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Key points:  

 

 Remyelination is a spontaneous regenerative process in the adult mammalian 

central nervous system in which new oligodendrocytes and myelin sheaths are 

generated from a widespread population of adult progenitor cells. 

 

 Remyelination involves the distinct stages of progenitor activation, recruitment 

(proliferation and migration) and differentiation into mature myelin-sheath forming 

oligodendrocytes: each is orchestrated by a complex network of cells and signaling 

molecules. 

 

 The efficiency of remyelination declines progressively with adult aging, a 

phenomenon that has a profound bearing on the natural history chronic 

demyelinating diseases such as multiple sclerosis, although experimental studies 

have revealed that the age-affects are reversible. 

 

 Remyelination is neuroprotective, limiting the axonal degeneration that follows 

demyelination. Restoring remyelination is therefore an important therapeutic goal 

so as prevent neurodegeneration and progressive disability in multiple sclerosis and 

other myelin diseases. 

 

 Insights into the mechanism governing remyelination as well as an increasing 

number of high throughput screening platforms have led to the identification of a 

number of drug targets for the pharmacological enhancement of remyelination, 

some of which have entered clinical trials. 

 

 Advances in the generation of large numbers of human stem and progenitor cells, 

coupled with compelling preclinical data, have opened up new opportunities for cell 

based remyelination therapies, especially for the leucodystrophies.   
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Abstract | Although the core concept of remyelination — based on the activation, migration, 

proliferation and differentiation of CNS progenitors — has not changed over the past 20 years, 

our understanding of the detailed mechanisms that underlie this process has developed 

considerably. We can now decorate the central events of remyelination with a host of 

pathways, molecules, mediators and cells, revealing a complex and precisely orchestrated 

process. These advances have led to recent drug-based and cell-based clinical trials for myelin 

diseases, and have opened up hitherto unrecognized opportunities for drug-based 

approaches to therapeutically enhance remyelination. 
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Contrary to the oft-expressed view that the CNS has little capacity for regeneration, injury to 

oligodendrocytes, the myelin-forming cells of the CNS, can be followed by a robust 

regenerative response leading to the formation of new myelin sheaths — a process termed 

remyelination1,2. This regenerative response is most clearly seen in young animals following 

experimental demyelinating lesions, which can be created by a number of techniques (BOX 

1). It is also seen in humans following lesions such as those caused by the demyelinating 

disease multiple sclerosis (MS)3-5. For many patients with this disease, however, 

remyelination ultimately fails and it is thought that the loss of metabolic support normally 

provided by myelin sheaths to axons contributes to the axonal and neural degeneration and 

to the progressive disability that characterise the later stage of MS6,7.  

 

The study of remyelination is important to biologists and clinicians alike, as it provides an 

excellent exemplar of an important and emerging discipline — tissue regeneration. The 

inexorable rise in disability within ageing populations represents one of the major challenges 

for health care in the 21st-century, yet there are no therapies in the clinic that directly address 

this by promoting tissue regeneration — all such treatments simply prevent further damage 

(although in so doing they may allow natural healing events to proceed more efficiently). 

When the endogenous regenerative capacity becomes limited, as in individuals with MS, 

disability inevitably results. What is therefore required is an understanding of tissue 

regeneration — what drives it and why does it fail? 

 

A key question in tissue regeneration is how, against a backdrop of the potentially hostile 

environment of damaged tissue that has attained its full size and complexity, can new cells 

generated from residents stem and progenitor populations integrate and become functional? 

The study of remyelination provides an accessible process to study these issues. It is also a 

very important area of research in its own right; if, as we will argue below, remyelination is 

neuroprotective and can be enhanced in the CNS following diseases characterised by myelin 

loss, such as MS and perinatal white-matter injury, effective therapies for diseases that 

impose an enormous financial burden on society become a realistic goal. 

 

As we stated in our previous reviews in 2002 and 2008, the major challenge for the field 

remains the discovery and delivery into the clinic of drugs that enhance remyelination and 

lessen neurodegeneration1,2. Since 2008, however, there has been a step change in our 

understanding of the cells and the signalling pathways that are responsible for remyelination, 

on a scale that now defies comprehensive coverage in a single review. Here, we review some 

of the advances that have occurred, focusing on how the underlying biology has provided a 

platform for the identification of biologics and small molecules that enhance remyelination 

and are heralding the advent of a new experimental medicine-based era. 

 

[H1] Why is remyelination important? 

CNS myelin has two functions: it provides metabolic support to the axon and allows rapid 

transmission of action potentials along the axon6,8,9. In the former, monocarboxylate 

transporters on the oligodendrocyte enable the transfer of lactate from the glial cell to the 

axon and, in doing so, provide the substrate for axonal ATP production via the citric acid 

cycle10-12. In the latter, nodes of Ranvier form by adhesive interactions between axon and 
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paranodal loops at the end of each sheath, leading to the localisation of voltage-dependent 

sodium channels in the gaps between sheaths, which enables saltatory conduction13,14. The 

rationale for remyelination therapies is therefore that they will both restore metabolic 

support to the axon to prevent the axon degeneration responsible for progressive disability 

and restore the nodes that are required to facilitate conduction and hence function (FIG. 1). 

Below, we examine the experimental evidence supporting these objectives. 

 

[H3] Prevention of neurodegeneration. If remyelination prevents axon degeneration, CNS 

regions in which remyelination is enhanced should show increased numbers of viable axons.  

Indeed, various human and animal neuropathological studies suggest that axonal 

degeneration occurs more in areas of acute and chronic demyelination15 than in areas of 

remyelination16. However, such studies do not show causality — successful remyelination 

might simply reflect the presence of healthy axons that are able to support new myelin 

formation, while remyelination failure might result from axonal damage perturbing any 

physical and biochemical cues required for myelination. The need to consider this alternative 

explanation is highlighted by the evidence for intrinsic axonal defects, such as mitochondrial 

abnormalities, as potential causes of axonal and neuronal degeneration in MS17-19.  

 

Distinguishing cause and effect requires experimentation, and can only be addressed in animal 

models in which the strategy used to prevent or enhance remyelination has no direct effect 

on the axons. Three experimental strategies have been used to address this issue. The first 

has been the transplantation of cells capable of remyelination after administration of the 

oligodendrocyte toxin cuprizone to mice combined with the use of irradiation to prevent 

endogenous remyelination. This approach rescued remyelination and led to a decrease in 

axonal damage20. The second strategy has been the selective genetic ablation of 

oligodendrocytes by the cell-specific expression of diphtheria toxin to induce demyelination 

which resulted in secondary axonal injury, an effect that was still observed even when the 

activation of the adaptive immune system, which could lead to bystander damage of axons, 

was prevented21. The third strategy has involved enhancing remyelination by the removal the 

M1 muscarinic receptor from oligodendrocytes so as to enhance their differentiation. This 

approach showed increased preservation of axons in an experimental autoimmune 

encephalomyelitis (EAE)22. Although these studies do not completely rule out the possibility 

that immunomodulatory effects of progenitors on the microglia or other cells types within the 

lesion may contribute to axonal injury or protection, together they do provide persuasive 

evidence for a direct neuroprotective effect of remyelination. 

 

[H3] Restoration of function. The effectiveness of remyelination in restoring conduction 

velocity is well established. Electrophysiological studies in the rodent spinal cord and 

brainstem showed that remyelination restores rapid and therefore, probably, saltatory 

conduction9. The spontaneous remyelination that occurs in cats following extensive 

demyelination caused by dietary manipulation leads to restoration of function, as measured 

by clinical examination23. However, whether remyelination leads to complete and sustained 

restoration of function will require more sophisticated analyses of neural circuit function and 

remains to be determined24, especially in situations in which a degree of axonal loss has 
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already occurred. Given that remyelination leads to thinner myelin sheaths than myelination 

(see below), it is predicted from computational studies showing that velocities increase with 

myelin thickness that conduction will not completely return to normal25.  

 

There may be other, longer-term effects of remyelination. The traditional view that the myelin 

sheath is fixed structurally after formation has been revised in light of studies showing that 

activation of phosphatidylinositol 3-kinase signalling, optogenetic stimulation of axonal 

activity or enrichment of the social environment can increase the thickness and/or number of 

sheaths26-28. Together, these results show that oligodendrocytes are able to respond to 

axonal and potentially other signals to alter sheath properties. This plasticity has been termed 

adaptive myelination and it raises the question as to whether this also provides a mechanism 

for learning, in which circuits that show sustained activity are reinforced by increased 

myelination. The fascinating question that follows on from these studies is whether the 

sheaths on remyelinated axons also show plasticity and, if not, does this limit any capacity for 

learning and thus contribute to the cognitive dysfunction seen in patients with MS?  

 

An additional, similarly theoretical, concern over complete functional restoration comes from 

studies linking the formation of new oligodendrocytes to learning. Oligodendrocytes are born 

and generate new myelin sheaths throughout life29-31, and an important study showed that 

this new oligodendrocyte differentiation is required for motor learning in adult mice32.  

Although this work did not establish that myelination per se is required for motor learning — 

the newly formed oligodendrocytes required for motor learning could have had other 

beneficial effects on axonal function, such as metabolic support — it did predict that any 

reduction in the number of progenitors in and around remyelinated lesions could have longer-

term effects on learning by limiting this capacity for the generation of new oligodendrocytes. 

Although oligodendrocyte progenitor cell (OPC) numbers return to normal even after 

repeated acute episodes of demyelination–remyelination in rodents33-35, it is possible that 

exposure to a sustained demyelinating stimulus might lead to a depletion of OPC numbers36,37 

and  compromise this intriguing role of oligodendrocytes. 

 

[H1] Mechanisms of remyelination 

The keys stages in remyelination are now well established (FIG. 2). In response to 

demyelinating injury, adult progenitors undergo a change in state often referred to as 

activation, in which at least some of these cells in the vicinity of a lesion re-enter the cell 

cycle38.  This enables progenitors to populate and expand within areas of damage through a 

combination of proliferation and migration; finally, they undergo differentiation, a process 

culminating in the formation of new myelin sheaths39,40. These sheaths are often thinner than 

those formed during development, a characteristic widely used to distinguish areas of 

remyelination from normally myelinated axons41.  Recent years have seen an explosion of 

studies identifying factors, both extrinsic (also described as environmental or non-cell 

autonomous) and intrinsic (cell autonomous) that are involved in each of these distinctive 

phases, of which the timely and seamless transition from one to next is essential for efficient 

remyelination42-47. Next, therefore, we will review some of these recent developments that 
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together have transformed our understanding of the mechanisms of this important 

regenerative process and the reasons for its failure. 

  

[H3] Adult oligodendrocyte progenitor cells.The developmental origin of oligodendrocytes 

was established over thirty years ago. They are derived from a now well-characterised 

population of progenitor cells whose name has gone through numerous iterations. Originally 

described as O-2A cells by Raff and colleagues in the 1980s (on account of their ability to 

generate a glial fibrillary acidic protein-expressing cell resembling an astrocyte in tissue 

culture, as well as oligodendrocytes)48, they have subsequently been called NG2 cells (based 

on their expression of a membrane bound protegogylcan), synantocytes, polydendrocytes, 

oligodendrocyte precursor cells and OPCs49-51. Similar cells that are derived from neonatal 

OPCs (nOPCs) and that persist into adulthood are called adult OPCs (aOPCs)52. These cells 

constitute approximately 6% of the CNS total cell number53 and are abundant throughout the 

CNS, where they generate new oligodendrocytes throughout life. They also receive 

glutamatergic and GABAergic synaptic inputs, and recent studies suggest that they have a 

potentially important role in modulating neuronal circuit activity54-57.  

 

Given the central role of OPCs in developmental myelination, it seemed likely that aOPCs 

would be the cells that are responsible for generating new oligodendrocytes during the 

regenerative process of remyelination. Several lines of evidence strongly supported such a 

view, but it was not until the advent of genetic fate mapping strategies in which marker genes 

could be specifically expressed within aOPCs in such a way that their differentiation fates 

could be followed that the formal evidence that aOPCs are the major source of new 

oligodendrocytes could be confirmed39,40,58 (FIG. 2). More recent studies using dual-colour 

reporter mice that identify the developmental origin of aOPCs have revealed that those of 

dorsal developmental origin undergo enhanced recruitment and differentiation during 

remyelination compared with those of ventral origin, revealing a regenerative heterogeneity 

in aOPCs that is determined by developmental origin59.  

 

Fate-mapping studies have also revealed alternative differentiation fates of aOPCs during 

tissue regeneration. Indeed, they have shown that aOPCs can generate astrocytes (albeit in 

small numbers compared with those generated from existing astrocytes) and, perhaps most 

surprisingly, Schwann cells that contribute to CNS remyelination in certain diseases and 

experimental models (BOX 2)39,59. Thus, aOPCs are self-renewing multipotent cells; on this 

basis, a case can be made for regarding these cells as adult CNS stem cells60. 

 

Although aOPCs constitute the overwhelmingly predominant source of new oligodendrocytes 

when one considers the entire CNS, progenitor populations within the sub-ventricular zone 

(SVZ) may also be able to generate new oligodendrocytes in an area of demyelination located 

near to the SVZ, such as the corpus callosum61-63. A long-standing question is whether pre-

existing mature oligodendrocytes might also be a source of new oligodendrocytes during 

remyelination. Genetic fate mapping shows that this is not the case64. However, pre-existing 

oligodendrocytes are able to increase the number of internodes they generate and thereby 

contribute to remyelination if extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2) 
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are artificially activated65. 

 

[H3] Activation of adult oligodendrocyte progenitor cells. Progenitor activation is the term 

used to describe the specific set of changes that occur in aOPCs in response to disruption of 

tissue homeostasis caused by injury. This process is closely associated with the proliferative 

response of aOPCs following tissue injury, but whether it occurs within aOPCs before they 

proliferate or is a feature of newly generated aOPCs is unclear. Early descriptions of activation 

described a change in aOPC morphology that was subsequently linked to the increased 

expression of several genes, many of which are transcription factors47,66,67. More recently, a 

thorough description of the changes in gene expression associated with activation have been 

acquired38. Through the use of reporter mice that enable fluorescence-activated cell sorting-

based isolation of specific populations, it has been possible to generate gene expression 

profiles of aOPCs from intact white matter and from regions of demyelination, and compare 

these profiles with those of nOPCs and mature oligodendrocytes from adult CNS. This study 

revealed that the resting aOPC has an expression profile that more closely resembles a mature 

oligodendrocyte than an nOPC, but following demyelination, aOPCs in their activated state 

‘revert’ to a transcriptome than more closely resembles their developmental forebears. This 

makes intuitive sense, as it is only nOPCs and activated aOPCs that need to prepare 

themselves for generating new oligodendrocytes, the former for myelination and the latter 

for remyelination.  

 

The changes in gene expression associated with activation are clearly necessary for the 

ensuing regenerative process. Two examples provide evidence of the critical importance of 

this initial aOPC event. First, the transcription factor TCF7L2 (also known as TCF4) is only 

expressed in aOPCs following tissue injury (it is undetectable in oligodendrocyte lineage cells 

in normal adult CNS)68. As discussed below, this transcription factor is at the heart of canonical 

WNT signalling and serves to maintain aOPCs in the cell cycle as their numbers increase to 

populate areas of demyelination during the recruitment phase of remyelination. The second 

example is provided by the transcription factor SOX2, which, like TCF7L2, is only expressed in 

aOPCs following tissue damage69. SOX2 appears to function as a master switch, with 

expression associated with an increase in aOPC proliferation and the priming these cells for 

eventual differentiation into myelinating oligodendrocytes.  

 

The precise mechanisms for inducing activation are not known but they probably relate to 

the innate immune response that is triggered by tissue injury. A plausible working 

hypothesis involves the initial detection of the change in tissue integrity by microglia 

(presumably via pattern recognition receptors), the activation of these cells and the 

associated secretion of a battery of cytokines and other signalling molecules. These factors 

rapidly activate astrocytes, which secrete a range of factors leading to a rapid change in the 

signalling milieu of the tissue that is detected by aOPCs, causing their activation. It remains 

to be established how the recently identified heterogeneity in the response of astrocytes to 

CNS damage fits into this model of remyelination70. It is likely that signals emanating from 

the damaged tissue (such as damage-associated molecular patterns) also directly contribute 

to OPC activation. Although the process of remyelination is a regenerative sequela of 

primary demyelination, it seems that aOPC activation is not confined to this very specific 
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form of pathology but occurs in all forms of CNS disturbance, and it is possible that aOPC 

activation might contribute to the resolution of other forms of CNS injury71 through other 

recently discovered biological functions of this cell population, such as the control of 

angiogenesis72. 

 

[H3] Co-ordination of recruitment and differentiation. The next identifiable phase of 

remyelination is recruitment — the colonization of areas of demyelination with sufficient 

aOPCs to generate the number of oligodendrocytes required to restore myelination. Mirroring 

a common mechanism employed in development to regulate cell number, in which a surfeit 

of progenitors is generated and then subsequently pruned to the number of differentiated 

cells required, the initial progenitor response to demyelination is usually far in excess of that 

needed. This is invariably the case in experimental models, although in clinical disease the 

situation is less straightforward since there are, as we will discuss below, certainly instances 

where remyelination failure is associated with too few progenitors73,74. The recruitment of 

aOPCs to and within areas of demyelination depends to a large extent on cell division and also 

on cell migration, albeit this migration probably occurs over relatively short distances75.  

 

An extensive literature now exists on the many factors than control both OPC division and 

migration and although only some of this literature relates to the study of aOPCs in the context 

of demyelination, it is likely than many of the mediators described in developmental and in 

vitro systems will contribute to the complex variety of factors regulating the recruitment 

phase of remyelination. The sources of both mitogens and regulators of migration are many 

and there are few, if any, constituents of a demyelinating lesion that do not contribute factors 

involved in aOPC recruitment. Cells of the innate immune system, be they microglia or 

recruited monocyte-derived macrophages, are a major source of factors that enhance aOPC 

activation, proliferation and migration. Astrocytes, activated by the acute injury, are a further 

source, as are cells of the vasculature and the aOPCs themselves38,76,77. The multiplicity of 

recruitment mediators raises the question of why so many factors are needed and from so 

many distinct sources? It seems likely that there are high levels of redundancy, with different 

factors mediating essentially the same function. However, it may also speak to a precisely 

choreographed sequence of events required for recruitment that we as yet have not fully 

understood. 

 

A particularly important part of this choreography is the pathways that inhibit differentiation. 

These are closely linked to the control of the recruitment phase because preventing cells from 

exiting cell cycle by undergoing differentiation is an important part of establishing sufficient 

numbers of progenitors to ensure successful remyelination78. Two key pathways to have 

emerged as negative regulators of OPC differentiation are the Notch pathway, which in 

developmental myelination prevents differentiation79, and the canonical WNT pathway68. A 

clue to the importance of the WNT pathway was initially provided by the identification of the 

transcription factor TCF2L7 in oligodendrocyte lineage cells in remyelination68. This led to a 

series of studies that have not only yielded a detailed understanding of the WNT pathway in 

controlling the transition from the proliferation phase to the differentiation phase but also 

revealed insights into myelin pathology and opened up exciting possibilities by which 
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remyelination might be therapeutically enhanced80-83.  

 

[H3] Differentiation and the formation of thin myelin sheaths. The recruitment phase is 

followed by the differentiation phase, in which recruited aOPC extend processes around 

demyelinated axons and ultimately invest the axon with a new compacted myelin sheath. It is 

now well established in oligodendrocyte biology that there is an exclusivity between the 

mechanisms governing OPC proliferation and those that control the differentiation of OPCs 

into mature myelin-forming oligodendrocytes: for differentiation to occur, a cell must exit the 

cell cycle84, a transition in which SFMBT2 cluster miRNAs, MYC and E2F1 have key roles85-87. 

When remyelination proceeds smoothly, there is a timely transition from the recruitment to 

the differentiation phase. Dysregulation of the kinetics of this transition plays a large part in 

the declining efficiency of remyelination with age, as we discuss later. However, despite its 

importance, relatively little is known about how this transition occurs, although it clearly 

involves kinases that control cell cycle and cell cycle exit78. One possible mechanism relates 

to cell density, which, when it reaches a certain level, initiates differentiation (conversely, a 

decrease in density such as can occur during demyelination, is a stimulus to induce 

recruitment)88-90. The past few years have seen a considerable expansion in our 

understanding of the mechanisms of differentiation by which an aOPC transitions into a 

myelinating oligodendrocyte, including the identification of key transcription factors such as 

MRF and epigenetic regulators91-95. Not all of this information has been gleaned from models 

of demyelination and remyelination, but that which has is especially interesting as it opens up 

exciting opportunities for small molecule-based therapeutic interventions by which 

remyelination might be enhanced clinically (discussed below).  

 

The last stage of oligodendrocyte differentiation is the formation of a new compacted myelin 

sheath. When myelination occurs during development there is a clear relationship between 

myelin sheath thickness (and length) and axon diameter. However, in remyelination, the new 

myelin sheath thickness and length show little increase with increasing axonal diameter. This 

means that, in remyelination, the myelin sheaths are thinner and shorter than the original 

sheaths generated during development41 (FIG. 3). Although some remodelling of the new 

myelin internode occurs, the original dimensions are only attained for small-diameter fibres96-

98. The relationship between axon diameter and myelin sheath thickness is expressed as the 

g ratio, which is calculated as the fraction of the axon circumference to the axon plus myelin 

sheath circumference. The thin myelin sheaths characteristic of remyelination have a higher 

g ratio than that of the normally myelinated axon and this remains the most reliable way of 

unambiguously identifying remyelination. However, while thin myelin sheaths are easily 

detected when large diameter axons are remyelinated, the situation is less straightforward 

for smaller-diameter axons such as those within the corpus callosum, where the normally 

thinner myelin sheaths mean that the g ratios of remyelinated axons are often unchanged97.  

 

An important question in myelin biology is how the relationship between the thickness and 

length of the myelin sheath and axon size is established in developmental myelination and 

why it should fail during remyelination? In the PNS, expression of neuregulin 1 (NRG1)-type III 

on axons is clearly important: less NRG1 results in thinner myelin sheath with an increased g 
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ratio, whereas more NRG1 results in an thicker myelin sheath with a decreased g ratio99. In 

the CNS overexpression of NRG1 leads to hypermyelination in development. However, mice 

lacking expression of Nrg1 or both Erb3 and Erb4 (which encode NRG1 receptors) undergo 

normal myelination, indicating that NRG1 is not necessary for CNS myelination100 and other 

signals, including the cell-intrinsic mechanisms that enable oligodendrocytes to form sheaths 

on artificial fibres that mimic axons101, must contribute to the establishment of the myelin 

sheath parameters. However, none of the mechansistic insights into the control of myelin 

sheath formation in development shed light on the increased g ratio in remyelination. For 

example, while increased expression of NRG1 increases myelin sheath thickness in 

development it fails to do so during remyelination100. Likewise, activation of the AKT pathway, 

a well-established determinant of myelin sheath thickness in development, does not result in 

thicker myelin sheaths in remyelination102. One hypothesis to explain the discrepancy 

between myelination and remyelination is that whereas oligodendrocytes myelinating during 

development associate with expanding axons that are still acquiring their final length and 

diameter and are able to induce adaptive changes in the myelin sheath, the remyelinating 

oligodendrocyte engages an axon that is comparatively static, having already acquired its final 

size. Thus, the remyelinating oligodendrocyte does not encounter the same dynamic stresses 

and other signals that might drive adaptive changes encountered by the myelinating 

oligodendrocyte103, and remyelination reflects largely the activity of the cell-intrinsic 

mechanisms (FIG. 3). 

 

[H1] Systemic factors and remyelination 

As with regenerative processes, remyelination is profoundly affected by systemic factors. 

Recent studies have emphasized two such factors: the essential role of the immune system 

and the profound impact of ageing on the process. 

 

[H3] Remyelination and the immune system. Various lines of evidence strongly suggest that 

MS is primarily an autoimmune disease104-106. However, the focus on the immunopathogenic 

nature of the maladaptive immune system in this disease has deflected attention from the 

role of the immune system and especially the innate immune system in remyelination. It is a 

well-established tenet of pathology that one of the functions of inflammation is to prepare 

damaged tissue for reparative processes, and it is now abundantly clear that the innate 

immune response to demyelination has important roles in remyelination. In non-immune-

mediated models of demyelination, this innate immune response is mediated by microglia 

and by monocytes recruited from the circulation. Both cell types have the capacity to develop 

into macrophages. Here, we use the term macrophage to refer to cells of both origins, unless 

a distinction is drawn between the two107 .  

 

A correlation between the abundance of debris-filled macrophages and the efficiency of 

remyelination was reported in early studies of remyelination following toxin-induced 

demyelination, in which the inflammatory response is the consequence of demyelination and 

not its cause, as in immune-mediated models of demyelination such as EAE. A causal 

relationship between the macrophage response and remyelination was demonstrated by the 

depletion of the circulating monocytes that give rise to a proportion of the lesion 
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macrophages, which led to remyelination impairment108. Subsequent studies on the nature 

of the beneficial roles of macrophages focused on their ability to clear the myelin debris 

generated during demyelination by phagocytosis, or on the various factors they secrete that 

influence the behaviour of OPCs and their progeny109,110. Myelin contains inhibitors of OPC 

differentiation, which, in the intact CNS, are thought to prevent OPCs undergoing 

differentiation in the absence of an exposed axon, as to do so would probably lead to them 

undergoing apoptosis111-113. Myelin debris generated by demyelination and containing 

inhibitors of OPC differentiation therefore needs to be removed from the extracellular space 

so that it does not interfere with the final differentiation stage of remyelination114-117. This is 

the function of phagocytic macrophages and the efficiency with which they perform this task 

has a major influence on the efficiency of remyelination.  

 

In addition to any phagocytic role, activated macrophages are a source of a wide spectrum of 

secreted signalling molecules that may stimulate remyelination directly or indirectly118. In 

recent years, many macrophage-derived molecules have been identified that have direct 

effects on OPCs (for example, CXCR4119, tumour necrosis factor120, endothelin 2121 and 

activin-A122), and it is likely that others will be identified. Macrophages may also have roles in 

extracellular matrix remodelling and in the metabolic support of axons and oligodendrocytes 

(via the release of lactate and iron, respectively) and the contribution of these roles to the 

regenerative function of macrophages will need to be clarified123. The precise nature of 

macrophage function is determined by the macrophage state, which is often referred to as 

being either ‘classically activated’ or M1, or ‘alternatively activated’ or M2. Although there 

are many caveats to this terminology, not least because it does not accurately reflect the 

multiple and interchangeable states that these cells can adopt, it nevertheless provides useful 

terms of convenience with which to identify distinctive macrophage contributions. The M1 

state is prevalent during the recruitment phase of remyelination whereas the M2 state is 

dominant and instrumental during the differentiation phase122. The timely transition from the 

M1 to the M2 state is critical for rapid and efficient remyelination. Although both resident 

microglia and recruited monocytes can both give rise to macrophages, it is becoming apparent 

that the two populations can have distinctive roles in CNS pathology124. Elucidating their 

distinctive roles, and that of the recently characterized non-parenchymal macrophages of the 

perivascular space and other brain borders125, will be necessary to fully understand the role 

of the innate immune system in remyelination.  

 

The role of the adaptive immune response in remyelination has received relatively little 

attention. Early reports suggested a positive role for T cells in remyelination, as this process 

was impaired in their absence126,127. A more recent study identified a pro-remyelination role 

for regulatory T-cells present in MS lesions that is mediated in part by their expression of 

CCN3128.   

  

[H3] Ageing and remyelination. It is a common feature of regenerative processes that they 

become less efficient with ageing (which is one of the reasons why ageing occurs)129. 

Remyelination is no exception: it undergoes a progressive slowing in rate throughout adult 

life130-132, which may occur more rapidly in white matter than in grey matter, in which 
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remyelination is thought to be more efficient133. As a result of the slowing of remyelination 

rate, demyelinated axons remain exposed for increasingly long periods134. As these axons 

depend on an intact myelin sheath for their survival, delays in remyelination leave axons 

increasingly vulnerable to degeneration22. Axonal loss is irreversible and as the number of 

lost axons accumulates, the degree of permanent clinical deterioration increases. Thus, the 

transition from treatable relapsing–remitting MS to untreatable chronic progressive MS 

probably occurs to a large extent on the age-associated decline in remyelination efficiency 

and the consequent degeneration of demyelinated axons.   

 

Although it is difficult to know for certain at what rate remyelination occurs in people with 

MS, studies of patient cohorts support this hypothesis: individuals with MS reach specific 

levels of disability at around the same age regardless of the initial pattern of disease and the 

age of disease onset, pointing to an underlying age-associated decline in regenerative 

capacity135. Reports that remyelinated plaques can be found in long-lived individuals is not 

evidence against our hypothesis, as it is not possible to know at what age a lesion occurred or 

how long it took to remyelinate4. Rather, both imaging136 and pathology137 studies point to 

a strong age-effect on remyelination efficiency in MS. 

 

There are several possible explanations for why remyelination efficiency declines with ageing. 

One possibility is that the density of aOPCs declines, leaving fewer cells available to be 

mobilized in response to demyelination. However, the available data indicate that there is no 

age-related decline in aOPC density138,139. However, there is evidence that aOPC activation, 

recruitment and differentiation are all impaired with increasing age138,139, and, of these, the 

effects on differentiation are especially rate limiting as increasing aOPC recruitment following 

experimental demyelination in aged mice does not lead to an acceleration in 

remyelination140. This emphasis on the failure of differentiation with ageing in animal models 

mirrors (and may well contribute to) the frequent occurrence of chronic demyelinating lesions 

containing oligodendrocyte lineage cells that have failed to undergo complete 

differentiation141-143.   

 

The ageing process affects both the intrinsic properties of aOPCs and the cells that form the 

extrinsic environment in which remyelination takes place. That intrinsic changes occur with 

ageing aOPCs is well-established, although the details of these changes have not been 

extensively explored, in part because of the technical challenges of growing aOPCs in tissue 

culture144,145. The age-related changes in the remyelination environment are better 

understood, especially the contributions made by innate immune cells. There is not only an 

age-associated delay in the mobilization of the macrophage response but also a decrease in 

the ability of macrophages within lesions to clear myelin debris, which as described above 

contains factors that inhibit OPC differentiation115,146,147, and a delay in the switching of the 

macrophage population from one that is predominantly M1 to one that is predominantly M2, 

a switch that is important for the induction of OPC differentiation122.  

 

An important question is whether ageing-associated effects are reversible. The answer to this 

question is critical in deciding whether to pursue regenerative therapies based on mobilizing 
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the regenerative properties of endogenous stem and progenitor cell populations. A now 

widely used approach to address this question is the experimental procedure of heterochronic 

parabiosis, in which two adult mice of different ages are joined such that they share a common 

circulation148. This approach has been used to show that deficient remyelination in an aged 

mouse can be reversed, thus establishing the important principle that the effects of ageing on 

remyelination are reversible and validating therapeutic approaches based on targeting 

endogenous OPCs even in aged patients147. Such an approach is further validated by the 

enhancement of remyelination efficiency in aged rats using a small-molecule agonist of the 

nuclear hormone receptor retinoic acid receptor RXR149. 

 

[H1] Enhancing remyelination 

Clearly, the key first step in developing therapies that enhance remyelination and, in doing so, 

prevent neurodegeneration is the discovery of experimental strategies that promote or 

accelerate remyelination in relevant animal models. Two broad approaches have been taken: 

the identification of factors that normally inhibit remyelination (blockers of which will 

therefore promote the process) and the identification of those that accelerate the process.  

 

[H3] Inhibitors of remyelination. A range of environmental components inhibit remyelination, 

including the extracellular matrix150-154; these components have been reviewed 

elsewhere155. Here, we focus on two signalling pathways that have received particular 

attention in view of their potential as targets for therapies to enhance remyelination. As 

discussed above, Notch signaling inhibits oligodendrocyte differentiation during 

development. The extent to which this pathway regulates OPC differentiation during 

remyelination is difficult to assess, despite the persistence of components of the pathway 

being implicated in remyelination failure in MS156. The expression of both Notch and Jagged 

in experimentally-induced areas of demyelination that undergo efficient remyelination, make 

it unlikely that their presence alone can account for remyelination block157. However, studies 

using an inducible Cre-lox approach to ablate Notch1 in OPCs following demyelination have 

yielded slightly different results depending on the type of Cre-driver used. In a study using a 

Plp1 promoter, there was no evidence in support of the prediction that ablation of Notch1 in 

progenitors caused premature progenitor differentiation and therefore accelerated 

remyelination, suggesting that Notch signalling is not a major regulator of OPC differentiation 

pathway during remyelination158. However, a subsequent study using the Olig1 promoter, 

which is expressed ay an earlier stage in oligodendrocyte development than Plp1, revealed an 

earlier onset of OPC differentiation, although this did not result in an overall increase in the 

rate of remyelination159. Thus, the canonical Notch pathway, whose activity in demyelinating 

lesions is enhanced by activated astrocyte-derived endothelin-176, seems to be one of the 

pathways that provides negative regulation of OPC differentiation, albeit not a dominant one. 

This may owe in part to competitive activation of non-canonical Notch signalling in OPCs that 

is involved in the induction of OPC differentiation160. An interesting take on the role of Notch 

signalling and differentiation has been provided by a careful examination of brain tissue from 

individuals with MS161: since Notch-intracellular domain (NICD) is not present within the 

nucleus of OPCs present in chronically demyelinated lesions, it is unlikley to be able to activate 

downstream targets of the notch pathway.  
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Leucine-rich repeat and immunoglobulin-like domain-containing nogo receptor-interacting 

protein 1 (LINGO-1) is a membrane-associated glycoprotein that is selectively expressed in the 

CNS. Originally shown to regulate axon outgrowth by interaction with the Nogo-66 receptor 

(NgR1) complex, it was subsequently also found to inhibit oligodendrocyte differentiation162. 

OPCs treated with small-interfering RNAs generated against LINGO-1, dominant negative 

LINGO-1 or LINGO-Fc led to cultured cells acquiring a more mature morphology. Consistent 

with this observation, LINGO-1 knock out mice exhibit precocious myelination in 

development162, whereas mice exposed to anti-LINGO-1 antibodies exhibit accelerated CNS 

remyelination in the lysolecithin model of demyelination–remyelination163. Thus, it appears 

that LINGO-1 signalling does play a role in controlling the differentiation of OPC during myelin 

regneration.  However, whether this effect in the animal models is via expression of LINGO-1 

on oligodendrocyte lineage cells, for which unambiguous evidence is sparse, or through its 

expression on axons164 is not clear.  

 

Accelerators of remyelination. Recent years have seen the identification of several 

mechanisms by which OPCs in areas of demyelination can be induced to differentiate into 

myelin-sheath-forming oligodendrocytes. Perhaps the most novel of these is the discovery 

that demyelinated axons can be electrically active and form new glutamatergic synapses with 

OPCs present within areas of demyelination, which, through sensing axonal activity via AMPA 

and kainate receptors, cause OPCs to exit the cell cycle and undergo differentiation165-168.  

 

OPC differentiation during remyelination can also be promoted through a class of 

heterodimeric nuclear receptors containing retinoid X-receptor (RXR)-γ149. A role for RXR-γ in 

remyelination was first identified during a transcriptomic screen of recruitment and 

differentiation stages of the remyelination of a well-established toxin-mediated model of 

demyelination, subsequent loss and gain of function studies both in vitro and in vivo revealed 

that receptor activation resulted in induction of progenitor differentiation. RXR-γ is 

promiscuous in its choice of binding partner and several of these partners, such as thyroid 

hormone receptor and peroxisome proliferator-activated receptor-γ, are well-recognised 

regulators of OPC differentiation, whereas others such as liver X receptor that also regulate 

myelination have less well-characterized roles in the process169,170. Recently, vitamin D 

receptor was identified as a key RXR-γ-binding partner in the control of OPC differentiation171, 

revealing a possible role for vitamin D in the regenerative component of demyelinating 

disease, in addition to its well-documented role as a susceptibility factor for MS172. Given the 

multiple potential binding partners of RXR-γ, an as yet unproven model has emerged in which 

RXR-γ switches its principal binding partner as OPCs proceed through distinctive stages of 

progression from dividing cells, to cells that exits cell cycle, initiate differentiation and 

ultimately become myelinating or remyelinating cells.  

 

[H3] Identifying remyelination drugs 

Given our expanding knowledge of the mechanisms of remyelination and the evidence for its 

neuroprotective and functional effects, the development of drug-based therapies for 

enhancing remyelination in MS and other myelin diseases is now a priority for academia and 
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pharma alike. Two broad approaches have been taken to the discovery of small molecule or 

biological leads that target these stages (FIG. 4).   

 

The first of these approaches has been the targeting of specific intrinsic or extrinsic signals 

that regulate the different stages of remyelination. This approach has led to the identification 

of a plethora of potential drugs and targets150,173-187 and to the first human trials of drugs 

designed specifically to enhance remyelination in MS.  Humanized monoclonal antibodies 

against LINGO showed promise in early trials in optic neuritis188 but failed to meet primary 

endpoints in a Phase 2 trial in MS (ClinicalTrials.gov Identifier: NCT01864148). Other 

candidates within these regulatory signals are being explored as targets in pre-clinical studies, 

but here the lack of a single animal model that recapitulates the features of progressive MS 

(as discussed in BOX 1) is a significant impediment. Moreover, it is only when using toxin 

models in aged animals that one can generate lesions that remyelinate so slowly that they 

mimic remyelination failure in MS and also better resemble the age of patients most in need 

of and most likely to benefit from regenerative therapies149. An optimal approach will 

therefore require a combination of models for pre-clinical development of small molecules or 

biologics. Even then, this lack of a single model increases the risk that apparently promising 

leads will fail in clinical trials, in part because studies in such models will fail to address 

important interactions between the inflammatory, regenerative and neurodegenerative 

processes. For example, the use of separate inflammatory and regenerative models makes it 

more difficult to assess the balance between the benefits of profound suppression of disease 

by aggressive immunoablative therapies such as humanised monoclonal antibodies or bone 

marrow transplantation and the risks of losing the alternatively-activated microglial cell 

populations described above and the potential impact on the regenerative response. 

 

A key question for the selection of suitable candidates for pre-clinical work is at what point 

does the remyelination process fail during attempted regeneration in MS? Clearly, a drug 

designed to promote a stage of remyelination that is already occurring efficiently during the 

regenerative process will be less effective than one that targets a blocked stage directly. 

However, it is clear from neuropathological studies that MS lesions are heterogeneous. 

Influential studies over the past two decades have defined different patterns of inflammation 

within MS lesions189, and more recent studies examining the regenerative response reveal 

further heterogeneity, in that 30% of lesions lack sufficient OPCs for remyelination whereas 

in the remainder, sufficient OPCs are present but remyelination fails at the later stages of 

differentiation and/or myelin sheath formation73,190. These studies show immediately that 

treatments targeting oligodendrocyte differentiation would only be effective in 70% of 

lesions, with the remainder requiring treatments that promote progenitor activation and 

migration. If these 70% then have further heterogeneity in terms of the stage at which the 

process of remyelination is blocked, then drugs targeting only one stage of the process will be 

even less effective and combination therapies targeting each specific blocked stage will be 

required. It follows that detailed neuropathological studies of the regenerative process are 

required, with the application of technologies such as single cell RNAseq on post mortem 

human material to better define the cell types and stages of differentiation within lesions 

when informative antibodies are not available. 
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The second approach to remyelination-promoting drugs is the use of unbiased high-content 

screens examining oligodendrocyte behaviour in response to libraries of small molecules or 

FDA-approved drugs, with the regenerative activity of the compounds showing positive 

effects confirmed by assays of remyelination 191-194. A number of such screens have been 

performed, using either primary cells or pluripotent stem cell-derived oligodendrocyte 

progenitors (FIG. 4). All bar one of these studies examined oligodendrocyte differentiation as 

an endpoint, as measured by the expression of myelin proteins. The one that did not used an 

ingenious micropillar design to examine the next stage of oligodendrocyte differentiation, the 

formation of sheets of membrane that wrap around 3D shapes — in this case the micropillar 

cones — and thus examined the first steps of myelin sheath formation191. Each of the studies 

has identified compounds that enhance differentiation. For some compounds, such as the 

FDA-approved drugs miconazole and clobetasol, there were no obvious signalling pathways 

responsible, although they appear to activate mitogen-activated protein kinase and 

glucocorticoid receptor signalling, respectively.  For others, however, such as the anti-

muscarinic drugs benzatropine and clemastine, novel pathways regulating oligodendrocyte 

differentiation have been identified and confirmed in experimental studies193,195.  

As these hits are FDA-approved drugs, the progression to clinical trials is facilitated, and one 

trial using clemastine has already been completed (ClinicalTrials.gov Identifier: 

NCT02040298), although the outcome has not been reported yet. The analysis of this and 

other trials will be an important landmark and show clearly that the field has progressed into 

the area of experimental medicine. Thus far, however, the screens used to test FDA-approved 

and other libraries have been predicated on the assumption that oligodendrocyte 

differentiation and/or wrapping is a rate-limiting step for remyelination in MS lesions, and 

that sheath formation and reconstruction of the nodes of Ranvier will follow. Given the highly 

complex structure of the multilamelar sheath and the node, and the evidence already 

available from cell biology studies that reveal novel roles for cytoskeletal actin 

depolymerisation and polarity proteins in sheath formation46,196, this assumption may not be 

justified. Further screens focused on these later stages of remyelination, and on steps prior to 

oligodendrocyte differentiation identified in the neuropathology studies as possible points of 

arrest in the remyelination process, may be required. 

 

[H3] Cell therapies  

An alternative approach to remyelination, but one that is logically appropriate only in those 

lesions in which OPCs are not present, is cell replacement by transplantation. Compelling  

experimental evidence that cell transplantation may restore myelination first came in the 

1980s. Patches of myelination were observed following transplantation of wild-type cells into 

shiverer mutant mice197, which lack normal compacted myelin as a result of a deletion in the 

myelin basic protein gene. Subsequently, transplantation of myelin-forming cells into focal 

demyelinated lesions generated by toxin injection was shown to result in 

remyelination198,199. More recent work has shown that such restoration can be extensive as 

transplanted rodent or human cells can myelinate the entire CNS of shiverer mice200-202.  

 

When considered in the context of MS, however, the problems of transplantation into 

multiple lesions each with a chronic inflammatory and potentially adverse environment 
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become germane. A much easier challenge for cell transplantation would be the 

hypomyelinating leucodystrophies — genetic diseases in which oligodendrocytes fail to form 

normal myelin — and here the spectacular results of the shiverer mice transplantation 

experiments are more clearly relevant to the clinical situation. A transplantation trial using 

human CNS stem cells that have the ability to differentiate into oligodendrocytes has been 

performed in children with a severe conatal form of one of these leucodystrophies, Pelizaeus–

Merzbacher disease, caused by a mutation in PLP1203. Although no adverse effects were 

reported in the four children, MRI suggested that only of a modest degree of myelination had 

occurred near to the injection site. Two factors may have contributed to the degree of 

myelination observed compared with that seen in the rodent studies. First, the degree of 

migration of the transplanted cells may be limited, with the major differences in size between 

the rodent and human brain therefore becoming a limiting factor.  Second, the cell 

populations used in the clinical trial were, inevitably given the need to perform prolonged 

testing so as to generate good manufacturing practices-grade cells and a satisfactory safety 

profile, generated using protocols no longer regarded as state-of-the-art by stem cell 

biologists interested in creating oligodendrocytes. They were therefore likely less efficient at 

generating myelin-forming oligodendrocytes than the primary fetal or pluripotent based 

populations used in the shiverer mice studies. 

 

This trial illustrates the scale of the challenge for cell therapies to promote remyelination, and 

it seems premature to consider transplantation in MS without first establishing efficacy in the 

much more propitious environment of the developing brain. For this, the numbers of patients 

suitable for transplantation will probably be small and it will be important to consider other 

conditions in which myelination is prevented owing to oligodendrocyte defects, such as 

radiation-induced or chemotherapy-induced oligodendrocyte progenitor depletion and 

white-matter damage in children being treated for tumours204,205. An additional challenge is 

provided by cell availability. The use of primary fetal cells will be extremely limited owing to 

their availability, making anything more than proof-of-principle studies difficult. Induced 

pluripotent stem cells differentiated into oligodendrocytes and their progenitors provide an 

attractive alternative as this would overcome the need for immunosuppression, but their 

safety remains unproven and many lines generate tumours post transplantation206. 

Embryonic stem (ES) cell-derived oligodendrocytes will probably be the cell of choice, with 

robust differentiation protocols in place207 and with an ongoing clinical trial using ES cell-

derived retinal pigment epithelial cells providing the important proof of principle that ES-cell 

based therapies will meet regulatory standards of safety. 

 

[H3] The future — experimental medicines 

Key milestones for the field will be the early phase clinical trials that demonstrate efficacy of 

a drug or a cell in promoting remyelination. These will, by enabling subsequent cell-based and 

animal-based studies to be designed around questions raised from studies of the trial 

participants, herald the arrival of a genuinely iterative experimental medicine approach to 

remyelination. There are, however, as discussed in BOX 3, major challenges for these trials in 

the development of outcome measures that are sufficiently sensitive to detect the 

regenerative effects of the drug under trial and, equally importantly, ensure that a positive 

effect is not missed. Overcoming these challenges will require the further development of 
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biomarkers for regeneration, and this must now be a major goal for the field. Once these are 

in place we predict that this ‘bench-to-bedside-to-bench-again’ approach will lead to 

genuinely effective regenerative therapies that complement the immunomodulatory drugs 

developed over the past two decades for MS and thus provide effective treatments for 

progressive MS. 
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Box 1 | Experimental models of remyelination 

Experimental models can be ‘disease models’ that provide as close a facsimile of the naturally 

occurring disease, or they can ‘mechanisms models’ that are more reductionist, allowing 

focused analysis of a specific aspect of a complex pathology. Experimental autoimmune 

encephalomyelitis (EAE), in its many guises, is commonly thought to provide a disease model 

of multiple sclerosis (MS). This is however incorrect - although EAE can be induced in a focal 

manner131,208, mimicking an acute MS lesion, and can develop into a chronic inflammatory 

state in some rodent genetic backgrounds, it does not recreate the combination of acute and 

chronic inflammation, regeneration and neurodegeneration that characterizes progressive 

MS. There are in fact no disease models for MS, and it is more correct to think of EAE as a 

mechanisms model for the immunopathogenesis of MS, and not as a model that lends itself 

to the study of the neurobiological aspects of the disease, including remyelination. Instead, 

this requires other mechanisms models. These generally involve the use of toxins that kill 

oligodendrocytes (hence leading to primary demyelination, the substrate for remyelination) 

and, to varying degrees, other cells types. The models commonly in use involve i) injection of 

lysolecithin into the spinal cord or corpus callosum white matter in mice or rats, ii) injection 

of ethidium bromide into cerebellar peduncles in rats or into the spinal cord in rats or mice, 

or iii) oral administration of cuprizone in mice. In each of these models (albeit to a lesser 

extent in the cuprizone model), the site of demyelination is anatomically defined and the 

process of demyelination is temporally separated from the subsequent process of 

remyelination, allowing the latter to be specifically studied without the complication of 

ongoing demyelination. These mechanisms models therefore allow the fundamental biology 

of remyelination to be elucidated without the confounding and complicating involvement of 

an autoimmune process. They, like EAE, do not provide a facsimile of MS. Nevertheless, they 

are of great value as the fundamental mechanisms of remyelination will be applicable to all 

forms of demyelination regardless of how it is induced, be it toxin or immune mediated. This 

is consistent with a general concept in regenerative biology that the mechanism of 

regeneration is independent of the mechanism by which injury occurs.   
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Box 2 | Schwann cell remyelination in the CNS 

 

CNS remyelination can sometimes be mediated by Schwann cells as well as by 

oligodendrocytes. This unusual phenomenon occurs in a number of pathological conditions 

including multiple sclerosis, genetic disorders of myelination and traumatic spinal cord injury, 

and can be reproduced in a variety of in vivo experimental models. For many years it was 

assumed that Schwann cells remyelinating CNS axons were derived from PNS sources, and 

that they responded to recruitment signals generated by demyelination and migrated from 

these PNS sources into the CNS. This seemed a very plausible explanation given, first, the 

frequent anatomical distribution of CNS Schwann cells, often close to likely PNS sources such 

as spinal roots, and, second, that CNS Schwann cells occur in CNS regions that are deficient in 

astrocytes, suggesting that a breach in the astrocytic glia limitans of the CNS presents an 

opportunity for peripherally derived Schwann cells to ‘flood’ into CNS territories. However, 

genetic fate-mapping studies have revealed that although some CNS remyelinating Schwann 

cells are of PNS origin, the majority are derived from CNS progenitors. Several key questions 

remain regarding the phenomenon of CNS progenitor-mediated Schwann cell remyelination 

of the CNS. First, are CNS-derived Schwann cells the same as neural crest-derived Schwann 

cells of the PNS? Second, how do adult CNS progenitors become Schwann cells? Third, does it 

make any difference if a CNS axon is myelinated by an oligodendrocyte or a Schwann cell? 

Fourth, if it makes no difference, would strategies to prevent or promote remyelination by 

oligodendrocytes or Schwann cells be of therapeutic importance? 
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Box 3 | Designing clinical trials and developing outcome measures 

 

The trial design required to demonstrate the efficacy for any regenerative therapy in multiple 

sclerosis (MS) is complicated by the difficult question of outcome measures. Unlike tissues 

such as skin and liver, the brain cannot be tested by biopsy, so indirect measures of the 

efficacy of regenerative medicines are required. For remyelination, these measures currently 

comprise clinical assessment, imaging and electrophysiology, with each having its 

disadvantages. The clinical phenotype reflects a combination of inflammation, 

neurodegeneration and regeneration, so it is relatively insensitive to remyelination alone. MRI 

has revolutionised our ability to detect inflammatory lesions in MS, but imaging remyelination 

remains challenging203,209,210. Experimental and correlative neuropathological studies have 

suggested that the magnetisation transfer ratio (MTR) is sensitive to remyelination, and the 

wider availability of 7T scanners may also improve our ability to detect regeneration211-213. 

Another imaging strategy, positron emission tomography (PET) to detect a radiolabelled 

compound that incorporates into myelin, may also provide an approach to quantifying 

remyelination, with promising results from a study in MS patients in which enhanced signals 

within lesions correlates with a reduction in disability214,215. Further studies of all three are in 

progress. Electrophysiological techniques such as visual evoked potentials to measure 

conduction velocities represents a logical strategy to show remyelination as this would detect 

the reappearance of fast conduction velocities that are predicted to follow the restoration of 

salutatory conduction188,216,217.  However, the sensitivity and specificity of this technique, in 

which the degree of variation can be considerable, remains to be determined. Also, the 

experimental data from spinal cord showing that the myelin sheaths formed by new 

(remyelinating) oligodendrocytes do not reach normal lengths until months after their 

formation raises the possibility that conduction velocities increase equally slowly and that trial 

protocols need to be prolonged appropriately. 

These concerns over outcome measures are important when one considers that the likely 

effect size in early trials will be small, and are amplified by the issue of lesion heterogeneity 

(see main text). There are at present no clinical investigations that will distinguish lesions 

containing or lacking sufficient oligodendrocytes for myelination. Without the ability to 

separate these lesions, the power of trials for regenerative medicines targeted either at 

promoting progenitor migration or oligodendrocyte differentiation will be greatly diminished 

by the confounding effect of patients within the trial groups for whom the treatment under 

examination would never have any beneficial effect. The danger is therefore that a genuinely 

positive result that could guide further experimental work will be missed not because it did 

not work but because the effect could not be detected, resulting in a treatment strategy being 

abandoned permanently and prematurely. There is therefore an urgent need for strategies, 

most likely in our view to be PET, that enable reliable quantification of lesion heterogeneity 

and remyelination within and between individuals with MS. With such a technology both a 

rational stratification of patient cohorts and an accurate measurement of effect could be 

achieved, allowing selection of those patients most appropriate for any specific experimental 

medicine trial of a regenerative therapy and confident detection of any benefit.  



 23 

 
1. Franklin, R. J. M. Why does remyelination fail in multiple sclerosis? Nat. Rev. Neurosci. 3, 

705–714 (2002). 
2. Franklin, R. J. M. & ffrench-Constant, C. Remyelination in the CNS: from biology to therapy. 

Nat. Rev. Neurosci. 9, 839–855 (2008). 
3. Prineas, J. W., Barnard, R. O., Kwon, E. E., Sharer, L. R. & Cho, E. S. Multiple sclerosis: 

remyelination of nascent lesions. Ann. Neurol. 33, 137–151 (1993). 
This paper showed by electron microscopy that remyelination could be observed in MS lesions - a 
critical observation that underpins current research strategies to identify drugs and/or cells that 
enhance the process  
4. Patrikios, P. et al. Remyelination is extensive in a subset of multiple sclerosis patients. Brain 

129, 3165–3172 (2006). 
5. Patani, R., Balaratnam, M., Vora, A. & Reynolds, R. Remyelination can be extensive in 

multiple sclerosis despite a long disease course. Neuropathol. Appl. Neurobiol. 33, 277–287 
(2007). 

6. Nave, K.-A. Myelination and the trophic support of long axons. Nat. Rev. Neurosci. 11, 275–
283 (2010). 

7. Franklin, R. J. M., ffrench-Constant, C., Edgar, J. M. & Smith, K. J. Neuroprotection and repair 
in multiple sclerosis. Nat Rev Neurol 8, 624–634 (2012). 

8. Frühbeis, C. et al. Neurotransmitter-triggered transfer of exosomes mediates 
oligodendrocyte-neuron communication. PLoS Biol. 11, e1001604 (2013). 

9. Smith, K. J., Blakemore, W. F. & McDonald, W. I. Central remyelination restores secure 
conduction. Nature 280, 395–396 (1979). 

This seminal paper in remyelination biology established that remyelination can restore efficient 
impulse conduction to demyelinated axons. 
10. Lee, Y. et al. Oligodendroglia metabolically support axons and contribute to 

neurodegeneration. Nature 487, 443–448 (2012). 
11. Fünfschilling, U. et al. Glycolytic oligodendrocytes maintain myelin and long-term axonal 

integrity. Nature 485, 517–521 (2012). 
12. Morrison, B. M., Lee, Y. & Rothstein, J. D. Oligodendroglia: metabolic supporters of axons. 

Trends Cell Biol. 23, 644–651 (2013). 
13. Arancibia-Carcamo, I. L. & Attwell, D. The node of Ranvier in CNS pathology. Acta 

Neuropathol. 128, 161–175 (2014). 
14. Rasband, M. N. & Peles, E. The Nodes of Ranvier: Molecular Assembly and Maintenance. 

Cold Spring Harb Perspect Biol 8, a020495 (2015). 
15. Dutta, R. & Trapp, B. D. Mechanisms of neuronal dysfunction and degeneration in multiple 

sclerosis. Prog. Neurobiol. 93, 1–12 (2011). 
16. Kornek, B. et al. Multiple sclerosis and chronic autoimmune encephalomyelitis: a 

comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. 
AJPA 157, 267–276 (2000). 

17. Witte, M. E., Mahad, D. J., Lassmann, H. & van Horssen, J. Mitochondrial dysfunction 
contributes to neurodegeneration in multiple sclerosis. Trends Mol Med 20, 179–187 
(2014). 

18. Dutta, R. et al. Mitochondrial dysfunction as a cause of axonal degeneration in multiple 
sclerosis patients. Ann. Neurol. 59, 478–489 (2006). 

19. Lindner, M., Fokuhl, J., Linsmeier, F., Trebst, C. & Stangel, M. Chronic toxic demyelination in 
the central nervous system leads to axonal damage despite remyelination. Neurosci. Lett. 
453, 120–125 (2009). 

20. Irvine, K. A. & Blakemore, W. F. Remyelination protects axons from demyelination-
associated axon degeneration. Brain 131, 1464–1477 (2008). 

21. Pohl, H. B. F. et al. Genetically induced adult oligodendrocyte cell death is associated with 
poor myelin clearance, reduced remyelination, and axonal damage. J. Neurosci. 31, 1069–
1080 (2011). 

22. Mei, F. et al. Accelerated remyelination during inflammatory demyelination prevents axonal 
loss and improves functional recovery. Elife 5, 1174 (2016). 

In this paper the authors provide experimental evidence for the axon-protective benefits of 



 24 

remyelination and hence the likely therapeutic benefits of remyelination-enhancing treatments. 
23. Duncan, I. D., Brower, A., Kondo, Y., Curlee, J. F. & Schultz, R. D. Extensive remyelination of 

the CNS leads to functional recovery. Proc. Natl. Acad. Sci. U.S.A. 106, 6832–6836 (2009). 
This paper uses an unusual dietary model of demyelination in cats to provide convincing evidence 
that remyelination of extensive areas of demyelination leads to functional recovery and reversal of 
clinical signs. 
24. Manrique-Hoyos, N. et al. Late motor decline after accomplished remyelination: impact for 

progressive multiple sclerosis. Ann. Neurol. 71, 227–244 (2012). 
25. Smith, R. S. & Koles, Z. J. Myelinated nerve fibers: computed effect of myelin thickness on 

conduction velocity. Am. J. Physiol. 219, 1256–1258 (1970). 
26. Flores, A. I. et al. Constitutively active Akt induces enhanced myelination in the CNS. J. 

Neurosci. 28, 7174–7183 (2008). 
27. Gibson, E. M. et al. Neuronal Activity Promotes Oligodendrogenesis and Adaptive 

Myelination in the Mammalian Brain. Science 1252304 (2014). doi:10.1126/science.1252304 
28. Liu, J. et al. Impaired adult myelination in the prefrontal cortex of socially isolated mice. 

Nat. Neurosci. 15, 1621–1623 (2012). 
29. Young, K. M. et al. Oligodendrocyte dynamics in the healthy adult CNS: evidence for myelin 

remodeling. Neuron 77, 873–885 (2013). 
30. Rivers, L. E. et al. PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform 

projection neurons in adult mice. Nat. Neurosci. 11, 1392–1401 (2008). 
31. Horner, P. J. et al. Proliferation and differentiation of progenitor cells throughout the intact 

adult rat spinal cord. J. Neurosci. 20, 2218–2228 (2000). 
32. McKenzie, I. A. et al. Motor skill learning requires active central myelination. Science 346, 

318–322 (2014). 
33. Penderis, J., Shields, S. A. & Franklin, R. J. M. Impaired remyelination and depletion of 

oligodendrocyte progenitors does not occur following repeated episodes of focal 
demyelination in the rat central nervous system. Brain 126, 1382–1391 (2003). 

34. Rodriguez, E. G. et al. Oligodendroglia in cortical multiple sclerosis lesions decrease with 
disease progression, but regenerate after repeated experimental demyelination. Acta 
Neuropathol. 128, 231–246 (2014). 

35. Yeung, M. S. Y. et al. Dynamics of oligodendrocyte generation and myelination in the human 
brain. Cell 159, 766–774 (2014). 

36. Mason, J. L. et al. Oligodendrocytes and progenitors become progressively depleted within 
chronically demyelinated lesions. Am. J. Path. 164, 1673–1682 (2004). 

37. Vana, A. C. et al. Platelet-derived growth factor promotes repair of chronically demyelinated 
white matter. J. Neuropathol. Exp. Neurol. 66, 975–988 (2007). 

38. Moyon, S. et al. Demyelination causes adult CNS progenitors to revert to an immature state 
and express immune cues that support their migration. J. Neurosci. 35, 4–20 (2015). 

This paper provides the first comprehensive description of the process by which resting adult CNS 
progenitors become activated, priming them for the ensuing regenerative process of remyelination.  
39. Zawadzka, M. et al. CNS-resident glial progenitor/stem cells produce Schwann cells as well 

as oligodendrocytes during repair of CNS demyelination. Cell Stem Cell 6, 578–590 (2010). 
40. Tripathi, R. B., Rivers, L. E., Young, K. M., Jamen, F. & Richardson, W. D. NG2 glia generate 

new oligodendrocytes but few astrocytes in a murine experimental autoimmune 
encephalomyelitis model of demyelinating disease. J. Neurosci. 30, 16383–16390 (2010). 

41. Blakemore, W. F. Pattern of remyelination in the CNS. Nature 249, 577–578 (1974). 
42. Swiss, V. A. et al. Identification of a gene regulatory network necessary for the initiation of 

oligodendrocyte differentiation. PLoS ONE 6, e18088 (2011). 
43. Gaesser, J. M. & Fyffe-Maricich, S. L. Intracellular signaling pathway regulation of 

myelination and remyelination in the CNS. Exp. Neurol. 283, 501–511 (2016). 
44. Steelman, A. J. et al. Activation of oligodendroglial Stat3 is required for efficient 

remyelination. Neurobiol. Dis. 91, 336–346 (2016). 
45. He, D. et al. Chd7 cooperates with Sox10 and regulates the onset of CNS myelination and 

remyelination. Nat. Neurosci. 19, 678–689 (2016). 
46. Jarjour, A. A. et al. The polarity protein Scribble regulates myelination and remyelination in 

the central nervous system. PLoS Biol. 13, e1002107 (2015). 
47. Nakatani, H. et al. Ascl1/Mash1 promotes brain oligodendrogenesis during myelination and 



 25 

remyelination. J. Neurosci. 33, 9752–9768 (2013). 
48. Raff, M. C., Miller, R. H. & Noble, M. A glial progenitor cell that develops in vitro into an 

astrocyte or an oligodendrocyte depending on culture medium. Nature 303, 390–396 
(1983). 

49. Richardson, W. D., Young, K. M., Tripathi, R. B. & McKenzie, I. NG2-glia as multipotent 
neural stem cells: fact or fantasy? Neuron 70, 661–673 (2011). 

50. Butt, A. M., Kiff, J., Hubbard, P. & Berry, M. Synantocytes: new functions for novel NG2 
expressing glia. J. Neurocytol. 31, 551–565 (2002). 

51. Nishiyama, A., Komitova, M., Suzuki, R. & Zhu, X. Polydendrocytes (NG2 cells): 
multifunctional cells with lineage plasticity. Nat. Rev. Neurosci. 10, 9–22 (2009). 

52. ffrench-Constant, C. & Raff, M. C. Proliferating bipotential glial progenitor cells in adult rat 
optic nerve. Nature 319, 499–502 (1986). 

The first evidence for adult OPCs (aOPCs) in the CNS. These cells generate the new oligodendrocytes 
that remyelinate axons. 
53. Dawson, M. R. L., Polito, A., Levine, J. M. & Reynolds, R. NG2-expressing glial progenitor 

cells: an abundant and widespread population of cycling cells in the adult rat CNS. Mol. Cell. 
Neurosci. 24, 476–488 (2003). 

54. Bergles, D. E., Roberts, J. D., Somogyi, P. & Jahr, C. E. Glutamatergic synapses on 
oligodendrocyte precursor cells in the hippocampus. Nature 405, 187–191 (2000). 

55. Sakry, D. et al. Oligodendrocyte precursor cells modulate the neuronal network by activity-
dependent ectodomain cleavage of glial NG2. PLoS Biol. 12, e1001993 (2014). 

56. Birey, F. et al. Genetic and Stress-Induced Loss of NG2 Glia Triggers Emergence of 
Depressive-like Behaviors through Reduced Secretion of FGF2. Neuron 88, 941–956 (2015). 

57. Lin, S.-C. & Bergles, D. E. Synaptic signaling between GABAergic interneurons and 
oligodendrocyte precursor cells in the hippocampus. Nat. Neurosci. 7, 24–32 (2004). 

58. Hesp, Z. C. et al. Chronic oligodendrogenesis and remyelination after spinal cord injury in 
mice and rats. J. Neurosci. 35, 1274–1290 (2015). 

59. Crawford, A. H., Tripathi, R. B., Richardson, W. D. & Franklin, R. J. M. Developmental Origin 
of Oligodendrocyte Lineage Cells Determines Response to Demyelination and Susceptibility 
to Age-Associated Functional Decline. Cell Rep 15, 761–773 (2016). 

60. Crawford, A. H., Stockley, J. H., Tripathi, R. B., Richardson, W. D. & Franklin, R. J. M. 
Oligodendrocyte progenitors: Adult stem cells of the central nervous system? Exp. Neurol. 
260, 50–55 (2014). 

61. Xing, Y. L. et al. Adult neural precursor cells from the subventricular zone contribute 
significantly to oligodendrocyte regeneration and remyelination. J. Neurosci. 34, 14128–
14146 (2014). 

62. Samanta, J. et al. Inhibition of Gli1 mobilizes endogenous neural stem cells for 
remyelination. Nature 526, 448–452 (2015). 

63. Kazanis, I. et al. Subependymal Zone-Derived Oligodendroblasts Respond to Focal 
Demyelination but Fail to Generate Myelin in Young and Aged Mice. Stem Cell Reports 
(2017). doi:10.1016/j.stemcr.2017.01.007 

64. Crawford, A. H. et al. Pre-Existing Mature Oligodendrocytes Do Not Contribute to 
Remyelination following Toxin-Induced Spinal Cord Demyelination. Am. J. Pathol. 186, 511–
516 (2016). 

65. Jeffries, M. A. et al. ERK1/2 Activation in Preexisting Oligodendrocytes of Adult Mice Drives 
New Myelin Synthesis and Enhanced CNS Function. J. Neurosci. 36, 9186–9200 (2016). 

66. Levine, J. M. & Reynolds, R. Activation and proliferation of endogenous oligodendrocyte 
precursor cells during ethidium bromide-induced demyelination. Exp. Neurol. 160, 333–347 
(1999). 

67. Fancy, S. P. J., Zhao, C. & Franklin, R. J. M. Increased expression of Nkx2.2 and Olig2 
identifies reactive oligodendrocyte progenitor cells responding to demyelination in the 
adult CNS. Mol. Cell. Neurosci. 27, 247–254 (2004). 

68. Fancy, S. P. J. et al. Dysregulation of the Wnt pathway inhibits timely myelination and 
remyelination in the mammalian CNS. Genes Dev. 23, 1571–1585 (2009). 

By screening transcription factors expressed during remyelination the authors were able to identify 
the wnt signaling pathway as a potent negative regulator of progenitor differentiation during 
myelination and remyelination and spawning a series of further studies. 



 26 

69. Zhao, C. et al. Sox2 Sustains Recruitment of Oligodendrocyte Progenitor Cells following CNS 
Demyelination and Primes Them for Differentiation during Remyelination. J. Neurosci. 35, 
11482–11499 (2015). 

70. Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. 
Nature 541, 481–487 (2017). 

71. McTigue, D. M., Wei, P. & Stokes, B. T. Proliferation of NG2-positive cells and altered 
oligodendrocyte numbers in the contused rat spinal cord. J. Neurosci. 21, 3392–3400 
(2001). 

72. Yuen, T. J. et al. Oligodendrocyte-encoded HIF function couples postnatal myelination and 
white matter angiogenesis. Cell 158, 383–396 (2014). 

73. Boyd, A., Zhang, H. & Williams, A. Insufficient OPC migration into demyelinated lesions is a 
cause of poor remyelination in MS and mouse models. Acta Neuropathol. 125, 841–859 
(2013). 

This paper shows that some MS lesions lack sufficient aOPCs to drive remyelination. This evidence 
for lesion heterogeneity is important, as it emphasizes that different lesions may require different 
treatment strategies to enhance remyelination - in some promoting differentiation may suffice 
whilst in others increasing aOPC numbers will be required.  
74. Wegener, A. et al. Gain of Olig2 function in oligodendrocyte progenitors promotes 

remyelination. Brain 138, 120–135 (2015). 
75. Franklin, R. J. M., Gilson, J. M. & Blakemore, W. F. Local recruitment of remyelinating cells in 

the repair of demyelination in the central nervous system. J. Neurosci. Res. 50, 337–344 
(1997). 

76. Hammond, T. R. et al. Astrocyte-derived endothelin-1 inhibits remyelination through notch 
activation. Neuron 81, 588–602 (2014). 

77. Arai, K. & Lo, E. H. An oligovascular niche: cerebral endothelial cells promote the survival 
and proliferation of oligodendrocyte precursor cells. J. Neurosci. 29, 4351–4355 (2009). 

78. Caillava, C. et al. Cdk2 loss accelerates precursor differentiation and remyelination in the 
adult central nervous system. J. Cell Biol. 193, 397–407 (2011). 

79. Wang, S. et al. Notch receptor activation inhibits oligodendrocyte differentiation. Neuron 
21, 63–75 (1998). 

80. Fancy, S. P. J. et al. Axin2 as regulatory and therapeutic target in newborn brain injury and 
remyelination. Nat. Neurosci. 14, 1009–1016 (2011). 

81. Lee, H. K. et al. Apcdd1 stimulates oligodendrocyte differentiation after white matter injury. 
Glia 63, 1840–1849 (2015). 

82. Fancy, S. P. J. et al. Parallel states of pathological Wnt signaling in neonatal brain injury and 
colon cancer. Nat. Neurosci. 17, 506–512 (2014). 

83. Lee, H. K. et al. Daam2-PIP5K is a regulatory pathway for Wnt signaling and therapeutic 
target for remyelination in the CNS. Neuron 85, 1227–1243 (2015). 

84. Casaccia-Bonnefil, P. et al. Oligodendrocyte precursor differentiation is perturbed in the 
absence of the cyclin-dependent kinase inhibitor p27Kip1. Genes Dev. 11, 2335–2346 
(1997). 

85. Kuypers, N. J., Bankston, A. N., Howard, R. M., Beare, J. E. & Whittemore, S. R. 
Remyelinating Oligodendrocyte Precursor Cell miRNAs from the Sfmbt2 Cluster Promote 
Cell Cycle Arrest and Differentiation. J. Neurosci. 36, 1698–1710 (2016). 

86. Magri, L. et al. c-Myc-dependent transcriptional regulation of cell cycle and nucleosomal 
histones during oligodendrocyte differentiation. Neuroscience 276, 72–86 (2014). 

87. Magri, L. et al. E2F1 coregulates cell cycle genes and chromatin components during the 
transition of oligodendrocyte progenitors from proliferation to differentiation. J. Neurosci. 
34, 1481–1493 (2014). 

88. Hughes, E. G., Kang, S. H., Fukaya, M. & Bergles, D. E. Oligodendrocyte progenitors balance 
growth with self-repulsion to achieve homeostasis in the adult brain. Nat. Neurosci. 16, 
668–676 (2013). 

89. Rosenberg, S. S., Kelland, E. E., Tokar, E., la Torre, De, A. R. & Chan, J. R. The geometric and 
spatial constraints of the microenvironment induce oligodendrocyte differentiation. Proc. 
Natl. Acad. Sci. U.S.A. 105, 14662–14667 (2008). 

90. Dietz, K. C., Polanco, J. J., Pol, S. U. & Sim, F. J. Targeting human oligodendrocyte 
progenitors for myelin repair. Exp. Neurol. 283, 489–500 (2016). 



 27 

91. Moyon, S. et al. Functional Characterization of DNA Methylation in the Oligodendrocyte 
Lineage. Cell Rep 15, 748–760 (2016). 

92. He, D. et al. lncRNA Functional Networks in Oligodendrocytes Reveal Stage-Specific 
Myelination Control by an lncOL1/Suz12 Complex in the CNS. Neuron (2016). 
doi:10.1016/j.neuron.2016.11.044 

93. Moyon, S. et al. Efficient Remyelination Requires DNA Methylation. eNeuro 4, 
ENEURO.0336–16.2017 (2017). 

94. Emery, B. et al. Myelin gene regulatory factor is a critical transcriptional regulator required 
for CNS myelination. Cell 138, 172–185 (2009). 

95. Duncan, G. J. et al. Myelin regulatory factor drives remyelination in multiple sclerosis. Acta 
Neuropathol. 283, 330–20 (2017). 

96. Ludwin, S. K. & Maitland, M. Long-term remyelination fails to reconstitute normal thickness 
of central myelin sheaths. Journal of the Neurological Sciences 64, 193–198 (1984). 

97. Stidworthy, M. F., Genoud, S., Suter, U., Mantei, N. & Franklin, R. J. M. Quantifying the early 
stages of remyelination following cuprizone-induced demyelination. Brain Pathol. 13, 329–
339 (2003). 

98. Powers, B. E. et al. Remyelination reporter reveals prolonged refinement of spontaneously 
regenerated myelin. Proc. Natl. Acad. Sci. U.S.A. 110, 4075–4080 (2013). 

99. Michailov, G. V. et al. Axonal neuregulin-1 regulates myelin sheath thickness. Science 304, 
700–703 (2004). 

100. Brinkmann, B. G. et al. Neuregulin-1/ErbB signaling serves distinct functions in myelination 
of the peripheral and central nervous system. Neuron 59, 581–595 (2008). 

101. Bechler, M. E., Byrne, L. & Ffrench-Constant, C. CNS Myelin Sheath Lengths Are an Intrinsic 
Property of Oligodendrocytes. Curr. Biol. 25, 2411–2416 (2015). 

102. Harrington, E. P. et al. Oligodendrocyte PTEN is required for myelin and axonal integrity, not 
remyelination. Ann. Neurol. 68, 703–716 (2010). 

103. Franklin, R. J. & Hinks, G. L. Understanding CNS remyelination: clues from developmental 
and regeneration biology. J. Neurosci. Res. 58, 207–213 (1999). 

104. Compston, A. & Coles, A. Multiple sclerosis. Lancet 372, 1502–1517 (2008). 
105. International Multiple Sclerosis Genetics Consortium et al. Genetic risk and a primary role 

for cell-mediated immune mechanisms in multiple sclerosis. Nature 476, 214–219 (2011). 
106. Ludwin, S. K. Understanding multiple sclerosis: lessons from pathology. Ann. Neurol. 47, 

691–693 (2000). 
107. Davies, C. L. & Miron, V. E. Distinct origins, gene expression and function of microglia and 

monocyte-derived macrophages in CNS myelin injury and regeneration. Clin. Immunol. 
(2016). doi:10.1016/j.clim.2016.06.016 

108. Kotter, M. R., Setzu, A., Sim, F. J., Van Rooijen, N. & Franklin, R. J.M. Macrophage depletion 
impairs oligodendrocyte remyelination following lysolecithin-induced demyelination. Glia 
35, 204–212 (2001). 

109. Döring, A. et al. Stimulation of monocytes, macrophages, and microglia by amphotericin B 
and macrophage colony-stimulating factor promotes remyelination. J. Neurosci. 35, 1136–
1148 (2015). 

110. Kotter, M. R., Zhao, C., van Rooijen, N. & Franklin, R. J. M. Macrophage-depletion induced 
impairment of experimental CNS remyelination is associated with a reduced 
oligodendrocyte progenitor cell response and altered growth factor expression. Neurobiol. 
Dis. 18, 166–175 (2005). 

111. Robinson, S. & Miller, R. H. Contact with central nervous system myelin inhibits 
oligodendrocyte progenitor maturation. Dev. Biol. 216, 359–368 (1999). 

112. Trapp, B. D., Nishiyama, A., Cheng, D. & Macklin, W. Differentiation and death of 
premyelinating oligodendrocytes in developing rodent brain. J. Cell Biol. 137, 459–468 
(1997). 

113. Plemel, J. R., Manesh, S. B., Sparling, J. S. & Tetzlaff, W. Myelin inhibits oligodendroglial 
maturation and regulates oligodendrocytic transcription factor expression. Glia 61, 1471–
1487 (2013). 

114. Kotter, M. R., Li, W.-W., Zhao, C. & Franklin, R. J. M. Myelin impairs CNS remyelination by 
inhibiting oligodendrocyte precursor cell differentiation. J. Neurosci. 26, 328–332 (2006). 

115. Lampron, A. et al. Inefficient clearance of myelin debris by microglia impairs remyelinating 



 28 

processes. J. Exp. Med. 212, 481–495 (2015). 
116. Baer, A. S. et al. Myelin-mediated inhibition of oligodendrocyte precursor differentiation 

can be overcome by pharmacological modulation of Fyn-RhoA and protein kinase C 
signalling. Brain 132, 465–481 (2009). 

117. Skripuletz, T. et al. Astrocytes regulate myelin clearance through recruitment of microglia 
during cuprizone-induced demyelination. Brain 136, 147–167 (2013). 

118. Psachoulia, K. et al. IL4I1 augments CNS remyelination and axonal protection by modulating 
T cell driven inflammation. Brain aww254 (2016). doi:10.1093/brain/aww254 

119. Patel, J. R., McCandless, E. E., Dorsey, D. & Klein, R. S. CXCR4 promotes differentiation of 
oligodendrocyte progenitors and remyelination. Proc. Natl. Acad. Sci. U.S.A. 107, 11062–
11067 (2010). 

120. Madsen, P. M. et al. Oligodendroglial TNFR2 Mediates Membrane TNF-Dependent Repair in 
Experimental Autoimmune Encephalomyelitis by Promoting Oligodendrocyte Differentiation 
and Remyelination. J. Neurosci. 36, 5128–5143 (2016). 

121. Yuen, T. J. et al. Identification of endothelin 2 as an inflammatory factor that promotes 
central nervous system remyelination. Brain 136, 1035–1047 (2013). 

122. Miron, V. E. et al. M2 microglia and macrophages drive oligodendrocyte differentiation 
during CNS remyelination. Nat. Neurosci. 16, 1211–1218 (2013). 

This paper provides a detailed analysis of how the innate immune response to demyelination 
controls the distinct stages of remyelination. 
123. Rawji, K. S., Mishra, M. K. & Yong, V. W. Regenerative Capacity of Macrophages for 

Remyelination. Front Cell Dev Biol 4, 47 (2016). 
124. Yamasaki, R. et al. Differential roles of microglia and monocytes in the inflamed central 

nervous system. J. Exp. Med. 211, 1533–1549 (2014). 
125. Goldmann, T. et al. Origin, fate and dynamics of macrophages at central nervous system 

interfaces. Nat. Immunol. 17, 797–805 (2016). 
126. Bieber, A. J., Kerr, S. & Rodriguez, M. Efficient central nervous system remyelination 

requires T cells. Ann. Neurol. 53, 680–684 (2003). 
127. Hvilsted Nielsen, H., Toft-Hansen, H., Lambertsen, K. L., Owens, T. & Finsen, B. Stimulation 

of adult oligodendrogenesis by myelin-specific T cells. Am. J. Pathol. 179, 2028–2041 (2011). 
128. Dombrowski, Y. et al. Regulatory T cells promote myelin regeneration in the central nervous 

system. Nat. Neurosci. 485, 517 (2017). 
This study reveals a pro-myelin regenerative role for the adaptive immune system, hitherto only  
understood in the context of its role in auto-immune mediated demyelination. 
129. Goodell, M. A. & Rando, T. A. Stem cells and healthy aging. Science 350, 1199–1204 (2015). 
130. Shields, S.A., Gilson, J., Blakemore, W.F. & Franklin, R.J.M.. Remyelination occurs as 

extensively but more slowly in old rats compared to young rats following fliotoxin-induced 
CNS demyelination. Glia 29, 102 (2000). 

131. Hampton, D. W. et al. Focal Immune-Mediated White Matter Demyelination Reveals an 
Age-Associated Increase in Axonal Vulnerability and Decreased Remyelination Efficiency. 
AJPA 180, 1897–1905 (2012). 

132. Pfeifenbring, S., Nessler, S., Wegner, C., Stadelmann, C. & Brück, W. Remyelination After 
Cuprizone-Induced Demyelination Is Accelerated in Juvenile Mice. J. Neuropathol. Exp. 
Neurol. 74, 756–766 (2015). 

133. Merkler, D., Ernsting, T., Kerschensteiner, M., Brück, W. & Stadelmann, C. A new focal EAE 
model of cortical demyelination: multiple sclerosis-like lesions with rapid resolution of 
inflammation and extensive remyelination. Brain 129, 1972–1983 (2006). 

134. Irvine, K. A. & Blakemore, W. F. Age increases axon loss associated with primary 
demyelination in cuprizone-induced demyelination in C57BL/6 mice. J. Neuroimmunol. 175, 
69–76 (2006). 

135. Confavreux, C. & Vukusic, S. Age at disability milestones in multiple sclerosis. Brain 129, 
595–605 (2006). 

136. Absinta, M. et al. Persistent 7-tesla phase rim predicts poor outcome in new multiple 
sclerosis patient lesions. J. Clin. Invest. 126, 2597–2609 (2016). 

137. Goldschmidt, T., Antel, J., König, F. B., Brück, W. & Kuhlmann, T. Remyelination capacity of 
the MS brain decreases with disease chronicity. Neurology 72, 1914–1921 (2009). 

138. Sim, F. J., Zhao, C., Penderis, J. & Franklin, R. J. M. The age-related decrease in CNS 



 29 

remyelination efficiency is attributable to an impairment of both oligodendrocyte 
progenitor recruitment and differentiation. J. Neurosci. 22, 2451–2459 (2002). 

139. Doucette, J. R., Jiao, R. & Nazarali, A. J. Age-related and cuprizone-induced changes in 
myelin and transcription factor gene expression and in oligodendrocyte cell densities in the 
rostral corpus callosum of mice. Cell. Mol. Neurobiol. 30, 607–629 (2010). 

140. Woodruff, R. H., Fruttiger, M., Richardson, W. D. & Franklin, R. J. M. Platelet-derived growth 
factor regulates oligodendrocyte progenitor numbers in adult CNS and their response 
following CNS demyelination. Mol. Cell. Neurosci. 25, 252–262 (2004). 

141. Kuhlmann, T. et al. Differentiation block of oligodendroglial progenitor cells as a cause for 
remyelination failure in chronic multiple sclerosis. Brain 131, 1749–1758 (2008). 

142. Wolswijk, G. Chronic stage multiple sclerosis lesions contain a relatively quiescent 
population of oligodendrocyte precursor cells. J. Neurosci. 18, 601–609 (1998). 

143. Chang, A., Nishiyama, A., Peterson, J., Prineas, J. & Trapp, B. D. NG2-positive 
oligodendrocyte progenitor cells in adult human brain and multiple sclerosis lesions. J. 
Neurosci. 20, 6404–6412 (2000). 

This paper and ref 142 above showed that many chronic MS lesions contain sufficient aOPCs and 
newly-generated oligodendrocytes for remyelination. The failure of remyelination in these lesions 
must therefore reflect the presence of factors inhibiting the process, not a lack of cells.   
144. Chari, D. M., Crang, A. J. & Blakemore, W. F. Decline in rate of colonization of 

oligodendrocyte progenitor cell (OPC)-depleted tissue by adult OPCs with age. J. 
Neuropathol. Exp. Neurol. 62, 908–916 (2003). 

145. Shen, S. et al. Age-dependent epigenetic control of differentiation inhibitors is critical for 
remyelination efficiency. Nat. Neurosci. 11, 1024–1034 (2008). 

146. Natrajan, M. S. et al. Retinoid X receptor activation reverses age-related deficiencies in 
myelin debris phagocytosis and remyelination. Brain 138, 3581–3597 (2015). 

147. Ruckh, J. M. et al. Rejuvenation of regeneration in the aging central nervous system. Cell 
Stem Cell 10, 96–103 (2012). 

This study provides evidence that the declining efficiency of remyelination with aging (a major 
contributor to remyelination failure in MS) can be reversed by changing the lesion environment, 
the implication of which is that pharmacological approaches that target the aging progenitor are 
potentially effective regardless of disease stage.  
148. Neves, J., Sousa-Victor, P. & Jasper, H. Rejuvenating Strategies for Stem Cell-Based 

Therapies in Aging. Cell Stem Cell 20, 161–175 (2017). 
149. Huang, J. K. et al. Retinoid X receptor gamma signaling accelerates CNS remyelination. Nat. 

Neurosci. 14, 45–53 (2011). 
Using a transcription profiling approach the authors identify the nuclear receptor RXR as a potent 
therapeutic target for drug based enhancement of remyelination. 
150. Keough, M. B. et al. An inhibitor of chondroitin sulfate proteoglycan synthesis promotes 

central nervous system remyelination. Nat Commun 7, 11312 (2016). 
This paper draws attention to the extracellular matrix composition of demyelinated lesions as an 
important determinant of remyelination efficiency and how remyelination can be improved by 
pharmacological manipulation of the lesion ECM. 
151. Siebert, J. R. & Osterhout, D. J. The inhibitory effects of chondroitin sulfate proteoglycans on 

oligodendrocytes. J. Neurochem. 119, 176–188 (2011). 
152. Back, S. A. et al. Hyaluronan accumulates in demyelinated lesions and inhibits 

oligodendrocyte progenitor maturation. Nat. Med. 11, 966–972 (2005). 
153. Siebert, J. R., Stelzner, D. J. & Osterhout, D. J. Chondroitinase treatment following spinal 

contusion injury increases migration of oligodendrocyte progenitor cells. Exp. Neurol. 231, 
19–29 (2011). 

154. Sloane, J. A. et al. Hyaluronan blocks oligodendrocyte progenitor maturation and 
remyelination through TLR2. Proc. Natl. Acad. Sci. U.S.A. 107, 11555–11560 (2010). 

155. Lau, L. W., Cua, R., Keough, M. B., Haylock-Jacobs, S. & Yong, V. W. Pathophysiology of the 
brain extracellular matrix: a new target for remyelination. Nat. Rev. Neurosci. 14, 722–729 
(2013). 

156. John, G. R. et al. Multiple sclerosis: re-expression of a developmental pathway that restricts 
oligodendrocyte maturation. Nat. Med. 8, 1115–1121 (2002). 

157. Seifert, T., Bauer, J., Weissert, R., Fazekas, F. & Storch, M. K. Notch1 and its ligand Jagged1 



 30 

are present in remyelination in a T-cell- and antibody-mediated model of inflammatory 
demyelination. Acta Neuropathol. 113, 195–203 (2007). 

158. Stidworthy, M. F. et al. Notch1 and Jagged1 are expressed after CNS demyelination, but are 
not a major rate-determining factor during remyelination. Brain 127, 1928–1941 (2004). 

159. Zhang, Y. et al. Notch1 signaling plays a role in regulating precursor differentiation during 
CNS remyelination. Proc. Natl. Acad. Sci. U.S.A. 106, 19162–19167 (2009). 

160. Hu, Q.-D. et al. F3/contactin acts as a functional ligand for Notch during oligodendrocyte 
maturation. Cell 115, 163–175 (2003). 

161. Nakahara, J., Kanekura, K., Nawa, M., Aiso, S. & Suzuki, N. Abnormal expression of TIP30 and 
arrested nucleocytoplasmic transport within oligodendrocyte precursor cells in multiple 
sclerosis. J. Clin. Invest. 119, 169–181 (2009). 

162. Mi, S. et al. LINGO-1 negatively regulates myelination by oligodendrocytes. Nat. Neurosci. 8, 
745–751 (2005). 

This paper first drew attention to LINGO-1 as a potential target for remyelination enhancement 
which subsequently led to the best developed remyelination therapy and clinical testing. 
163. Mi, S. et al. Promotion of central nervous system remyelination by induced differentiation 

of oligodendrocyte precursor cells. Ann. Neurol. 65, 304–315 (2009). 
164. Lee, X. et al. NGF regulates the expression of axonal LINGO-1 to inhibit oligodendrocyte 

differentiation and myelination. J. Neurosci. 27, 220–225 (2007). 
165. Gautier, H. O. B. et al. Neuronal activity regulates remyelination via glutamate signalling to 

oligodendrocyte progenitors. Nat Commun 6, 8518 (2015). 
166. Lundgaard, I. et al. Neuregulin and BDNF induce a switch to NMDA receptor-dependent 

myelination by oligodendrocytes. PLoS Biol. 11, e1001743 (2013). 
167. Jensen, S. K. & Yong, V. W. Activity-Dependent and Experience-Driven Myelination Provide 

New Directions for the Management of Multiple Sclerosis. Trends Neurosci. 39, 356–365 
(2016). 

168. Etxeberria, A., Mangin, J.-M., Aguirre, A. & Gallo, V. Adult-born SVZ progenitors receive 
transient synapses during remyelination in corpus callosum. Nat. Neurosci. 13, 287–289 
(2010). 

169. Meffre, D. et al. Liver X receptors alpha and beta promote myelination and remyelination in 
the cerebellum. Proc. Natl. Acad. Sci. U.S.A. 112, 7587–7592 (2015). 

170. Nelissen, K. et al. Liver X receptors regulate cholesterol homeostasis in oligodendrocytes. J. 
Neurosci. Res. 90, 60–71 (2012). 

171. la Fuente, de, A. G. et al. Vitamin D receptor-retinoid X receptor heterodimer signaling 
regulates oligodendrocyte progenitor cell differentiation. J. Cell Biol. 211, 975–985 (2015). 

172. Mokry, L. E. et al. Vitamin D and Risk of Multiple Sclerosis: A Mendelian Randomization 
Study. PLoS Med. 12, e1001866 (2015). 

173. Syed, Y. A. et al. Inhibition of phosphodiesterase-4 promotes oligodendrocyte precursor cell 
differentiation and enhances CNS remyelination. EMBO Mol Med 5, 1918–1934 (2013). 

174. Preisner, A. et al. Non-steroidal anti-inflammatory drug indometacin enhances endogenous 
remyelination. Acta Neuropathol. 130, 247–261 (2015). 

175. Magalon, K. et al. Olesoxime accelerates myelination and promotes repair in models of 
demyelination. Ann. Neurol. 71, 213–226 (2012). 

176. Kumar, S. et al. Estrogen receptor β ligand therapy activates PI3K/Akt/mTOR signaling in 
oligodendrocytes and promotes remyelination in a mouse model of multiple sclerosis. 
Neurobiol. Dis. 56, 131–144 (2013). 

177. Takahashi, C., Muramatsu, R., Fujimura, H., Mochizuki, H. & Yamashita, T. Prostacyclin 
promotes oligodendrocyte precursor recruitment and remyelination after spinal cord 
demyelination. Cell Death Dis 4, e795 (2013). 

178. González, G. A. et al. Tamoxifen accelerates the repair of demyelinated lesions in the central 
nervous system. Sci Rep 6, 31599 (2016). 

179. Harsan, L.-A. et al. Recovery from chronic demyelination by thyroid hormone therapy: 
myelinogenesis induction and assessment by diffusion tensor magnetic resonance imaging. 
J. Neurosci. 28, 14189–14201 (2008). 

180. Silvestroff, L., Bartucci, S., Pasquini, J. & Franco, P. Cuprizone-induced demyelination in the 
rat cerebral cortex and thyroid hormone effects on cortical remyelination. Exp. Neurol. 235, 
357–367 (2012). 



 31 

181. Berghoff, S. A. et al. Dietary cholesterol promotes repair of demyelinated lesions in the 
adult brain. Nat Commun 8, 14241 (2017). 

182. Skihar, V. et al. Promoting oligodendrogenesis and myelin repair using the multiple sclerosis 
medication glatiramer acetate. Proc. Natl. Acad. Sci. U.S.A. 106, 17992–17997 (2009). 

183. Aharoni, R. et al. Demyelination arrest and remyelination induced by glatiramer acetate 
treatment of experimental autoimmune encephalomyelitis. Proc. Natl. Acad. Sci. U.S.A. 105, 
11358–11363 (2008). 

184. Franco, P. G., Silvestroff, L., Soto, E. F. & Pasquini, J. M. Thyroid hormones promote 
differentiation of oligodendrocyte progenitor cells and improve remyelination after 
cuprizone-induced demyelination. Exp. Neurol. 212, 458–467 (2008). 

185. El-Etr, M. et al. Progesterone and nestorone promote myelin regeneration in chronic 
demyelinating lesions of corpus callosum and cerebral cortex. Glia 63, 104–117 (2015). 

186. Blanchard, B. et al. Tocopherol derivative TFA-12 promotes myelin repair in experimental 
models of multiple sclerosis. J. Neurosci. 33, 11633–11642 (2013). 

187. Xiao, L. et al. Diosgenin promotes oligodendrocyte progenitor cell differentiation through 
estrogen receptor-mediated ERK1/2 activation to accelerate remyelination. Glia 60, 1037–
1052 (2012). 

188. Cadavid, D. et al. Safety and efficacy of opicinumab in acute optic neuritis (RENEW): a 
randomised, placebo-controlled, phase 2 trial. Lancet Neurol 16, 189–199 (2017). 

189. Lucchinetti, C. et al. Heterogeneity of multiple sclerosis lesions: implications for the 
pathogenesis of demyelination. Ann. Neurol. 47, 707–717 (2000). 

190. Lucchinetti, C. et al. A quantitative analysis of oligodendrocytes in multiple sclerosis lesions. 
A study of 113 cases. Brain 122 ( Pt 12), 2279–2295 (1999). 

191. Mei, F. et al. Micropillar arrays as a high-throughput screening platform for therapeutics in 
multiple sclerosis. Nat. Med. 20, 954–960 (2014). 

This paper describes an innovative platform for screening for potential remyelination enhancing 
agents, and led to the identification of clemastine, currently in clinical trials 
192. Najm, F. J. et al. Drug-based modulation of endogenous stem cells promotes functional 

remyelination in vivo. Nature 522, 216–220 (2015). 
This paper reported a remyelination screening platform based on mouse epiblast-derived OPCs to 
identify two FDA-approved compounds, miconazole and clobestol, that enhance remyelination.  
193. Deshmukh, V. A. et al. A regenerative approach to the treatment of multiple sclerosis. 

Nature 502, 327–332 (2013). 
This study used another high throughput screening platform to reveal antagonism of muscarinic 
receptors as a pharmacological means of potentially enhancing remyelination.   
194. Eleuteri, C. et al. A staged screening of registered drugs highlights remyelinating drug 

candidates for clinical trials. Sci Rep 7, 45780 (2017). 
195. Mei, F. et al. Identification of the Kappa-Opioid Receptor as a Therapeutic Target for 

Oligodendrocyte Remyelination. J. Neurosci. 36, 7925–7935 (2016). 
196. Zuchero, J. B. et al. CNS myelin wrapping is driven by actin disassembly. Dev. Cell 34, 152–

167 (2015). 
197. Lachapelle, F. et al. Transplantation of CNS fragments into the brain of shiverer mutant 

mice: extensive myelination by implanted oligodendrocytes. I. Immunohistochemical 
studies. Dev. Neurosci. 6, 325–334 (1983). 

The first demonstration that transplanted oligodendrocytes could form new myelin, using a 
naturally-occurring mouse mutant that lacks normal myelin as a result of the loss of myelin basic 
protein, a protein essential for the compaction of the myelin sheath   
198. Blakemore, W. F. & Crang, A. J. The use of cultured autologous Schwann cells to remyelinate 

areas of persistent demyelination in the central nervous system. Journal of the Neurological 
Sciences 70, 207–223 (1985). 

199. Blakemore, W. F. & Franklin, R. J. Transplantation of glial cells into the CNS. Trends Neurosci. 
14, 323–327 (1991). 

200. Wang, S. et al. Human iPSC-derived oligodendrocyte progenitor cells can myelinate and 
rescue a mouse model of congenital hypomyelination. Cell Stem Cell 12, 252–264 (2013). 

201. Windrem, M. S. et al. Fetal and adult human oligodendrocyte progenitor cell isolates 
myelinate the congenitally dysmyelinated brain. Nat. Med. 10, 93–97 (2004). 

202. Windrem, M. S. et al. Neonatal chimerization with human glial progenitor cells can both 



 32 

remyelinate and rescue the otherwise lethally hypomyelinated shiverer mouse. Cell Stem 
Cell 2, 553–565 (2008). 

203. Gupta, N. et al. Neural stem cell engraftment and myelination in the human brain. Sci Transl 
Med 4, 155ra137–155ra137 (2012). 

204. Piao, J. et al. Human embryonic stem cell-derived oligodendrocyte progenitors remyelinate 
the brain and rescue behavioral deficits following radiation. Cell Stem Cell 16, 198–210 
(2015). 

205. Harrisingh, M. C. & Ffrench-Constant, C. Can the irradiated brain be salvaged by 
oligodendrocyte precursor transplantation? Cell Stem Cell 16, 113–114 (2015). 

206. Koyanagi-Aoi, M. et al. Differentiation-defective phenotypes revealed by large-scale 
analyses of human pluripotent stem cells. Proc. Natl. Acad. Sci. U.S.A. 110, 20569–20574 
(2013). 

207. Douvaras, P. & Fossati, V. Generation and isolation of oligodendrocyte progenitor cells from 
human pluripotent stem cells. Nat Protoc 10, 1143–1154 (2015). 

208. Kerschensteiner, M. et al. Targeting experimental autoimmune encephalomyelitis lesions to 
a predetermined axonal tract system allows for refined behavioral testing in an animal 
model of multiple sclerosis. AJPA 164, 1455–1469 (2004). 

209. Mallik, S., Samson, R. S., Wheeler-Kingshott, C. A. M. & Miller, D. H. Imaging outcomes for 
trials of remyelination in multiple sclerosis. J. Neurol. Neurosurg. Psychiatr. jnnp–2014–
307650 (2014). doi:10.1136/jnnp-2014-307650 

210. Absinta, M., Sati, P. & Reich, D. S. Advanced MRI and staging of multiple sclerosis lesions. 
Nat Rev Neurol 12, 358–368 (2016). 

211. van den Elskamp, I. J. et al. Lesional magnetization transfer ratio: a feasible outcome for 
remyelinating treatment trials in multiple sclerosis. Mult. Scler. 16, 660–669 (2010). 

212. Turati, L. et al. In vivo quantitative magnetization transfer imaging correlates with histology 
during de- and remyelination in cuprizone-treated mice. NMR Biomed 28, 327–337 (2015). 

213. Brown, R. A., Narayanan, S. & Arnold, D. L. Segmentation of magnetization transfer ratio 
lesions for longitudinal analysis of demyelination and remyelination in multiple sclerosis. 
Neuroimage 66, 103–109 (2013). 

214. Stankoff, B. et al. Imaging central nervous system myelin by positron emission tomography 
in multiple sclerosis using [methyl-¹¹C]-2-(4'-methylaminophenyl)- 6-hydroxybenzothiazole. 
Ann. Neurol. 69, 673–680 (2011). 

215. Bodini, B. et al. Dynamic imaging of individual remyelination profiles in multiple sclerosis. 
Ann. Neurol. 79, 726–738 (2016). 

216. Leocani, L., Rocca, M. A. & Comi, G. MRI and neurophysiological measures to predict course, 
disability and treatment response in multiple sclerosis. Curr. Opin. Neurol. 29, 243–253 
(2016). 

217. Connick, P. et al. Autologous mesenchymal stem cells for the treatment of secondary 
progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. Lancet 
Neurol 11, 150–156 (2012). 

218. Franklin R.J.M., et al Endogenous remyelination in the CNS. In: MYELIN REPAIR AND 

NEUROPROTECTION. (Eds. Duncan ID, Franklin RJM). Springer. pp 71-92. (2012) 
 

  



 33 

Figure 1 | The logic of promoting remyelination. Following demyelination, which in the 

autoimmune disease multiple sclerosis is consequent to the pathological activation of T cells 

and macrophages, the myelin sheath is lost but the underlying axon remains intact. This 

enables the naturally occurring regenerative response of remyelination to generate new 

sheaths from newly formed oligodendrocytes.  Existing oligodendrocytes whose sheaths have 

been damaged do not contribute to the regenerative process.  In the absence of 

remyelination, energy efficient conduction cannot be restored and the supportive role of the 

myelin is lost. This leads to energy deficiency, perturbed axonal transport (as illustrated by the 

accumulation of mitochondria at the node) and ultimately axonal degeneration.  This 

degeneration can trigger a secondary inflammatory response, as illustrated by the presence 

of activated macrophages around the degenerating axon. 

 

Figure 2 |  The biology of remyelination.  a | Following damage to myelinated areas in the 

CNS (illustrated in the upper left panel by a representation of a coronal section through a 

human brain affected by multiple sclerosis). remyelination is initiated by activation of 

oligodendrocyte progenitor cells (OPCs; upper right panel).  These become activated (as 

represented by the colour change), divide and form new oligodendrocytes.  Both progenitor 

cells within and around the lesion can contribute, with the latter migrating into the lesion 

after activation as shown on the right side of the panel.  Note the presence of macrophages 

in the lesion; as discussed in the main text, macrophages play essential roles in the 

phagocytosis of myelin debris and the promotion of the regenerative response.  Following 

oligodendrocyte differentiation, myelin formation proceeds in three steps as shown in the 

sequence illustrated in the lower panel: the formation of multiple processes and the 

expression of myelin proteins such as myelin basic protein, the initial wrapping of the axon by 

an elaboration of myelin membrane and, finally, the formation of multi-layered and 

compacted sheaths by the continued elaboration of membrane, further wrapping of the axon 

and extrusion of the cytoplasm. b | Genetic fate mapping studies, in which fluorescent marker 

proteins are expressed exclusively within adult progenitors, have revealed how these cells 

give rise to new remyelinating oligodendrocytes. The left-hand panel shows a cross section 

from an adult mouse spinal cord in which many of the OPCs are green. These cells are 

especially concentrated in focal areas of demyelination induced 6 days previously by injection 

of lysolecithin into the left ventral white matter (dotted line), indicative of the recruitment 

phase of remyelination. The right-hand panel shows a similar lesion 21 days after lesion 

induction when all of the demyelinated axons are fully remyelinated. The white arrows 

indicate new myelin sheaths expressing myelin proteolipid protein (red), which have been 

made by the green OPCs that have differentiated into myelin-forming oligodendrocytes (from 

REF 39).    

 

Figure 3 | The architecture of remyelination.  a | The sheaths formed by remyelination 

are frequently thinner than those around axons myelinated during development. A 

hypothetical model to explain this characteristic feature of remyelination is illustrated in 

the upper panel.  Studies showing that oligodendrocytes can form sheaths around 

artificial fibers of diameters equivalent to axons reveal the existence of an intrinsic 

pathway requiring only an appropriate shape to form a sheath (upper left panel).  Myelin 

plasticity triggered by activity and changes in axonal diameter (so called adaptive 
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myelination) then results in the elaboration of further myelin membrane, leading to 

thickening and lengthening of the sheath.  After this sheath is lost by disease in the adult 

CNS, when the axon shape is no longer changing (lower right panel) it is the intrinsic 

pathway in the newly-formed oligodendrocyte that is responsible for remyelination – as 

a result the sheath is thinner than those present around unaffected axons (lower left 

panel).  b | Electronmicrograph of myelinated and remyelinated axons following ethidium 

bromide-induced demyelination the deep cerebellar white matter of an adult rat. The 

myelin sheath thickness of the myelinated axons (M1 and M2) is proportional to the axon 

diameter. The remyelinated axons can be recognised by the relatively thin myelin sheaths 

R1 and R2), which are uniformly thin regardless of the axon diameter. Thus, remyelination 

is readily identified in larger diameter axons, while for small-diameter axons myelinated 

and remyelinated becomes difficult to distinguish. c | The g ratio is used to quantify the 

relationship between the axon diameter (x) and the myelinated axon (y): the thinner the 

myelin sheath, the higher the g ratio, and hence remyelinated axons have g ratios that are 

higher than those of myelinated axons (with the exception of the small diameter axons). 

d | In developmental myelination, there is an increase in myelin sheath thickness with 

increasing diameter of axons. In remyelination, however, the myelin sheath thickness 

remains the same regardless of the diameter (see R1 with R2 in part b). (B-D are adapted 

from figures in REF 218). 

 

Figure 4 | Drug discovery for remyelination.  The different steps of oligodendrocyte 

formation and differentiation that might be targeted are shown in the top panel, with 

progenitor cells on the left and myelinating oligodendrocytes on the right.  A number of 

screens of FDA-approved drugs have been performed, which have revealed a number of 

drugs such as those listed here that are potential remyelination medicines. These screens 

have targeted the oligodendrocyte differentiation step or, in one case, the process of 

initial wrapping using micropillars, as illustrated.  None of these screening platforms have 

to date targeted the final critical stage of myelin sheath formation, and it remains 

unknown whether additional signals will be required for this process or whether 

promoting differentiation will suffice.  

 

  



 35 

Glossary terms 

 

G ratio: this term describes the ratio of the axon circumference to the circumference of the 

myelinated axon and is used to provide a quantitative measure of the myelin sheath thickness 

compared to the axon diameter: in remyelination the g ratio is usually increased. 

 

Demyelination: This is the pathological process in which myelin sheaths are lost form axons 

that remain intact. It is sometimes called primary demyelination to distinguish it from loss of 

myelin that is secondary to axonal loss, which is more accurately called Wallerian 

degeneration and should not be called demyelination. 

 

Remyelination: This is the regenerative process involving the generation of new 

oligodendrocytes from CNS resident progenitor cells and their reinvestment of new myelin 

sheaths around the demyelinated axon. 

 

Oligodendrocyte: This is the cell that makes myelin in the central nervous system. A single 

oligodendrocyte can make up to 80 separate myelin sheaths, although around 10-20 is a more 

usual number. 

 

Schwann cell: This is the cell that make myelin in the peripheral nervous system. A single 

Schwann cell only ever makes a single myelin sheath. In certain circumstances, Schwann cells 

can remyelinate demyelinated axons in the central nervous system. 

 

Multiple Sclerosis: This is a common autoimmune-mediated disease of the central nervous 

system characterised by multiple acute inflammatory foci involving immune-mediated 

demyelination which can undergo spontaneous remyelination but with disease progression 

this becomes less efficient leaving axons chronically demyelinated and prone to irreversible 

degeneration. 

 

Leucodystrophies: These are a family of genetic disease usually characterised by inadequate 

myelination or demyelination. 

 


