network: a node

with high Enodal indicates great interconnectivity with other regions in the network.
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AS(X) is negative when metric X showed significant leftward
predilection. Given that longer Lw suggests less efficient global
integration, positive AS(Lw) indicates a leftward advantage of
global integration and negative AS(Lw) represents rightward
predilection.

Relationship between the hemispheric asymmetry scores and
behavioral measures were also explored in the current work.
Specifically, partial correlation was employed with the covariates
of age, gender, handedness, and years of education. To limit
the number of association calculations, only network metrics
that displayed significant hemispheric effect were chosen for the
analysis. The threshold value for establishment of a significant
relationship was set at p < 0.05. Unless stated otherwise, all
statistical analyses were performed using SPSS 17 software (IBM,
Armonk, New York).

RESULTS

Global Properties of Hemispheric
Networks
In line with previous findings (Iturria-Medina et al., 2011; Tian
et al., 2011), we found prominent features of small-word topology
in the hemispheric networks; that is, greater local clustering and
comparable short path lengths relative to the random networks
(data not shown), in both structural and functional hemispheric
brain networks.

Quantitative statistical analysis revealed different
lateralization patterns between structural and functional
hemispheric networks (Figure 2). Particularly, a significant

leftward predilection of local integration [Left > Right: Cw,
F(1, 149) = 7.378, p = 0.007; Elocal, F(1, 149) = 6.858, p =

0.010], together with a left hemispheric advantage in the global
integration [Left < Right: Lw, F(1, 149) = 7.155, p = 0.008; Left >

Right: Eglobal, t(77) = 4.275, p= 0.040] was observed in structural
hemispheric networks, leading to a higher small-worldness
in the left hemisphere [Left > Right: σ , F(1, 149) = 10.598,
p = 0.001]. In the functional brain networks, a significant
hemispheric effect was observed in small-worldness [Left <

Right: σ , F(1, 149) = 5.080, p = 0.026], indicating a rightward
predilection of optimal architecture in the right hemisphere. No
significant hemispheric effects (p> 0.05) were observed for other
metrics (Cw, Lw, Elocal, and Eglobal) derived from the functional
hemispheric networks.

Regional Properties of Hemispheric
Networks
We further localized the regions showing significant hemispheric
effect. Specifically, significant hemispheric effect (p < 0.05,
FDR-corrected) was revealed in 17 regions across the cerebral
cortex in structural brain networks (Figure 3A). Among these
brain regions, 14 regions (including the amygdala [AMYG],
anterior cingulate gyrus [ACG], heschl gyrus [HES], inferior
frontal gyrus, triangle part [IFGtriang], middle frontal gyrus
[MFG], middle occipital gyrus [MOG], middle cingulate gyrus
[MCG], postcentral gyrus [PoCG], posterior cingulate gyrus
[PCG], precuneus [PCUN], superior frontal gyrus, medial
part [SFGmed], superior frontal gyrus, dorsal part [SFGdor],
supplementary motor area [SMA], and superior parietal gyrus

FIGURE 2 | Global network properties for (A) structural hemispheric network and (B) functional hemispheric network. Bars represent mean ± standard error.

*Indicates p < 0.05; **Indicates p < 0.01. LH, left hemisphere; RH, right hemisphere.
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FIGURE 3 | The surface distribution of cortical regions showing significant hemisphere effect in (A) structural network and (B) functional network. Color bar indicates

p-values, and the threshold value for establishing significance was set p < 0.05 (FDR-corrected). Significant regions were overlaid on inflated surface maps with

BrainNet Viewer software (Xia et al., 2013). For the abbreviations of the cortical regions, see Table 2.

[SPG]) mainly located in the inferior frontal and medial areas
showed leftward lateralization of regional efficiency, whereas
only three regions (including the supramarginal gyrus [SMG],
temporal pole, middle part [TPOmid], orbitofrontal gyrus,
superior part [ORBsup]), predominantly located temporal area,
exhibited a rightward advantage in regional efficiency. In
functional brain networks, 10 regions exhibited significant
hemispheric effect (p< 0.05, FDR-corrected), where four regions
(orbitofrontal gyrus, inferior part [ORBinf], gyrus rectus [REC],
SFGdor, and superior frontal gyrus, medial part [SFGmed])
showed leftward advantage and the other six regions (including
the calcarine fissure [CAL], cuneus [CUN], inferior parietal
lobule [IPL], PCUN, SMG, and superior occipital gyrus [SOG])
mainly located in the parieto-occipital area showed a rightward
predilection (Figure 3B).

Lateralized Inter-Regional Connectivity
We used NBS method to identify the significantly lateralized
inter-regional connectivity between both hemispheres.
Specifically, in structural hemispheric networks, a significant
leftward predilection (p< 0.05, NBS-corrected) was revealed in a
single connected network with 26 nodes and 33 edges (Figure 4).
Visual inspection showed that the edges with significant
hemispheric effect mainly connected brain regions between
parieto-occipital and temporal/orbitofrontal areas. The involved
nodal regions included the parieto-occipital (the PCUN, SPG,
SOG, angular gyrus [ANG], IPL, paracentral lobule [PCL],
SMG, ROL, lingual gyrus [LING], and PoCG), the temporal
(the superior temporal gyrus [STG], temporal pole, superior
part [TPOsup], TPOmid, ITG, and FFG), the orbitofrontal (the
orbitofrontal gyrus, medial part [ORBmed], ORBsup, REC,
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FIGURE 4 | The distribution of structural connections showing significant (p < 0.05, NBS-corrected) hemisphere effect. These connections formed a single

connected network with 26 nodes and 33 connections. For the abbreviations of the cortical regions, see Table 2.

olfactory [OLF], ORBinf, INS, and PreCG), and some subcortical
areas (the CAU, putamen [PUT], THA, and HIP). No statistically
significant (p < 0.05, NBS-corrected) lateralized connectivity
was revealed in functional hemispheric networks.

Relationship between Hemispheric
Asymmetry and Behavioral Measures
Notably, given that the behavioral measures covered multiple
domains and well-known localized process across different brain
areas, these significant associations exhibited region-dependent
patterns. In the global network metrics showing significant
hemispheric predilection, a significant association (r = 0.275,
p = 0.018) between the asymmetry scores of the weighted
characteristic path (AS(Lw)) in structural brain networks and
scores of RAVLTir was revealed, whereas the asymmetry scores
of local efficiency (AS(Elocal)) was found to be associated with
the scores of SDMToral (r = −0.252, p = 0.031), Boston naming
(r = −0.231, p = 0.049), and MoCA (r = −0.307, p = 0.008).
No statistically significant (p > 0.05) association was revealed
between behavioral measures and global network metric in
functional brain network. For the regional asymmetry scores
in structural brain network, 6 regions among 17 that showed
significant hemispheric effect exhibited significant correlations
(p < 0.05, uncorrected) with specific behavioral measures.
Specifically, significantly negative relationship was revealed
between the asymmetry scores of Enodal of SFGdor and PCG
and the Boston naming scores [AS(Enodal(SFGdor)), r = −0.271,
p = 0.020; AS(Enodal(PCG)), r = −0.230, p = 0.050]; between
AS(Enodal(MCG)) and SDMTwritten scores (r =−0.248, p =

0.035); and between AS(Enodal(IFGtriang)) and the CTT1 scores
(r = −0.260, p = 0.026). Moreover, significantly positive

relationship was found between the asymmetry scores of Enodal
of HES and MoCA scores (r = 0.295, p = 0.011) as well
as AS(Enodal(TPOmid)) and CTT2 (r = 0.268, p = 0.022).
In functional brain network, the asymmetry scores of nodal
efficiency of SFGdor were significantly correlated with the
SDMTwritten scores (r = 0.299, p = 0.010) and the asymmetry
scores of nodal efficiency of SMG were positively correlated with
block design scores (r = 0.273, p= 0.020).

DISCUSSION

In the current study, using multimodal neuroimaging techniques
and graph theory analysis, we examined the hemispheric
asymmetry in healthy aging adults. The significant findings are
as follows: first, as expected, the optimal small-world properties
were revealed in both structural and functional hemispheric
networks; second, distinct hemispheric lateralization patterns
were found between structural and functional brain networks
at both global and local levels; third, the asymmetry scores of
networkmetrics were correlated with the behavioral performance
of cognitive function. These findings are discussed in greater
detail below.

Recent advances of graph theoretical analysis and the
identification of small-world architecture (high local clustering
and short paths between brain regions) has significantly
augmented our understanding about the topological organization
of brain networks (Bullmore and Sporns, 2009; He and Evans,
2010; Sporns, 2011). Compared to serial or hierarchical
processing, such small-world architecture represents an optimal
network topology that keep a balance between local segregation
and global integration (Watts and Strogatz, 1998). Specifically,
high local clustering could facilitate specialized local cognitive
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function while short paths ensure efficient parallel information
processing, therefore facilitating complex cognitive brain
function (Sporns, 2011). In fact, convergent evidence has shown
the presence of the small-world properties in healthy subjects
at the whole-brain level (Bassett and Bullmore, 2009; Bullmore
and Sporns, 2009; Sporns, 2011). Until quite recently, the
optimal small-world characteristics were revealed in hemispheric
brain networks (Iturria-Medina et al., 2011; Tian et al., 2011;
Ratnarajah et al., 2013; Caeyenberghs and Leemans, 2014; Sun
et al., 2017; Yang et al., 2017). Therefore, our observations of
optimal small-world properties at hemispheric level extend these
earlier findings and provided new multimodal neuroimaging
evidence to demonstrate efficient information processing within
each hemisphere similar to that of the whole brain.

In addition, distinct hemispheric lateralization patterns
were observed in structural and functional brain networks.
Specifically, a leftward advantage of network topology was
revealed in the structural hemispheric networks. This finding
was consistent with prior observations from structural network
study of hemispheric asymmetry in old adults (Caeyenberghs
and Leemans, 2014). Together with previous studies of structural
connectivity asymmetry across different ages (Iturria-Medina
et al., 2011; Ratnarajah et al., 2013; Caeyenberghs and Leemans,
2014; Zhong et al., 2016; Sun et al., 2017), we could clearly
observe a developmental trend in topological asymmetry between
hemispheric brain networks. For instance, a leftward predilection
of network efficiency was firstly observed in neonatal brains
that might result from the adaption to lateralized primary
functional needs such as motor, language, and memory functions
(Ratnarajah et al., 2013). From childhood to adulthood, the
asymmetry undergoes a developmental progression as a result of
bilateral cortical maturity, which leads to the right-larger-than-
left asymmetry (Zhong et al., 2016). This rightward asymmetry
might be attributed to broader cognitive process including
visuospatial integration and attentional processing interact
in the right hemisphere in comparison to more specialized
cognitive process like language in the left hemisphere (Iturria-
Medina et al., 2011). Such a right-larger-than-left asymmetry
pattern was turned over in older adults, due to normal aging-
related brain morphometric changes (Thambisetty et al., 2010;
Lemaitre et al., 2012). Moreover, in functional brain networks,
our observation of symmetric network topology between left
and right hemispheres was in line with one recent study of
hemispheric related differences in small-world brain networks
(Tian et al., 2011). Given that subjects enrolled in Tian et al.
(2011) were healthy young adults, our findings may therefore
suggest a compensatory reaction of hemispheric functional brain
networks to aging-related structural alterations (Cabeza, 2002;
Dolcos et al., 2002; Ferreira and Busatto, 2013; Daselaar et al.,
2015). In fact, accumulating evidences have suggested that a
distributed processing was typically revealed in older adults in
response to the demands of aging (Davis et al., 2012).

In comparison with the previous studies investigating
hemispheric asymmetry at regional morphology level (e.g.,
cortical thickness, gray/white matter volume), regional
asymmetry was assessed in terms of interconnectivity
characteristics of each region between two hemispheres in

this work. In line with the well-documented leftward asymmetry
in language, motor and visual functions (Mesulam, 1998), regions
with significant leftward asymmetry of nodal efficiency were
revealed in the inferior frontal areas, precentral gyrus, postcentral
gyrus, middle occipital gyrus, which was consistent with similar
cortical thickness (Luders et al., 2006), morphometric (Good
et al., 2001), and structural connectivity results (Caeyenberghs
and Leemans, 2014; Sun et al., 2017). Moreover, we found
regions with rightward predilection of Enodal mainly located in
the temporal areas, corresponding to the rightward predilection
in memory functioning (Mesulam, 1998). More interestingly, we
found a leftward dominance of regional efficiency asymmetry
in structural brain networks (leftward/rightward = 14/3).
Most of these regions with significant hemispheric asymmetry
were identified as hubs (regions with higher interconnectivity,
including the postcentral gyrus, superior frontal gyrus, middle
frontal gyrus, precuneus, andmiddle occipital gyrus) in this study
(data not shown) and in previous brain connectome studies (Wu
et al., 2012; van den Heuvel and Sporns, 2013). The NBS analysis
also revealed a significantly lateralized structural subnetwork in
left hemisphere. Due to its higher interconnectivity, hub regions
played a central role in receiving and integrating multiple inputs
from different cortical regions. We therefore speculate that the
profoundly asymmetric regions and connections may indicate
more integrated network topology in left hemisphere, which
led to our being able to reveal leftward predilection of network
efficiency in structural network.

In functional hemispheric networks, however, a left-anterior-
right-posterior asymmetric pattern was observed in regional
efficiency. Particularly, consistent with structural findings,
leftward advantage was mainly revealed in brain regions with
well-known lateralized cognitive functions, such as language.
In fact the superior frontal gyrus and inferior frontal gyrus
have been repeatedly reported to be functionally asymmetric
(Toga and Thompson, 2003). Moreover, our finding of
rightward regional asymmetry in the posterior areas was in
line with prior observations in functional (Liu et al., 2009)
and structural (Iturria-Medina et al., 2011) network studies.
According to Liu et al. (2009), these rightward asymmetries were
attributed to right-lateralized visuospatial processing. Further
inspection of hemispheric asymmetry pattern in functional
networks, we found a symmetric pattern (leftward/rightward =

4/6) of regional efficiency asymmetry, which corroborated
our observation of a symmetric global hemispheric
topology.

Another interesting observation is that the asymmetry scores
of network metrics were associated with behavioral measures.
Particularly, significant associations were revealed between
behavioral measures and asymmetry scores of global network
metrics in structural networks. Given that Lw measures the
overall routing efficiency of the network, the shorter Lw, the
higher global integration of the network. Therefore, the observed
significant relationship suggested that the better behavioral
performance was associated with more efficient network
topology in the left hemisphere. According to Iturria-Medina,
dedicated specialized networks were embedded in the left
hemisphere to achieve its leading role for highly demanding
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specific process such as language and motor actions (Iturria-
Medina et al., 2011). It is therefore not surprising to observe
a strong association between leftward predilection of network
efficiency and language-related behavioral measures (e.g.,
SDMToral and Boston naming). In terms of regional efficiency,
we observed significant relationship between hemispheric
lateralization of several well-documented language-related
regions (e.g., triangular part of the inferior frontal gyrus)
and behavioral test such as color trails test. This significant
relationship at both global and regional levels revealed in
structural brain networks was mostly absent in functional brain
networks due to the symmetric topology. Taken together, our
findings of complex relationship between network metrics
and behavioral measures reiterated the distinct hemispheric
asymmetry patterns between functional and structural brain
networks. Likewise, a robust relationship between abnormal
network topology and aging-related performance decline has
emerged (Wang et al., 2013; Dai and He, 2014; Yang et al., 2017).
Our exploratory findings therefore provide further support
of using brain network properties as potential biomarkers for
evaluation of the behavioral performance in healthy-aging
population.

There are also several issues that need to be further addressed.
First, the previously validated and widely used AAL template
was employed here for the network construction to ensure
the comparability needed for both imaging modalities as well
as to maximize the number of existing studies with which
our results could be directly compared without the need to
determine a template-to-template mapping between discordant
regional definitions (Sun et al., 2016b). Nonetheless, a potential
confounding factor of different sizes of ROIs may influence the
link weight among the network nodes (Wang et al., 2012). To
address this issue, a streamline density approach was utilized
to account for the different sizes of the ROIs (Buchanan et al.,
2014). Given that there is as yet no widely-accepted means
for defining network nodes for connectomic analyses (Fornito
et al., 2013) and the best choice of edge weight definition to
accurately represent the neurobiological connectivity is far from
fully understood (Jones, 2010; Smith et al., 2011), we believe
that new advances in brain parcellation approaches and edge
weighting methods, examining the topological characteristics of
hemispheric networks across the life scan are of importance
for better understanding the hemispheric-specific developmental
trend in the brain connectome. Second, a computationally
inexpensive deterministic tractography method was employed
to reconstruct the structural brain networks (Mori et al., 1999).
However, this fiber tracking method may become hindered
in correctly tracing fiber streamlines when the directional
information at some point along the tract is not univocal (i.e.,
fiber crossing) (Jones et al., 2013). This may in turn result
in an underrepresentation of the number of connections of
the connectome. We assessed the credibility of our tracking
results through inspecting and comparing several well-known
WM fiber bundles with other studies (Gong et al., 2009; Li
et al., 2009; Sun et al., 2017), and found comparable tracking
results that were faithful to the human WM anatomy (data
not shown). Although probabilistic tractography method with

much higher sampling directions is advantageous in overcoming
fiber crossing problem (Behrens et al., 2007), recent research has
indicated that such method would yield dense connectomes with
increased false positive connections and reduced specificity of
connectome constructions (Zalesky et al., 2016). Nevertheless,
future studies with cautious application of advanced probabilistic
fiber tracking method and cross-fiber models to high-quality
data is recommended to confirm our observations. Thirdly,
using a cross-sectional design, Zhou et al. had investigated the
cortical thickness asymmetry from childhood to older adulthood
and showed that hemispheric asymmetry was increased during
aging (Zhou et al., 2013). In line with this notion, a recent
longitudinal study of cortical thickness in normal aging reported
a general thinning in the left hemisphere together with a localized
thinning in the right parietal regions (Thambisetty et al., 2010).
Although this cross-section study shed some of the first light into
quantitative investigation of hemispheric asymmetry in older
adults, follow-up longitudinal brain connectome studies across
the life span (Zuo et al., 2017) are needed to elucidate that
how the hemispheric asymmetry in structural and functional
brain networks are conserved or affected over time. Finally, an
uncorrected p-value of 0.05 was employed for establishing the
significance and presenting the correlation results. Although we
mainly focused on the interpretation of the general pattern of
the findings in the current work, the possibility that some of
the results may have occurred by chance cannot be completely
ruled out, therefore, some caution is needed when interpreting
these results. The primary focus of the current work was to
investigate the lateralized network topology, and the association
analyses were exploratory in nature. We also provided the
exact statistical analysis results for the readers’ interpretation.
Nonetheless, future studies using an independent study sample
and hypothesis-driven study design are of interest.

In conclusion, using multimodal brain connectome, we
investigate the hemispheric asymmetry in healthy aging adults.
We found that although prominent small-world properties
were preserved in both hemispheres, distinct hemispheric
asymmetry patterns were observed between functional and
structural brain networks at both local and global levels. These
findings indicate that a complex brain network analysis could
be a profitable tool for investigating individual differences in
brain structure and function. Further work with a longitudinal
design could be conducted to examine the progression of
the hemispheric asymmetry as well as the complex structure-
function relationships during normal aging.
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