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A systematic stereographic approach to the description of surface symmetry and structure,
applied previously to face-centred cubic, body-centred cubic and hexagonal close-packed metals, is
here extended to the surfaces of diamond-structure and zincblende-structure semiconductors. A va-
riety of symmetry–structure combinations are categorised, and the chiral properties of certain cases
emphasised. A general condition for non-polarity in the surfaces of zincblende materials is also noted.
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INTRODUCTION

Ten years ago, the present author co-authored a de-
tailed analysis of the symmetry and structure of surfaces
belonging to the face-centred cubic, body-centred cubic
and hexagonal close-packed metals [1]. The essence of the
approach developed in that work may be summarised in
three steps: firstly, the presentation, in a stereographic
representation, of the improper symmetry elements found
at the surface; secondly, the presentation, in a compati-
ble stereographic representation, of certain key structural
elements found at the surface; and thirdly, the presenta-
tion of a combined stereographic representation of sym-
metry and structure together. In this way, it was pos-
sible not only to identify a variety of surface symmetry
and surface structural categories, but also to note which
of those categories could apply to a single surface and
which are necessarily mutually exclusive. For instance,
it was shown for materials taking the fcc structure that
only some surfaces featuring low-coordination kink atoms
are chiral, whereas all chiral surfaces exhibit kink atoms,
and no surfaces with perfectly straight step edges can
ever be chiral. Similarly fundamental findings were ob-
tained for the surfaces of materials taking the bcc and
hcp structures.

In developing our approach, we were careful to ensure
that it would be generally applicable to crystalline
materials beyond the three commonly occurring struc-
tures considered at the time. Although fcc, bcc and hcp
encompass most of the interesting pure metals, one could
certainly wish to extend the analysis to include common
structures found amongst the semiconductors, such as
the diamond structure, the zincblende structure and the
wurtzite structure. The first two of these share some
features in common with the two cubic structures dealt
with in the earlier work, but with additional complexity
due to the presence of two atoms within their primitive
unit cells - complexity previously encountered only in
the hexagonal case. The purpose of the present work

is to investigate the surfaces of materials taking these
two crystal structures. The wurtzite case is considerably
more complex, and consideration of its surfaces will be
deferred for the present.

BULK STRUCTURES

Although the diamond and zincblende bulk crystal
structures are very well-known, it will be convenient
briefly to summarise the key features prior to our dis-
cussion of surface structure and symmetry. Both bulk
structures are based upon the fcc Bravais lattice, but un-
like the fcc crystal structure they each possess two atoms
per primitive unit cell. We shall express the primitive
lattice vectors as

a1 =
1

2
[1 1 0] (1)

a2 =
1

2
[0 1 1] (2)

a3 =
1

2
[1 0 1] (3)

and the positions of the atoms relative to each lattice
point as

rα =
1

8
[1 1 1] (4)

rβ =
1

8
[1 1 1] (5)

where these last are to be interpreted as fractional co-
ordinates in the basis set defined by the primitive lat-
tice vectors. The resulting structure may be represented
within either a primitive or a conventional cubic unit
cell, as shown in Fig. 1. In the diamond structure, the
atoms labelled α and β are, of course, identical with one
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FIG. 1. Bulk structure of diamond/zincblende materials.
Light- and dark-shaded atoms correspond, respectively, to
those labelled α and β in the text. In materials taking the
diamond structure, the distinction is purely notational. In
those taking the zincblende structure, the distinction corre-
sponds to the presence of two distinct species, with light (α)
indicating the cation and dark (β) indicating the anion in our
convention. On the left of the image, a conventional unit cell
is indicated, together with three non-primitive lattice vectors
that span it; on the right, three primitive lattice vectors are
shown (relative to a shifted origin) together with the primi-
tive unit cell that they span (interatomic bonds omitted for
clarity).

another, but it will nevertheless be convenient to retain
a nominal distinction. In the zincblende structure, we
shall adopt the convention that the atom labelled α cor-
responds to the cationic species, while the atom labelled
β corresponds to the anionic species. Note that alter-
native expressions of the primitive lattice vectors and
atomic positions would be equally valid (Ashcroft and
Mermin, for example, place one atom at the origin of the
primitive cell [2]) but all of the results below have been
derived within the convention presented here.

The improper symmetry elements of the diamond and
zincblende structures, which will be of importance in as-
certaining the chirality of surfaces, comprise a set of mir-
ror planes and glide planes [3]. Both structures exhibit
mirror symmetry across planes of {110} type - a feature
that they share with the fcc crystal structure. Whereas
the fcc structure also exhibits mirror symmetry across
planes of {100} type, however, these are merely glide
planes in the diamond structure and are neither mirror
nor glide planes in the zincblende structure.

Turning to structural matters, the previous anal-
ysis of fcc materials [1] emphasised the existence of
close-packed chains of atoms running along the ⟨110⟩
crystallographic directions. These were taken to be the
primary structural features whose presence or otherwise

at any given surface was to be noted; zig-zag chains
of atoms, running along the ⟨100⟩ crystallographic
directions, were considered as secondary structural
features. In the diamond and zincblende structures,
there are no directions in which close-packed chains
of atoms exist, so there is no direct analogy to the
primary structure of the fcc case; there are, however,
zig-zag chains, corresponding to the secondary structure,
which in this case align along the ⟨110⟩ crystallographic
directions. That is, the same directions that correspond
to close-packed primary structure in the fcc crystal
structure amount to zig-zag secondary structure for the
diamond and zincblende crystal structures. Finally, we
note that our previous analysis of the hcp structure
introduced the concept of an “interrupted” primary
structural feature, where close-packed pairs of atoms
were aligned along the ⟨2023⟩ crystallographic directions;
similarly interrupted close-packed features are present
within the diamond structure, lying along the ⟨111⟩
crystallographic directions; in the zincblende structure,
these directions link close-packed atoms of differing
species.

SURFACE SYMMETRY

In order to represent the symmetry of all possible
surfaces, we proceed by identifying vectors normal to
the mirror and glide planes of the bulk structures, and
then marking the set of all surface normals perpendicu-
lar to these onto a stereographic projection. Since both
diamond and zincblende bulk structures feature mirror
planes of {110} type, we first plot all surfaces whose nor-
mal lies perpendicular to any one of the ⟨110⟩ crystallo-
graphic directions; these are the so-called “mirror zones”,
marked as solid red lines on Fig. 2 [4]. Next, for the di-
amond structure only, we plot (as broken red lines) the
so-called “glide zones”, corresponding to those surfaces
whose normal lies perpendicular to any one of the ⟨100⟩
crystallographic directions, since these are the normals to
the glide planes of the bulk. In this manner, the mirror
and glide zones of the stereogram indicate those surfaces
at which mirror and/or glide planes cut through the sur-
face perpendicularly. In the case of mirror zones, this
implies that the unreconstructed surface must necessar-
ily exhibit reflection symmetry across that plane (and,
indeed, that any spontaneous symmetry-lowering recon-
struction that might occur must lead to domains whose
proportions respect the original symmetry). On the glide
planes, the situation is less clear, since glide symmetry
will only be present at the surface if a suitable glide
vector happens to lie within the surface plane. Finally,
we plot onto the stereogram any mirror zones possessed
by the underlying fcc Bravais lattice that are not mirror
or glide zones of the actual crystal structures discussed
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FIG. 2. Stereograms showing symmetry elements at the surfaces of diamond-structure (left) and zincblende-structure (right)
materials. Red lines indicate mirror zones, red/white dashed lines indicate glide zones, and small circles highlight surfaces of
{111}, {110} and {100} type. Labels “D” and “L” relate to chirality arising from truncation of the underlying face-centred
cubic lattice in each case.

here; thus, the stereogram for the zincblende case gains
zones perpendicular to the ⟨100⟩ crystallographic direc-
tions, marked in black, which we shall refer to as “latent
zones”.

It is clear, then, that the entire stereogram (includ-
ing its putative reverse side) is divided into a set of 48
“stereographic triangles”, bounded in the diamond case
by mirror and glide zones, and in the zincblende case
by mirror and latent zones. This, in turn, allows us to
make robust statements about the symmetry of various
surfaces. We can assert, for example, that any surface
whose normal lies on none of the zones must necessarily
be in some sense chiral, if only because its underlying
lattice necessarily lack mirror and glide symmetry. We
label the interiors of each triangle “D” or “L”, according
to a convention introduced previously for the fcc struc-
ture [1], in recognition of the chirality that arises solely
due to the truncation of the underlying bulk Bravais lat-
tice by the surface plane. Note that this type of chirality
swaps sense whenever one crosses any of the three types
of symmetry zone; mirror, glide and latent zones all cor-
respond to mirror symmetry in the underlying Bravais
lattice. Note also that this type of chirality is absent for
those surfaces with normals lying precisely on any of the
zones themselves; in such cases, the surface-truncated
Bravais lattice possesses mirror symmetry. We denote
this latter situation with the symbol “X” (not shown in
the figure) to indicate that neither “D” nor “L” would
be an appropriate label.

In addition to the chirality associated with trunca-
tion of the underlying Bravais lattice, however, it is clear
that a second source of chirality must exist. There are
certainly surfaces, for instance, in which the surface-

truncated Bravais lattice possesses a mirror symmetry
but the relative orientation of the α and β atoms breaks
that symmetry. This added complexity is not present
for materials taking the fcc structure, since they possess
only a single atom per primitive unit cell, but a similar
situation was faced previously in dealing with the hcp
structure [1]. Following the same approach used in that
case, we augment the labelling of each stereographic tri-
angle with a second chirality symbol (again either “D”
or “L”) corresponding to this second source of chirality.
The second chirality symbol swaps sense when crossing
a mirror zone, but not when crossing either a glide zone
or a latent zone. The full pattern of chirality, including
both sources, is then expressed in Figs. 3 and 4. Note
that a separate diagram is now required for surfaces ter-
minating with either an α or a β atom, and recall that
for the diamond structure this distinction is purely for-
mal, whilst for the zincblende structure it relates to the
physical distinction between cations and anions. Note
also that those surfaces whose normals lie precisely on a
mirror plane take the designation “X” for the second chi-
rality symbol, whereas those whose normals lie on glide
or latent zones will retain the second chirality symbol
appropriate to the adjacent stereographic triangles. Sur-
faces with normals lying on a mirror zone thus acquire
the designation XX and may be described as “reflexive”,
indicating that they are entirely achiral due to possession
of a mirror plane.

Returning to the distinction between atoms designated
α and β, the most important consequence that we have
not yet strongly emphasised is that each surface may pos-
sess up to two possible ideal (i.e. unreconstructed) termi-
nations, depending upon the height at which the surface



4

LL

LL

LL

LL

LL

LL

DD

DD

DD

DD

DD

DD

DL

DL

DL

DL

DL

DL

LD

LD

LD

LD

LD

LD

LD

LD

LD

LD

LD

LD

DL

DL

DL

DL

DL

DL

DD

DD

DD

DD

DD

DD

LL

LL

LL

LL

LL

LL

(100)

(110)

(111)

(100)

(110)

(111)

(010) (010)

FIG. 3. Stereograms showing symmetry elements of diamond-structure surfaces. The diagram on the left relates to surfaces
terminating with atoms labelled α, and that on the right relates to surfaces terminating with atoms labelled β (see text). Red
lines indicate mirror zones, red/white dashed lines indicate glide zones, and small circles highlight surfaces of {111}, {110} and
{100} type. Labels “DD”, “LL”, “DL” and “LD” indicate two forms of chirality, the first arising due to the truncation of the
underlying face-centred cubic lattice, and the second from the disposition of the atomic basis relative to the truncated lattice.
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FIG. 4. Stereograms showing symmetry elements of zincblende-structure surfaces. The diagram on the left relates to surfaces
terminating with atoms labelled α (cations) and that on the right relates to surfaces terminating with atoms labelled β (anions).
Red lines indicate mirror zones, black lines indicate latent zones, and small circles highlight surfaces of {111}, {110} and {100}
type. Labels “DD”, “LL”, “DL” and “LD” indicate two forms of chirality, the first arising due to the truncation of the
underlying face-centred cubic lattice, and the second from the disposition of the atomic basis relative to the truncated lattice.

plane cuts through the bulk structure. In the general
case, the termination featuring α atoms in the outermost
layer will have an entirely different structure from that
featuring β atoms in the outermost layer. Special cases
arise, however, when the outermost layer contains atoms
of both α and β type and hence there will be only a single
termination - a situation we shall describe as “unitermi-
nation”. To enumerate the uniterminated surfaces, we
must first identify the set of all possible vectors linking α
atoms to β atoms in the bulk structure. For both the di-

amond and zincblende cases, this set may be represented
simply as 1

4 [pqr], with p, q and r being odd integers.
The requirement that a particular surface plane, having
Miller indices (hkl), contains such a vector (and hence
corresponds to a uniterminated surface) amounts simply
to

hp+ kq + lr = 0 (6)

with h, k and l subject to the usual constraint that they
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share no common factor. In effect, one could visualise a
dense mesh of “unitermination zones”, corresponding to
the normals of the uniterminated surfaces, each one per-
pendicular to a different [pqr] crystallographic direction.

For the surfaces of materials taking the diamond struc-
ture, the significance of unitermination is essentially aca-
demic, but for the zincblende materials, it provides the
formal definition of a non-polar surface (as discussed fur-
ther below). Note that the condition of unitermination,
for either bulk structure, implies the conflation either of
a DD termination with a DL one, or of an LL termination
with an LD one, which in turn implies that the second
chirality symbol must reduce to X for all uniterminated
surfaces. Where unitermination zones intersect a latent
zone, therefore, we expect surfaces whose two-component
chirality symbol is simply XX (because the first chirality
symbol reduces to X here also) which leads one to be-
lieve that such surfaces must be entirely achiral. In the
diamond case, this is indeed true. At this point, how-
ever, we must recall that the distinction between α and
β atoms is a real one in the zincblende structure, so that
although the arrangement of generic atoms in the ideal
surface would indeed be achiral in all these cases, this no
longer holds when the actual identity of those atoms is
taken into account. We therefore note the uniterminated
latent surfaces as special cases.

For surfaces that are not uniterminated, it is necessary
to keep track of the different possible terminations in all
cases. Once again following the approach developed for
the surfaces of hcp materials [1], we do so by adopting
the convention that terminations whose two-component
chirality label is either DD or LL will be designated τ and
those whose two-component chirality label is either DL or
LD will be designated τ . For surfaces sharing symmetry-
related Miller indices, terminations designated τ will be
either identical to one another or mirror images of each
other; the same is true of terminations designated τ ; in
contrast, a termination designated τ will be neither iden-
tical to, nor a mirror image of, a termination designated
τ . Special cases arise for uniterminated surfaces, where
τ/τ will be replaced with the designation u, and for those
surfaces whose normals lie on mirror or glide zones.

Along the glide zones of the diamond-structure stere-
ogram lie the normals of surfaces having some quite un-
usual properties. Wherever glide zones are intersected
by unitermination zones, one finds the normal of a sur-
face possessing glide symmetry; we shall describe such a
surface as “glissadic”. The {110} surfaces are familiar
examples, but the complete family of glissadic surfaces
comprises all those of {pq0} type, where p and q are both
odd. All other surfaces along the glide zone possess two
distinct terminations that are precise mirror images of
one another; this family we shall describe as “racemic”,
and they comprise all surfaces of {pm0} type, with p odd
and m even. In the case of zincblende structure surfaces,
the distinction between α and β atoms means that oth-

(100)

(110)

(111)

(010)

FIG. 5. Stereogram showing structural features elements
found at the surfaces of diamond- or zincblende-structure ma-
terials. Interrupted primary zones are depicted in cyan, with
secondary zones marked in green.

erwise glissadic surfaces are found to be chiral (as noted
above) while otherwise racemic surfaces are doubly chi-
ral.

Finally, we note the surfaces of highest overall sym-
metry, which arise at the intersections of mirror and
glide zones. For the diamond structure, these comprise
the {111} surfaces, each possessed of three mirror planes
and a three-fold rotational axis; the {001} surfaces, each
with two mirror planes and a four-fold rototruncation
axis [5]; and the {110} surfaces, each with one mirror
plane, one glide symmetry, a two-fold rotational axis and
pure truncation symmetry. For the zincblende structure,
the {001} surfaces lack rototruncation symmetry, while
the {110} surfaces lack both glide and rotational sym-
metries; the {111} surfaces exhibit the same symmetries
as for the diamond structure.

SURFACE STRUCTURE

In order to represent the structure of all possible sur-
faces, we plot a stereographic projection of zones per-
pendicular to the crystallographic directions associated
with key structural features of the bulk materials. As
discussed above, the primary structural feature associ-
ated with close-packed chains of atoms is absent from
both the diamond and zincblende bulk structures, but
there are interrupted primary features (i.e. close-packed
pairs of atoms) in the ⟨111⟩ crystallographic directions,
and secondary features (i.e. zig-zag chains of atoms) in
the ⟨110⟩ crystallographic directions. These are depicted
stereographically in Fig. 5.

Immediately, we can identify a variety of surface struc-
tural categories. Where the surface normal lies on pre-
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cisely one of the interrupted primary zones, the structure
may be described as “geminal”, indicating the existence
of a pair of close-packed atoms lying within the surface
plane; relaxation will almost certainly lead to a buckling,
but we retain our formal categorisation on the basis of the
ideal structure. The general condition for such a surface
may be shown to dictate Miller indices {hkl} satisfying
|h| − |k| − |l| = 0, or an equivalent permutation.
Where the surface normal lies at the intersection of

two interrupted primary zones, on the other hand, the
structure may be classified as of “meandering row” type,
indicating that close-packed pairs of atoms zig-zag across
the surface (with all atoms in the zig-zag at the same
height, neglecting relaxation). This situation arises only
for surfaces of {110} type, but it is worth noting that
there exists a wider class of surfaces - those lying else-
where on one of the secondary zones - for which some-
thing like a meandering row exists, but rotated by some
angle around its axis; these “canted” meandering rows
are found for all surfaces of {sst} type, with no restric-
tion on the parity of s or t (other than that they cannot
both be even). Notable amongst these surfaces are those
of {112} type, whose normals each lie at the intersection
of an interrupted primary zone and a secondary zone;
here the surface is not only geminal (i.e. exhibits pairs
of atoms in the same layer) but also features a canted
meandering row (with a cant angle of 54.74◦).
Other notable surfaces, from the structural perspec-

tive, occur at the intersections of secondary zones with
each other. Three such zones intersect at the normals of
{111} surfaces, giving rise to a structure in which three
canted meandering rows run across the surface, separated
by 60◦ and each canted by an angle of 35.26◦ about its
own axis. Two secondary zones intersect at the normals
of {100} surfaces, giving rise to a structure in which two
canted meandering rows run across the surface at right-
angles to one another, each canted over at right-angles
to the surface normal.
The lack of non-interrupted primary zones, in the

presently considered cases, means that no counterparts
exist for the flat and stepped categories of surface dis-
cussed for the metallic structure[1]. Kinked surfaces,
however, in which atoms within the top layer have no
in-plane nearest neighbours, are found wherever a sur-
face normal lies off all the zones marked in Fig. 5.

SYNTHESIS OF SURFACE SYMMETRY AND
STRUCTURE FOR DIAMOND

Bringing together the analysis of symmetry and struc-
ture from the preceding two sections, the stereograms
presented in Figs. 6 and 7 allow us to identify a lim-
ited range of permissible combinations. Kinked surfaces
can exist across all the symmetry classes identified above,
with the sole exception of the reflexive-glissadic type; the

(100)

(110)

(111)

(010)

FIG. 6. Stereogram combining structure and symmetry in-
formation for surfaces of diamond-structure materials. The
colour scheme for zones is as described in preceding figures.

(100)

(110)

(111)

(010)

FIG. 7. Stereogram combining structure and symmetry in-
formation for surfaces of zincblende-structure materials. The
colour scheme for zones is as described in preceding figures.

latter symmetry class can only occur in combination with
the meandering row structural feature. Geminal surfaces
can fall into either the singly chiral or the uniterminated-
reflexive symmetry classes, but no others. In the case
of materials taking the diamond structure, eleven well-
defined combinations results, as shown in Fig. 8. We
shall retain these categories for the zincblende structure,
even though some of the symmetries are obscured by the
presence of two atomic species. Accordingly, we make
the following observations:

Bayonet Kinked Surfaces
These are the six {001} surfaces, which in the diamond
structure each possess two mirror planes (perpendicular
to ⟨110⟩ axes) together with a four-fold rototruncation
symmetry [6]. The four degenerate terminations asso-
ciated with each surface orientation are thus related by



7

Reflexive

Glissadic

Racemic

Singly chiral

Doubly chiral

Structure

S
y
m

m
e

tr
y

F
la

t

In
te

rr
u

p
te

d
 f

la
t

S
te

p
p

e
d

G
e

m
in

a
l

M
e

a
n

d
e

ri
n

g
 R

o
w

K
in

k
e

d

Bayonet

Reflexive-glissadic

Triply reflexive

Uniterminated-reflexive
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rotation (and all are designated XXo in the notation of
reference [1]). In the zincblende structure, these surfaces
lack the rototruncation symmetry element.

Reflexive-Glissadic Meandering Row Surfaces
These comprise the twelve {110} surfaces, each display-
ing, in the diamond case, a single mirror plane (perpen-
dicular to a ⟨110⟩ axis) and a single glide plane (perpen-
dicular to a ⟨100⟩ axis). All are uniterminated (desig-
nated XXu) and feature a meandering row whose axis
lies within the glide plane. In the zincblende case, the
glide symmetry is lacking, and the atoms within the me-
andering row alternate between cations and anions.

Triply-Reflexive Kinked Surfaces
These are the eight {111} surfaces, each possessing three
mirror planes (perpendicular to ⟨110⟩ axes) and no glide
symmetry, whether for diamond or zincblende structure
materials. Since they display neither pure nor compound
truncation symmetry, the two distinct terminations pos-
sible for a single surface orientation are unrelated by sym-
metry and non-degenerate (designated XXτ and XXτ ).

Uniterminated-Reflexive Geminal Surfaces
These comprise the twenty-four {112} surfaces, each pos-
sessing a single mirror plane (perpendicular to a ⟨110⟩
axis) and displaying no glide symmetry, for both dia-
mond and zincblende structure materials. The presence
of pure truncation symmetry implies that only a single
unique termination exists for each specific surface orien-
tation (designated XXu) which in these instances features
pairs of close-packed atoms within the ideal surface plane;

in the zincblende case, one will be of the cationic species,
the other anionic.

Uniterminated-Reflexive Kinked Surfaces
This category consists of an infinite number of surfaces
with indices conforming to the pattern {2p+1 2p+1 2q}
with p and q integers (excepting the {110} and {112}
special cases described above). For both the diamond
and zincblende cases, all possess a single mirror plane
(perpendicular to a ⟨110⟩ axis) and display no glide sym-
metry, while the presence of pure truncation symmetry
implies that only a single unique termination exists for
each specific surface orientation (designated XXu).

Reflexive Kinked Surfaces
This category comprises the infinite set of surfaces with
indices conforming to the pattern {p p 2q+1} with p and
q integers (excepting the {001} and {111} surfaces de-
scribed above). Each such surface, whether of the dia-
mond or zincblende structure, possesses a single mirror
plane (perpendicular to a ⟨110⟩ axis) and displays no
glide symmetry. The absence of any form of truncation
symmetry implies that each surface orientation supports
two non-degenerate terminations, unrelated by symme-
try (designated XXτ and XXτ ).

Glissadic Kinked Surfaces
This category consists of an infinite number of surfaces
with indices conforming to the pattern {2p+1 2q+1 0}
with p and q unequal integers. In the diamond struc-
ture, all possess a single glide plane (perpendicular to a
⟨100⟩ axis) and the presence of truncation symmetry im-
plies that only a single unique termination exists for each
surface orientation (designated XXø). In the zincblende
structure, the glide symmetry is absent and these sur-
faces remain chiral.

Racemic Kinked Surfaces
This category comprises the infinite set of surfaces with
indices conforming to the pattern {2p+1 2q 0} with p and
q integers. Each such surface, within the diamond struc-
ture, is defined by reflexotruncation symmetry, lacking
both mirror and glide planes, and hence a single orien-
tation supports two degenerate terminations related by
reflection (designated XDo and XLo). For surfaces of the
zincblende structure, this reflexotruncation symmetry is
absent and the two terminations are non-degenerate;
each may be found with either cationic or anionic ter-
mination, albeit at different points in the stereogram.

Singly-Chiral Geminal Surfaces
This category consists of an infinite number of surfaces
with indices conforming to the pattern {p q p + q) with
p and q different positive integers. For both diamond-
and zincblende-structure materials, all lack both mirror
and glide symmetry, but the presence of truncation sym-
metry implies that only a single unique termination (fea-
turing pairs of close-packed atoms within the ideal sur-
face plane) exists for each surface orientation (designated
DXu or LXu).
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Singly-Chiral Kinked Surfaces
This category comprises the infinite set of surfaces with
indices conforming to the pattern {2p+1 2q+1 2r} with
p, q and r integers. Each such surface lacks both mirror
and glide symmetry, for both the diamond and zincblende
cases, while the presence of truncation symmetry ensures
that it supports only a single unique termination for a
given surface orientation (designated DXu or LXu).
Doubly-Chiral Kinked Surfaces

This category encompasses the infinity of surfaces whose
indices fail to conform to any of the patterns discussed
above. All such surfaces lack mirror, glide and any form
of truncation symmetry, whether within the diamond or
the zincblende structure. Any specific surface orientation
therefore supports two non-degenerate terminations, un-
related by symmetry (designated either DDτ and DLτ ,
or LLτ and LDτ ). In the zincblende case, cationic or
anionic terminations may be found for each symmetry
symbol, distributed across the stereogram.

ON THE POLARITY OF ZINCBLENDE
SURFACES

The only fundamental difference between the diamond
and zincblende structures is that one features but a sin-
gle element, while the other alternates cationic and an-
ionic species. This simple point of distinction, how-
ever, implies significant consequences for the stability of
zincblende surfaces. Specifically, while there exist some
ideal zincblende surface orientations in which cationic
and anionic atoms occur in equal proportion, there are
many more in which their numbers fail to balance; the
former category are said to be non-polar and the lat-
ter polar. The key consequences of surface polarity were
articulated most clearly by Harrison [7, 8] and are sum-
marised in the following paragraph.
All ideal semiconductor surfaces necessarily feature

partially occupied dangling bonds, and surface stabil-
ity revolves around eliminating these (where possible)
through relaxation and/or reconstruction. For instance,
relaxation may be associated with the redistribution of
electrons between dangling bonds, such that some dan-
gling bonds become completely filled while others be-
come entirely empty. In other cases, reconstruction (e.g.
dimerisation or trimerisation) may allow neighbouring
dangling bonds to form true interatomic bonds, com-
plete with filled/empty bonding/antibonding orbitals. In
the case of a non-polar surface, the number of electrons
present within the original partially occupied dangling
bonds is precisely sufficient to allow relaxation and/or
reconstruction to perfectly eliminate partial occupancy
without either accumulating a net surface charge or al-
tering the surface stoichiometry. In the case of a polar
surface, however, the opposite will be true. A polar sur-
face must either reconstruct in non-stoichiometric man-

ner, or acquire a net electronic charge – the former will
be limited by availability of one atomic species in excess
of the other, while the latter entails an electromagnetic
instability that tends to infinity as the surface area in-
creases. This is not to say that polar surfaces are impos-
sible. They can certainly exist, for example, as facets of
limited spatial extent, where the net positive charge (or
excess of cations) needed on one facet can readily be bal-
anced by a net negative charge (or excess of anions) on
a differently oriented nearby facet. Nevertheless, identi-
fying which surfaces are polar and which are not is of no
little importance in the study of semiconductor surfaces.

As noted above, the condition for polarity of a
zincblende material turns out to be synonymous with
the condition of unitermination. That, in turn, implies
that the only non-polar zincblende surfaces are those of
{110} type, those of {112} type, and those whose indices
conform to the pattern {p q p+ q) with p and q different
positive integers, for instance the chiral {123}, {134} and
{235} surfaces. Of these categories, the first type display
both mirror and glide symmetry, the second only mir-
ror symmetry, and the third are intrinsically chiral. The
{110} surfaces of zincblende semiconductor surfaces are,
indeed, typically highly stable, and have been very well
studied over many decades. The {112} surfaces, on the
other hand, have been investigated much less often, but
do hold considerable potential (see, for example, Geel-
haar et al[9]).

CONCLUSIONS

The structure and symmetry of diamond- and
zincblende-structure materials have been examined
within a stereographic framework used previously only
for metallic systems. Circumstances leading to surface
chirality have been outlined, and key structural features
identified. The property of unitermination has been dis-
cussed, including its link to the polarity or otherwise
of zincblende surfaces. In all, eleven distinct structure-
symmetry categories have been described, which it may
be hoped will prompt future experimental and computa-
tional studies.
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FIG. 9. Table of Contents Graphic - The symmetry and structure of surfaces may be represented by means of great circles
inscribed upon a sphere (or curved lines on a stereographic projection of the sphere). Here, the red and red-striped lines show
mirror and glide symmetries, while the cyan and green ones depict specific structural features.


