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Linear Waves in the Interior of Extremal
Black Holes II
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Abstract. We consider solutions to the linear wave equation in the interior
region of extremal Kerr black holes. We show that axisymmetric solutions
can be extended continuously beyond the Cauchy horizon and, moreover,
that if we assume suitably fast polynomial decay in time along the event
horizon, their local energy is finite. We also extend these results to non-
axisymmetric solutions on slowly rotating extremal Kerr–Newman black
holes. These results are the analogues of results obtained in Gajic (Com-
mun Math Phys 353(2), 717–770, 2017) for extremal Reissner–Nordström
and stand in stark contrast to previously established results for the subex-
tremal case, where the local energy was shown to generically blow up at
the Cauchy horizon.
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1. Introduction

In the precursor [23] of this paper, we established the following results for the
linear wave equation,

�gφ = 0, (1.1)

in the black hole interior of extremal Reissner–Nordström spacetimes, which
describe maximally charged (e2 = M2), stationary, spherically symmetric
black holes (see [24] for an overview of the geometry of Reissner–Nordström
spacetimes):

(A) Uniform boundedness and extendibility of φ in C0 across the Cauchy
horizon (Theorem 1 of [23]).

(B) Extendibility of φ in H1
loc across the Cauchy horizon (Theorems 2 and 3

of [23]).
(C) Extendibility of φ in C0,α, with 0 < α < 1, across the Cauchy horizon

(Theorem 5 of [23]).
(D) Extendibility of spherically symmetric φ in C1 across the Cauchy horizon

(Theorem 4 of [23]).
(E) Extendibility of spherically symmetric φ in C2 across the Cauchy horizon

(Theorem 6 of [23]).

For result (A), we considered Cauchy initial data for φ on an asymptot-
ically flat spacelike hypersurface intersecting the event horizon, which decay
suitably fast towards spacelike infinity. For results (B), (C) and (D) we imposed
stronger decay estimates in affine time on φ and its tangential derivatives along
the event horizon than those that had previously been established in [6,7] for φ
arising from Cauchy data. The required decay estimates have been obtained in
[3] for suitable Cauchy data. For result (E) we assumed more precise asymp-
totics of φ along the event horizon, which are motivated by the numerical
results in [27] and have not yet been shown to hold for φ arising from generic,
suitably decaying Cauchy data in a mathematically rigorously setting.

In this paper, we shall prove the analogues of (A), (B) and (C) for
axisymmetric solutions φ to (1.1) in the black hole interior of extremal Kerr–
Newman spacetimes; see Theorem 1–4 below. The Kerr–Newman spacetimes
are a three-parameter family, characterised by a mass M , a rotation parameter
a and a charge e [31]. Extremal Kerr–Newman spacetimes constitute a two-
parameter subfamily of spacetimes, satisfying the constraint M2 = a2 + e2;
they can be viewed as a continuous family that connects the extremal Reissner–
Nordström solutions (a2 = 0) to the extremal Kerr solutions (a2 = M2). For
an overview of the geometry of Kerr–Newman spacetimes, see [10].

In [8], polynomial decay in affine time of axisymmetric φ and its tangential
derivatives was shown to hold along the event horizon of extremal Kerr (a2 =
M2) for suitably decaying Cauchy initial data. To obtain the analogue of (A)
for axisymmetric φ in the extremal Kerr interior, we will assume the decay rates
that follow from [8]. For the analogue of (A) for axisymmetric φ in extremal
Kerr–Newman spacetimes with a2 < M2 and, moreover, for the analogues of
(B) and (C) for axisymmetric φ in any extremal Kerr–Newman spacetime,
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we assume polynomial decay in time of φ along the event horizon that is
conjectured, but has not yet been proved, to hold.

Note that the methods involved in proving results (D) and (E) rely fun-
damentally on the spherical symmetry of φ and the background spacetime. For
this reason, they do not carry over to extremal Kerr–Newman.

In addition, we will show that we can drop the axisymmetry assumption
on φ and prove the analogues of (A), (B) and (C) in extremal Kerr–Newman
spacetimes that are sufficiently close to extremal Reissner–Nordström, i.e. with
a sufficiently small rotation parameter a; see Theorems 5–7 below. We refer
to this subfamily of extremal Kerr–Newman as slowly rotating extremal Kerr–
Newman. We assume, again, the decay for φ along the event horizon that
is expected to hold for suitably decaying Cauchy initial data in this setting.
This assumption is now also necessary for the analogue of (A), as the required
polynomial decay has not yet been proved to hold for φ (without axisymmetry)
along the event horizon of slowly rotating extremal Kerr–Newman.

The analogue of (A) has recently been obtained for the wave equation
in subextremal Reissner–Nordström (e2 < M2) [21] and subextremal Kerr
(a2 < M2) [20] by Franzen (see also the results of Hintz [25] in the very slowly
rotating setting, where a2 � M2), whereas the analogue of (B) has been shown
to fail in subextremal Reissner–Nordström for generic Cauchy data [29] by
Luk–Oh. See also related results concerning instabilities in subextremal Kerr
[19,30].

The results of this paper are related to Christodoulou’s formulation of
the strong cosmic censorship conjecture [14]. Indeed, the analogue of the H1

loc

extendibility result (B) in extremal Kerr, if also applicable in the context of the
vacuum Einstein equations, would provide a construction of dynamical black
hole interiors arising from perturbations of extremal Kerr spacetimes which
are extendible beyond their Cauchy horizons with Christoffel symbols that are
locally L2 with respect to spacetime integration, which is precisely the regular-
ity class considered by Christodoulou. As such, the corresponding initial data
would not lie in the class of initial data to which the strong cosmic censorship
applies (and would therefore certainly be expected to be non-generic). See also
related conjectures in the introduction of [23].

1.1. Linear Waves in the Exterior Region of Extremal Kerr

We will review in this section several results for the wave Eq. (1.1) in the
exterior region of extremal Kerr.

Aretakis considered in [8] axisymmetric solutions φ to (1.1) in the exterior
region of extremal Kerr, arising from Cauchy data on a spacelike hypersurface
Σ intersecting the event horizon H+; see Fig. 1. He established polynomial
decay in time for φ everywhere in the exterior, including along H+.

In [4], he, moreover, proved the existence of conserved quantities, the
Aretakis constants, along H+ for solutions φ (that need not be axisymmetric).
If non-vanishing, these constants constitute an obstruction to the decay of
either φ itself or its transversal derivative. Since axisymmetric solutions φ have
been shown to decay along H+, this means that, generically, their transversal
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Figure 1. The Penrose diagram of the maximally analytic
extension of extremal Kerr–Newman

derivatives cannot decay. Furthermore, higher-order transversal derivatives will
generically blow up in infinite time along H+. These non-decay and blow-up
results have been dubbed “the Aretakis instability” in the literature [27].

Lucietti–Reall generalised the Aretakis constants to higher-spin equations
in extremal Kerr in [28]. In particular, they showed that conserved quantities
also form an obstruction to the decay of solutions to the Teukolsky equation,
which governs the evolution of perturbations of certain components of the
curvature tensor in the context of the linearised Einstein equations.

In [9] Aretakis extended the results of [8] to show non-decay and blow-up
of higher-order derivatives of φ even in the case of data with vanishing Aretakis
constants. There is still no proof of pointwise and energy boundedness or decay
for non-axisymmetric φ in the exterior region of extremal Kerr (cf. a complete
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picture of the boundedness and decay properties of the linear wave equation
in the full subextremal range of Kerr–Newman) spacetimes has recently been
obtained in [15,17]).

The main difficulty when studying non-axisymmetric φ in the exterior of
extremal Kerr is that the geometric phenomena of superradiance, the trapping
of null geodesics and the degeneration of the local red-shift effect at H+ are
strongly coupled (in contrast with the subextremal case); see the discussion in
the introduction of [8] for more details. Based on numerical studies of quasi-
normal modes on extremal Kerr [2,12], the expectation is that φ with a fixed
azimuthal number m �= 0 arising from initial data supported away from H+

will decay slower than axisymmetric φ (for which m = 0) both away from H+

and along H+.

1.2. Linear Waves in the Interior Region of Extremal Kerr–Newman

In this section, we will give an overview of the main theorems proved in this
paper; we will state more detailed versions of the theorems in Sect. 3. In
Sect. 2 we will give the precise definitions of the spacetime regions of interest
in extremal Kerr–Newman that are mentioned in the paragraphs below and
we will present the construction of double-null coordinates that cover these
regions.

In this paper, we will restrict to a spacetime rectangle Du0,v0 , which is a
subset of M ∪ CH+, where M denotes the extremal Kerr–Newman manifold
and CH+ is the inner horizon of extremal Kerr–Newman. We take Du0,v0 to be
the intersection of the causal future of the event horizon segment H+∩{v ≥ v0}
and the causal past of the inner horizon segment CH+∩{u ≤ u0}, with respect
to the manifold-with-boundary M∪CH+, where v0 and u0 are chosen suitably,
such that restriction of Du0,v0 to the interior region is entirely contained within
the domain of the (u, v) Eddington–Finkelstein-type double-null coordinates;
see Fig. 1. Note that we have defined Du0,v0 to include a segment of CH+.

We can employ an ingoing null coordinate U(u) in M∩Du0,v0 , which can
be extended across H+, and an outgoing null coordinate ˜V (v), which can be
extended beyond CH+, to express Du0,v0 as the following set:

Du0,v0 = {0 ≤ U ≤ U(u0), ˜V (v0) ≤ ˜V ≤ 0, (U, V ) �= (0, 0)},

where U = 0 at H+ and ˜V = 0 at CH+.
We equip H+ and Hv0

, the ingoing null hypersurface in Du0,v0 which is
a subset of {v = v0}, with characteristic initial data for the wave Eq. (1.1).

We can also consider solutions φ arising from Cauchy initial data for (1.1)
on an asymptotically flat spacelike hypersurface Σ in extremal Kerr–Newman.
We will choose a hypersurface Σ that has a non-trivial intersection with the
black hole interior; see the discussion in [5] for why this is a natural choice. As
a consequence of the geometry of the interior of extremal Kerr–Newman, Σ
must be incomplete; see Fig. 1. We restrict to the future domain of dependence
of Σ, which we denote by D+(Σ). The inner horizon CH+ contains part of the
boundary of D+(Σ), so we will sometimes refer to CH+ as the Cauchy horizon.
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By choosing u0 and v0 appropriately, the rectangle Du0,v0 is a subset of
D+(Σ)∪CH+. The characteristic data on H+ ∪Hv0

can therefore be taken to
be compatible with the decay of φ and its tangential derivatives along H+∪Hv0

,
that is expected to hold generically for φ arising from suitable Cauchy initial
data on Σ.

In Sect. 1.2.1 below we only consider axisymmetric solutions to (1.1)
on extremal Kerr–Newman. In Sect. 1.2.2 we instead consider slowly rotating
extremal Kerr–Newman spacetimes, i.e. extremal Kerr–Newman spacetimes
with a rotation parameter 0 ≤ a2 < a2

c , where 0 < ac = ac(M) < M can be
explicitly obtained by solving a quadratic equation. In this case, we do not
impose axisymmetry on the solutions to (1.1). See Sect. 1.3 for the precise
definition of ac.

1.2.1. Axisymmetric Solutions. We first formulate an analogue of Theorem 1
of [23] for axisymmetric solutions φ to (1.1) in extremal Kerr–Newman, where
φ arises from characteristic initial data along H+ ∪ Hv0

.

Theorem 1 (L∞ boundedness and C0 extendibility for axisymmetric solu-
tions). Let φ be an axisymmetric solution to (1.1) in extremal Kerr–Newman
arising from suitably regular characteristic initial data on Hv0

∪H+, such that
for some ε > 0,

sup
v0≤v<∞

∑

|k|≤2

∫

S2
−∞,v

| /∇k
φ|2 < ∞,

∑

0≤j1+j2≤4

∫
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∣

∣
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v φ
∣

∣

∣
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∣
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∂j2
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< ∞.

where /∇ denotes derivatives tangential to 2-spheres S2
−∞,v that foliate H+.

Then, there exists a constant C = C(M,a, ε) > 0 and a natural norm D0 > 0
on initial data for φ, such that

|φ| ≤ CD0,

everywhere in M ∩ Du0,v0 . Moreover, φ admits a C0 extension beyond CH+.

Theorems 3.5 and 3.6 together form a more precise version of Theorem 1.
In view of the decay results along H+ in [8] for φ in extremal Kerr arising

from Cauchy initial data on a spacelike hypersurface Σ, we can reformulate
Theorem 1 if we restrict to the subfamily of extremal Kerr spacetimes, where
we consider suitably regular Cauchy data along Σ in accordance with the
results of [8]:

Theorem 2 (L∞ boundedness and C0 extendibility for axisymmetric solutions
in extremal Kerr). Let φ be an axisymmetric solution to (1.1) in extremal Kerr
arising from suitably regular and decaying data on Σ. Then, there exists a
constant C = C(M,Σ) > 0 and a natural norm D0 > 0 on initial data for φ,
such that

|φ| ≤ CD0,

everywhere in D+(Σ). Moreover, φ admits a C0 extension beyond CH+.
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Furthermore, we obtain the analogue of Theorem 2 of [23]:

Theorem 3 (H1
loc extendibility for axisymmetric solutions). Let φ be an axisym-

metric solution to (1.1) in extremal Kerr–Newman arising from suitably regular
characteristic initial data on Hv0

∪ H+, such that
∫

H+∩{v≥v0}
v2(∂vφ)2 + | /∇φ|2 < ∞. (1.2)

Then, φ admits an extension beyond CH+ that is H1
loc with respect to spacetime

integration.

In [23] we reformulated Theorem 2 of [23] by imposing Cauchy data on
a spacelike hypersurface instead of characteristic data on the event horizon to
obtain Theorem 3 of [23]. We made use of the improved decay results along the
event horizon of extremal Reissner–Nordström that are proved in [3]. However,
as the decay estimates for φ along H+ that are necessary for (1.2) to hold have
not yet been obtained for suitable data on Σ in any extremal Kerr–Newman
spacetime with a �= 0, we cannot yet reformulate Theorem 3 above by imposing
Cauchy data on Σ.1 Theorem 3 follows from Theorem 3.2 after applying the
estimates (1.3) and (2.19).

We can further conclude that φ can be extended beyond CH+ in the
Hölder space C0,α with α < 1. This result is the analogue of Theorem 5 of
[23].

Theorem 4 (C0,α extendibility of axisymmetric solutions). Let α < 1. Let φ
be an axisymmetric solution to (1.1) in extremal Kerr–Newman arising from
suitably regular and decaying characteristic initial data on Hv0

∪H+. Then, φ

admits a C0,α extension beyond CH+.

The precise necessary initial decay requirements along H+ appear in The-
orem 3.7.

1.2.2. Slowly Rotating Extremal Kerr–Newman. We now restrict to the
slowly rotating subfamily of extremal Kerr–Newman spacetimes, satisfying
0 ≤ |a| < ac, where ac is the parameter described above. In particular, this
subfamily excludes extremal Kerr. We will state analogues of the results from
Sect. 1.2.1 in slowly rotating extremal Kerr–Newman without the restriction
to axisymmetric solutions of (1.1).

In slowly rotating extremal Kerr–Newman we can obtain L∞ bounded-
ness and C0 extendibility without an axisymmetry assumption on φ.

1 For Kerr–Newman spacetimes with a2 < a2
c , the Hawking vector field, which is a Killing

vector field that is null along H+ and is precisely defined in Sect. 2.4, will also be timelike
in the exterior region in a neighbourhood of H+. We expect this geometric property would

significantly simplify the difficulties in the analysis of non-axisymmetric solutions in the

exterior region of slowly rotating Kerr–Newman spacetimes compared to the extremal Kerr

case and would lead to better decay estimates for φ along the event horizon than expected
in extremal Kerr; see also the discussion in Sect. 1.1.
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Theorem 5 (L∞-boundedness and C0-extendibility in slowly rotating extremal
Kerr–Newman). Let φ be a solution to (1.1) in extremal
Kerr–Newman with |a| < ac, for 0 < ac < M suitably small, arising from
suitably regular and decaying characteristic data on Hv0

∪ H+. Then, there
exists a constant

C = C(M,a,Σ) > 0

and a natural norm D0 > 0 on initial data for φ, such that

|φ| ≤ CD0,

everywhere in Du0,v0 . Moreover, φ admits a C0 extension beyond CH+.

See Theorems 3.5 and 3.6 in Sect. 3 for precise requirements for the
initial data on Hv0

∪ H+. As there are presently no decay results available for
non-axisymmetric solutions in the exterior region of slowly rotating extremal
Kerr–Newman, we do not reformulate Theorem 5 by imposing Cauchy data
on Σ instead of characteristic data on Hv0

∪ H+.
We also obtain an analogue of Theorem 3 for φ, without the assumption

of axisymmetry, in slowly rotating extremal Kerr–Newman.

Theorem 6 (H1
loc-extendibility in slowly rotating Kerr–Newman). Let φ be a

solution to (1.1) in extremal Kerr–Newman with |a| < ac, for 0 < ac < M
suitably small, arising from suitably regular and decaying characteristic data
on Hv0

∪ H+. Then, φ admits a H1
loc extension beyond CH+.

Here, we require decay of more derivatives in the initial data along the
event horizon, compared to Theorem 3. See Theorems 3.5 and 3.4 in Sect. 3
for the precise decay rates. Theorem 6 follows from Theorems 3.2, 3.4 and 3.5,
together with the estimate (2.19).

Finally, we obtain an analogue of Theorem 4 without the assumption of
axisymmetry for φ in slowly rotating extremal Kerr–Newman:

Theorem 7 (C0,α extendibility of φ in slowly rotating extremal Kerr–
Newman). Let α < 1. Let φ be a solution to (1.1) in extremal Kerr–Newman
with |a| < ac, for 0 < ac < M suitably small, arising from suitably regular and
decaying characteristic data on Hv0

∪ H+. Then, φ admits a C0,α extension
beyond CH+.

The precise necessary initial decay requirements along H+ appear in The-
orem 3.7.

1.3. Main Ideas in the Proofs of Theorems 1–7

In this section, we will outline the main steps in the proofs of Theorem 1–
7. We will restrict to the region Du0,v0 in extremal Kerr–Newman with 0 ≤
|a| ≤ M by default, unless specifically mentioned otherwise, and consider
appropriate characteristic initial data for φ on Hv0

∪ H+. We will highlight
new difficulties that arise in extremal Kerr–Newman when a �= 0, compared
to extremal Reissner–Nordström (where a = 0), which was treated in [23].



Linear Waves in the Interior of Extremal Black Holes II

1.3.1. Part 0: Constructing a Double-Null Foliation. Before carrying out any
estimates involving the wave equation, we first construct a suitable double-
null foliation of the interior region of extremal Kerr–Newman. As Kerr–
Newman spacetimes with a �= 0 are not spherically symmetric, in contrast
with Reissner–Nordström spacetimes, the existence of global double-null coor-
dinates in the interior region is not immediate. In [22], a suitable global double-
null foliation of extremal Kerr–Newman is constructed, which covers both the
exterior and interior regions, following ideas of [32]. We will use the results of
[22] here.

1.3.2. Part 1: Vector Field Multipliers and Energy Estimates (Theorem 3).
We obtain uniform bounds on weighted L2 norms of φ along null hypersur-
faces by means of energy estimates. Energy estimates are derived by using the
vector field method; see for example [26] for a general overview and the dis-
cussion in Sect. 2.5 for further particulars. Energy estimates for axisymmetric
φ are obtained very similarly to the energy estimates in extremal Reissner–
Nordström in [23]; we use the following vector field multiplier:

Np,q = up∂u + vq∂v,

with p = q = 2, where u and v are double-null coordinates obtained in Part 0
that are akin to the Eddington–Finkelstein double-null coordinates in extremal
Reissner–Nordström. See Sect. 2.2 for an overview of the construction and main
properties of the Eddington–Finkelstein-type double-null coordinates u and v
in extremal Kerr–Newman, and see Sect. 2.5 for more details regarding Np,q.

As in extremal Reissner–Nordström, the energy estimates rely crucially
on the following polynomial decay rate of the guv component of the metric in
Eddington–Finkelstein-type double-null coordinates:

guv ∼ (v + |u|)−2;

see Sect. 2.3 for the corresponding estimates. The above bounds play an impor-
tant role in the proof of Theorem 3; see Sect. 4.

If we drop the axisymmetry assumption on φ, we have to take into
account additional error terms in the energy estimates; most notably, extra
error terms arise that involve the non-vanishing torsion of the double-null
foliation, denoted by ζ. The torsion can be expressed as a commutator,

ζ =
1
4
Ω−2[L,L],

where L and L are vector fields that are tangent to null generators of the
outgoing and ingoing null hypersurfaces, respectively. See Sect. 2.3.

In the a = 0 case, L and L are coordinate vector fields, so they commute,
and ζ vanishes everywhere. If a �= 0, ζ does not vanish. It turns out, however,
that axisymmetric φ still satisfy ζ(φ) = 0 if a �= 0, so the error terms involving
ζ do not form an obstruction for axisymmetric φ.

In the case of non-axisymmetric φ, we can estimate the error terms
involving ζ by invoking the Hawking vector field, which we denote by H. In
Eddington–Finkelstein-type (u, v) coordinates, we can express
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H =
1
2
(∂u + ∂v).

The vector field H is Killing and null along H+ and CH+. Moreover, it
extends as a timelike vector field near the horizons, if |a| < ac < M ; in fact, it
is precisely the requirement of a timelike H near the horizons that determines
ac. See Sect. 2.4 for more details. The timelike character of H implies that the
error terms appearing in energy estimates with respect to the weighted vector
field

Yp = |u|pH,

with p ≥ 0, have a good sign. We can still employ Np,q in suitable neighbour-
hoods of the H+ and CH+ that have a finite spacetime volume, but we use
Yp in their complement in Du0,v0 . This method gives rise to an ε-loss in the
exponents of the u and v weights that appear in the energies, compared to the
case of axisymmetric φ, which prevents us from directly inferring Theorem 6.
See Sect. 5.2

1.3.3. Part 2: Commutation Vector Fields and Pointwise Estimates (Theo-
rems 1 and 5). We subsequently use the uniformly bounded weighted L2

norms from Part 1 to obtain a uniform bound for the L∞ norm of φ every-
where in the interior and to prove continuous extendibility across CH+. For
this purpose, we apply standard Sobolev inequalities on the spheres S2

u,v cor-
responding to the double-null foliation, i.e. we can estimate

||φ||L∞(S2
u,v) ≤ C

∑

|k|≤2

|| /∇k
φ||L2(S2

u,v),

where /∇ denotes the covariant derivative restricted to S2
u,v. Moreover, we apply

the fundamental theorem of calculus along the null generators of ingoing null
hypersurfaces, together with a (weighted) Cauchy–Schwarz inequality, to arrive
at the following estimate:
∫

S2
u,v

φ2 dμ/g ≤
∫

S2
−∞,v

φ2 dμ/g +
∫ u

−∞
|u′|−p du′

∫ u

−∞

∫

S2
u′,v

|u′|p(Lφ)2 dμ/g du′,

(1.3)
with p > 1; see also the proof of Proposition 7.1. The second term on the
right-hand side of the inequality can be controlled by a weighted energy along
an ingoing null hypersurface.

In order to estimate || /∇k
φ||L2(S2

u,v) with k ≥ 1, we also need to consider
appropriately weighted energies for angular derivatives of φ. Replacing φ by
/∇k

φ (or ∂k
ϑAφ, where ϑA, with A = 1, 2, are coordinates on the spheres S2

u,v)

2 An interesting question that remains open is whether a loss of derivatives in the initial
energies is necessary to prevent the ε-loss in the a �= 0 case. That is to say, whether it

is possible to construct a sequence of suitably regular and decaying initial data along H+

and Hv0
for which the uniform constant appearing in energy estimates without a loss of

derivatives blows up as we move along the sequence. Note that this construction is not
possible if we restrict to axisymmetric solutions.
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in the estimates from Part 1 results in error terms that cannot be controlled
using the methods mentioned in Part 1.

Obtaining estimates for angular derivatives of φ in L2(S2
u,v) turns out not

to be a problem in extremal Reissner–Nordström, as the spacetime is spheri-
cally symmetric, which means that the angular momentum operators Oi with
i = 1, 2, 3, which are Killing vector fields generating the isometries of spher-
ical symmetry, control all derivatives tangential to the round spheres of the
double-null foliation; see for example Sect. 2.1 of [23] for explicit expressions
of Oi with respect to spherical polar coordinates. Since the vector fields Oi are
Killing, they commute with the operator �g, so the functions Oi(φ) are also
solutions to (1.1). Any energy estimate for φ therefore automatically holds for
Oi(φ).

In extremal Kerr–Newman with a �= 0, however, the only angular momen-
tum operator that remains a Killing vector field is Φ, the generator of rotations
about the axis of symmetry. Fortuitously, there exists a second-order operator
Q, the Carter operator, which also commutes with �g. This operator is closely
related to the conserved Carter constant ; see [11]. See also Andersson–Blue
[1], for example, for more details on the Carter constant and operator, and for
applications of the commutation property of Q.

The operator Q, together with the vector fields Φ and T , the Killing
vector field corresponding to time-translation symmetry, controls the deriva-
tives of φ that are tangent to the spheres of the Boyer–Lindquist foliation of
Kerr–Newman. To obtain control over derivatives tangent to the spheres S2

u,v,
(which do not coincide with the Boyer–Lindquist spheres if a �= 0), we need to
additionally commute �g with the vector fields L and L.

In contrast with the error terms arising from commuting �g with /∇, or
∂ϑA , the error terms corresponding to a commutation with L and L can be
controlled via the methods of Part 1 by using profusely the Killing property
of Q, Φ and T ; see the estimates in Sect. 6.2. As a result, we are able to prove
Theorems 1 and 5; see Sects. 7.1 and 7.2.

1.3.4. Part 3: Decay Estimates (Theorems 4, 6 and 7). In the final step, we
consider the difference function ψ = φ−φ|H+ , such that ψ vanishes along H+.
The function ψ has the advantage that it can be shown to decay uniformly in
u. By treating the wave equation as a transport equation for Lφ along ingoing
null generators, we can use the u-decay of ψ to obtain v-decay of ||Lφ||L2(S2

u,v)

with the rate v−2+ε, for any ε > 0. If φ is axisymmetric, we can in fact improve
this decay rate to v−2 log(v). By commuting further with L and L and applying
standard Sobolev inequalities on S2

u,v, this allows one to obtain pointwise decay
for |Lφ| with the rates v−2+ε and v−2 log(v), respectively.

The outgoing derivative corresponding to double-null coordinates that
cover the region beyond CH+ in the maximal analytic extension of extremal
Kerr–Newman, denoted by ∂

˜V , is related to L as follows:

|∂
˜V φ| ∼ v2|Lφ|.
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Since we cannot remove the ε in the decay rate v−2+ε of |Lφ|, we are unable
to infer boundedness of ∂

˜V φ at CH+ or C1 extendibility of φ at CH+. We can,
nevertheless, infer that φ is extendible as a C0,α function beyond CH+, for any
α < 1, if the initial data along Hv0

∪ H+ are suitably regular and decaying,
thereby proving Theorems 4 and 7; see Sect. 7.3.

Moreover, we can integrate the v-decaying L2(S2
u,v) norm of Lφ in the

v-direction, in slowly rotating extremal Kerr–Newman, to obtain bounded-
ness of

∫

Hu
v2(Lφ)2 and also

∫

Hv
v2Ω2| /∇φ|2. In this way we get rid of some

of the ε-loss in the weights that was present in the energy estimates of Part
1 and arose from the obstruction of ζ to the energy estimates for φ with-
out the axisymmetry assumption. This improvement comes at the expense of
requiring decay of higher-order derivatives in the initial data, compared to the
estimates in Part 1. See Sect. 7.3 for more details. In particular, we can infer
Theorem 6.

1.4. Outline

In Sect. 2 we introduce some notation and state estimates relating to the
double-null foliation of the interior of extremal Kerr–Newman (Part 0 of
Sect. 1.3) that are relevant in the rest of the paper. We state the theorems that
are proved in the paper in Sect. 3. We prove energy estimates for axisymmet-
ric solutions φ to (1.1) in extremal Kerr–Newman in Sect. 4. Subsequently, we
prove energy estimates in slowly rotating extremal Kerr–Newman in Sect. 5,
completing Part 1 of Sect. 1.3. In Sect. 6, we commute with L and L to arrive
at energy estimates for higher-order derivatives of φ. Finally, we use the higher-
order energy estimates to prove pointwise estimates of φ (Part 2 of Sect. 1.3).
Moreover, we obtain pointwise decay in v of Lφ in Sect. 7 by making use of
higher-order energy estimates, completing Part 3 of Sect. 1.3.

2. The Geometry of Extremal Kerr–Newman

We will first introduce the extremal Kerr–Newman spacetimes in Boyer–
Lindquist and Kerr-star coordinates and subsequently present more conve-
nient double-null coordinates, by foliating the spacetime with suitable ingo-
ing and outgoing null hypersurfaces, covering both the exterior and interior
regions of extremal Kerr–Newman. Sections 2.2 and 2.3 are based on a more
elaborate discussion on double-null foliations of Kerr–Newman that can be
found in [22].

2.1. Boyer–Lindquist and Kerr-star Coordinates

Fix the mass parameter M > 0 and the rotation parameter a ∈ R, such that
|a| ≤ M , and let, moreover, the charge parameter e satisfy e2 = M2 − a2.

We define the exterior region of extremal Kerr–Newman as a manifold
Mext, together with a metric g, where Mext = R×(M,∞)×S

2 can be equipped
with the Boyer–Lindquist coordinate chart (t, r, θ, ϕ), with t ∈ R, r ∈ (M,∞),
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θ ∈ (0, π) and ϕ ∈ (0, 2π).3 In these coordinates, the metric g in Mext is given
by

g = −
(

1− 2Mr

ρ2

)

dt2+
ρ2

Δ
dr2+ρ2dθ2+R2 sin2 θdϕ2−2

(2Mr−e2)a sin2 θ

ρ2
dtdϕ.

(2.1)
Here,

Δ := r2 − 2Mr + a2 + e2 = (M − r)2,

ρ2 := r2 + a2 cos2 θ,

R2 := r2 + a2 + a2 (2Mr − e2) sin2 θ

ρ2
.

We define the interior region of extremal Kerr–Newman as the manifold
Mint = R×(0,M)×S

2 equipped with a metric that we also denote by g, which
can similarly be covered by Boyer–Lindquist coordinates (t, r, θ, ϕ), where now
t ∈ R, r ∈ (0,M), θ ∈ (0, π) and ϕ ∈ (0, 2π). The components of the metric g
in Mint with respect to Boyer–Lindquist coordinates are also given by (2.1).

We define the ingoing Kerr-star coordinates (tKS)∗ and (ϕKS)∗ on Mext

or Mint in the following way:

(tKS)∗(t, r) = t + (rKS)∗(r), (2.2)

(ϕKS)∗(r, ϕ) = ϕ +
∫ r

r0

a

Δ(r′)
dr′, (2.3)

where

(rKS)∗(r) =
∫ r

r0

r′2 + a2

Δ(r′)
dr′, (2.4)

and r0 > 0 is a constant.
We can change from Boyer–Lindquist coordinates to ingoing Kerr-star

coordinates
((tKS)∗, r, θ, (ϕKS)∗)

to show that the spacetime Mint can be smoothly patched to the spacetime
Mext, such that Mint embeds as the region {0 < r < M} of the patched
spacetime, and Mext embeds as the region {r > M}. The boundary of Mext

and Mint inside the patched spacetime is given by the level set {r = M}.
This boundary is called the event horizon and is denoted by H+. It lies in
the causal past of Mint; see also Fig. 2. We denote the patched manifold by
M := Mint ∪ Mext ∪ H+. We can write

M = R × (0,∞) × S
2,

where (tKS)∗ ∈ R, r ∈ (0,∞), θ ∈ (0, π) and (ϕKS)∗ ∈ ((ϕKS)∗(r, 0), (ϕKS)∗
(r, 0) + 2π).

3 Note that the coordinates (θ, ϕ) do not cover the full spheres of constant t and constant r
and, moreover, the metric degenerates as one approaches the poles. This can be remedied by
passing for (θ, ϕ) to a different chart in a neighbourhood of a great circle segment connecting
the poles, as is the case with spherical coordinates on the unit round sphere S2.
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Figure 2. The Penrose diagram of ˜M

We can similarly introduce outgoing Kerr-star coordinates
((t̃KS)∗, r, θ, (ϕKS)∗), where

(t̃KS)∗ = (tKS)∗ − 2(rKS)∗.

In these coordinates it is easy to see that Mint can be smoothly embedded
into a bigger spacetime M′, by patching Mint to a spacetime M′

ext that is
isometric to Mext. The manifold Min is embedded in the patched spacetime
as the region {0 < r < M} and M′

ext is embedded as the region {r > M}. The
corresponding boundary {r = M} of Mint and M′

ext in the patched spacetime
lies in the causal future of Mint and is denoted by CH+. We refer to this
boundary as the inner horizon. We can write M′ = Mint ∪ M′

ext ∪ CH+, or

M′ = R × (0,∞) × S
2,
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where (t̃KS)∗ ∈ R, r ∈ (0,∞), θ ∈ (0, π) and (ϕKS)∗ ∈ ((ϕKS)∗(r, 0), (ϕKS)∗
(r, 0) + 2π).

As M′
ext is isometric to Mext, we can repeat the above procedure ad

infinitum to extend the manifold M∪M′ further and form an infinite sequence
of patched manifolds containing regions isometric to either Mext or Mint,
glued across horizons. The resulting spacetime ˜M is called maximal analyt-
ically extended extremal Kerr–Newman, and it is depicted in Fig. 2. For the
remainder of this paper we will, however, mainly direct our attention to the
subset M ∪ CH+.

2.2. Double-Null Coordinates

In the sections below, we will consider energy fluxes along ingoing and outgoing
null hypersurfaces in M. It is therefore more natural to work in double-null
coordinates in M rather than Kerr-star coordinates.

We first consider Mint, covered by Kerr-star coordinates. If we can con-
struct a tortoise function r∗ to be of the form r∗(r, θ), such that the functions

2v = t + r∗,
2u = t − r∗,

satisfy the eikonal equations

gαβ∂αu∂βu = 0 and gαβ∂αv∂βv = 0,

then the level sets {u = constant} and {v = constant} are null hypersurfaces.
We will follow a construction of r∗ that was introduced by Pretorius–Israel in
[32] and allows for suitable, double-null coordinates. We will assume that a �= 0.
In the a = 0 case we consider Eddington–Finkelstein double-null coordinates;
see Sect. 2 of [23].

In [22] the construction of r∗ from [32] is used to extend the local double-
null coordinates in Mint to obtain a smooth, global Eddington–Finkelstein-
type double-null foliation of Mint ∩ {r > e2

2M },4 such that the 2-surfaces

S2
u′,v′ = {u = u′} ∩ {v = v′}

are diffeomorphic to 2-spheres and we, moreover, obtain quantitative bounds
on the metric components in double-null coordinates (see Sect. 2.3).

The metric g on Mint ∩ {r > e2

2M } can then be written as follows:

g = −4Ω2dudv + /gAB
(dϑA − bAdv)(dϑB − bBdv), (2.5)

where 2u = t− r∗, 2v = t+ r∗, ϑ1 = θ∗ and ϑ2 = ϕ∗, with u, v ∈ R, θ∗ ∈ (0, π)
and ϕ∗ ∈ (0, 2π). The metric components in (2.5) are given by

Ω2 = ΔR−2,

bθ∗ = 0, bϕ∗ =
4Mar

ρ2R2
− 4Mar

ρ2R2

∣

∣

∣

∣

r=M

,

4 If e �= 0 (i.e. 0 < |a| < M), we cannot cover the entire region Mint by the double-

null coordinates introduced in this section, as we cannot exclude the corresponding null

generators forming caustics in the region {0 < r < e2

2M
}.
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gθ∗θ∗ = f2
1 f2

2 (∂θ∗F )2R−2 + (∂θ∗f4)2R2 sin2 θ,

gθ∗ϕ∗ = (∂θ∗f4)R2 sin2 θ,

gϕ∗ϕ∗ = R2 sin2 θ;

they are of the same form as the metric components with respect to the double-
null coordinates considered in [18]. A precise definition of the functions fi is
given in [22], but for the purposes of this paper we only need the estimates on
the metric components that are stated in Sect. 2.3 and are derived in [22].

Note, moreover, that we can express:

det /g = f2
1 f2

2 (∂θ∗F )2 sin2 θ. (2.6)

In the formal limit a → 0 (with e �= 0 fixed) the double-null coordinates
(u, v, θ∗, ϕ∗) become simply Eddington–Finkelstein double-null coordinates on
(the interior of) extremal Reissner–Nordström.

As we approach H+ along constant v hypersurface, the coordinate u goes
to −∞. We can, however, introduce a rescaled ingoing null coordinate in order
to further extend the double-null coordinates and additionally cover the region
Mext ∪ H+.

Fix v0 ∈ R and define the function U : R → (0,∞) by U(u) = M −
r(u, v0, θ∗ = π

2 ). We can interpret U as a smooth, negative function U : Mint ∩
{r > e2

2M } → (0,∞).
In [22] it is shown function U : Mint ∩ {r > e2

2M } → R extends smoothly
with respect to Kerr-star coordinates to the bigger manifold M ∩ {r > e2

2M },
such that U = 0 along H+ and U < 0 in Mext and moreover, the metric
is well defined and non-degenerate with respect to the chart (U, v, θ∗, ϕ∗) on
M ∩ {r > e2

2M }:

g = −4
Ω2(u, v, θ∗)

(r2Ω2)
(

u, v = v0, θ∗ = π
2

)dUdv + /gAB
(dϑA − bAdv)(dϑB − bBdv).

Consequently, (U, v, θ∗, ϕ∗) defines a smooth coordinate chart on M ∩ {r >
e2

2M }.
By introducing another function f5 (see [22]) we can shift the angular

coordinate ϕ∗ to a new coordinate ϕ̃∗ ∈ (0, 2π) and the metric can be written
in (ũ, ṽ, ˜θ∗, ϕ̃∗) coordinates,

g = −4Ω2(ũ, ṽ)dũdṽ + ˜/gAB
(d˜ϑA − b̃Adũ)(d˜ϑB − b̃Bdũ), (2.7)

where 2ũ = 2u = t − r∗, 2ṽ = 2v = t + r∗, ˜ϑ1 = ˜θ∗, ˜ϑ2 = ϕ̃∗ and moreover,
Ω2(ũ, ṽ) = Ω2(r∗) = ΔR−2,

b̃
˜θ∗ = 0, b̃ϕ̃∗ =

4Mar

ρ2R2
− 4Mar

ρ2R2

∣

∣

∣

∣

r=M

,

˜/g
˜θ∗ ˜θ∗

= f2
1 f2

2 (∂θ∗F )2R−2 + (∂θ∗f5)2R2 sin2 θ,

˜/g
˜θ∗ϕ̃∗

= (∂θ∗f5)R2 sin2 θ,

˜/gϕ̃∗ϕ̃∗
= R2 sin2 θ.
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To distinguish these coordinates from the previous double-null coordinates, we
have denoted them with tildes (ũ, ṽ, ˜ϑ), where ṽ = v, ũ = u and ˜θ∗ = θ∗.

Now, fix u0 ∈ R and define the function ˜V : Mint ∩ {r > e2

2M } by
˜V = (r − M)(u0, v, θ∗ = π

2 ). In [22] it is shown that we can extend ˜V as a
smooth function to the bigger manifold M′ ∩ {r > e2

2M }, such that ˜V = 0
along CH+ and ˜V > 0 in M′

ext and moreover, the metric is well defined and
non-degenerate with respect to the chart (ũ, ˜V , ˜θ∗, ϕ̃∗) on M′ ∩ {r > e2

2M }:

g = −4
Ω2(ũ, ṽ, ˜θ∗)

(r2Ω2)
(

ũ = u0, ṽ, ˜θ∗ = π
2

)dũd˜V + /gAB
(d˜ϑA − b̃Adũ)(d˜ϑB − b̃Bdũ).

We will use the notation (u, v, θ∗, ϕ∗) = (−∞, v0, θ∗, ϕ∗) and
(ũ, ṽ, θ∗, ϕ∗) = (u0,∞, θ∗, ϕ∗), with u0, v0 < ∞, for points on H+ and CH+,
respectively, for the sake of convenience. These points lie in the domain of
either the (U, v) or (ũ, ˜V ) double-null coordinates.

In Mint ∩
{

r > e2

2M

}

∪ H+ ∪ CH+ we restrict to the region

Du0,v0 =

{

x ∈ Mint ∩
{

r >
e2

2M

}

∪ H+ ∪ CH+: U(x) ∈ [0, U(u0)],

˜V (x) ∈ [˜V (v0), 0] , (U(x), ˜V (x)) �= (0, 0)

}

.

Let v′ ∈ [v0,∞) and u′ = [−∞, u0]. We will consider the following null
hypersurfaces:

Hv′ := {x ∈ M : U(x) ∈ [0, U(u0)], v(x) = v′},

Hu′ := {x ∈ M : U(x) = U(u′), v(x) ∈ [v0,∞)},

and we refer to the hypersurfaces Hv′ and Hu′ as ingoing and outgoing null
hypersurfaces, respectively.

We will fix |u0| and v0 to be suitable large such that

Hv0
∪ Hu0 ⊂

(

Mint ∩
{

r >
e2

2M

})

∪ H+.

Consider the null vector fields L and L, which are tangent to the gener-
ators of the outgoing and ingoing null hypersurfaces, respectively, and satisfy
Lv = 1 and Lu = 1.

The vector field L can be naturally expressed in the chart (u, v, θ∗, ϕ∗).
Indeed,

L = ∂v + bA∂ϑA ,

L = ∂u.

Note that we can alternatively express L in (U, v, θ∗, ϕ∗) coordinates:

L =
dU

du
∂U .
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From the above expression it is clear that L can be extended smoothly as a
vector field across H+ (where it vanishes).

The vector field L can similarly be expressed in the chart (ũ, ṽ, ˜θ∗, ϕ̃∗):

L = ∂ṽ,

L = ∂ũ + b̃A∂
˜ϑA

.

Note that we can also express L in (u, ˜V , ˜θ∗, ϕ̃∗) coordinates:

L =
d˜V
dṽ

∂
˜V .

From the above expression it is clear that, analogously to L, L can be extended
smoothly as a vector field across CH+ (where it vanishes).

2.3. Estimates for Metric Components and Connection Coefficients in Double-
Null Coordinates

In this section, we will present an overview of relevant estimates for the metric
components gαβ in Eddington–Finkelstein-type double-null coordinates, their
derivatives and components (and derivatives) of the Jacobian matrix relating
Eddington–Finkelstein-type double-null coordinates to Boyer–Lindquist coor-
dinates. All these estimates are obtained in [22].

We first define the following notation to separate out leading-order terms
in v + |u|.
Definition 2.1. Let f : M ∩ Du0,v0 → R be a C0 function. We say that
f ∈ O((v + |u|)−l), where u and v are Eddington–Finkelstein-type double-
null coordinates in Mint ∩ {r > r0 > e2

2M }, if there exists a constant
C = C(M,a, r0,Σ) > 0, such that

|f |(u, v, θ∗, ϕ∗) ≤ C(v + |u|)−l.

We obtain in [22] the following estimates for the metric components gαβ

in Mint ∩ {r > r0 > e2

2M } in the Eddington–Finkelstein-type coordinates
(u, v, θ∗, ϕ∗) introduced above:

Theorem 2.1 (Estimates for metric components in double-null coordinates,
[22]). Let r0 > e2

2M and consider Mint ∩ {r > r0} covered by the double-null
coordinates (u, v, θ∗, ϕ∗) introduced in Sect. 2.2.

(i) There exist constants c = c(r0, a,M) > 0 and C = C(N, r0, a,M) > 0,
such that for all n ∈ Z, with n ≤ N , where N ∈ N0,

|∂n
r∗/gθ∗θ∗

| ≤ C(v + |u|)−2n,

|∂n
r∗/gθ∗ϕ∗

| ≤ C(v + |u|)−2n,

|∂n
r∗/gϕ∗ϕ∗

| ≤ C sin2 θ(v + |u|)−2n,

|∂θ∗/gθ∗θ∗
| ≤ C,

|∂θ∗/gθ∗ϕ∗
| ≤ C sin2 θ,
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|∂θ∗/gϕ∗ϕ∗
| ≤ C sin θ,

c sin2 θ ≤ det /g ≤ C sin2 θ.

(ii) We can expand

v + |u| = r∗(r, θ) =
a2 + M2

M − r
+ 2M log(M − r) + O(1),

Ω−2 =
1

M2 + a2 cos2 θ

[

(v + |u|)2 + 4M(v + |u|) log(M − r)
]

+ O(v + |u|),

bϕ∗ =
4Ma

(M2 + a2)2
(3M2 − a2)(v + |u|)−1 + log(v + |u|)O((v + |u|)−2)

and estimate for n ≤ N , with N ∈ N,

|∂n+1
r∗ bϕ∗ | ≤ C(v + |u|)−2(n+1),

|∂n
r∗∂θ∗bϕ∗ | ≤ C(v + |u|)−2−2n log(v + |u|),

|∂r∗Ω2| ≤ C(v + |u|)−2,

|∂r∗∂θ∗Ω2| ≤ C(v + |u|)−2,

where C = C(N, r0, a,M) > 0.
(iii) There exist c = c(r0, a,M) > 0 and C = C(r0, a,M) > 0 such that for

all n ∈ Z, with n ≤ N , where N ∈ N0:

|∂r∗θ| ≤ C(v + |u|)−2 sin θ, (2.8)

|∂r∗r| ≤ C(v + |u|)−2, (2.9)

c(v − u)−2n ≤ |∂n
r∗∂θθ∗| ≤ C(v + |u|)−2n, (2.10)

|∂n
r∗∂2

θθ∗| ≤ C(v + |u|)−2n, (2.11)

|∂n
r∗∂θr∗| ≤ C sin θ(v + |u|)−2n ≤ C sin θ∗(v + |u|)−2n, (2.12)

|∂2
θr∗| ≤ C. (2.13)

We define the connection coefficients

χAB := g(∇∂ϑA
e4, ∂ϑB

),

χ
AB

:= g(∇∂ϑA
e3, ∂ϑB

),

ω := −1
4
g(∇e4e3, e4),

ω := −1
4
g(∇e3e4, e3),

ζA :=
1
2
g(∇∂ϑA

e4, e3),

where A = 1, 2 and e3 = Ω−1L and e4 = Ω−1L are renormalised null vec-
tor fields, such that g(e3, e4) = −2. We have the following relations between
connection coefficients and metric derivatives:

2ΩχAB = L(/gAB
) + ∂AbC

/gCB
+ ∂BbC

/gCA
,

2Ωχ
AB

= L(/gAB
),
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Ωtr χ =
L(
√

det /g)
√

det /g
+ ∂CbC ,

Ωtr χ =
L(
√

det /g)
√

det /g
,

4Ωω = Ω−2L(Ω2),

4Ωω = Ω−2L(Ω2),

ζA =
1
4
Ω−2[L,L]A = Ω−2∂vbA,

where we also have that ∂CbC = 0 in (sub)extremal Kerr–Newman.
See “Appendix A” for the derivations of the above identities and for

further properties the connection coefficients and their expressions in terms of
derivatives of gαβ .

Theorem 2.2 (Estimates for connection coefficients in double-null coordinates,
[22]). Let r0 > e2

2M and consider Mint ∩ {r > r0}.
(i) Let A,B = 1, 2 and n ∈ Z, with n ≤ N , where N ∈ N0. There exists a

constant C = C(N, r0, a,M) > 0, such that

|Ωχ̂AB | ≤ C(v + |u|)−2 log(v + |u|)|/gAB
|,

|Ωχ̂
AB

| ≤ C(v + |u|)−2|/gAB
|,

0 < Ωtr χ ≤ C(v + |u|)−2,

0 < −Ωtr χ ≤ C(v + |u|)−2,

|∂n
r∗(Ω tr χ)| ≤ C(v + |u|)−2−n,

where we made use the following notation

χ̂AB = χAB − 1
2/gAB

tr χ,

χ̂
AB

= χ
AB

− 1
2/gAB

tr χ.

(ii) Moreover, we can expand

4Ωω = − 2
v + |u| + log(v + |u|)O((v + |u|)−2),

4Ωω =
2

v + |u| + log(v + |u|)O((v + |u|)−2),

Ω2ζϕ∗ =
Ma

(M2 + a2)2
(3M2 − a2)(v + |u|)−2 + log(v + |u|)O((v + |u|)−3),

Ω2ζθ∗ = 0.

2.4. Killing Vector Fields

The vector field T = ∂
∂(tKS)∗

in M, as expressed in Kerr-star coordinates
(T = ∂t in Boyer–Lindquist coordinates on Mint), is a Killing vector field;
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it corresponds to time-translation symmetry in extremal Kerr–Newman. Note
that T is not causal everywhere in M. The subset of Mext in which T is not
causal is called the ergoregion. Similarly, there is a subset of Mint in which
T fails to be causal everywhere (cf. T is timelike everywhere away from the
horizons in extremal Reissner–Nordström, where a = 0).

We denote the Killing vector field corresponding to axial symmetry in
extremal Kerr–Newman by Φ. In Kerr-star coordinates, we can write Φ =

∂
∂(ϕKS)∗

. However, we can also write Φ = ∂ϕ∗ in Eddington–Finkelstein-type
double-null coordinates, or Φ = ∂ϕ in Boyer–Lindquist coordinates.

The Carter operator is a second-order differential operator that can be
expressed as follows:

Q = ΔS2 + (a2 sin θ)T 2 − Φ2,

where ΔS2 is the Laplacian with respect to the metric on the round sphere (of
area radius 1). Since T and Φ are Killing vector fields, we have that

[�g, T ] = [�g,Φ] = 0.

It turns out that the Carter operator also commutes with the wave operator:

[�g, Q] = 0.

See [1] for a derivation of the above commutator identity.
We can define the Hawking vector field H in Du0,v0 by

H =
1
2
(∂u + ∂v) =

1
2
(L + L − bϕ∗Φ).

We can also express H by as a linear combination of the Killing vector fields
T and Φ,

H = T + ωH+Φ,

where

ωH+ :=
2Mar

ρ2R2

∣

∣

∣

∣

r=r+

=
2aM2

(M2 + a2)2
.

Indeed, in Mint ∩ {r > e2

2M } we can write

T = ∂t = ∂tu∂u + ∂tv∂v + ∂tϕ∗∂ϕ∗

=
1
2

[∂u + ∂v − 2ωH+Φ] .

In the literature, the constant ωH+ is commonly referred to as the angular
velocity of the Kerr–Newman black hole.

In order for the energy fluxes with respect to H along null hypersurfaces
to be non-negative definite, we need H to be causal. We have that

g(H,H) = g(L + L − bϕ∗∂ϕ∗ , L + L − bϕ∗∂ϕ∗) = −4Ω−2 + (bϕ∗)2R2 sin2 θ.

The maximum value of R2 sin2 θ is obtained at θ = π
2 ,

R2 sin2 θ|θ= π
2

=
(M2 + a2)2

M2
+ O((v + |u|)−1).
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Consequently, by applying the estimates in Theorem 2.1, we obtain

g(H,H)|θ= π
2

=

[

−8M2 + R2

(

4Ma

(M2 + a2)2
(3M2 − a2)

)2
]

(v + |u|)−2

+ log(v + |u|)O((v + |u|)−3)

=

[

−8M2 +
(

4a

M2 + a2
(3M2 − a2)

)2
]

(v + |u|)−2

+ log(v + |u|)O((v + |u|)−3).

Therefore, g(H,H) ≤ 0 everywhere for v + |u| suitably large, or equivalently,
M − r suitably small, if

2a2(3M2 − a2)2 − M2(M2 + a2)2 < 0.

We rescale x =
(

a
M

)2, with x ∈ [0, 1], to obtain an equivalent inequality:

2x(3 − x)2 − (1 + x)2 < 0.

One can solve the above cubic equation to obtain 0 < ac(M) < M , such that
g(H,H) < 0 for all 0 ≤ |a| < ac and v + |u| suitably large.

We define slowly rotating extremal Kerr–Newman spacetimes to be the
subfamily of extremal Kerr–Newman spacetimes satisfying 0 ≤ |a| < ac. Note
that extremal Kerr (|a| = M) is not a slowly rotating extremal Kerr–Newman
spacetime.

2.5. The Divergence Theorem and Integration Norms

In this section, we will introduce some basic notation regarding integration in
M∩Du0,v0 . We will state the divergence theorem, which is the main ingredient
of the vector field method; see also the discussion in Sect. 1.3 of [23].

Let V be a vector field in a Lorentzian manifold (N , g). We consider the
stress–energy tensor T[φ] corresponding to (1.1), with components

Tαβ [φ] = ∂αφ∂βφ − 1
2
gαβ∂γφ∂γφ.

Let JV [φ] denote the energy current corresponding to V , which is
obtained by applying V as a vector field multiplier, i.e. in components

JV
α [φ] = Tαβ [φ]V β .

An energy flux is an integral of JV [φ] contracted with the normal to
a hypersurface with the natural volume form corresponding to the metric
induced on the hypersurface. We apply the divergence theorem to relate the
energy flux along the boundary of a spacetime region to the spacetime integral
of the divergence of the energy current JV . If the boundary has a null segment,
there is no natural volume form or normal; these are assumed compatible with
the divergence theorem.
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That is to say, if we take −∞ ≤ u1 < u2 ≤ u0 and v0 ≤ v1 < v2 ≤ ∞,
the divergence theorem in the open rectangle {u1 < u < u2, v1 < v < v2} in
Mint ∩ {r > e2

2M } gives the following identity:
∫

{u1<u<u2, v1<v<v2}
divJV [φ]

= −
∫

Hu2∩{v1≤v≤v2}
JV [φ] · L +

∫

Hu1∩{v1≤v≤v2}
JV [φ] · L

−
∫

Hv2
∩{u1≤u≤u2}

JV [φ] · L +
∫

Hv1
∩{u1≤u≤u2}

JV [φ] · L. (2.14)

Here, we introduced the following notation:

JV [φ] · W = T(V,W ),

for vector fields V and W . Moreover, in the notation on the left-hand side of
(2.14), we integrate over spacetime with respect to the standard volume form,
i.e. let f : M ∩ Du0,v0 → R be a suitably regular function and U an open
subset of M, then

∫

U

f :=
∫

U

f(u, v, θ∗, ϕ∗)
√

−det gdθ∗dϕ∗dudv

=
∫

U

f(u, v, θ∗, ϕ∗) 2Ω2
√

det /gdθ∗dϕ∗dudv,

where det /g is expressed in (2.6).
When integrating over Hu and Hv we used the following convention in

the notation on the right-hand side of (2.14):
∫

Hv

f :=
∫ u0

−∞

∫

S2
u,v

f
√

det /gdθ∗dϕ∗du,

∫

Hu

f :=
∫ ∞

v0

∫

S2
u,v

f
√

det /gdθ∗dϕ∗dv.

Note that by a change of variables we can alternatively express the above
integrals in terms of (U, θ∗, ϕ∗) or (˜V , ˜θ∗, ϕ̃∗) coordinates, respectively:

∫ u0

−∞

∫

S2
u,v

f
√

det /gdθ∗dϕ∗du =
∫ U(u0)

0

∫

S2
U,v

f
du

dU

√

det /gdθ∗dϕ∗dU,

∫ ∞

v0

∫

S2
u,v

f
√

det /gdθ∗dϕ∗dv =
∫ 0

˜V (v0)

∫

S2
u,˜V

f
dṽ

d˜V

√

det /gd˜θ∗dϕ̃∗d˜V .

In the notation of [13] we decompose the divergence term appearing in (2.14)
in the following way:

divJV [φ] = KV [φ] + EV [φ],

where

KV [φ] := Tαβ [φ]∇αVβ ,

EV [φ] := V (φ)�gφ.
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In particular, EV [φ] = 0 if φ is a solution to (1.1). We can also replace φ by
Wφ, where W is a vector field that is referred to as a commutation vector field.
The expression EV [Wφ] now does not need to vanish.

Furthermore, we can write
∫ U(u0)

0

∫

S2
U,v

(∂Uf)2
√

det /gdθ∗dϕ∗dU

=
∫ u0

−∞

∫

S2
u,v

du

dU
(∂uf)2

√

det /gdθ∗dϕ∗du =
∫

Hv

du

dU
(∂uf)2, (2.15)

∫ 0

˜V (v0)

∫

S2
u,v

(∂
˜V f)2

√

det /gdθ∗dϕ∗d˜V

=
∫ ∞

v0

∫

S2
u,v

dṽ

d˜V
(∂vf)2

√

det /gdθ∗dϕ∗dv =
∫

Hu

dv

d˜V
(∂vf)2. (2.16)

We can estimate in M∩Du0,v0 , with |u0|, v0 ≥ 1 without loss of generality,

C1u
2 ≤ du

dU
≤ C2u

2,

C1v
2 ≤ dṽ

d˜V
≤ C2v

2,

for C1 = C1(a,M, u0, v0) > 0 and C2 = C(a,M, u0, v0) > 0 uniform constants.
We rewrite the estimates above by using the following notation:

du

dU
∼ u2, (2.17)

dṽ

d˜V
∼ v2, (2.18)

so that
∫

Hv

u2(∂uf)2 ∼
∫ U(u0)

0

∫

S2
U,v

(∂Uf)2
√

det /gdθ∗dϕ∗dU,

∫

Hu

v2(∂vf)2 ∼
∫ 0

˜V (v0)

∫

S2
u,v

(∂
˜V f)2

√

det /gdθ∗dϕ∗d˜V .

Let use introduce the following natural L2 norms:

||f ||2L2(S2
u,v) :=

∫

S2
u,v

f2 dμ/g, where dμ/g :=
√

det /gdθ∗dϕ∗,

||f ||2L2(Hu) :=
∫

Hu

du

dU
f2,

||f ||2L2(Hv) :=
∫

Hv

dṽ

d˜V
f2.
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Now consider a compact subset K ⊂ M′ ∩ {r > e2

2M }, such that, moreover,
K ⊂ Du0,v0 . Then, we define the following spacetime L2 norms:

||f ||2L2(K) :=
∫

K∩Mint

f2,

||∂f ||2L2(K) :=
∫

K∩Mint

(∂
˜V f)2 + (∂Uf)2 + | /∇f |2,

where /∇ denotes the induced covariant derivative on S2
u,v.

We can, in particular, estimate

||∂f ||2L2(K) =
∫

K∩Mint

(∂
˜V f)2 + (∂Uf)2 + | /∇f |2

≤
∫ u0

uK

∫ 0

˜VK

∫

S2

[

(∂
˜V f)2 + (∂Uf)2 + | /∇f |2] 2Ω2∂

˜V ṽdμ/gd˜V du

≤ C|˜VK||uK|2 sup
ṽ( ˜VK)≤v<∞

∫

Hv∩{|u|≤|uK|}
(∂uf)2 + Ω2v2| /∇f |2

+ C|u0 − uK| sup
uK≤u<u0

∫

Hu

v2(∂vf)2, (2.19)

where K ⊂ [uK, u0] × [˜VK, 0] × S
2, with −∞ < uK < u0, ˜V (v0) < ˜VK < 0 and

C = C(u0, v0) > 0.
We define the weighted null-directed vector field Np,q in Mint ∩Du0,v0 as

follows:

Np,q = |u|pL + vqL = |u|p∂u + vq(∂v + bA∂ϑA
) = |ũ|p(∂ũ + bA∂

˜ϑA
) + ṽp∂ṽ,

with 0 ≤ p, q ≤ 2. In particular, in (U, v, ϑ) coordinates, we can express

Np,q = |u(U)|p(r2Ω2)
∣

∣

v=v0, θ∗= π
2
∂U + vq(∂v + bA∂ϑA

).

If p ≤ 2, Np,q can be extended as a smooth vector field across H+ into Mext.
In (ũ, ˜V , ˜ϑ) coordinates, we have that

Np,q = |ũ|p(∂ũ + bA∂
˜ϑA

) + ṽq(˜V )(r2Ω2)
∣

∣

u=u0, θ∗= π
2
∂
˜V .

If q ≤ 2, Np,q can be extended as a smooth vector field beyond CH+ in M′
ext.

The energy currents with respect to the constant u and constant v null hyper-
surfaces are given by

JNp,q [φ] · L = vqT(L,L) + |u|pT(L,L) = vq(Lφ)2 + |u|pΩ2| /∇φ|2,
JNp,q [φ] · L = vqT(L,L) + |u|pT(L,L) = |u|p(Lφ)2 + vqΩ2| /∇φ|2,

where we inserted the expressions for Tαβ from “Appendix A”.
In “Appendix A” we show that the current KNp,q , compatible to JNp,q ,

is given by
KNp,q [φ] = K

Np,q

null [φ] + K
Np,q

angular[φ] + K
Np,q

mixed[φ],
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with

K
Np,q

null [φ] =
1
2
Ω−2(vqΩtr χ + |u|pΩtr χ)LφLφ, (2.20)

K
Np,q

angular[φ] = − 1
2
[−p|u|p−1 + qvq−1 + 4Ω(vqω + |u|pω)

] | /∇φ|2 (2.21)

+
[

vqΩχ̂AB + |u|pΩχ̂AB
]

(∂Aφ)(∂Bφ),

K
Np,q

mixed[φ] = 2[vq(Lφ) − |u|p(Lφ)]ζϕ∗∂ϕ∗φ. (2.22)

In extremal Kerr–Newman spacetimes with |a| < ac, we consider, more-
over, the vector field Yp in the region Mint ∩ ({v ≥ v1} ∪ {u ≤ u1}), which is
defined by

Yp = |u|pH.

From Sect. 2.4 it follows that H is timelike in Mint ∩ ({v ≥ v1} ∪ {u ≤ u1}),
if |u1| and v1 are chosen suitably large. We use, moreover, that H is a Killing
vector field to easily obtain an expression for KYp ,

KYp [φ] = gαβ∇β(JYp
α ) = gαβ∇β(|u|p)JH

α [φ] + |u|pKH [φ]

=
p

2
Ω−2|u|p−1JH [φ] · L ≥ 0,

where non-negativity, in the case that φ is not axisymmetric, follows from the
timelike character of H.

3. Precise Statements of the Main Theorems

In this section we present more precise versions of the main results proved in
this paper, which are stated in Sect. 1.2. Let M denote extremal Kerr–Newman
with 0 ≤ |a| ≤ M , unless otherwise stated. We first give a formulation of the
standard global existence and uniqueness for the characteristic initial value
problem for (1.1) in M ∩ Du0,v0 .

Proposition 3.1. Let φ be a continuous function on the union of null hypersur-
faces

(H+ ∩ {v ≥ v0}
) ∪ Hv0

,

such that the restriction to H+ and the restriction to Hv0
are smooth functions.

Then, there exists a unique, smooth extension of φ to Mint ∪H+ ∩Du0,v0 that
satisfies (1.1) in extremal Kerr–Newman. We also denote this extension by φ.
We refer to the restriction φ|(H+∩{v≥v0})∪Hv0

as characteristic initial data. If
φ|(H+∩{v≥v0})∪Hv0

is axisymmetric, the extension φ to Mint ∪ H+ ∩ Du0,v0

must also be axisymmetric.

The above proposition can be proved by reducing the characteristic initial
value problem to a Cauchy problem with initial data on a spacelike hypersur-
face, as done in [33], and then appealing to a global existence and uniqueness
result for the standard Cauchy problem for linear wave equations; see for exam-
ple [16].
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Observe that Proposition 3.1 does not provide any information about the
asymptotic behaviour of φ towards CH+. We will state in the subsections below
further quantitative and qualitative properties of φ, relating to boundedness
and extendibility of φ and its derivatives beyond CH+, under the assumption
of suitable additional decay requirements along H+.

3.1. Energy Estimates Along Null Hypersurfaces

Consider solutions φ to (1.1) that arise from the characteristic initial data in
Proposition 3.1. We will first show that we can prove boundedness of weighted
L2 norms for φ along null hypersurfaces, under additional assumptions on suit-
able initial L2 norms along H+. We will treat separately the case of axisym-
metric solutions φ on extremal Kerr–Newman with 0 ≤ |a| ≤ M , and the
case of general solutions φ on slowly rotating extremal Kerr–Newman, with
0 ≤ |a| < ac. In the next section, we will give an overview of the theorems
regarding L∞ estimates for φ. Unless specified differently, we consider (1.1) on
an extremal Kerr–Newman background with 0 ≤ |a| ≤ M .

Theorem 3.2. Take 0 < q ≤ 2. Let φ be a solution to (1.1) corresponding to
axisymmetric initial data from Proposition 3.1 satisfying

Eq[φ] :=
∫

H+∩{v≥v0}
vq(Lφ)2 + | /∇φ|2 +

∫

Hv0

|u|2(Lφ)2 + Ω2| /∇φ|2 < ∞.

Then, there exists a constant C = C(a,M, u0, v0, q) > 0 such that for all
Hu and Hv

∫

Hu

vq(Lφ)2 + |u|2| /∇φ|2 +
∫

Hv

|u|2(Lφ)2 + Ω2vq| /∇φ|2 ≤ CEq[φ].

Theorem 3.2 is proved in Proposition 4.2. Theorem 3 follows immediately
by using, moreover, Theorem 3.5 below and the estimate (2.19). Note, more-
over, that by using (2.15) and (2.17) one can easily see that the assumption
of φ along Hv0

is certainly satisfied if φ is smooth along H+ with respect
to (U, θ∗, ϕ∗), which, in particular, is the case if one considers φ arising from
smooth initial data along a hypersurface Σ intersecting H+.

Theorem 3.3. Let φ be a solution to (1.1), with |a| < ac, corresponding to
initial data from Proposition 3.1 satisfying

Eq[φ] :=
∫

H+∩{v≥v0}
vq(Lφ)2 + | /∇φ|2 +

∫

Hv0

|u|2(Lφ)2 + Ω2| /∇φ|2 < ∞,

for some 0 < q ≤ 2.
Let 0 ≤ p < 2 and let ε > 0 be arbitrarily small. Then, there exists a

constant C = C(a,M, u0, v0, p, q, ε) > 0, such that for all Hu and Hv,
∫

Hu

vq−ε(Lφ)2 + |u|p| /∇φ|2 +
∫

Hv

|u|p(Lφ)2 + Ω2vq−ε| /∇φ|2 ≤ CEq[φ].

Theorem 3.3 is proved in Proposition 5.3.
We can remove the ε in Theorem 3.3 at the cost of losing derivatives on

the right-hand side of the estimate.
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Theorem 3.4. Let φ be a solution to (1.1), with |a| < ac, corresponding to
initial data from Proposition 3.1 and denote

D = ||∂Uφ||2
L∞(Hv0)

+ || /∇φ||2
L∞(Hv0)

.

Assume further that

Eextra;η[φ] :=
∫

H+∩{v≥v0}
v2(Lφ)2 +

∑

0≤j1+j2≤4

∫

H+∩{v≥v0}

× vη
(

| /∇j1Lj2+1φ|2 + | /∇j1+1
Lj2φ|2 + | /∇j1+2

Lj2φ|2
)

< ∞,

for η > 0 arbitrarily small. Then, there exists a constant C = C(a,M, v0, u0, η)
> 0 such that,

∫

Hu

v2(Lφ)2 + u2Ω2| /∇φ|2 +
∫

Hv

v2Ω2| /∇φ|2 ≤ C(D + Eextra;η[φ]).

Theorem 3.4 is proved in Corollary 7.7. Theorem 6 now follows from
Theorem 3.4, combined with Theorem 3.5 below and the estimate (2.19).

3.2. Pointwise Estimates and Continuous Extendibility Beyond CH+

We can use the energy estimates in the subsection above to obtain L∞ esti-
mates in M ∩ Du0,v0 , and we can, moreover, show that φ is continuously
extendible beyond CH+. Here, we treat the restriction to axisymmetric φ and
the restriction to slowly rotating extremal Kerr–Newman simultaneously.

Theorem 3.5. Either take 0 < p < 2 and let φ be a solution to (1.1), with |a| <
ac, corresponding to initial data from Proposition 3.1 without any symmetry
assumptions, or take 0 ≤ p ≤ 2 and let φ be a solution to (1.1), with 0 ≤ |a| ≤
M , corresponding to axisymmetric initial data from Proposition 3.1.

Assume that, for ε > 0 arbitrarily small,

sup
v0≤v<∞

∑

|k|≤2

∫

S2
−∞,v

| /∇k
φ|2 < ∞,

∑

0≤j1+j2≤4

∫

H+∩{v≥v0}
vε| /∇j1Lj2+1φ|2 + | /∇j1+1

Lj2φ|2 < ∞.

Then, there exists a constant C = C(a,M, v0, u0, ε) > 0 such that

φ2(u, v, θ∗, ϕ∗) ≤
∑

|k|≤2

∫

S2
−∞,v

| /∇k
φ|2 + C|u|1−p

×
∑

0≤j1+j2≤4

∫

H+∩{v≥v0}
vε| /∇j1Lj2+1φ|2 + | /∇j1+1

Lj2φ|2.

Theorem 3.5 follows from Proposition 7.1.

Theorem 3.6. Let φ be a solution to (1.1), with |a| < ac, corresponding to
initial data from Proposition 3.1 without any symmetry assumptions, or let φ
be a solution to (1.1), with 0 ≤ |a| ≤ M , corresponding to axisymmetric initial
data from Proposition 3.1.
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Assume furthermore that
∑

0≤j1+j2≤4

∫

H+∩{v≥v0}
vq| /∇j1Lj2+1φ|2 + | /∇j1+1

Lj2φ|2 < ∞, (3.1)

for some q > 1.
Then, φ can be extended as a C0 function beyond CH+.

Theorem 3.6 is proved in Proposition 7.2. We can infer Theorems 1 and 5
from Theorems 3.5 and 3.6.

As Theorem 2 is formulated in terms of Cauchy initial data for φ on an
asymptotically flat hypersurface Σ in extremal Kerr, we also need to appeal to
the decay estimates in the exterior of extremal Kerr. In particular, boundedness
of a non-degenerate energy and τ−1−ε-decay of the (degenerate) T -energy for
axisymmetric solutions, with respect to a suitable spacelike foliation Στ of
the extremal Kerr exterior, which are proved in Theorems 2 and 3 of [8], are
sufficient to show that (3.1) holds for suitable Cauchy data for φ, so that
Theorem 2 can be viewed as a corollary of Theorem 1.

Finally, we obtain v-decay estimates for
∫

S2
u,v

(Lφ)2 dμ/g, which are

needed to show that φ can be extended as a C0,α (with α < 1) across CH+:

Theorem 3.7. Let φ be a solution to (1.1) corresponding to initial data from
Proposition 3.1 without any symmetry assumptions. Let k ∈ N0 and denote

D2k :=
∑

j1+j2+2j3+j4≤2k

||∂ULj1Lj2Qj3Φj4φ||2
L∞(Hv0)

+ || /∇Lj1Lj2Qj3Φj4φ||2
L∞(Hv0)

+
∑

j1+2j2≤n

||∂UΦj1+1Qj2φ||2
L∞(Hv0)

+ || /∇Φj1+1Qj2φ||2
L∞(Hv0)

.

Assume that
∫

S2
−∞,v

v4(Lφ)2 + v2| /∇φ|2 + v2| /∇2
φ|2 dμ/g < ∞.

(i) Let |a| < ac and assume also that
∑

0≤j1+j2≤4

∫

H+∩{v≥v0}
v
(

| /∇j1Lj2+1φ|2 + | /∇j1+1
Lj2φ|2 + | /∇j1+2

Lj2φ|2
)

<∞.

Then, we can estimate
∫

S2
u,v

v4(Lφ)2(u, v, θ∗, ϕ∗) dμ/g

≤
∫

S2
−∞,v

v4(Lφ)2 dμ/g + C

∫

S2
−∞,v

v2| /∇φ|2 + v2| /∇2
φ|2 dμ/g

+Cvε

⎡

⎣D2 +
∑

0≤j1+j2≤4

∫

H+∩{v≥v0}

× v
(

| /∇j1Lj2+1φ|2 + | /∇j1+1
Lj2φ|2 + | /∇j1+2

Lj2φ|2
)]

.
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(ii) Restrict to axisymmetric data from Proposition 3.1 and assume that
∑

0≤j1+j2≤4

∫

H+∩{v≥v0}
v1+ε

(

| /∇j1Lj2+1φ|2 + | /∇j1+1
Lj2φ|2 + | /∇j1+2

Lj2φ|2
)

<∞,

for ε > 0 arbitrarily small. Then, we can estimate
∫

S2
u,v

v
4
(Lφ)

2
(u, v, θ∗, ϕ∗) dμ/g ≤

∫

S2
−∞,v

v
4
(Lφ)

2
dμ/g

+C

∫

S2
−∞,v

v
2| /∇φ|2 + v

2| /∇2
φ|2dμ/g + C log

(

v + |u|
|u|

)

·
[

D2 +
∑

0≤j1+j2≤4

∫

H+∩{v≥v0}
v
1+ε

(

| /∇j1L
j2+1

φ|2 + | /∇j1+1
L

j2φ|2 + | /∇j1+2
L

j2φ|2
)

]

.

(iii) Either restrict to axisymmetric data in from Proposition 3.1, or let |a| <
ac. Assume that

∫

S2
−∞,v

v4
∑

j1+j2≤2

(LLj1Lj2φ)2 + v4
∑

j1+j2≤1

∑

Γ∈{Φ,Φ2,T 2,Q}
(LLj1Lj2Γφ)2 dμ/g < ∞,

∑

j1+j2≤2

∫

S2
−∞,v

v2
(

| /∇Lj1Lj2φ|2 + | /∇2
Lj1Lj2φ|2

)

dμ/g < ∞,

∑

0≤j1+j2≤8

∫

H+∩{v≥v0}
v
(

| /∇j1Lj2+1φ|2 + | /∇j1+1
Lj2φ|2 + | /∇j1+2

Lj2φ|2
)

< ∞.

Then, φ can be extended in C0,α, for all α < 1.

Theorem 3.7 follows from Propositions 7.6 and 7.8 and implies Theo-
rems 4 and 7.

4. Energy Estimates for Axisymmetric Solutions

We will first restrict to axisymmetric solutions to (1.1) on extremal Kerr–
Newman spacetimes with 0 ≤ |a| ≤ M . In this section we will always use φ to
denote a solution to (1.1), with 0 ≤ |a| ≤ M , corresponding to axisymmetric
initial data from Proposition 3.1.

We will frequently make use of a Grönwall-type lemma.

Lemma 4.1. Let −∞ ≤ u1 < u2 ≤ ∞ and −∞ ≤ v1 < v2 ≤ ∞. Consider
continuous, non-negative functions f, g : [u1, u2]×[v1, v2] → R and continuous,
non-negative functions h : [u1, u2] → R and k : [v1, v2] → R. Suppose

f(u, v)+ g(u, v) ≤ A+B

[∫ u

u1

h(u′)f(u′, v) du′ +
∫ v

v1

k(v′)g(u, v′) dv′
]

, (4.1)

for all u ∈ [u1, u2] and v ∈ [v1, v2], where A,B > 0 are constants. Then,

f(u, v) + g(u, v) ≤ (1 + η)Ae
βB

[

∫ u
u1

h(u′) du′+
∫ v
v1

k(v′) dv′
]

, (4.2)

for all u ∈ [u1, u2] and v ∈ [v1, v2], where η > 0 can be taken arbitrarily small
and β ≥ 2(1+η)

η .
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Proof. See Sect. 4 of [23]. �

We can use the vector field Np,q with p = 2, defined in Sect. 2.5, as a
vector field multiplier to obtain weighted energy estimates.

Proposition 4.2. Fix p = 2 and let 0 < q ≤ 2. There exists a constant C =
C(a,M, u0, v0, q) > 0 such that for all Hu and Hv in Du0,v0

∫

Hu

JN2,q [φ] · L +
∫

Hv

JN2,q [φ] · L

≤ C

[

∫

H+∩{v≥v0}
JN2,q [φ] · L +

∫

Hv0

JN2,q [φ] · L

]

=: CEq[φ]. (4.3)

Proof. By applying the divergence theorem from Sect. 2.5 in Du0,v0 , we can
estimate

∫

Hu

JN2,q [φ] · L +
∫

Hv

JN2,q [φ] · L

=
∫

H+∩{v≥v0}
JN2,q [φ] · L +

∫

Hv0

JN2,q [φ] · L

−
∫

Du0,v0

K
Np,q

null [φ] + K
Np,q

angular[φ] + K
Np,q

mixed. (4.4)

By the assumption that φ is axisymmetric, we have that K
Np,q

mixed = 0.

We first consider K
Np,q

null [φ] and apply the estimates of Sects. 2.3–(2.20)
to find that

Ω2|KNp,q

null [φ]| ≤ C(v + |u|)−2(vq − |u|p)|Lφ||Lφ|.
By applying a (weighted) Cauchy–Schwarz inequality, we can further estimate
for η > 0,

vq(v + |u|)−2|Lφ||Lφ| ≤ Cvq(v + |u|)−1−q−η|u|p(Lφ)2

+ C|u|−p(v + |u|)q+η−3vq(Lφ)2

≤ Cvq sup
u≤u′≤u0

[

(v + |u′|)−1−q−η
] |u|p(Lφ)2

+ C|u|−p sup
v0≤v′≤v

[

(v′ + |u|)q+η−3
]

vq(Lφ)2

≤ Cv−1−η|u|p(Lφ)2 + C|u|q+η−p−3vq(Lφ)2,

for η < 3 − q.
Similarly, by reversing the roles of u and v, we obtain

|u|p(v + |u|)−2|Lφ||Lφ| ≤ C|u|−1−ηvq(Lφ)2 + Cvp+η−q−3|u|p(Lφ)2,

for η < 3 − p.
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We will now estimate K
Np,q

angular by applying the estimates of Sect. 2.3
to (2.21). We obtain

K
Np,q

angular = − 1
2
[

qvq−1 − p|u|p−1 + 4Ωω(vq − |u|p)] | /∇φ|2

+ (vq + |u|p) log(v + |u|)O((v + |u|)−2)| /∇φ|2.
(4.5)

Recall from (ii) of Theorem 2.2 that we can expand

4Ωω = − 2
v + |u| + log(v + |u|)O((v + |u|)−2).

Consequently, we can rewrite (4.5) to obtain

K
Np,q

angular = − 1

2

[(

q − 2
v

q
2 + |u| p

2

v + |u| v1− q
2

)

vq−1+

(

2
v

q
2 + |u| p

2

v + |u| |u|1− p
2 − p

)

|u|p−1

]

| /∇φ|2

+ (vq + |u|p) log(v + |u|)O((v + |u|)−2)| /∇φ|2. (4.6)

First, let 0 ≤ p < 2. Then, the term between square brackets in front of | /∇φ|2
will become positive in the region |u| > v, as we approach H+, which means
that K

Np,q

angular will be negative, and we are not able to control it. We therefore
restrict to p = 2.

If p = 2 and q < 2, the term inside the square brackets is negative for
suitably large v, so we can estimate

K
Np,q

angular ≥ Cvq−1| /∇φ|2 + O((vq + |u|2)(v + |u|)−2 log(v + |u|))| /∇φ|2.
If p = 2 and q = 2, a cancellation occurs in the leading-order terms

between square brackets, so we can estimate

K
Np,q

angular = (v2 + |u|2) log(v + |u|)O((v + |u|)−2)| /∇φ|2.
If we fix p = 2, we can therefore estimate for all 0 ≤ q ≤ 2,

Ω2K
Np,q

angular ≥ (vq + |u|2) log(v + |u|)O((v + |u|)−2)Ω2| /∇φ|2
≥ − Cε|u|−2+εvqΩ2| /∇φ|2 − Cεv

−2+ε|u|2Ω2| /∇φ|2,
with ε > 0 arbitrarily small and Cε = Cε(M,u0, v0, ε) > 0. We will fix 0 < ε <
1.

We combine the estimates above for K
N2,q

null and K
N2,q

angular to obtain, for
0 ≤ q ≤ 2,

− Ω2
(

K
N2,q

angular + K
N2,q

null

)

≤ C
[

(v−1−η + vη−q−1)|u|2(Lφ)2 + (|u|−1−η + |u|q+η−5)vq(Lφ)2

+ |u|−2+εvqΩ2| /∇φ|2 + v−2+ε|u|2Ω2| /∇φ|2
]

.

Finally, we can apply Lemma 4.1 with the choices

A =
∫

H+∩{v≥v0}
JN2,q [φ] · L +

∫

Hv0

JN2,q [φ] · L,

f(u, v) =
∫

Hu

vq(Lφ)2 + |u|2Ω2| /∇φ|2,
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g(u, v) =
∫

Hv

|u|2(Lφ)2 + vqΩ2| /∇φ|2,

h(u) = |u|−1−η + |u|q+η−5 + |u|−2+ε,

k(v) = v−1−η + vη−q−1 + v−2+ε,

where we use that h and k are integrable for 0 < η < min{q, 1} and 0 < ε < 1,
to arrive at the estimate in the proposition. We therefore need the restriction
q > 0 if p = 2. �

We have now proved Theorem 3.2.

5. Energy Estimates in Slowly Rotating Extremal
Kerr–Newman

We now drop the axisymmetry assumptions on solutions to (1.1) on extremal
Kerr–Newman. We do, however, restrict to the subfamily of slowly rotating
extremal Kerr–Newman spacetimes, with 0 ≤ |a| < ac; see Sect. 2.5.

In this section we will always use φ to denote a solution to (1.1),
with 0 ≤ |a| < ac, corresponding to initial data from Proposition 3.1
without symmetry assumptions.

Even without an axisymmetry assumption on φ, we can still obtain energy
estimates with respect to vector fields Np,q if we restrict to subsets of Du0,v0

with a finite spacetime volume. We introduce the hypersurfaces γ
α

and γβ ,
with α ≥ 1 and β ≥ 1, such that

γ
α

:= {(u, v, θ∗, ϕ∗) ∈ Du0,v0 : fα(u, v) = 0},

γβ := {(u, v, θ∗, ϕ∗) ∈ Du0,v0 : f
β
(u, v) = 0}.

We define fα(u, v) as follows:

fα(u, v) = |u| − vα, |u| > |u1|,
= hα(u, v), |u| ≤ |u1|,

where |u1| is taken suitably large, such that −g(df α, df α) ≥ C, for |u| > |u1|,
with C > 0 a constant. Moreover, we can choose hα such that fα is a smooth
function on (−∞, u0] × [v0,∞) and for all (u, v) such that hα(u, v) = 0, we
can uniformly bound −g(dhα, dhα)(u, v) ≥ C.

We define f
β
(u, v) as follows:

f
β
(u, v) = v − |u|β , v > v1,

= hβ(u, v), v ≤ v1,

where v1 is taken suitably large, such that −g(df
β
,df

β
) ≥ C, for v > v1,

with C > 0 a constant. Moreover, we can choose hβ such that f
β

is a smooth
function on (−∞, u0]× [v0,∞) and for all (u, v) such that hβ(u, v) = 0, we can
uniformly bound −g(dhβ , dhβ)(u, v) ≥ C.
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Figure 3. The subsets A, A and B of Du0,v0

Consequently, γ
α

and γβ are spacelike hypersurfaces. Denote

A := J−(γ
α
) ∩ Du0,v0 ,

A := J+(γβ) ∩ Du0,v0 ,

B := J+(γ
α
) ∩ J−(γβ) ∩ Du0,v0 .

See Fig. 3. It is easy to verify that the spacetime volumes of A and A are
finite, if we take α > 1 and β > 1.

5.1. Energy Estimates in AA
We first consider energy estimates with respect to Np,q. Since φ is no longer
assumed to be axisymmetric, Kmixed[φ] does not necessarily vanish. To deal
with a non-vanishing Kmixed[φ], we first consider the regions A and A of finite
spacetime volume.

Proposition 5.1. (i) Let p = 2 and 0 < q < 2. Fix α > 1. Then, there exists
a constant C = C(a,M, u0, v0, q, α) > 0 such that
∫

Hu∩A
JN2,q [φ] · L +

∫

Hv∩A
JN2,q [φ] · L +

∫

γ
α

JNp,q [φ] · nγ
α

≤C

[

∫

H+∩{v≥v0}
JN2,q [φ] · nH+ +

∫

Hv0
∩{|u|≥|uγα

|(v0)}
JN2,q [φ] · L

]

.

(5.1)

(ii) Let p = 2 and 0 < q ≤ 2, or let 0 ≤ p < 2 and 0 ≤ q < 2. Fix β > 1.
Then, there exists a constant C = C(a,M, u0, v0, p, q, β) > 0 such that

∫

Hu∩A
JNp,q [φ] · L +

∫

Hv∩A
JNp,q [φ] · L

≤ C

[

∫

γβ

JNp,q [φ] · nγβ
+
∫

Hv0
∩{|u|≤|uγβ

|(v0)}
JNp,q [φ] · L

]

. (5.2)
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Proof. We first apply the divergence theorem in region A, to obtain
∫

Hu∩A
JN2,q [φ] · L +

∫

Hv∩A
JN2,q [φ] · L

=
∫

H+∩{v≥v0}
JN2,q [φ] · L +

∫

Hv0
∩{|u|≥|uγα

|(v0)}
JN2,q [φ] · L

−
∫

A
K

Np,q

null [φ] + K
Np,q

angular[φ] + K
Np,q

mixed[φ]. (5.3)

We can estimate K
Np,q

null [φ] and K
Np,q

angular[φ] in exactly the same way as in Propo-

sition 4.2. We are left with estimating K
Np,q

mixed[φ]. If we apply the estimates in
Sect. 2.3 to (2.22), we can estimate,

Ω2|KNp,q

mixed[φ]| ≤ C(v + |u|)−2(vq|Lφ||∂ϕ∗φ| + |u|p|Lφ||∂ϕ∗φ|).
By applying Cauchy–Schwarz, we can further estimate, for η > 0,

(v + |u|)−2vq|Lφ||∂ϕ∗φ|
≤ C|u|−1−ηvq(Lφ)2 + C(v + |u|)−2vq|u|1−p+η|u|pΩ2| /∇φ|2
≤ C|u|−1−ηvq(Lφ)2 + C|u| q

α +η−p−1|u|pΩ2| /∇φ|2,

where we used that v ≤ C|u| 1
α in J−(γ

α
), for some constant C > 0.

Similarly, we apply Cauchy–Schwarz to estimate

(v + |u|)−2|u|p|Lφ||∂ϕ∗φ|
≤ Cv−1−η|u|p(Lφ)2 + C(v + |u|)−2v1+η|u|pΩ2| /∇φ|2

≤ Cv−1−η|u|p(Lφ)2 + C|u| 1+η
α −2|u|pΩ2| /∇φ|2.

Combined with the estimates from Proposition 4.2 for K
Np,q

angular and

K
Np,q

null , we can apply Lemma 4.1 with

A =
∫

H+∩{v≥v0}
JN2,q [φ] · L +

∫

Hv0

JN2,q [φ] · L,

f(u, v) =
∫

Hu∩A
vq(Lφ)2 + |u|2Ω2| /∇φ|2,

g(u, v) =
∫

Hv∩A
|u|2(Lφ)2 + vqΩ2| /∇φ|2,

h(u) = |u|−1−η + |u|q+η−5 + |u|−2+ε + |u| q
α +η−3 + |u| 1+η

α −2,

k(v) = v−1−η + vη−q−1 + v−2+ε,

where we use that h and k are integrable for 0 < η < min{q, 1, 2 − q
α , α − 1}

and 0 < ε < 1. Since we assumed that α > 1, we obtain the estimate in (i).
Consider now the region A. The estimates above can be repeated here,

where the roles of |u| and v are replaced when estimating K
Np,q

mixed:
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Ω2|KNp,q

mixed[φ]| ≤ Cv−1−η|u|p(Lφ)2

+C|u|−1−ηvq(Lφ)2 + C(v
p
β +η−q−1 + v

1+η
β −2)vqΩ2| /∇φ|2.

Furthermore, we can actually improve the estimate for K
Np,q

angular from Proposi-
tion 4.2 when restricted to A, by including the cases 0 < p ≤ 2, with 0 ≤ q < 2.
This improvement will in fact be necessary to prove Proposition 5.3.

Indeed, we can estimate

−K
Np,q

angular =
1

2(v + |u|)
[

((q − 2)v + q|u|) vq−1 + ((2 − p)|u| − pv) |u|p−1] | /∇φ|2

+ O((vq + |u|p)(v + |u|)−2 log(v + |u|))| /∇φ|2

≤ C(v + |u|)−1|u|p| /∇φ|2 + O((vq + |u|p)(v + |u|)−2 log(v + |u|))| /∇φ|2,

where in the second inequality we used that (q−2)v+q|u| < 0 in A if v+ |u| is
suitably large and q < 2, which follows from the inequality |u| < 2−q

q v, which
holds in A if v + |u| is suitably large and β > 1.

We can now apply Lemma 4.1 with

A =
∫

H+∩{v≥v0}
JNp,q [φ] · L +

∫

Hv0

JNp,q [φ] · L,

f(u, v) =
∫

Hu∩A
vq(Lφ)2 + |u|pΩ2| /∇φ|2,

g(u, v) =
∫

Hv∩A
|u|p(Lφ)2 + vqΩ2| /∇φ|2,

h(u) = |u|−1−η + |u|q+η−3−p + |u|−2+ε,

k(v) = v−1−η + vp+η−q−3 + v−2+ε + v
p
β +η−1−q + v

1+η
β −2,

where h and k are integrable for 0 < η < min{q +2−p, p+2− q, 2− p
β , β −1},

0 < ε < 1. For consistency, we therefore require β > 1, p < q+2 and q < p+2.
In particular, if p = 2, we need q > 0 and if q = 2, we need p > 0. �

5.2. Energy Estimates in B
We are left with proving a suitable energy estimate in the region B. In Kerr–
Newman spacetimes with 0 ≤ |a| < ac, we can obtain an energy estimate away
from H+ with respect to the vector field Yp, defined by

Yp = |u|pH,

if we restrict to a region {v ≥ v1}, where v1 is taken suitably large, such that
M − r is sufficiently small, so as to ensure that Yp is a causal vector field
everywhere in B ∩ {v ≥ v1}; see the discussion in Sect. 2.4.

Proposition 5.2. Let 0 ≤ p ≤ 2 and let v1 > v0 be suitably large. Then, there
exists a constant C = C(a,M, u0, v0, v1, p) > 0 such that
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∫

Hu∩B∩{v≥v1}
JYp [φ] · L +

∫

Hv∩B∩{v≥v1}
JYp [φ] · L +

∫

γβ∩{v≥v1}
JYp [φ] · nγβ

+
∫

B∩{v≥v1}
KYp [φ] ≤ C

[

∫

γ
α

∩{v≥v1}
JYp [φ] · nH+

+
∫

Hv1
∩{|u|≤uγα

(v1)}
JYp [φ] · L

]

. (5.4)

Proof. We consider the region B ∩ {v ≥ v1}, where v1 can be chosen suitably
large, such that H is causal for |a| < ac everywhere in B ∪ {v ≥ v1}. See
Sect. 2.4.

We use that H is a Killing vector field to easily obtain an expression for
KYp ,

KYp [φ] = gαβ∇β(JYp
α ) = gαβ∇β(|u|p)JH

α [φ] + |u|pKH [φ]

=
p

2
Ω−2|u|p−1JH [φ] · L ≥ 0,

where non-negativity in the case that φ is not axisymmetric requires that H
is causal.

Moreover, there exists a constant C > 0 such that we can estimate

JH [φ] · L = (Lφ)2 + Ω2| /∇φ|2 − bϕ∗Lφ∂ϕ∗φ

≥ C
[

(Lφ)2 + Ω2| /∇φ|2] .
If we apply the divergence theorem in the region B ∩ {v ≥ v1}, the bulk term
is therefore of a good sign. �

We can now obtain energy estimates in the entire region Du0,v0 by com-
bining the results from Propositions 5.1 and 5.2.

Proposition 5.3. Let 0 ≤ p < 2 and 0 ≤ q < 2. Then, there exist α = α(p, q) >
1 and β = β(p, q) > 1, such that for all Hu and Hv in Du0,v0 ,

∫

Hu

JNp,q [φ] · L +
∫

Hv

JNp,q [φ] · L

≤ C

[

∫

H+∩{v≥v0}
JN2,qβα [φ] · L +

∫

Hv0

JN2,qβα [φ] · L

]

=: CEqαβ [φ],

with 0 < qβα ≤ 2 and C = C(a,M, u0, v0, p, q, α, β) > 0.

Proof. We first restrict to the region {v ≥ v1}. Note that
∫

Hu∩B∩{v≥v1}
JNp,q [φ] · L +

∫

Hv∩B∩{v≥v1}
JNp,q [φ] · L

≤ C

[

∫

Hu∩B∩{v≥v1}
JYp′ [φ] · L +

∫

Hv∩B∩{v≥v1}
JYp′ [φ] · L

]

,

for p′ ≥ p and p′ ≥ qβ.
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Furthermore,
∫

Hu∩B∩{v≥v1}
JY ′

p [φ] · L +
∫

Hv∩B∩{v≥v1}
JY ′

p [φ] · L

≤ C

[

∫

Hu∩B∩{v≥v1}
JN2,q′′ [φ] · L +

∫

Hv∩B∩{v≥v1}
JN2,q′′ [φ] · L

]

,

for q′′ ≥ p′α.
Combining Propositions 5.1 and 5.2 we can therefore estimate

∫

Hu∩A∩{v≥v1}
JNp,q [φ] · L +

∫

Hv∩A∩{v≥v1}
JNp,q [φ] · L

≤ C

∫

γβ∩{v≥v1}
JNp,q [φ] · nγβ

+
∫

Hv1
∩{|u|≤|uγβ

(v1)|}
JNp,q [φ] · L

≤ C

∫

γβ∩{v≥v1}
JYp′ [φ] · nγβ

+ C

∫

Hv1
∩{|u|≤|uγβ

(v1)|}
JNp,q [φ] · L

≤ C

[

∫

γ
α

∩{v≥v1}
JYp′ [φ] · nγ

α
+
∫

Hv1
∩{|uγβ

(v1)|≤|u|≤|uγα
(v1)|}

JYp′ [φ] · L

+
∫

Hv1
∩{|u|≤|uγβ

(v1)|}
JNp,q [φ] · L

]

,

where we need β > 1, 0 ≤ p ≤ 2 and 0 < q ≤ 2, or 0 < p ≤ 2 and 0 ≤ q ≤ 2.
Moreover, we need

p′ ≥ p,

p′ ≥ qβ.

Similarly, we can estimate
∫

Hu∩B∩{v≥v1}
JNp,q [φ] · L +

∫

Hv∩B∩{v≥v1}
JNp,q [φ] · L

≤ C

[

∫

γ
α

∩{v≥v1}
JYp′ [φ] · nγ

α
+
∫

Hv1
∩{|uγβ

(v1)|≤|u|≤|uγα
(v1)|}

JYp′ [φ] · L

]

,

where p′ ≥ p and p′ ≥ qβ.
Now we apply Proposition 5.1 in the region A to estimate
∫

γ
α

∩{v≥v1}
JYp′ [φ] · nγ

α

≤ C

[

∫

H+∩{v≥v1}
JN2,q′′ [φ] · L +

∫

Hv1
∩{|u|≥|uγα

(v1)|}
JN2,q′′ [φ] · L

]

,

where we need α > 1, and we require

p′ ≤ 2,

p′α ≤ q′′ ≤ 2.
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If we combine the restrictions on p, q, p′, q′ and q′′, we obtain

p ≤ p′ ≤ 2
α

,

q ≤ p′

β
≤ 2

αβ
.

We now consider the region {v0 ≤ v ≤ v1}. Since the region B ∩{v ≤ v1}
is compact, we do not need to appeal to the estimates with respect to the
vector fields Yp from Proposition 5.2. Instead, we use the vector fields Np,q,
as in Proposition 5.1, making use of the compactness of B ∩ {v ≤ v1} to, in
particular, estimate the previously problematic K

Np,q

mixed[φ] error term.
We arrive at the estimate:

∫

Hu∩{v≤v1}
JNp,q [φ] · L +

∫

Hv∩{v≤v1}
JNp,q [φ] · L

≤ C

∫

H+∩{v≤v1}
JNp,q [φ] · L + C

∫

Hv0

JNp,q [φ] · L,

for any 0 ≤ p, q ≤ 2.
The estimate in the proposition now follows by adding the estimates in

{v ≥ v1} and {v ≤ v1} together. �

Remark 5.1. For ε > 0 arbitrarily small we can always choose α and β in
Proposition 5.3 suitably close to 1, so that we can take p = 2− ε and q = 2− ε.

We have now proved Theorem 3.3.

6. Higher-Order Energy Estimates

In order to obtain L∞ bounds from the L2 bounds derived in Sects. 4 and 5,
we need to derive similar L2 bounds for higher-order derivatives of φ. In this
section we will use φ to denote a solution to (1.1) corresponding to initial
data from Proposition 3.1. We will always specify whether we are assuming φ
arises from axisymmetric data in Proposition 3.1, or the rotation parameter a
is restricted to the range 0 ≤ |a| < ac.

6.1. Elliptic Estimates on S2
u,v

In this section we will show that the angular derivatives on the Eddington–
Finkelstein-type spheres S2

u,v can be controlled by derivatives with respect to
the Killing vector field Φ, the null-directed vector fields L and L and the Carter
operator Q; see Sect. 2.4.

Note that norms of the angular derivatives of functions on
Boyer–Lindquist spheres of constant t and r with respect to the corresponding
induced spherical metric can easily been seen to be comparable to analogous
norms with the induced metric on the Boyer–Lindquist spheres replaced by the
metric on the unit round sphere. This follows from the fact that r is bounded
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away from zero and infinity in the region of interest in the black hole inte-
rior. Similarly, the induced volume form on the Boyer–Lindquist spheres is
comparable to the natural volume form on the unit round sphere.

As a preliminary step to considering norms on Eddington–Finkelstein-
type spheres S2

u,v, we will need that L2 norms of angular derivatives of any
function f restricted to the Boyer–Lindquist spheres with respect to the unit
round sphere can be controlled solely by L2 norms of T (f), Φ(f) and Q(f).
Therefore, the L2 norms with respect to the actual induced metric on the
Boyer–Lindquist spheres can also be controlled similarly. The lemma below
can be found in [8].

Lemma 6.1. Given a function f : M∩Du0,v0 → R, there exists a C = C(a) > 0
such that

∫

S2
|∇S2f |2(t, r, θ, ϕ) + |∇2

S2f |2(t, r, θ, ϕ) dμS2

≤ C

∫

S2
(Qf)2 + (Φ2f)2 + (T 2f)2 dμS2 , (6.1)

where ∇S2 denotes the covariant derivative on S
2 and dμS2 = sin θdθdϕ.

Proof. By decomposing f into spherical harmonics f� on S
2, one can show that

∫

S2
(ΔS2f)2 dμS2 =

∞
∑

�=0

∫

S2
(�(� + 1))2f2

� dμS2 =
∞
∑

�=0

∫

S2

∑

1≤|k|≤2

(Okfl)2 dμS2

=
∑

1≤|k|≤2

∫

S2
(Okf)2 dμS2 ≥

∫

S2
|∇S2f |2 + |∇2

S2f |2 dμS2 ,

where ΔS2 denotes the Laplacian on S
2 and Ok denotes the operators of the

form Oj1
1 Oj2

2 Oj3
3 with j1 + j2 + j3 = k, with Oi angular momentum operators;

see for example Sect. 2.1 of [23] for explicit expressions of Oi.
The estimate (6.1) follows by using the definition of Q to rewrite the

left-hand side above and applying Cauchy–Schwarz. �

We would similarly like to control the angular derivatives in the coor-
dinates (θ∗, ϕ∗) by using the operators Q,T and Φ that commute with �g.
However, since the tangent spaces to the Boyer–Lindquist spheres and the
spheres S2

u,v are not spanned by the same tangent vectors, we need to include
L and L derivatives in our estimate.

For the sake of convenience, we change from the chart (θ∗, ϕ∗) on the
2-spheres S2

u,v to the chart (θ∗, ϕ), because the induced metric on S2
u,v then

becomes diagonal:

/g = f2
1 f2

2 (∂θ∗F )2R−2dθ2
∗ + R2 sin2 θdϕ2.

Proposition 6.2. Given a suitably regular function f : M ∩ Du0,v0 → R, there
exists a C = C(M,a, u0, v0) > 0 such that

∫

S2
u,v

| /∇f |2 + | /∇2
f |2
√

det /gdθ∗dϕ∗
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≤ C

1
∑

k=0

∑

Γ∈{id,Φ,Φ2,T 2,Q}

∫

S2
u,v

(ΓLkf)2 + (ΓLkf)2 + (L2f)2

+ (L2f)2 + (LLf)2 + (bϕ∗)2[(QΦf)2 + (T 2Φf)2

+ (Φ3f)2]
√

det /gdθ∗dϕ∗, (6.2)

for all |u| ≥ |u0| and v ≥ v0.
Let v1 > v0 and |u1| > u0 be suitably large. Then, we can estimate

∫

S2
u,v

| /∇2
f |2
√

det /gdθ∗dϕ∗

≤ C

∫

S2
u,v

(Qf)2 + (Φ2f)2 + (T 2f)2 + (L2f)2 + (L2f)2

+ (LLf)2 + (Lf)2 + (Lf)2 + | /∇Lf |2 + | /∇Lf |2 + | /∇f |2
√

det /gdθ∗dϕ∗,
(6.3)

if either |u| ≥ |u1| or v ≥ v1, where C = C(M,a, u0, v0, u1, v1) > 0.

Proof. By Theorem 2.1 there exist uniform constants C, c > 0 such that

c sin θ ≤ det /g ≤ C sin θ,

where det /g is the determinant with respect to the coordinate basis correspond-
ing to the chart (θ∗, ϕ∗), which is equal to the determinant of the matrix of /g
with respect to the coordinate basis corresponding to the chart (θ∗, ϕ).

Consider the first-order angular derivatives. We can write

| /∇f |2 = /g
θ∗θ∗(∂θ∗f)2 + /g

ϕϕ(∂ϕf)2 ≤ C
[

(∂θ∗f)2 + sin−2 θ(∂ϕf)2
]

.

By the chain rule, we have that

∂θf = (∂θθ∗)∂θ∗f +
1
2
(∂θr∗)(∂vf − ∂uf)

= (∂θθ∗)∂θ∗f +
1
2
(∂θr∗)(Lf − bϕ∗∂ϕ∗f − Lf).

By applying (2.10) and (2.12), we find that

(∂θ∗f)2 ≤ C
[

(∂θf)2 + sin2 θ(Lf)2 + sin2 θ(Lf)2 + sin2 θ(bϕ∗)2(Φf)2
]

. (6.4)

We can now conclude the following:

| /∇f |2 ≤ C
[|∇S2f |2 + sin2 θ(Lf)2 + sin2 θ(Lf)2

]

. (6.5)

Now consider the second-order angular derivatives. We can estimate

| /∇2
f |2 = /g

AB
/g

CD(∇A∂Cf)(∇B∂Df)

= (/gϕϕ)2(∂2
ϕf)2 + (/gθ∗θ∗)2(∂2

θ∗f)2 + gθ∗θ∗gϕϕ(∂θ∗∂ϕf)2

+ /g
AB

/g
CD( /∇A∂C)E( /∇B∂D)F /∇Ef /∇F f,

≤ C
[

sin−4 θ(∂2
ϕf)2 + (∂2

θ∗f)2 + sin−2 θ(∂θ∗∂ϕf)2
]

+ /g
AB

/g
CD( /∇A∂C)E( /∇B∂D)F /∇Ef /∇F f.
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By applying the chain rule we find that

∂2
θf = ∂2

θθ∗∂θ∗f + (∂θθ∗)
[

∂θθ∗∂2
θ∗f + ∂θr∗ (∂θ∗Lf − ∂θ∗(bϕ∗Φf) − ∂θ∗Lf)

]

+
1
4
(∂θr∗)2((L − bϕ∗Φ)2f − 2(L − bϕ∗Φ)Lf + L2f)

+
1
2
∂2

θr∗(Lf − bϕ∗∂ϕ∗f − Lf). (6.6)

Consequently, by applying the estimates from Theorem 2.1, we obtain
(∂

2
θ∗f)

2 ≤ (∂θ∗ f)
2

+ (∂
2
θf)

2
+ sin

2
θ(∂θ∗ (Lf))

2
+ sin

2
θ(∂θ∗ (b

ϕ∗Φf))
2

+ sin
2

θ(∂θ∗ (Lf))
2

+ (Lf)
2

+ (Lf)
2

+ sin
4

θ(L
2
f)

2
+ sin

4
θ(LLf)

2
+ sin

4
θ(L

2
f)

2
+ sin

4
θ(b

ϕ∗ )
2
(LΦf)

2

+ sin
4

θ(b
ϕ∗ )

2
(LΦf)

2
+ sin

4
θ(b

ϕ∗ )
2
(LΦf)

2
+ (b

ϕ∗ )
4
(Φ

2
f)

2
+ (Φf)

2
, (6.7)

where we used, moreover, that the vector field Φ commutes with all the vector
fields L,L, ∂θ∗ , ∂θ and with bϕ∗ .

We can further estimate

(∂θ∗(bϕ∗Φf))2 ≤ (bϕ∗)2(Φ∂θ∗f)2 + (∂θ∗bϕ∗)2(Φf)2

≤ C
[

(∂θΦf)2 + (LΦf)2 + (LΦf)2 + (Φ2f)2
]

≤ C
[

(QΦf)2 + (T 2Φf)2 + (LΦf)2 + (LΦf)2 + (Φf)2 + (Φ2f)2 + (Φ3f)2
]

.

(6.8)

We now turn to ( /∇A∂C)E . The only non-vanishing components are given
by:

∣

∣( /∇θ∗∂θ∗)θ∗
∣

∣ =
∣

∣

∣

∣

1
2
gθ∗θ∗∂θ∗gθ∗θ∗

∣

∣

∣

∣

≤ C,

∣

∣( /∇ϕ∂ϕ)θ∗
∣

∣ =
∣

∣

∣

∣

1
2
gθ∗θ∗∂θ∗gϕϕ

∣

∣

∣

∣

≤ C sin θ,

∣

∣( /∇θ∗∂ϕ)ϕ
∣

∣ =
∣

∣

∣

∣

1
2
gϕϕ∂θ∗gϕϕ

∣

∣

∣

∣

≤ C sin θ,

where we used the estimates from Theorem 2.1 to arrive at the inequalities on
the right-hand sides.

We can now estimate, by applying (6.4),

/g
AB

/g
CD( /∇A∂C)E( /∇B∂D)F /∇Ef /∇F f

=
(

/g
θ∗θ∗

)2
(( /∇θ∗∂θ∗)θ∗)2(∂θ∗f)2 + 2/g

θ∗θ∗/g
ϕϕ(( /∇θ∗∂ϕ)ϕ)2(∂ϕf)2

+ (/gϕϕ)2(( /∇ϕ∂ϕ)θ∗)2(∂θ∗f)2

≤ C sin−2 θ(∂θ∗f)2 + C sin−4 θ(∂ϕf)2

≤ C/g
AB
S2 /g

CD
S2 ((∇S2)A∂C)E((∇S2)B∂D)F ∂Ef∂F f

+ C(Lf)2 + C(Lf)2 + C(bϕ∗)2(Φf)2. (6.9)

By combining (6.7), the first inequality in (6.8), and (6.9) and making
use of the smallness of |bϕ∗ | for suitably large v1 and |u1|, we obtain (6.3). We
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can also estimate
∫

S2
u,v

| /∇f |2 + | /∇2
f |2
√

det /gdθ∗dϕ

≤ C

1
∑

k=0

∑

Γ∈{id,Φ,Φ2,T 2}

∫

S2
u,v

(LkΓf)2 + (LkΓf)2 + (L2f)2

+ (L2f)2 + (LLf)2 + (Φ2f)2 + (bϕ∗)2[(QΦf)2 + (T 2Φf)2

+ (Φ3f)2] + (Qf)2 + sin2 θ(QLf)2

+ sin2 θ(QLf)2
√

det /gdθ∗dϕ∗.

We have now obtained the estimate (6.2).
We can easily commute L and L with Γ above. �

Remark 6.1. Observe that there is a loss of derivatives on the right-hand side
of (6.2), but no loss of derivatives on the right-hand side of (6.3). Since (6.2)
will be used to obtain L∞ estimates from energy estimates, this (additional)
loss of derivatives will be present in the pointwise estimates of Sect. 7. See also
Remark 6.2 about the loss of derivatives in the energy estimates themselves.

6.2. Commutator Estimates

We can use the elliptic estimates in Proposition 6.2 to control angular error
terms that arise from commuting �g with L and L. We first derive a general
expression for the commutator [�g,W

mV n], where V and W are vector fields.

Lemma 6.3. Let V and W be vector fields and n ≥ 1, then

2Ω2�g(WmV nφ)

= [WmV n, L]Lφ + L([WmV n, L]φ) + [WmV n, L]Lφ + L([WmV n, L]φ)
m
∑

l=1

n
∑

k=1

(

m

l

)(

n

k

)

W lV k(Ω tr χ)Wm−lV n−kLφ + Ωtr χ[WmV n, L]φ

+
m
∑

l=1

n
∑

k=1

(

m

l

)(

n

k

)

W lV k(Ω tr χ)Wm−lV n−kLφ + Ωtr χ[WmV n, L]φ

− 2
m
∑

l=1

n
∑

k=1

(

m

l

)(

n

k

)

W lV k(/gAB∂AΩ2)Wm−lV n−k∂Bφ

− 2/g
AB∂AΩ2[WmV n, ∂B ]φ

− 2
m
∑

l=1

n
∑

k=1

(

m

l

)(

n

k

)

W lV k(Ω2)Wm−lV n−k /Δφ − 2Ω2[WmV n, /Δ]φ.

Proof. Use the expression for the wave Eq. (B.2) in “Appendix B”, together
with

WmV n(2Ω2�gφ) = 0. �
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Proposition 6.4. Either restrict to |a| < ac and let 0 ≤ p < 2 and 0 ≤ q < 2,
or restrict to axisymmetric φ, with p = 2 and 0 < q ≤ 2. Then, there exist
α = α(p, q) > 1 and β = β(p, q) > 1, such that for u1 suitably large and
|u| ≥ |u1|,
∫

Hv∩{|u|≥|u1|}
JNp,q [Lφ] · L + JNp,q [Lφ] · L +

∫

Hu

JNp,q [Lφ] · L + JNp,q [Lφ] · L

≤ C

[

∫

Hv0
∩{|u|≥|u1|

JN2,qβα [Lφ] · L + JN2,qβα [Lφ] · L

+

∫

H+∩{v≥v0}
JN2,qβα [Lφ] · L + JN2,qβα [Lφ] · L

]

+ C
∑

Γ∈{id,Φ2,Q}

[

∫

Hv0
∩{|u|≥|u1|}

JN2,qβα [Γφ] · L +

∫

H+∩{v≥v0}
JN2,qβα [Γφ] · L

]

+ C
∑

Γ∈{Φ2,Q}

∫

H+∩{v≥v0}
v−2+ε(Γφ)2,

where 0 < qβα ≤ 2, ε > 0 can be taken arbitrarily small and

C = C(a,M, u0, v0, u1, v1, p, q, α, β, ε) > 0.

For axisymmetric φ, we can replace N2,qβα on the right-hand side by N2,q.
Moreover, for v1 > v0 suitably large and v ≥ v1,

∫

Hv

JNp,q [Lφ] · L+JNp,q [Lφ] · L+
∫

Hu∩{v≥v1}
JNp,q [Lφ] · L + JNp,q [Lφ] · L

≤ C

[

∫

Hv1

JN2,qβα [Lφ] · L + JN2,qβα [Lφ] · L

+
∫

H+∩{v≥v1}
JN2,qβα [Lφ] · L + JN2,qβα [Lφ] · L

]

+ C
∑

Γ∈{id,Φ2,Q}

[

∫

Hv1

JN2,qβα [Γφ] · L +
∫

H+∩{v≥v1}
JN2,qβα [Γφ] · L

]

+ C
∑

Γ∈{Φ2,Q}

∫

H+∩{v≥v1}
v−2+ε(Γφ)2,

where 0 < qβα ≤ 2, ε > 0 can be taken arbitrarily small and

C = C(a,M, u0, v0, u1, v1, p, q, α, β, ε) > 0.

For axisymmetric φ, we can replace N2,qβα on the right-hand side by N2,q.

Proof. For any vector field V , we have that

ENp,q [V φ] = Np,q(φ)�g(V φ) = (|u|pLV φ + vqLV φ)�g(V φ).
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We can commute �g with L and L and apply Lemma 6.3 to obtain

2Ω2�g(Lφ) = L([L,L]φ) + [L,L]Lφ + L(Ω tr χ)Lφ + Ωtr χ[L,L]φ

+ L(Ω tr χ)Lφ − 2L(/gAB∂AΩ2)∂Bφ − 2L(Ω2) /Δφ

− 2Ω2[L, /Δ]φ

and
2Ω2�g(Lφ) = L([L,L]φ) + [L,L]Lφ + L(Ω tr χ)Lφ + Ωtr χ[L,L]φ

+ L(Ω tr χ)Lφ − 2L(/gAB∂AΩ2)∂Bφ − 2L(Ω2) /Δφ

− 2Ω2[L, /Δ]φ − 2/g
AB∂AΩ2[L, ∂B ]φ.

Moreover, we have that

[ /Δ, L]φ = − L

(

1
√

det /g

)

∂A

(

/g
AB
√

det /g∂Bφ
)

− 1
√

det /g
∂A

(

L
(

/g
AB
√

det /g
)

∂Bφ
)

,

[ /Δ, L]φ = − L

(

1
√

det /g

)

∂A

(

/g
AB
√

det /g∂Bφ
)

− 1
√

det /g
∂A

(

L
(

/g
AB
√

det /g
)

∂Bφ
)

− 1
√

det /g
[L, ∂A]

(

/g
AB
√

det /g∂Bφ
)

− /g
AB∂A([L, ∂B ]φ).

By applying the estimates from Sect. 2.3, we obtain

|2Ω2�g(Lφ)| � (v + |u|)−2|L(∂ϕ∗φ)| + (v + |u|)−3(|Lφ| + |Lφ|)
+ (v + |u|)−3| /∇φ| + (v + |u|)−3| /∇2

φ|.
and

|2Ω2�g(Lφ)| � (v + |u|)−2|L(∂ϕ∗φ)| + (v + |u|)−3(|Lφ| + |Lφ|)
+ (v + |u|)−3| /∇φ| + (v + |u|)−3| /∇2

φ|.
Consequently, we can apply Cauchy–Schwarz to obtain

2Ω2|ENp,q [Lφ]| � v−1−η|u|p(LLφ)2 + |u|−1−ηvq(LLφ)2

+ (v1+η|u|p + |u|1+ηvq)
[

(v + |u|)−4|L(∂ϕ∗φ)|2

+ (v + |u|)−6(|Lφ|2 + |Lφ|2)
+ (v + |u|)−6| /∇φ|2 + (v + |u|)−6| /∇2

φ|2
]

and
2Ω2|ENp,q [Lφ]| � v−1−η|u|p(LLφ)2 + |u|−1−ηvq(LLφ)2

+ (v1+η|u|p + |u|1+ηvq)
[

(v + |u|)−4|L(∂ϕ∗φ)|2

+ (v + |u|)−6(|Lφ|2 + |Lφ|2)
+ (v + |u|)−6| /∇φ|2 + (v + |u|)−6| /∇2

φ|2
]

.

We obtain similar estimates for 2Ω2|EYp [Lφ]| and 2Ω2|EYp [Lφ]|, where we
replace the weight vq by |u|p.
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Using (6.3) of Proposition 6.2, we can further estimate

(v + |u|)−6

∫

S2
u,v

| /∇2
φ|2 dμ/g ≤ C(v + |u|)−6

∫

S2
u,v

(Qφ)2 + (Φ2φ)2 + (T 2φ)2 + (L2φ)2 + (L2φ)2

+ (LLφ)2 + (Lφ)2 + (Lφ)2 + | /∇Lφ|2 + | /∇Lφ|2 + | /∇φ|2 dμ/g. (6.10)

The T 2φ term can be absorbed into the remaining terms on the right-hand
side of the above inequality. The energy estimates of Propositions 4.2 and 5.3
apply also to Qφ and Φ2φ, so we can estimate, by applying the fundamental
theorem of calculus together with Cauchy–Schwarz in the region {|u| ≥ |u1|}:
∫

S2
u,v

(Γφ)2 dμ/g ≤
∫

S2−∞,v

(Γφ)2 dμ/g + C|u|1−p′
sup

v0≤v′≤v

∫

H′
v∩{|u|≥|u1|}

|u|p′
(LΓφ)2

≤ C|u|1−p′
[

∫

Hv0
∩{|u|≥|u1|}

JN2,η [Γφ] · L +

∫

H+∩{v≥v0}
JN2,η [Γφ] · L

]

+

∫

S2−∞,v

(Γφ)2 dμ/g ,

where Γ ∈ {Φ2, Q} and we can take p′ = 2 if φ is axisymmetric and p′ = 2−η,
with η > 0 arbitrarily small, if φ is not axisymmetric.

We similarly apply the fundamental theorem of calculus together with
Cauchy–Schwarz to obtain:
∫

S2
u,v

(Γφ)2 dμ/g ≤
∫

S2
−∞,v

(Γφ)2 dμ/g + C|u|1−p′
sup

v1≤v′≤v

∫

H′
v

|u|p′
(LΓφ)2

≤
∫

S2
−∞,v

(Γφ)2 dμ/g

+ C|u|1−p′
[

∫

Hv1

JN2,η [Γφ] · L +
∫

H+∩{v≥v1}
JN2,η [Γφ] · L

]

,

Therefore, we can estimate in {|u| ≥ |u1|},
∫ ∞

v0

∫ u1

−∞
(vq|u|1+η + |u|pv1+η)(v + |u|)−6

∫

S2
u,v

(Γφ)2 dμ/gdudv

≤ C

∫ ∞

v0

v−4+η+max{p,q}
∫

S2
−∞,v

(Γφ)2 dμ/gdv

+C

∫ ∞

v0

∫ u1

−∞
(vq|u|η + |u|p−1+ηv1+η)(v + |u|)−6 dudv

×
[

∫

Hv0
∩{|u|≥|u1|}

JN2,η [Γφ] · L +
∫

H+∩{v≥v0}
JN2,η [Γφ] · L

]
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≤ C

∫

H+∩{v≥v0}
v−4+η+max{p,q}(Γφ)2

+C

[

∫

Hv0
∩{|u|≥|u1|}

JN2,η [Γφ] · L +
∫

H+∩{v≥v0}
JN2,η [Γφ] · L

]

.

Similarly, we can estimate in {v ≥ v1}
∫ ∞

v1

∫ u0

−∞
(vq|u|1+η + |u|pv1+η)(v + |u|)−6

∫

S2
u,v

(Γφ)2 dμ/gdudv

≤ C

∫

H+∩{v≥v1}
v−4+η+max{p,q}(Γφ)2

+ C

[

∫

Hv1

JN2,η [Γφ] · L +
∫

H+∩{v≥v1}
JN2,η [Γφ] · L

]

.

The remaining terms on the right-hand side of (6.10) can be estimated
by energy fluxes through Hu and Hv, multiplied by integrable functions h(u)
or k(v). We can apply Lemma 4.1 in the regions A and B, with |u| ≥ |u1| or
v ≥ v1. Furthermore, we can estimate in a similar way the terms in EYp [Lφ]
and EYp [Lφ] in the region B, with |u| ≥ |u1| or v ≥ v1.

We combine in the |a| < ac case, as in Proposition 5.3, the estimates with
respect to the multipliers Np,q and Yp. �

We can easily commute �g with L, L and ∂θ∗ in the region {|u| ≤
|u1|, v ≤ v1}. As |u| and v are both finite in this region, we do not need
to keep track of the behaviour in v + |u| of the error terms.

Proposition 6.5. Let 0 ≤ p, q ≤ 2 and v1 > v0, u1 < u0. Then, there exists a
C = C(a,M, p, q, u0, v0, u1, v1) > 0 such that for all k ∈ N,

∑

0≤j1+j2+j3+j4≤k

∫

Hv∩{|u|≤|u1}
JNp,q [Lj1Lj2∂j3

θ∗Φj4φ] · L

+
∫

Hu∩{v≤v1}
JNp,q [Lj1Lj2∂j3

θ∗Φj4φ] · L

≤ C
∑

0≤j1+j2+j3+j4≤k

∫

Hv1
∩{|u|≤|u1|}

JNp,q [Lj1Lj2∂j3
θ∗Φj4φ] · L

+
∫

Hu1∩{v≤v1}
JNp,q [Lj1Lj2∂j3

θ∗Φj4φ] · L.

Proof. It easily follows that
∑

0≤j1+j2+j3+j4≤k

|ENp,q [Lj1Lj2∂j3
θ∗Φj4φ]| + |KNp,q [Lj1Lj2∂j3

θ∗Φj4φ]|

�
∑

0≤j1+j2+j3+j4≤k

JNp,q [Lj1Lj2∂j3
θ∗Φj4φ] · L

+ JNp,q [Lj1Lj2∂j3
θ∗Φj4φ] · L,
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as the energy fluxes together control all derivatives, since |u| and v are
bounded. We can therefore directly apply Lemma 4.1 in {|u| ≤ |u1|, v ≤ v1}
to obtain the estimate in the proposition. �

We also commute with higher-order derivatives along null vector fields in
the region {v ≥ v1}∪{|u| ≥ |u1|}. In this case, we do need to keep track of the
behaviour in v + |u| of the error terms arising from commuting with L and L.

Lemma 6.6. Let n ∈ N0. Then, there exists a constant C = C(a,M, v0, u0, n) >
0, such that

∣

∣

∣

∣

∣

∣

∑

j1+j2=n

2Ω2�g(Lj1Lj2φ)

∣

∣

∣

∣

∣

∣

≤ C(v + |u|)−2
∑

j1+j2≤n

|Lj1Lj2Φφ|

+ C(v + |u|)−3
∑

j1+j2≤n−1

| /∇Lj1Lj2φ| + | /∇2
Lj1Lj2φ|

+ C(v + |u|)−3
∑

j1+j2+j3≤n−1

|Lj1Lj2Φj3+1φ|. (6.11)

Proof. By Lemma 6.3, we have that

2Ω2�g(Lj1Lj2φ)

= [Lj1Lj2 , L]Lφ + L([Lj1Lj2 , L]φ) + [Lj1Lj2 , L]Lφ + L([Lj1Lj2 , L]φ)

j1
∑

l=1

j2
∑

k=1

(j1

l

)(j2

k

)

LlLk(Ω tr χ)Lj1−lLj2−kLφ + Ωtr χ[Lj1Lj2 , L]φ

+

j1
∑

l=1

j2
∑

k=1

(j1

l

)(j2

k

)

LlLk(Ω tr χ)Lj1−lLn−kLφ + Ωtr χ[Lj1Lj2 , L]φ

− 2

j1
∑

l=1

j2
∑

k=1

(j1

l

)(j2

k

)

LlLk(/g
AB∂AΩ2)Lj1−lLj2−k∂Bφ − 2/g

AB∂AΩ2[Lj1Lj2 , ∂B ]φ

− 2

j1
∑

l=1

j2
∑

k=1

(j1

l

)(j2

k

)

LlLk(Ω2)Lj1−lLj2−k /Δφ − 2Ω2[Lj1Lj2 , /Δ]φ.

We have that

[L,L] = L(bϕ∗)Φ.

It follows that

[Lj1Lj2 , L](f) =
j2
∑

k=1

Lj1Lj2−k[L,L](Lk−1f)

= −
j2
∑

k=1

Lj1Lj2−k(L(bϕ∗)Lk−1Φf),
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[Lj1Lj2 , L](f) =
j1
∑

k=1

Lj1−k[L,L](Lk−1Lj2f)

=
j1
∑

k=1

Lj1−k(L(bϕ∗)Lk−1Lj2Φf).

By making use of the estimates for ∂n
r∗bϕ∗ from Theorem 2.1, it follows

that
∑

j1+j2=n

|[Lj1Lj2 , L]Lφ + L([Lj1Lj2 , L]φ) + [Lj1Lj2 , L]Lφ + L([Lj1Lj2 , L]φ)|

≤ C(v + |u|)−2
∑

j1+j2≤n

|Lj1Lj2Φφ| + C(v + |u|)−3
∑

j1+j2+j3≤n−1

|Lj1Lj2Φj3+1φ|.

Furthermore, we have that

[L, ∂θ∗ ] = −∂θ∗bϕ∗∂ϕ∗ ,

so we obtain:

[Lj1Lj2 , ∂θ∗ ](f) =
j1
∑

k=1

Lj1−k
(

Φbϕ∗∂θ∗Lk−1Lj2f
)

.

We once again make use of the estimates for ∂n
r∗∂θ∗bϕ∗ from Theorem 2.1

to estimate
∑

j1+j2=n

|[Lj1Lj2 , ∂θ∗ ]φ| ≤ C(v + |u|)−1
∑

j1+j2≤n−1

|Lj1Lj2Φφ|2.

Recall from Proposition 6.4 that

[ /Δ, L]φ = − L

(

1
√

det /g

)

∂A

(

/g
AB
√

det /g∂Bφ
)

− 1
√

det /g
∂A

(

L
(

/g
AB
√

det /g
)

∂Bφ
)

,

[ /Δ, L]φ = − L

(

1
√

det /g

)

∂A

(

/g
AB
√

det /g∂Bφ
)

− 1
√

det /g
∂A

(

L
(

/g
AB
√

det /g
)

∂Bφ
)

− 1
√

det /g
[L, ∂A]

(

/g
AB
√

det /g∂Bφ
)

− /g
AB∂A([L, ∂B ]φ).

We can therefore estimate

[Lj1Lj2 , /Δ](f) =
j2
∑

k=1

Lj1Lj2−k[L, /Δ](Lk−1f) +
j1
∑

k=1

Lj1−k[L, /Δ](Lk−1Lj1f).

Hence, we obtain by using the estimates for ∂k
r∗/gAB

from Theorem 2.1,
∑

j1+j2=n

|[Lj1Lj2 , /Δ]φ| ≤ (v + |u|)−1
∑

j1+j2≤n−1

| /∇Lj1Lj2φ| + | /∇2
Lj1Lj2φ|.

We can easily estimate the remaining terms in 2Ω2�g(Lj1Lj2φ), applying
the estimates from Sect. 2.3, to conclude that (6.11) must hold. �
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Proposition 6.7. Let k ∈ N0. Either restrict to |a| < ac and let 0 ≤ p < 2 and
0 ≤ q < 2, or restrict to axisymmetric φ, with p = 2 and 0 < q ≤ 2. Then,
there exist α = α(p, q) > 1 and β = β(p, q) > 1, such that for u1 suitably large,
|u| ≥ |u1|:

∑

j1+j2=2k+1

∫

Hv∩{|u|≥|u1|}
JNp,q [Lj1Lj2φ] · L +

∫

Hu

JNp,q [Lj1Lj2φ] · L

≤ C
∑

j1+j2+2j3+j4≤2k+1

∫

Hv0

JN2,qβα [Lj1Lj2Qj3Φj4φ] · L

+

∫

H+
JN2,qβα [Lj1Lj2Qj3Φj4φ] · L

+ C
∑

2j1+j2≤2k+1

∫

Hv0

JN2,qβα [Qj1Φj2+1φ] · L +

∫

H+
JN2,qβα [Qj1Φj2+1φ] · L

+ C
∑

2j1+j2≤2k

∫

Hv0

JN2,qβα [Qj1+1Φj2φ] · L +

∫

H+
JN2,qβα [Qj1Φj2φ] · L

+ C
∑

j1+2j2≤2k+2

∫

H+
v−2+ε(Φj1Qj2φ)2,

and
∑

j1+j2=2k

∫

Hv∩{|u|≥|u1|}
JNp,q [Lj1Lj2φ] · L +

∫

Hu

JNp,q [Lj1Lj2φ] · L

≤ C
∑

j1+j2+2j3+j4≤2k

∫

Hv0

JN2,qβα [Lj1Lj2Qj3Φj4φ] · L

+

∫

H+
JN2,qβα [Lj1Lj2Qj3Φj4φ] · L

+ C
∑

2j1+j2≤2k

∫

Hv0

JN2,qβα [Qj1Φj2+1φ] · L +

∫

H+
JN2,qβα [Qj1Φj2+1φ] · L

+ C
∑

j1+2j2≤2k+1

∫

H+
v−2+ε(Φj1Qj2φ)2,

where 0 < qβα ≤ 2, ε > 0 can be taken arbitrarily small and

C = C(k, a,M, u0, v0, u1, v1, p, q, α, β, ε) > 0.

For axisymmetric φ, we can replace N2,qβα on the right-hand side by N2,q.
Moreover, for v1 > v0 suitably large and v ≥ v1,

∑

j1+j2=2k+1

∫

Hv

JNp,q [Lj1Lj2φ] · L +
∫

Hu∩{v≥v1}
JNp,q [Lj1Lj2φ] · L

≤ C
∑

j1+j2+2j3+j4≤2k+1

∫

Hv1

JN2,qβα [Lj1Lj2Qj3Φj4φ] · L

+
∫

H+∩{v≥v1}
JN2,qβα [Lj1Lj2Qj3Φj4φ] · L

+C
∑

2j1+j2≤2k+1

∫

Hv1

JN2,qβα [Qj1Φj2+1φ] · L



Linear Waves in the Interior of Extremal Black Holes II

+
∫

H+∩{v≥v1}
JN2,qβα [Qj1Φj2+1φ] · L

+C
∑

2j1+j2≤2k

∫

Hv1

JN2,qβα [Qj1+1Φj2φ] · L

+
∫

H+∩{v≥v1}
JN2,qβα [Qj1Φj2φ] · L

+C
∑

j1+2j2≤2k+2

∫

H+∩{v≥v1}
v−2+ε(Φj1Qj2φ)2,

and
∑

j1+j2=2k

∫

Hv

JNp,q [Lj1Lj2φ] · L +
∫

Hu∩{v≥v1}
JNp,q [Lj1Lj2φ] · L

≤ C
∑

j1+j2+2j3+j4≤2k

∫

Hv1

JN2,qβα [Lj1Lj2Qj3Φj4φ] · L

+
∫

H+∩{v≥v1}
JN2,qβα [Lj1Lj2Qj3Φj4φ] · L

+ C
∑

2j1+j2≤2k

∫

Hv1

JN2,qβα [Qj1Φj2+1φ] · L

+
∫

H+∩{v≥v1}
JN2,qβα [Qj1Φj2+1φ] · L

+ C
∑

j1+2j2≤2k+1

∫

H+∩{v≥v1}
v−2+ε(Φj1Qj2φ)2,

where 0 < qβα ≤ 2, ε > 0 can be taken arbitrarily small and

C = C(k, a,M, u0, v0, u1, v1, p, q, α, β, ε) > 0.

For axisymmetric φ, we can replace N2,qβα on the right-hand side by N2,q.

Proof. We have that
∑

j1+j2=n

2Ω2ENp,q [Lj1Lj2φ] =
∑

j1+j2=n

Np,q(Lj1Lj2φ)2Ω2�g(Lj1Lj2φ).

From (6.11) it follows that
∑

j1+j2=n

2Ω2|ENp,q [Lj1Lj2φ]| ≤ C
(|u|p|LLj1Lj2φ| + vq|LLj1Lj2φ|)

·
[

(v + |u|)−2
∑

j1+j2≤n

|Lj1Lj2Φφ|

+ (v + |u|)−3
∑

j1+j2≤n−1

| /∇Lj1Lj2φ| + | /∇2
Lj1Lj2φ|

+ (v + |u|)−3
∑

j1+j2+j3≤n−1

|Lj1Lj2Φj3+1φ|
]

.
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We apply Cauchy–Schwarz to further estimate
∑

j1+j2=n

2Ω2|ENp,q [Lj1Lj2φ]|

≤ C
∑

j1+j2≤n

v−1−η|u|p(LLj1Lj2φ)2 + |u|−1−ηvq(LLj1Lj2φ)2

+ C
(

v1+η|u|p + |u|1+ηvq
)

[

(v + |u|)−4
∑

j1+j2≤n

|Lj1Lj2Φφ|2

+ (v + |u|)−6
∑

j1+j2≤n−1

| /∇Lj1Lj2φ|2 + | /∇2
Lj1Lj2φ|2

+ (v + |u|)−6
∑

j1+j2+j3≤n−1

|Lj1Lj2Φj3+1φ|2
]

.

We can apply (6.3) to obtain
∑

j1+j2≤n−1

∫

S2
u,v

| /∇2
Lj1Lj2φ|2 dμ/g

≤ C

∫

S2
u,v

∑

j1+j2≤n−1

(QLj1Lj2φ)2 + (T 2Lj1Lj2φ)2 + (Lj1Lj2Φ2φ)2

+
∑

j1+j2≤n+1

(Lj1Lj2φ)2 +
∑

j1+j2≤n

| /∇Lj1Lj2φ|2 dμ/g.

We can further estimate
∑

j1+j2≤n−1

(QLj1Lj2φ)2 =
∑

j1+j2≤n−1

(Lj1Lj2Qφ)2 + ([Q,Lj1Lj2 ]φ)2.

We have that

[Q,Lj1Lj2 ](f) =
j2
∑

k=1

Lj1Lj2−k[Q,L](Lk−1f) +
j1
∑

k=1

Lj1−k[Q,L](Lk−1Lj2f).

Furthermore,

[Q,L](f) = [ΔS2 , L](f) + a2L(sin2 θ)T 2f

= [sin θ−1∂θ(sin θ∂θ), L]f − L(sin−2 θ)Φ2f + a2L(sin2 θ)T 2f,

[Q,L](f) = [ΔS2 , L](f) + a2L(sin2 θ)T 2f

= [sin θ−1∂θ(sin θ∂θ), L]f − L(sin−2 θ)Φ2f + a2L(sin2 θ)T 2f,

with

[L, ∂θ]f = L(∂θθ∗)∂θ∗f +
1
2
L(∂θr∗)(Lf − bϕ∗Φf − Lf),

[L, ∂θ]f = L(∂θθ∗)∂θ∗f +
1
2
L(∂θr∗)(Lf − bϕ∗Φf − Lf).

By using the estimates from Sect. 2.3, we can estimate
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|[Q,Lj1Lj2 ](f)| ≤ C(v + |u|)−2

×
(

∑

k+l≤j1+j2

| /∇2
LlLkφ| +

∑

k+l≤j1+j2+1

| /∇LlLkφ|

+
∑

k+l≤j1+j2+2

|LlLkφ|
)

.

We conclude that, for either v ≥ v1 or |u| ≥ |u1|, with v1 and
|u1| suitably large

∑

j1+j2≤n−1

∫

S2
u,v

| /∇2
Lj1Lj2φ|2 dμ/g

≤ C

∫

S2
u,v

∑

j1+j2≤n−1

(Lj1Lj2Qφ)2 + (Lj1Lj2Φ2φ)2

+
∑

j1+j2≤n+1

(Lj1Lj2φ)2 +
∑

j1+j2≤n

| /∇Lj1Lj2φ|2 dμ/g.

We can therefore use the above estimate to obtain
∑

j1+j2=n

∫

S2
u,v

2Ω2|ENp,q [Lj1Lj2φ]|dμ/g

≤ C
∑

j1+j2≤n

∫

S2
u,v

2v−1−η|u|p(LLj1Lj2φ)2 + |u|−1−ηvq(LLj1Lj2φ)2 dμ/g

+ C

∫

S2
u,v

2
(

v1+η|u|p + |u|1+ηvq
)

[

(v + |u|)−4
∑

j1+j2≤n

|Lj1Lj2Φφ|2

+ (v + |u|)−6
∑

j1+j2≤n

| /∇Lj1Lj2φ|2

+ (v + |u|)−6
∑

j1+j2≤n−1

(Lj1Lj2Qφ)2 + (Lj1Lj2Φ2φ)2

+ (v + |u|)−6
∑

j1+j2+j3≤n−1

|Lj1Lj2Φj3+1φ|2
]

dμ/g,

for 0 ≤ p, q ≤ 2. We obtain similar estimates for
∑

j1+j2=n 2Ω2|EYp [Lj1Lj2φ]|,
by replacing the weight vq above by |u|p.

We apply the divergence theorem, as in the previous propositions, to
obtain the following energy estimate:

∑

j1+j2=n

∫

Hv

JNp,q [Lj1Lj2φ] · L +
∫

Hu∩{v≥v1}
JNp,q [Lj1Lj2φ] · L

≤ C
∑

j1+j2=n

∫

Hv1

JN2,qβα [Lj1Lj2φ] · L +
∫

H+∩{v≥v1}
JN2,qβα [Lj1Lj2φ] · L
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+C sup
v1≤v<∞

∫

Hv

∑

j1+j2≤n−2

∑

Γ∈{Q,Φ2}
JNp,q [Lj1Lj2Γφ] · L

+
∑

j1+j2≤n−1

JNp,q [Lj1Lj2Φφ] · L

+
∑

j1+j2+j3≤n−2

JNp,q [Lj1Lj2Φj3+1φ] · L

+C sup
−∞≤u<u0

∫

Hu∩{v≥v1}

∑

j1+j2≤n−2

∑

Γ∈{Q,Φ2}
JNp,q [Lj1Lj2Γφ] · L

+
∑

j1+j2≤n−1

JNp,q [Lj1Lj2Φφ] · L

+
∑

j1+j2+j3≤n−2

JNp,q [Lj1Lj2Φj3+1φ] · L.

By induction, using the estimates Proposition 6.4, it follows that for odd n:
∑

j1+j2=n

∫

Hv

JNp,q [Lj1Lj2φ] · L +
∫

Hu∩{v≥v1}
JNp,q [Lj1Lj2φ] · L

≤ C
∑

j1+j2+2j3+j4≤n

∫

Hv1

JN2,βα [Lj1Lj2Qj3Φj4φ] · L

+
∫

H+∩{v≥v1}
JN2,βα [Lj1Lj2Qj3Φj4φ] · L

+ C
∑

2j1+j2+j3≤n

∫

Hv1

JN2,βα [Qj1Φj2+1T j3φ] · L

+
∫

H+∩{v≥v1}
JN2,βα [Qj1Φj2+1T j3φ] · L

+ C
∑

2j1+j2+j3≤n−1

∫

Hv1

JN2,βα [Qj1+1Φj2T j3φ] · L

+
∫

H+∩{v≥v1}
JN2,βα [Qj1Φj2T j3φ] · L

+ C
∑

j1+2j2+j3≤n+1

∫

H+∩{v≥v1}
v−2+ε(Φj1Qj2T j3φ)2,

whereas for even n we can estimate
∑

j1+j2=n

∫

Hv

JNp,q [Lj1Lj2φ] · L +
∫

Hu∩{v≥v1}
JNp,q [Lj1Lj2φ] · L

≤ C
∑

j1+j2+2j3+j4≤n

∫

Hv1

JN2,βα [Lj1Lj2Qj3Φj4φ] · L

+
∫

H+∩{v≥v1}
JN2,βα [Lj1Lj2Qj3Φj4φ] · L
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+C
∑

2j1+j2+j3≤n

∫

Hv1

JN2,βα [Qj1Φj2+1T j3φ] · L

+
∫

H+∩{v≥v1}
JN2,βα [Qj1Φj2+1T j3φ] · L

+C
∑

j1+2j2+j3≤n+1

∫

H+∩{v≥v1}
v−2+ε(Φj1Qj2T j3φ)2,

The estimates in the region {|u| ≥ |u1|} proceed similarly. �

Let us define the following higher-order energy norms for k ∈ N0:

Eqβα;2k+1,ε :=
∑

j1+j2+2j3+j4≤2k+1

∫

Hv0

JN2,qβα [Lj1Lj2Qj3Φj4φ] · L

+
∫

H+
JN2,qβα [Lj1Lj2Qj3Φj4φ] · L

+
∑

2j1+j2≤2k+1

∫

Hv0

JN2,qβα [Qj1Φj2+1φ] · L

+
∫

H+
JN2,qβα [Qj1Φj2+1φ] · L

+
∑

2j1+j2≤2k

∫

Hv0

JN2,qβα [Qj1+1Φj2φ] · L

+
∫

H+
JN2,qβα [Qj1Φj2φ] · L

+
∑

2j1+j2≤2k+2

∫

H+
v−2+ε(Qj1Φj2φ)2,

Eqβα;2k,ε :=
∑

j1+j2+2j3+j4≤2k

∫

Hv0

JN2,qβα [Lj1Lj2Qj3Φj4φ] · L

+
∫

H+
JN2,qβα [Lj1Lj2Qj3Φj4φ] · L

+
∑

2j1+j2≤2k

∫

Hv0

JN2,qβα [Qj1Φj2+1φ] · L

+
∫

H+
JN2,qβα [Qj1Φj2+1φ] · L

+
∑

2j1+j2≤2k+1

∫

H+
v−2+ε(Qj1Φj2φ)2.

We combine the results of Propositions 6.7 and 6.5 to obtain an energy
estimate in the entire region Du0,v0 .

Corollary 6.8. Let k ∈ N0. Restrict to |a| < ac and let 0 ≤ p < 2 and
0 ≤ q < 2, or restrict to axisymmetric φ, with p = 2 and 0 < q ≤ 2.
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Then, there exist α = α(p, q) > 1 and β = β(p, q) > 1 and a constant
C = C(n, a,M, u0, v0, p, q, α, β) > 0, such that

∑

j1+j2=2k+1

∫

Hv

JNp,q [Lj1Lj2φ] · L +
∫

Hu

JNp,q [Lj1Lj2φ] · L ≤ CEqβα;2k+1,ε,

and
∑

j1+j2=2k

∫

Hv

JNp,q [Lj1Lj2φ] · L +
∫

Hu

JNp,q [Lj1Lj2φ] · L ≤ CEqβα;2k,ε,

Remark 6.2. In the inequalities of Corollary 6.8, integrals of n derivatives of φ
are estimated by initial integrals of n+1 derivatives. The loss of derivatives in
the even n case arises only because of Φ. Therefore, if φ is axisymmetric and we
can neglect the Φ derivatives, we do not lose any derivatives in Proposition 6.7
for even n. This fact is important when proving energy estimates for nonlinear
wave equations.

7. Pointwise Estimates

7.1. Uniform Boundedness of φ

We can use the higher-order energy estimates in the previous section to obtain
a uniform pointwise bound on φ. As in the previous section, φ always denotes a
solution to (1.1) arising from initial data prescribed in Proposition 3.1. We will
always indicate whether we are assuming axisymmetry of φ or the restriction
0 ≤ |a| < ac for the rotation parameter a.

Proposition 7.1. Let n ∈ N0. Restrict to 0 ≤ |a| < ac and take 0 ≤ p < 2, or
restrict to axisymmetric φ and take 0 ≤ p ≤ 2. Let ε > 0 arbitrarily small and
take 0 < q < 2. There exists a constant C = C(a,M, v0, u0, q, ε) > 0 such that,

∑

j1+j2≤n

(Lj1Lj2φ)2(u, v, θ∗, ϕ∗) ≤
∑

|k|≤2

∑

j1+j2≤n

∫

S2
−∞,v

| /∇k
Lj1Lj2φ|2 dμ/g

+ C|u|1−p

[

Eq;n+2,ε[φ]

+
∑

Γ∈{Φ2,T 2,Q}
Eq;n+1,ε[Γφ]

+
∑

Γ∈{Φ3,T 2Φ,QΦ}
Eq;n,ε[Γφ]

]

.

Proof. By the fundamental theorem of calculus applied to integrating along
ingoing null geodesics, together with Cauchy–Schwarz, we can estimate

φ2(u, v, θ∗, ϕ∗) ≤ φ2(−∞, v, θ∗, ϕ∗) +

(∫ u

−∞
|Lφ|(u′, v, θ∗, ϕ∗) du′

)2

,

≤ φ2(−∞, v, θ∗, ϕ∗) +
1

p + 1
|u|−1+p

∫ u

−∞
|u′|p(Lφ)2(u′, v, θ∗, ϕ∗) du′,
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for p > 1.
We can integrate over the spheres and apply Proposition 5.3 to arrive at
∫

S2
u,v

φ2 dμ/g ≤
∫

S2
−∞,v

φ2 dμ/g + C|u|−1+p

∫

Hv∩{|u′|≥|u|}
|u|p(Lφ)2

≤
∫

S2
−∞,v

φ2 dμ/g + C|u|1−pEq[φ],

for q > 0.
To arrive at a pointwise estimate, we apply the standard Sobolev inequal-

ity on the spheres S2
u,v, together with Proposition 6.2:

||Lj1Lj2φ||2L∞(S2
u,v

)

≤ C

∫

S2
u,v

(Lj1Lj2φ)2 + | /∇Lj1Lj2φ|2 + | /∇2Lj1Lj2φ|2 dμ/g

≤ C
1
∑

k=0

∑

Γ∈{id,Φ,Φ2,T 2,Q}

∫

S2
u,v

(ΓLkLj1Lj2φ)2 + (ΓLkLj1Lj2φ)2 + (L2Lj1Lj2φ)2

+ (L2Lj1Lj2φ)2 + (LLLj1Lj2φ)2 + (bϕ∗)2[(QΦLj1Lj2φ)2 + (T 2ΦLj1Lj2φ)2

+ (Φ3Lj1Lj2φ)2] dμ/g.

We now combine the results of Propositions 6.2, 6.4, 6.5 and Corollary 6.8; in
particular, we commute Γ in the terms above to act directly on φ, in order to
arrive at the estimate in the proposition. �

We have now proved Theorem 3.5.

7.2. Extendibility of φ in C0

We can use Proposition 7.1 to show that φ can be extended as a continuous
function beyond the Cauchy horizon CH+. As this extension is independent of
the characteristic data, it is non-unique.

Proposition 7.2. Let the initial data for φ satisfy

Eq;2,ε[φ] +
∑

Γ∈{Φ2,T 2,Q}
Eq;1,ε[Γφ] +

∑

Γ∈{Φ3,T 2Φ,QΦ}
Eq[Γφ] < ∞,

for some q > 1 and ε > 0.
Let xCH+ be a point on CH+. Then, for any x ∈ Du0,v0 ,

lim
x→xCH+

φ(x)

is well defined, so φ can be extended as a C0 function to the region beyond
CH+.

Proof. Consider a sequence of points xk in Du0,v0\H+, such that
limk→∞ xk = xCH+ . The sequence {xk} is, in particular, a Cauchy sequence.
We will show that the sequence of points (φ)(xk) must also be a Cauchy
sequence, from which it follows immediately that the sequence converges to a
finite number as k → ∞.
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Denote xk = (ũk, ˜Vk, (˜θ∗)k, (ϕ̃∗)k). Let l > k, then

|φ(xl) − φ(xk)|2 ≤ |φ(ũl, ˜Vk, (˜θ∗)k, (ϕ̃∗)k) − φ(ũk, ˜Vk, (˜θ∗)k, (ϕ̃∗)k)|
+ |φ(ũk, ˜Vl, (˜θ∗)k, (ϕ̃∗)k) − φ(ũk, ˜Vk, (˜θ∗)k, (ϕ̃∗)k)|2

+ |φ(ũk, ˜Vk, (˜θ∗)l, (ϕ̃∗)k) − φ(ũk, ˜Vk, (˜θ∗)k, (ϕ̃∗)k)|2

+ |φ(ũk, ˜Vk, (˜θ∗)k, (ϕ̃∗)l) − φ(ũk, ˜Vk, (˜θ∗)k, (ϕ̃∗)k)|2.
By the fundamental theorem of calculus, a Sobolev inequality on S

2 and
Cauchy–Schwarz, we can estimate for q > 0

∣

∣

∣φ(ũl, ˜Vk, (˜θ∗)k, (ϕ̃∗)k) − φ(ũk, ˜Vk, (˜θ∗)k, (ϕ̃∗)k)
∣

∣

∣

2

≤ C
∑

|s|≤2

∣

∣

∣

∣

∫ ul

uk

∫

S2
u1+ε|∂u /∇s

φ|2(u, v(˜Vk), (θ∗)k, (ϕ∗)k) dμS2du

∣

∣

∣

∣

≤ C
∑

0≤s1+s2≤2

∫

H
v(˜Vk)

JN2,q [∂s1
θ∗Φs2φ] · L.

Similarly, we find that for q > 1:

|φ(ũk, ˜Vl, (˜θ∗)k, (ϕ̃∗)k) − φ(ũk, ˜Vk, (˜θ∗)k, (ϕ̃∗)k)|2

≤ C
∣

∣

∣(−˜Vl)q−1 − (−˜Vk)q−1
∣

∣

∣

∑

|s|≤2

∣

∣

∣

∣

∣

∫
˜Vl

˜Vk

∫

S2
(−˜V )2−q|∂

˜V
/∇s

φ|2(ũ, ˜V , (˜θ∗)k, (ϕ̃∗)k) dμS2d˜V

∣

∣

∣

∣

∣

≤ C
∣

∣

∣(−˜Vl)q−1 − (−˜Vk)q−1
∣

∣

∣

∑

|s|≤2

∣

∣

∣

∣

∣

∫
˜V ( ˜Vl)

˜V ( ˜Vk)

∫

S2

˜V q|∂
˜V

/∇s
φ|2(ũ, ˜V , (˜θ∗)k, (ϕ̃∗)k) dμS2d˜V

∣

∣

∣

∣

∣

≤ C
∣

∣

∣(−˜Vl)q−1 − (−˜Vk)q−1
∣

∣

∣

∑

0≤s1+s2≤2

∫

Huk

JN2,q [∂s1
θ∗Φs2φ] · L,

where we used that (−˜V )2−q ∼ ˜V q−2 and |∂
˜V

/∇s
φ|2d˜V ∼ ˜V 2|∂

˜V
/∇s

φ|2d˜V .
Finally, we can estimate by Cauchy–Schwarz on S2

ũk, ˜Vk
,

|φ(ũk, ˜Vk, (˜θ∗)l, (ϕ̃∗)k) − φ(ũk, ˜Vk, (˜θ∗)k, (ϕ̃∗)k)|2

+ |φ(ũk, ˜Vk, (˜θ∗)k, (ϕ̃∗)l) − φ(ũk, ˜Vk, (˜θ∗)k, (ϕ̃∗)k)|2

≤ C

∫

S2
ũk,˜Vk

| /∇φ|2(ũk, ˜Vk, ˜θ∗, ϕ̃∗) dμ/g ≤ C
∑

s1+s2=1

∫

H
v(˜Vk)

JN2,q [∂s1
θ∗Φs2φ] · L,

where we need q > 0.
By the above estimates it follows that φ(xk) must also be a Cauchy

sequence if the energies on the right-hand sides are finite.
Finally, as in Proposition 7.1, we can estimate the energies on the right-

hand sides of the above estimates by the initial energy EΓ;q[φ]. �
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Remark 7.1. By employing the higher-order energy estimates from Sect. 6.2 the
above proposition can in fact easily be repeated to obtain also C0 extendibility
of | /∇j1Lj2φ|2 across CH+ for any j1, j2 ∈ N0, provided the initial data are
taken to be suitably regular (and decaying).

We have now proved Theorem 3.6.

7.3. Decay of Lφ

Consider the function φH+ : M ∩ Du0,v0 → R defined by

φH+(u, v, θ∗, ϕ∗) := φ(−∞, θ∗, ϕ∗).

In particular, LφH+ = 0.
We consider ψ := φ − φH+ . We can improve the pointwise decay in ψ

with respect to |u| and use the wave Eq. (1.1) to obtain decay of |Lφ| in v.
Moreover, we will show in this section that we can obtain boundedness

of
∫

Hu

v2(Lφ)2 +
∫

Hv

v2Ω2| /∇φ|2,

which is an improvement over Corollary 5.3. Note that the analogous statement
for axisymmetric solutions already follows from Proposition 4.2.

Proposition 7.3. Denote

D = ||∂Uφ||2
L∞(Hv0)

+ || /∇φ||2
L∞(Hv0)

.

Let 0 < p < 2, 0 < q < 2 and 0 ≤ s ≤ 1 if |a| < ac. Let p = 2, 0 < q ≤ 2 and
0 ≤ s ≤ 1 if φ is axisymmetric. Then, for every ε > 0, there exists a constant
C = C(M,u0, v0, p, q, s, ε) > 0, such that for all Hu and Hv in Du0,v0 ,

∫

Hu

JNp,q [ψ] · L +
∫

Hv∩{u′≤u}
JNp,q [ψ] · L

≤ C|u|−s

[

∫

H+∩{v≥v1}
vs+ε

[

(Lφ)2 + | /∇φ|2 + | /∇2
φ|2
]

+ D

]

:= C|u|−s
˜Eε,s[φ].

Proof. We have that

2Ω2�gψ = −2Ω2�gφ|H+ = −Ωtr χLφH+ + 2 /∇Ω2 · /∇φH+ + 2Ω2 /ΔφH+ .

Consequently, we can estimate,

2Ω2|�gψ| ≤ C(v + |u|)−2
(

|LφH+ | + | /∇φH+ | + | /∇2
φH+ |

)

.

By applying Stokes’ theorem in Du0,v0 we obtain the following error term:
∣

∣

∣

∣

∣

∫

Du0,v0

ENp,q [ψ]

∣

∣

∣

∣

∣

≤
∫ ∫ ∫

S2
u,v

(v + |u|)−2(|u|p|Lψ| + vq|Lψ|)
(

|LφH+ | + | /∇φH+ | + | /∇2
φH+ |

)

.
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By Cauchy–Schwarz, we can estimate for η > 0

(v + |u|)−2(|u|p|Lψ| + vq|Lψ|)
(

|LφH+ | + | /∇φH+ | + | /∇2
φH+ |

)

� v−1−η|u|p(Lψ)2

+ |u|−1−η′
vq(Lψ)2 + (v + |u|)−4(|u|pv1+η + vq|u|1+η)

[

(LφH+)2 + | /∇φH+ |2 + | /∇2
φH+ |2

]

.

We further estimate for 0 ≤ s ≤ 1,

(v + |u|)−4(|u|pv1+η + vq|u|1+η)
[

(LφH+)2 + | /∇φH+ |2 + | /∇2
φH+ |2

]

� |u|−1−s(vp−2+s+η + vq−2+s+η)
[

(LφH+)2 + | /∇φH+ |2 + | /∇2
φH+ |2

]

.

Hence,

∫

Du0,v0

|u|−1−s(vp−2+s+η + vq−2+s+η)
[

(LφH+)2 + | /∇φH+ |2 + | /∇2
φH+ |2

]

≤ |u|−s

∫

H+∩{v′≥v0}
(vp−2+s+η + vq−2+s+η)

(

(Lφ)2 + | /∇φ|2 + | /∇2
φ|2
)

,

where we used that

(LφH+)2 + | /∇φH+ |2 + | /∇2
φH+ |2 ∼ (Lφ)|2H+ + | /∇φ|2|H+ + | /∇2

φ|2|H+ .

The remaining terms in ENp,q [ψ] and the terms in KNp,q can be estimated as
in Proposition 4.2 and the propositions in Sect. 5. �

Proposition 7.4. Let k ∈ N0. Denote

D2k :=
∑

j1+j2+2j3+j4≤2k

||∂UL
j1L

j2Q
j3Φ

j4φ||2L∞(Hv0)
+ || /∇L

j1L
j2Q

j3Φ
j4φ||2L∞(Hv0)

+
∑

j1+2j2≤2k

||∂UΦ
j1+1

Q
j2φ||2L∞(Hv0)

+ || /∇Φ
j1+1

Q
j2φ||2L∞(Hv0)

,

D2k+1 :=
∑

j1+j2+2j3+j4≤2k+1

||∂UL
j1L

j2Q
j3Φ

j4φ||2L∞(Hv0)
+ || /∇L

j1L
j2Q

j3Φ
j4φ||2L∞(Hv0)

+
∑

j1+2j2≤2k+1

||∂UΦ
j1+1

Q
j2φ||2L∞(Hv0)

+ || /∇Φ
j1+1

Q
j2φ||2L∞(Hv0)

+
∑

j1+2j2≤2k

||∂UΦ
j1Q

j2+1
φ||2L∞(Hv0)

+ || /∇Φ
j1Q

j2+1
φ||2L∞(Hv0)

.

Let 0 < p < 2, 0 < q ≤ 2 and 0 ≤ s ≤ 1 if |a| < ac. Let p = 2, 0 < q ≤ 2 and
0 ≤ s ≤ 1 if φ is axisymmetric.
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Let n ∈ N0. Then, for every ε > 0, there exists a constant
C = C(M,a, n, u0, v0, p, q, s, ε) > 0, such that
∑

j1+j2=n

∫

Hu

JNp,q [Lj1Lj2ψ] · L +
∫

Hv∩{u′≤u}
JNp,q [Lj1Lj2ψ] · L

≤ C|u|−s
∑

j1+2j2+j3≤n

[

∫

H+∩{v≥v1}
vs+ε

[

(Lj1+1Qj2Φj3φ)2 +| /∇Lj1Qj2Φj3φ|2

+ | /∇2
Lj1Qj2Φj3φ|2

]

+ Dn

]

=: C|u|−s
˜Es,ε;n[φ].

Proof. We have that
2Ω2�g(Lj1Lj2ψ)

= [Lj1Lj2 , L]Lψ + L([Lj1Lj2 , L]ψ) + [Lj1Lj2 , L]Lψ + L([Lj1Lj2 , L]ψ)

j1
∑

l=1

j2
∑

k=1

(j1

l

)(j2

k

)

LlLk(Ω tr χ)Lj1−lLj2−kLψ + Ω tr χ[Lj1Lj2 , L]ψ

+

j1
∑

l=1

j2
∑

k=1

(j1

l

)(j2

k

)

LlLk(Ω tr χ)Lj1−lLn−kLψ + Ωtr χ[Lj1Lj2 , L]ψ

− 2

j1
∑

l=1

j2
∑

k=1

(j1

l

)(j2

k

)

LlLk(/g
AB∂AΩ2)Lj1−lLj2−k∂Bψ − 2/g

AB∂AΩ2[Lj1Lj2 , ∂B ]ψ

− 2

j1
∑

l=1

j2
∑

k=1

(j1

l

)(j2

k

)

LlLk(Ω2)Lj1−lLj2−k /Δψ − 2Ω2[Lj1Lj2 , /Δ]ψ

− Lj1Lj2 (2Ω2�gψ).

We can repeat the proof of Proposition 6.7, but we have to additionally
estimate the contribution of the final term in the above expression for
2Ω2�g(Lj1Lj2ψ). We can estimate

|Lj1Lj2(2Ω2�gψ)| ≤
∑

j1≤n

|Lj1+1φH+ | + | /∇Lj1φH+ | + | /∇2
Lj1φH+ |.

We can therefore deal with the corresponding term in ENp,q [Lj1Lj2ψ] in the
same way as in the proof of Proposition 7.3. �

Proposition 7.5. Let s ≤ 1 and 0 ≤ p < 2 for 0 ≤ |a| < ac. For axisymmetric
φ we let 0 ≤ |a| ≤ M and we can also take p = 2. Then, there exists a constant
C = C(M,v0, u0, p, s) > 0 such that,

∑

j1+j2=n

∫

S2
u,v

(Lj1Lj2ψ)2 + | /∇Lj1Lj2ψ|2 + | /∇2
Lj1Lj2ψ|2 dμ/g

≤ C|u|1−s−p

[

˜Es,ε;n+2[φ] +
∑

Γ∈{Φ2,T2,Q}
˜Es,ε;n+1[Γφ] +

∑

Γ∈{Φ3,T2Φ,QΦ}
˜Es,ε;n[Γφ]

]

for s ≤ 1 and ε > 0 arbitrarily small.
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Proof. We obtain estimates for angular derivatives along S2
u,v from the higher-

order energy estimates in Proposition 7.4 in the same way as in Proposition 7.1.
�

We can now obtain decay for Lφ.

Proposition 7.6. Let 0 ≤ |a| < ac, 1 < p < 2 and 0 ≤ s ≤ 1. For δ, ε, q > 0
arbitrarily small, there exists a constant C = C(a,M, v0, u0, p, q, ε, δ, s) > 0
such that,

∫

S2
u,v

(Lφ)2(u, v, θ∗, ϕ∗) dμ/g ≤
∫

S2
−∞,v

(Lφ)2 dμ/g

+C(v + |u|)−4|u|1−pEq[φ]

+Cv−4+(1−s)+(2−p)+δ

[

˜Es,ε;2[φ] +
∑

Γ∈{Φ2,T 2,Q}
˜Es,ε;1[Γφ]

+
∑

Γ∈{Φ3,T 2Φ,QΦ}
˜Es,ε[Γφ]

]

+C(v + |u|)−2

∫

S2
−∞,v

| /∇φH+ |2 + | /∇2
φH+ |2dμ/g. (7.1)

Moreover, for axisymmetric φ, we have a stronger estimate for all 0 ≤
|a| ≤ M ,
∫

S2
u,v

(Lφ)2(u, v, θ∗, ϕ∗) dμ/g ≤
∑

|k|≤2

∫

S2
−∞,v

(Lφ)2 dμ/g + C(v + |u|)−4|u|1−pEq[φ]

+ Cv−4 log

(

v + |u|
|u|

)

[

˜E1,ε;2[φ]

+
∑

Γ∈{Φ2,T 2,Q}
˜E1,ε;1[Γφ] +

∑

Γ∈{Φ3,T 2Φ,QΦ}
˜E1,ε[Γφ]

]

+ C(v + |u|)−2

∫

S2
−∞,v

| /∇φH+ |2 + | /∇2
φH+ |2dμ/g.

Proof. We can write the wave equation as a transport equation for (det /g)
1
4 Lφ,

L((det /g)
1
4 Lφ) = (det /g)

1
4
[−Ωtr χLφ + 2Ω2ζϕ∗∂ϕ∗φ + /∇Ω2 · /∇φ + Ω2 /Δφ

]

,

see “Appendix B”. In particular, we can estimate

|L((det /g)
1
4 Lφ)|(v, u, θ∗, ϕ∗) ≤ C(v + |u|)−2

(

|Lφ| + | /∇φ| + | /∇2
φ|
)

.

We can split
∫

S2
u,v

(Lφ)2 dμ/g ≤
∫

S2
−∞,v

(Lφ)2 dμ/g +
∫

S2
u,v

(Lψ)2 dμ/g.
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We now integrate along ingoing null geodesics for fixed θ∗ and ϕ∗, and subse-
quently integrate in θ∗ and ϕ∗ to obtain

∫

S2
u,v

(Lφ)2 dμ/g

≤
∫

S2
u,v

(∫ u

−∞
|L((det /g)

1
4 Lφ)|du′

)2

dμ/g

≤ C

∫

S2
u,v

(∫ u

−∞
(v + |u′|)−2

(

|Lφ| + | /∇φ| + | /∇2
φ|
)

du′
)2

dμ/g

≤ C(v + |u|)−4|u|−η

∫

Hv∩{|u′|≤|u|}
|u′|1+η(Lφ)2

+ C

∫ u

−∞
|u|−s(v + |u′|)−2 du′

·
∫ u

−∞
|u′|s(v + |u′|)−2

(

∫

S2
u′,v

| /∇ψ|2 + | /∇2
ψ|2dμ/g

)

du′

+ C(v + |u|)−2

∫

S2
−∞,v

| /∇φH+ |2 + | /∇2
φH+ |2dμ/g.

We now apply the results of Propositions 7.3 and 7.5 to arrive at
∫

S2
u,v

(Lψ)2 dμ/g ≤ C(v + |u|)−4|u|−ηEq[φ]

+ C

(

˜Es,ε;2[φ] +
∑

Γ∈{Φ2,T 2,Q}
˜Es,ε;1[Γφ] +

∑

Γ∈{Φ3,T 2Φ,QΦ}
˜Es,ε[Γφ]

)

·
∫ u

−∞
|u|−s(v + |u′|)−2 du′

∫ u

−∞
|u|1−p(v + |u′|)−2 du′

+ C(v + |u|)−2

∫

S2
−∞,v

| /∇φH+ |2 + | /∇2
φH+ |2dμ/g.

where 0 < s < 1 and ε′ > 0 suitably small. Moreover, if ψ is axisymmetric we
can take s = 1.

Now we use that
∫ u

−∞
|u|−1(v + |u′|)−2 du′ ≤ C(v + |u|)−2 log

(

v + |u|
|u|

)

,

∫ u

−∞
|u′|−s(v + |u′|)−2 du′ ≤ C(v + |u|)−2+(1−s+η)|u|−η,

for 0 < s < 1 and η > 0 arbitrarily small, to arrive at the statement in the
proposition. �
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Corollary 7.7. Let |a| < ac and 0 < s ≤ 1. Then, there exist 1 < p < 2, ε > 0
and a constant C = C(a,M, v0, u0, p, ε, δ, s) > 0 such that,
∫

Hu

v2(Lφ)2 + u2Ω2| /∇φ|2 +

∫

Hv

v2Ω2| /∇φ|2

≤ C|u|−pEq[φ] + C

[

˜Es,ε;2[φ] +
∑

Γ∈{Φ2,T 2,Q}
˜Es,ε;1[Γφ] +

∑

Γ∈{Φ3,T 2Φ,QΦ}
˜Es,ε[Γφ]

]

+ C

∫

H+∩{v≥v0}
v2(Lφ)2 + | /∇φ|2 + | /∇2φ|2,

with q > 0 arbitrarily small.

Proof. To estimate the terms involving /∇φ, we use that
∫

S2
u,v

| /∇φ|2 dμ/g ≤ C

∫

S2
−∞,v

| /∇φ|2 dμ/g + C

∫

S2
u,v

| /∇ψ|2 dμ/g

and apply Proposition 7.5.
To estimate the term involving Lφ, we multiply (7.1) by v2 and integrate

from v = v0 to v = ∞. �

Remark 7.2. Recall that Corollary 5.3 gives a bound on
∫

Hu

vq(Lφ)2,

with the restriction q < 2. Corollary 7.7 provides, moreover, an estimate for
q = 2, at the expense of losing derivatives on the right-hand side.

We have now proved Theorem 3.4.

Proposition 7.8. Let 0 ≤ |a| < ac or assume φ is axisymmetric with 0 ≤ |a| ≤
M . For δ, ε, q > 0 arbitrarily small and 0 ≤ s ≤ 1, there exists a constant
C = C(a,M, v0, u0, ε, δ, s) > 0 such that,

v4+(s−1)−δ||Lφ||2L∞(S2
u,v)

≤ C

∫

S2
−∞,v

∑

j1+j2≤2

(LLj1Lj2φ)2 +
∑

j1+j2≤1

∑

Γ∈{Φ,Φ2,T 2,Q}
(LLj1Lj2Γφ)2 dμ/g

+ Cv2+(s−1)−δ

∫

S2
−∞,v

∑

j1+j2≤2

(

| /∇Lj1Lj2φ|2 + | /∇2
Lj1Lj2φ|2

)

dμ/g

+ Eq;6,ε[φ] + Eq;6,ε[Φφ] + ˜Es,ε;6[φ] + ˜Es,ε;6[Φφ].

Proof. From “Appendix A” it follows that

L((det /g)
1
4 Lf) = (det /g)

1
4

[−Ωtr χLφ + 2Ω2ζϕ∗∂ϕ∗φ + /∇Ω2 · /∇φ + Ω2 /Δφ − Ω2�g(f)
]

,



Linear Waves in the Interior of Extremal Black Holes II

for any suitably regular function f : M ∩ Du0,v0 → R. In particular, we can
estimate

∑

j1+j2=n

|L((det /g)
1
4 LLj1Lj2φ)|(v, u, θ∗, ϕ∗)

≤ C
∑

j1+j2=n

(v + |u|)−2
(

|LLj1Lj2φ| + | /∇Lj1Lj2φ| + | /∇2
Lj1Lj2φ|

)

+ C|Ω2�g(Lj1Lj2φ)|.
Using Lemma 6.6, we therefore obtain

∑

j1+j2=n

|L((det /g)
1
4 LLj1Lj2φ)|

≤ C
∑

j1+j2≤n

(v + |u|)−2
(

|LLj1Lj2φ| + | /∇Lj1Lj2φ| + | /∇2
Lj1Lj2φ|

)

+ C
∑

j1+j2+j3≤n−2

|Lj1Lj2Φj3+1φ|.

We can therefore repeat the proof of Proposition 7.6, using appropriate higher-
order energy estimates, to obtain
∑

j1+j2=n

∫

S2
u,v

(LLj1Lj2φ)2(u, v, θ∗, ϕ∗) dμ/g

≤
∑

j1+j2=n

∫

S2
−∞,v

(LLj1Lj2φ)2 dμ/g + C(v + |u|)−4|u|1−pEq;n,ε[φ]

+ Cv−4+(1−s)+(2−p)+δ

[

˜Es,ε;n+2[φ] +
∑

Γ∈{Φ2,T 2,Q}
˜Es,ε;n+1[Γφ]

+
∑

Γ∈{Φ3,T 2Φ,QΦ}
˜Es,ε;n[Γφ]

]

+
∑

j1+j2+j3≤n−2

˜Es,ε;j1+j2+2[Φj3+1φ]

+ C(v + |u|)−2
∑

j1+j2=n

∫

S2
−∞,v

| /∇Lj1Lj2φH+ |2 + | /∇2
Lj1Lj2φH+ |2dμ/g

with q > 0 arbitrarily small.
We now apply (6.2) together with a standard Sobolev inequality on S2

u,v

to obtain the following L∞ estimate:

||Lφ||2L∞(S2
u,v) ≤ C

∑

j1+j2≤2

∫

S2
u,v

(Lj1Lj2Lφ)2 dμ/g

+ C
∑

Γ∈{id,Φ,Φ2,T 2,Q}

∫

S2
u,v

(ΓLφ)2 + (ΓLLφ)2 + (ΓL2φ)2 dμ/g

+ C(v + |u|)−2
∑

Γ∈{Q,T 2,Φ2}

∫

S2
u,v

(ΓΦLφ)2 dμ/g.
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We can bring the operator L in front of φ in the above inequality to the front
at the expense of including commutators with L:

||Lφ||2L∞(S2
u,v) ≤ C

∑

j1+j2≤2

∫

S2
u,v

(LLj1Lj2φ)2 dμ/g

+ C
∑

Γ∈{id,Φ,Φ2,T 2,Q}

∫

S2
u,v

(LΓφ)2 + (LΓLφ)2 + (LLΓφ)2 dμ/g

+ C(v + |u|)−2
∑

Γ∈{Q,T 2,Φ2}

∫

S2
u,v

(LΓΦφ)2 dμ/g + J,

where

J :=
∫

S2
u,v

J1 + J2 + J3 dμ/g,

with

J1 :=
∑

Γ∈{T 2,Q}
([Γ, L]φ)2 + ([Γ, L]Lφ)2 + ([Γ, L]Lφ)2

+ (L[Γ, L]φ)2 + (L[Γ, L]φ)2 + Γ([L,L]φ)2,

J2 :=
∑

j1+j2≤2

([Lj1Lj2 , L]φ)2,

J3 := (v + |u|)−2
∑

Γ∈{T 2,Q}
([Γ, L]Φφ)2.

We apply the estimates for the above commutators that are derived in the
proofs of Lemma 6.6 and Proposition 6.7 to estimate

J1 ≤ C(v + |u|)−4
∑

j1+j2≤1

|Lj1Lj2Φφ|2,

J2 ≤ C(v + |u|)−4

⎡

⎣

∑

j1+j2≤2

| /∇2
Lj1Lj2φ|2 +

∑

j1+j2≤3

| /∇Lj1Lj2φ|2

+
∑

j1+j2≤4

|Lj1Lj2φ|2
⎤

⎦ ,

J3 ≤ C(v + |u|)−6

⎡

⎣

∑

j1+j2≤1

| /∇2
Lj1Lj2Φφ|2

+
∑

j1+j2≤2

| /∇Lj1Lj2Φφ|2 +
∑

j1+j2≤3

|Lj1Lj2Φφ|2
⎤

⎦ .

We use the estimates above to obtain

||Lφ||2L∞(S2
u,v) ≤ C(I1 + I2),
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where

I1 := C
∑

j1+j2≤2

∫

S2
u,v

(LLj1Lj2φ)2 dμ/g

+ C
∑

Γ∈{id,Φ,Φ2,T 2,Q}

∫

S2
u,v

(LΓφ)2 + (LLΓφ)2 + (LLΓφ)2 dμ/g

+ C(v + |u|)−2
∑

Γ∈{Q,T 2,Φ2}

∫

S2
u,v

(LΓΦφ)2 dμ/g,

I2 := C(v + |u|)−4

∫

S2
u,v

∑

j1+j2≤1

| /∇2
Lj1Lj2Φφ|2 +

∑

j1+j2≤2

| /∇2
Lj1Lj2φ|2

+
∑

j1+j2≤3

| /∇Lj1Lj2φ|2 +
∑

j1+j2≤4

(Lj1Lj2φ)2 dμ/g.

By applying Corollary 6.8, as in Proposition 7.1, and, moreover, the estimates
for the L2(S2

u,v) norms of the angular derivatives from Proposition 7.1, we can
further estimate

I2 ≤ C(v + |u|)−4

∫

S2
u,v

Eq;5,ε[φ] +
∑

Γ∈{Φ2,T 2,Q}
(Eq;4,ε[Γφ] + Eq;4,ε[ΓΦφ]).

Furthermore,

I1 ≤ C

∫

S2
−∞,v

∑

j1+j2≤2

(LLj1Lj2φ)2 +
∑

j1+j2≤1

∑

Γ∈{Φ,Φ2,T 2,Q}
(LLj1Lj2Γφ)2 dμ/g

+ C(v + |u|)−2

∫

S2
−∞,v

∑

j1+j2≤2

(

| /∇Lj1Lj2φ|2 + | /∇2
Lj1Lj2φ|2

)

+
∑

j1+j2≤1

∑

Γ∈{Φ,Φ2,T 2,Q}

(

| /∇Lj1Lj2Γφ|2 + | /∇2
Lj1Lj2Γφ|2

)

dμ/g

+ C(v + |u|)−4

⎛

⎝Eq;2,ε[φ] +
∑

Γ∈{Φ,Φ2,T 2,Q}
Eq;1,ε[φ]

⎞

⎠

+ Cv−4+(1−s)+δ

(

˜Es,ε;4[φ] +
∑

Γ∈{Φ,Φ2,T 2,Q}
˜Es,ε;3[Γφ] + ˜Es,ε;3[ΓΦφ]

+ C
∑

Γ′∈{Φ,Φ2,T 2,Q}

∑

Γ∈{Φ,Φ2,T 2,Q}
˜Es,ε;2[ΓΓ′φ]

)

.
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We conclude that
v4+(s−1)−δ||Lφ||2L∞(S2

u,v)

≤ C

∫

S2
−∞,v

∑

j1+j2≤2

(LLj1Lj2φ)2 +
∑

j1+j2≤1

∑

Γ∈{Φ,Φ2,T 2,Q}
(LLj1Lj2Γφ)2 dμ/g

+ Cv2+(s−1)−δ

∫

S2
−∞,v

∑

j1+j2≤2

(

| /∇Lj1Lj2φ|2 + | /∇2
Lj1Lj2φ|2

)

+ Eq;6,ε[φ] + Eq;6,ε[Φφ] + ˜Es,ε;6[φ] + ˜Es,ε;6[Φφ].
�

We have now proved Theorem 3.7.
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Appendix A. Energy Currents in Kerr–Newman

We consider a spacetimes (N , g) equipped with a double-null foliation
(u, v, ϑ1, ϑ2), such that the metric is given by

g = −2Ω2(u, v)(du⊗dv+dv⊗du)+/gAB
(dϑA −bAdv)⊗ (dϑB −bBdv). (A.1)

Here, u, v solve the Eikonal equation and the (topological) spheres (S2
u,v, /g)

are covered by coordinates ϑA, with A = 1, 2, foliate the null hypersurfaces
{u = const.} and {v = const.}.

Let

L = ∂v + bA∂A,

L = ∂u.

In the (L,L, ∂ϑA
) basis, the metric components are given by

g(L,L) = 0,

g(L,L) = 0,

g(L,L) = − 2Ω2.

g(L, ∂ϑA
) = 0,

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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g(L, ∂ϑA
) = 0.

Lemma A.1.

∇LL = Ω−2L(Ω2)L, (A.2)

∇LL = Ω−2L(Ω2)L, (A.3)

g(∇LL,L) = 0, (A.4)

g(∇LL,L) = 0, (A.5)

g(∇LL, ∂A) = − g(L,∇AL), (A.6)

g(∇LL, ∂A) = − g(L,∇AL), (A.7)

[L,L]A = 2g(L,∇AL) + 2∂AΩ2, (A.8)

= − 2g(L,∇AL) − 2∂AΩ2. (A.9)

Proof. We have that

[L,L] = − ∂ubC∂C ,

[L, ∂A] = − ∂AbC∂C ,

[L, ∂A] = 0.

and

[L,L] = ∇LL − ∇LL,

[L, ∂A] = ∇L∂A − ∇AL,

so

g(∇LL,L) = g(∇LL,L) = 0,

g(∇LL, ∂A) = −g(L,∇L∂A) = −g(L,∇AL) = 0,

g(∇LL, ∂A) = −g(L,∇L∂A) = 0.

We obtain

g(∇LL,L) = L(g(L,L) − g(L,∇LL) = −2L(Ω2),

g(∇LL,L) = −2L(Ω2).

Equations (A.2) and (A.3) now immediately follow.
Furthermore, by the above identities we can rewrite

[L,L]A = g(∇LL − ∇LL, ∂A) = g(L,∇L∂A) − g(L,∇L∂A)

= g(L,∇AL) − g(L,∇AL) = ∂A(g(L,L)) − 2g(L,∇AL)

= − 2g(L,∇AL) − 2∂AΩ2.

From (A.2) and (A.3) it follows, moreover, that

g(∇LL,L) = ∇L(g(L,L) − g(L,∇LL) = −2L(Ω2) + 2L(Ω2) = 0,

g(∇LL,L) = 0.

Finally, we use that g(L, [L, ∂A]) = g(L, [L, ∂A]) = 0 to obtain,

g(∇LL, ∂A) = −g(L,∇L∂A) = −g(L,∇AL),
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g(∇LL, ∂A) = −g(L,∇L∂A) = −g(L,∇AL).

�

We can write L = Ω2L′, L = Ω2L′, where L′ and L′ are geodesic vector
fields, i.e.

∇L′L′ = 0,

∇L′L′ = 0,

which follows from (A.2) and (A.3).
We can define a renormalised ingoing null vector e3 and outgoing null

vector e4, satisfying g(e3, e4) = −2 by

e3 = Ω−1∂u,

e4 = Ω−1(∂v + bA∂A).

The inverse metric in the basis (e3, e4, ∂A)

g−1 = −1
2
(e3 ⊗ e4 + e4 ⊗ e3) + (/g−1)AB∂A ⊗ ∂B

can therefore be expressed in the double-null coordinate basis as

g−1 = −1
2
Ω−2(u, v)(∂u ⊗ ∂v + ∂v ⊗ ∂u)

−1
2
Ω−2bA(∂u ⊗ ∂A + ∂A ⊗ ∂u) + (/g−1)AB∂A ⊗ ∂B .

With respect to the basis (L,L, ∂ϑA
) the inverse metric is given by

g−1 = −1
2
Ω−2(u, v)(L ⊗ L + L ⊗ L) + (/g−1)AB∂A ⊗ ∂B .

Define the second fundamental forms χAB and χ by

χAB := g(∇∂A
e4, ∂B) = Ω−1g(∇∂A

L, ∂B),

χ
AB

:= g(∇∂A
e3, ∂B) = Ω−1g(∇∂A

L, ∂B).

Lemma A.2. We can express,

L(/gAB
) = 2ΩχAB − ∂AbC

/gCB
− ∂BbC

/gCA
, (A.10)

L(/gAB
) = 2Ωχ

AB
. (A.11)

Moreover,

L(
√

det /g)
√

det /g
= Ωtr χ − ∂CbC , (A.12)

L(
√

det /g)
√

det /g
= Ωtr χ. (A.13)
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Proof. We use the expression for [L, ∂A] in Lemma A.1 to obtain

L(/gAB
) = g(∇L∂A, ∂B) + g(∂A,∇L∂B)

= g(∇AL, ∂B) + g(∂A,∇BL) − −∂AbC
/gCB

− ∂BbC
/gCA

= 2ΩχAB − ∂AbC
/gCB

− ∂BbC
/gCA

,

where we used that χAB = χBA, which can easily be shown. Equation (A.11)
can be proved similarly.

We can apply the chain rule to obtain

L(det /g) =
∂ det /g

∂/gAB

L(/gAB
).

By Laplace’s formula for the determinant of a matrix, we can express

(det /g)δB
C = /gAB

Adj(/g)BC ,

where Adj(/g)BC are the components of the adjugate matrix of /gAB
. Conse-

quently,
∂ det /g

∂/gAB

= Adj(/g)AB = det /g/g
AB ,

so

L(det /g) = (det /g)/gABL(/gAB
).

We can therefore conclude that

L(
√

det /g)
√

det /g
=

1
2

L(det /g)
det /g

= Ωtr χ − ∂CbC .

Equation (A.13) can be proved similarly. �

We introduce additional metric derivatives,

ω := −1
4
g(∇e4e3, e4),

ω := −1
4
g(∇e3e4, e3),

ζA :=
1
2
g(∇Ae4, e3).

ζA are the components of the torsion tensor.

Lemma A.3. We can express ω, ω and ζA as follows:

4Ωω = Ω−2L(Ω2),

4Ωω = Ω−2L(Ω2),

ζA =
1
4
Ω−2[L,L]A = −1

4
Ω−2

/gAB
∂ubB .
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Proof. We have that

4ω = − Ω−2g(∇L(Ω−1L), L) = −Ω−2L(Ω−1)g(L,L) − Ω−3g(∇LL,L)

=
1
2
Ω−5L(Ω2)g(L,L) − Ω−3g(L,∇LL)

= Ω−3L(Ω2),

where we used (A.2) in the last equality. The expression for ω follows similarly.
Moreover, by (A.8),

ζA =
1
2
Ω−1g(∇A(Ω−1L), L)

=
1
2
Ω−2g(∇AL,L) − 1

4
Ω−4∂AΩ2g(L,L)

=
1
4
Ω−2[L,L]A

= − 1
4
Ω−2

/gAB
∂ubB . �

Consider the weighted vector field

N = NLL + NLL = Nu∂u + Nv∂v + NA∂A,

where NL = NL(u, v) = Nv(u, v), NL = NL(u, v) = Nu(u, v) and NA =
bANL = bANv. The corresponding compatible current KN is given by

KN [φ] := Tαβ [φ] Nπαβ ,

with the components of the deformation tensor Nπαβ = 1
2 [∇αNβ + ∇βNα]

given by

NπLL = gLLgLL NπLL =
1
4
Ω−4g(∇LN,L),

NπLL = gLLgLL NπLL =
1
4
Ω−4g(∇LN,L),

NπLA = gLL
/g

AB NπLB ,

NπLA = gLL
/g

AB NπLB ,

NπAB =
1
2
(/gAC∂CNB + /g

BC∂CNA

+ /g
AC

/g
BD(Nu∂u + Nv∂v + NE∂E)/gCD

).

We use Eqs. (A.2)–(A.9) to obtain

NπLL =
1
4
Ω−4g(∇LN,L) = −1

2
Ω−2L(NL),

NπLL =
1
4
Ω−4g(∇LN,L) = −1

2
Ω−2L(NL),

NπLL =
1
8
Ω−4 [g(∇LN,L) + g(∇LN,L)]

= − 1
4
Ω−2

[

L(NL) + L(NL) + Ω−2NLL(Ω2) + Ω−2NLL(Ω2)
]

,
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NπLA = − 1
4
Ω−2

/g
AB [g(∇BN,L) + g(∇LN, ∂B)] ,

= − 1
4
NLΩ−2

/g
AB [g(∇BL,L) − g(L,∇BL)] = −1

4
NLΩ−2[L,L]A

= − 1
4
NLΩ−2∂ubA,

NπLA = − 1
4
NLΩ−2[L,L]A,

=
1
4
NLΩ−2∂ubA,

NπAB =
1
2/g

AC
/g

BD(Nu∂u + Nv∂v)/gCD
+

1
2/g

AC
/g

BDNLbE∂E/gCD

+
1
2
(

/g
AC∂CNB + /g

BC∂CNA
)

=
1
2/g

AC
/g

BD(NLL + NLL)/gCD
+

1
2
(

/g
AC∂CNB + /g

BC∂CNA
)

.

Now consider the wave Eq. (1.1) on an extremal Kerr–Newman back-
ground in a double-null foliation, with a corresponding energy momentum
tensor

Tαβ [φ] = ∂αφ∂βφ − 1
2
gαβ(gλκ∂λφ∂κφ).

We have that
gλκ∂λφ∂κφ = gLLLφLφ + /g

AB∂Aφ∂Bφ

= − 1
2
Ω−2LφLφ + | /∇φ|2.

Now we obtain the components

T(L,L) = (Lφ)2,

T(L,L) = (Lφ)2

T(L,L) = Ω2| /∇φ|2,
T(L, ∂A) = Lφ∂Aφ,

T(L, ∂A) = Lφ∂Aφ,

T(∂A, ∂B) = (∂Aφ)(∂Bφ) +
1
2/gAB

(Ω−2LφLφ − | /∇φ|2).
Therefore, by using the expressions in Lemmas A.2 and A.3, we obtain

KN = NπLLT(L,L) + NπLLT(L,L) + 2 NπLLT(L,L) + NπABT(∂A, ∂B)

+2 NπLAT(L, ∂A) + 2 NπLAT(L, ∂A)

= −1
2
Ω−2L(NL)(Lφ)2 − 1

2
Ω−2L(NL)(Lφ)2

+
1
4
Ω−2[/gABNLL(/gAB

) + NLL(/gAB
) + 2NL∂EbE ]LφLφ

−1
2
[

L(NL) + L(NL) + Ω−2(NLL(Ω2) + NLL(Ω2))
] | /∇φ|2
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+
[

1
2/g

AC
/g

BD(NLL − NLL)/gCD
+ NL

/g
AC∂CbB

]

(∂Aφ)(∂Bφ)

−1
4

[

/g
BD(NLL − NLL)/gBD

+ 2NL∂EbE
]

| /∇φ|2

−1
2
NLΩ−2∂ubALφ∂Aφ

+
1
2
NLΩ−2∂ubALφ∂Aφ

= −1
2
Ω−2L(NL)(Lφ)2 − 1

2
Ω−2L(NL)(Lφ)2

+
1
2
Ω−2(NLΩtr χ + NLΩtr χ)LφLφ

−1
2
[

L(NL) + L(NL) + 4Ω(NLω + NLω)
] | /∇φ|2

+
[

NLΩχ̂AB + NLΩχ̂AB
]

(∂Aφ)(∂Bφ)

+2[NL(Lφ) − NL(Lφ)]ζA∂Aφ,

where we used the notation

χ̂AB := χAB − 1
2/gAB

trχ,

χ̂
AB

:= χ
AB

− 1
2/gAB

trχ.

Appendix B. The Wave Equation in Double-Null Coordinates

Consider the extremal Kerr–Newman metric in Eddington–Finkelstein-type
double-null coordinates (u, v, θ∗, ϕ∗). Then, the wave operator becomes

�gφ =
1

2
√

det /g
Ω−2∂α

(

gαβ2Ω2
√

det /g∂βφ
)

=
1

2
√

det /g
Ω−2

[

− ∂v

(√

det /g∂uφ
)

− ∂u

(√

det /g(∂vφ + bA∂Aφ)
)

− ∂A

(√

det /gbA∂uφ
)

+ ∂A

(√

det /g2Ω2
/g

AB∂Bφ
)

]

=
1

2
√

det /g
Ω−2

[

−L
(√

det /gLφ
)

−
√

det /g∂AbALφ − L
(√

det /gLφ
)]

+ Ω−2
/g

AB∂AΩ2∂Bφ + /Δφ

= − 1
2
Ω−2

[

LLφ + LLφ + Ωtr χLφ + Ωtr χLφ
]

+ Ω−2 /∇Ω2 · /∇φ + /Δφ.

(B.1)
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We can write

2Ω2�gφ = − LLφ − LLφ − Ωtr χLφ − Ωtr χLφ + 2 /∇Ω2 · /∇φ + 2Ω2 /Δφ.

(B.2)

Moreover, we use that [L,L] = L(bA)∂A = 4Ω2ζA and Ω tr χ =
(det /g)− 1

2 L((det /g)
1
2 ), to write

2Ω2�gφ = − 2LLφ − 4Ω2ζ(φ) − L(
√

det /g)
√

det /g
Lφ − Ω tr χLφ + 2 /∇Ω2 · /∇φ + 2Ω2 /Δφ.

The wave equation in the above form can easily be rewritten as a transport
equation for (det /g)

1
4 Lφ:

2L((det /g)
1
4 Lφ)) = (det /g)

1
4 Ωtr χLφ + 2(det /g)

1
4 /∇Ω2 · /∇φ

−4(det /g)
1
4 Ω2ζ(φ) + 2(det /g)

1
4 Ω2 /Δφ. (B.3)

Remark B.1. Note that expressions (B.2) and (B.3) are not restricted to
extremal Kerr–Newman spacetimes; they in fact hold for any background met-
ric in double-null coordinates of the form (A.1).
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