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High-Q Tuneable 10-GHz Bragg Resonator

for Oscillator Applications

Simon J. Bale , Member, IEEE, Pratik D. Deshpande, Mark Hough, Stuart J. Porter, Member, IEEE,

and Jeremy K. A. Everard , Member, IEEE

Abstract— This paper describes the design, simulation, and
measurement of a tuneable 9.365-GHz aperiodic Bragg resonator.
The resonator utilizes an aperiodic arrangement of non (λ/4)

low-loss alumina plates (E r = 9.75, loss tangent of ≈1 × 10−5 to

2 × 10−5) mounted in a cylindrical metal waveguide. Tuning is
achieved by varying the length of the center section of the cavity.
A multi-element bellows/probe assembly is presented. A tuning
range of 130 MHz (1.39%) is demonstrated. The insertion loss
S21 varies from −2.84 to −12.03 dB while the unloaded Q varies
from 43 788 to 122 550 over this tuning range. At 10 of the
13 measurement points, the unloaded Q exceeds 1 00 000, and
the insertion loss is above −7 dB. Two modeling techniques are
discussed; these include a simple ABCD circuit model for rapid
simulation and optimization and a 2.5-D field solver, which is
used to plot the field distribution inside the cavity.

Index Terms— Bragg resonators, dielectric resonators (DRs),
low-noise oscillators, tuneable resonators.

I. INTRODUCTION

T
UNEABLE oscillators are a fundamental element in

almost all communication and measurement systems.

In these systems, high-Q resonators are required for low phase

noise signal generation. This is because in an oscillator the

phase slope of the resonator (group delay and Q) causes

any internal phase fluctuations, within the bandwidth of the

resonator, to be transformed into frequency fluctuations and

phase noise.

At microwave frequencies, the tuning range and quality

factor of conventional resonator structures, such as dielectric

resonators (DRs) or yttrium–iron–garnet (YIG) spheres, are

limited. The maximum unloaded quality factor attainable from

a DR is defined by the loss tangent (tan δ) of the dielectric

material as well as the losses introduced by the shield used

to enclose the resonator. Modern DRs operating in the TE01δ

mode are capable of providing Q-factor of between 10 000 and

30 000 at 10 GHz [1]. At higher frequencies, the dimensions

of the dielectric puck can become small if it is operated in a

TE or TM hybrid mode, and alternatively, a whispering gallery

mode can be used where the field energy is confined to the

Manuscript received June 15, 2015; accepted December 4, 2017. Date of
publication December 11, 2017; date of current version January 26, 2018.
This work was supported in part by EPSRC project EP/K040820/1 and in
part by Selex ES Ltd (now Leonardo MW Ltd). (Corresponding author:

Simon J. Bale.)
S. J. Bale, M. Hough, S. J. Porter, and J. K. A. Everard are with the Depart-

ment of Electronic Engineering, University of York, Heslington, York YO10
5DD, U.K. (e-mail: simon.bale.@.york.ac.uk; jeremy.everard.@.york.ac.uk;
stuart.porter.@.york.ac.uk; mark.hough.@.york.ac.uk).

P. D. Deshpande is with Viper RF, Newton Aycliffe DL5 6ZE, U.K. (e-mail:
pratik.deshpande.@.viper-rf.com).

Digital Object Identifier 10.1109/TUFFC.2017.2782567

outer edge of a ring of dielectric material [2]. The quality

factor is then almost entirely defined by the loss tangent of

the dielectric and is relatively insensitive to any conducting

material boundaries.

Mechanical tuning of a DR can be achieved by perturbing

the magnetic field distribution around the resonator by moving

a metallic object close to the dielectric material. A tuning

range of up to 10% can be achieved using this technique [3].

Electrical [4], [5] and optical [6]–[8] techniques are also

available, but the tuning range is typically limited to less

than 3% for the electrical techniques and 1% for the optical.

All of these methods usually degrade the Q as the tuning range

is increased.

YIG resonators typically use a single crystal of YIG which

is shaped into a sphere and mounted on the end of a thermally

conductive rod. YIG is a ferrite material with a sharp ferro-

magnetic resonance at microwave frequencies. The frequency

of this resonance is directly proportional to the strength of an

applied dc magnetic field which can be provided by a mixture

of fixed and current tuned electromagnets. YIG resonators are

widely used in oscillators and filters that require a wide tuning

range and a high quality factor. Unloaded Qs in the region of

many thousands with a multioctave bandwidth are achievable

at 10 GHz [9]. The principal disadvantages of a YIG resonator

are its size and power consumption. This is a result of the large

magnetic field strengths required to tune the resonator.

The distributed Bragg resonator can offer a substantial

increase in quality factor when compared to the traditional

microwave resonators described previously. It is a structure

formed by replacing the end and/or side walls of an empty

metal cavity with alternating layers of air and dielectric

material. The sudden change in dielectric constant at each air–

dielectric interface causes a partial reflection of the incident

electromagnetic wave. If several air–dielectric layers are com-

bined, then more of the energy is reflected back into the central

air region of the cavity and kept away from the lossy metal

end walls. The reflector section lengths in a Bragg resonator

are typically one-quarter of the guide wavelength (λg /4) in

thickness in order to maximize their reflectivity [10].

Several authors have demonstrated high-Q fixed frequency

Bragg resonators utilizing materials such as sapphire,

alumina, quartz, and yttrium aluminum garnet (YAG).

Maggiore et al. [11] demonstrated a layered sapphire res-

onator with a stated quality factor of 5.31×105 at 18.99 GHz.

Later, Flory and Taber [10] and Flory and Ko [12] measured

quality factors of 4 50 000 and 7 00 000 at frequencies of

13.2 and 9 GHz, respectively, for sapphire resonators
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consisting of interpenetrating concentric rings and plates.

Krupka et al. [13] demonstrated a Fabry–Perot resonator oper-

ating at 39 GHz consisting of two pairs of quarter-wavelength

single-crystal quartz Bragg reflectors; it achieved a Q-factor

of 5 60 000. Spherical Bragg resonators were demonstrated by

Krupka et al. [14]. Two resonators were constructed, one from

YAG and the other from quartz. The YAG resonator produced

a Q-factor of 1.04×105 at 26.26 GHz, and the quartz resonator

produced a Q of 6.4 × 104 at 27.63 GHz.

Breeze et al. [15] demonstrate that by utilizing an aperiodic

arrangement of dielectric plates, the energy losses within a

Bragg resonator can be redistributed away from the lossy

dielectrics and into the lower loss air regions. Initially, they

demonstrate (through simulation) that an aperiodic spherical

Bragg resonator can be designed with a quality factor in excess

107 at 10 GHz. More recently they constructed an aperiodic

sapphire resonator consisting of concentric dielectric rings

separated by dielectric plates which achieved a Q-factor of

6 00 000 at 30 GHz [16]. Bale and Everard [17] demonstrated

a fixed frequency aperiodic cylindrical Bragg resonator using

alumina plates with an unloaded Q of 2 00 000 at 10 GHz.

In this paper, which is a significant extension of a paper

submitted to the joint EFTF-IFCS 2015 conference [18],

we present the design, simulation, and measurement results for

a broad tuning X-band cylindrical distributed Bragg resonator

which utilizes an aperiodic arrangement of non λ/4 low-loss

alumina plates.

This paper is ordered as follows. Section II describes a

simple ABCD waveguide model that can be used to opti-

mize the quality factor of resonator as well as ascertain its

tuning range. Section III describes the simulations of the

resonator performance and tuning range. Section IV describes

a custom finite-difference time-domain (FDTD) field solver

that was used to ascertain the field distributions inside the

cavity and verify the results of the ABCD model. Section V

describes the construction of the tuneable resonator. Section VI

describes the measurement results and performance of the

current design, and finally, Section VII discusses the effect of

temperature.

II. RESONATOR CIRCUIT MODEL

A simple model of a Bragg resonator can be constructed by

considering it as a cascaded set of waveguide sections where

each section can be represented using two-port ABCD network

parameters [17]. The direction of the voltages and currents

in the ABCD parameter set is defined such that a cascade

connection of networks is simply the product of the individual

ABCD matrices.

The model described in this paper represents a cylindri-

cal resonator structure, and the cavity has been designed

to operate using the TE011 mode at 10 GHz. This is the

mode typically chosen for high-Q cavities as it exhibits a

low inherent loss [19]. It is often possible to obtain an

increase in Q by designing the cavity to operate using a higher

order mode, such as TE012, but this has the disadvantage of

increasing the cavity volume and therefore increasing the mode

density.

The resonator model contains ABCD matrices for each air

and dielectric section and for the end wall. The ABCD matrix

for a lossy transmission line of length l meters with complex

propagation constant γ and characteristic impedance Zo is

shown in the following equation:
[

V1

I1

]

=
[

Cosh(γ l) ZoSinh(γ l)
1
Zo

Sinh(γ l) Cosh(γ l)

] [

V2

I2

]

. (1)

The complex propagation constant γ is defined as

γ = α + jβ (2)

where α is the attenuation coefficient (Npm−1) and β is the

phase constant (radm−1). The phase constant for the air and

the dielectric sections can be calculated using the following

equation:

β =

√

ω2µε −
(

χ 0
mn

a

)2

(3)

where ε is the permittivity of the material filling the guide,

ω is the angular frequency, and a is the cavity radius. χ 0mn

represents the nth zero of the derivative of the Bessel function

of the first kind of order m. In the case of the TE01 mode, the

value of χ 0mn ≈ 3.8318. The attenuation coefficients for the

air and dielectric sections of the resonator are now discussed.

A. Air Section Losses

The loss in the air sections is due to the conductive side wall

losses. This can be modeled using (4). This equation represents

the attenuation coefficient, in units of Npm−1, for a transverse

electric (TE) mode with circumferential mode number m and

radial mode number n in a cylindrical waveguide of radius a

operating at frequency f

αc =
Rs

aη

√

1−
(

fc

f

)2

[

(

fc

f

)2

+
m2

(

χ 0
mn

)2 − m2

]

. (4)

where η is the wave impedance for a plane wave inside an

unbounded infinite medium, Rs is the surface loss resistance

of the walls, and fc is the lower cutoff frequency of the guide.

B. Dielectric Section Losses

The total loss in the dielectric section αtotal can be consid-

ered as the sum of the sidewall conducting loss αc and the

dielectric losses αd

αtotal = αc + αd . (5)

The conductive side wall losses can be calculated using (4)

but the loss in the dielectric must be treated differently. The

attenuation due to the lossy dielectric αd can be calculated

from the complex propagation constant as shown in [20].

If the loss is small then the phase constant in the dielectric

section can be assumed to be constant. The attenuation due to

dielectric loss is given as follows:

αd =
ω2µεtanδ

2

√

ω2µε −
(

χ 0
mn

a

)2
. (6)
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TABLE I

APERIODIC BRAGG RESONATOR ABCD MODEL

SIMULATION PARAMETERS

C. Metal End Walls

The loss in the metal end walls of the cavity can be approx-

imated by considering the complex propagation constant γ

and intrinsic wave impedance η for a plane wave in a good

conductor [21]. The ABCD parameters for the end wall section

can be written as follows:
[

V1

I1

]

=
[

1 0

1/Z s 1

] [

V2

I2

]

(7)

where

ZS = (1 + j)

√

ωµ

2σ
(8)

where σ is the electrical conductivity of cavity shield.

Equations (1)–(8) can be used to entirely characterize the

dielectric, air, and metal end wall sections of the resonator. The

attenuation in the air and the dielectric sections along with

the wall losses degrade the unloaded quality factor. Hence,

to maximize the quality factor, it is critical that wall and

dielectric losses are minimized. The side wall loss can be

reduced by using a high conductivity metal such as copper,

silver, or silver-plated aluminum. The dielectric losses were

minimized by using a low-loss high-purity (99.9%) alumina

(Al2O3) produced by CoorsTek.

The computational requirements of this ABCD model are

minimal and the resonant frequency and quality factor for a

given mode can be extracted very rapidly using standard circuit

simulation techniques. One disadvantage of the model is that

it considers each mode in isolation and therefore to calculate

the resonant frequencies of other modes additional simulations

are required. Table I summarizes the various constants used in

the ABCD model.

III. TUNEABLE RESONATOR DESIGN

In [17] and [22], a six-plate, fixed frequency, aperiodic

Bragg resonator with a measured unloaded quality factor

of 200 000 was constructed and measured by this group.

The design procedure for this resonator is briefly described

as this is now used in the design of the new tuneable

resonator.

Initially, the parameters, shown in Table I, were used in the

ABCD model and an S-parameter simulation was performed

for a periodic Bragg resonator. In a periodic Bragg resonator

TABLE II

DIELECTRIC AND AIR SECTION REFLECTOR THICKNESSES FOR

AN OPTIMIZED SIX-PLATE APERIODIC BRAGG RESONATOR

Fig. 1. Simulation of the quality factor and resonant frequency as a function
of the central section length for the TE011 mode of the tuneable aperiodic
Bragg resonator.

each of the dielectric plates and air sections are one quarter of

the guide wavelength (λg /4) in thickness in order to maximize

their reflectivity [10]. Once the dimensions of the air sections

and the dielectric sections for a periodic resonator were

obtained, the model was then split in two by removing the

center section. The reflector section lengths for just one half

of the resonator were then optimized until the magnitude of

the input reflection coefficient reached a maximum. This was

achieved by using the ABCD model in combination with a

custom genetic optimization algorithm. The lengths are now

dependent on the losses and dispersion in each section as

well as the frequency of operation. The phase response of

the reflection was taken into account by adjusting the length

of the center section (LC) for the final complete resonator. For

reference, the optimized reflector section lengths, for one half

of the resonator, are shown in Table II. Section L6 is closest

to the metal end wall of the resonator.

Tuning of the resonator center frequency can be achieved

by changing the length of the center section. This is because

the Bragg mirrors offer low loss high reflectivity over a

broad frequency range, exceeding ±20% of the center fre-

quency. The nominal length of the center section (17.033 mm)

was tuned by ±6 mm in 1-mm increments and the ABCD

model was used to simulate the new unloaded Q and center

frequency for the TE011 mode. A plot of the change in

frequency and unloaded Q versus change in length is shown

in Fig. 1.
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Fig. 2. Finite-difference mesh for the BOR computations. Eϕ -, Hz-, and
Hr -field components, which are required for the simulation of the TE01n
modes.

IV. NUMERICAL FIELD SOLVER

In order to determine a detailed field distribution inside

the resonator cavity a custom parallel FDTD field solver was

developed. Performing a 3-D full-wave simulation would be an

extremely time-consuming task due to the large electrical size

and high-Q nature of the structure. Fortunately, the cylindrical

resonator we are considering in this paper is rotationally

symmetric and this type of problem can be solved using

the FDTD body of revolution (BOR) technique. This method

expresses the azimuthal (ϕ) dependence of the fields as a

Fourier series [23] and as a result it is not necessary to

mesh the problem in the ϕ dimension. This means that the

FDTD-BOR method can be considered a 2.5-D technique with

2-D computational resource requirements. A disadvantage of

this method is that a separate solver run is required for each

of the azimuthal modes that are to be investigated. In this

problem, we are primarily concerned with the TE01n modes

and so only a single solver run is required.

As we are only considering the TE01n modes, the only field

components required are Eϕ , Hr , and Hz. The mesh used for

the FDTD-BOR computations is illustrated in Fig. 2. The red

circles and arrows represent the boundary conditions of the

problem and are set to zero in order to represent a perfect

electrical conductor (PEC).

The finite-difference equations used are based on those

derived by Chen et al. [24]. The required update equations

are as follows:

En+1
φ (i, j) =

⎛

⎝

1− σφ1t

2�o�φ

1+ σφ1t

2�o�φ

⎞

⎠ En
φ(i, j) +

(

1t
�o�φ

)

(

1+ σφ1t

2�o�φ

)

⎡

⎣

H
n+ 1

2
r (i, j)−H

n+ 1
2

r (i, j −1)

1z

⎤

⎦−

(

1t
�o�φ

)

(

1+ σφ1t

2�o�φ

)

⎡

⎣

H
n+ 1

2
z (i, j)−H

n+ 1
2

z (i −1, j)

1r

⎤

⎦ (9)

H
n+ 1

2
z (i, j) = H

n− 1
2

z (i, j) +
(

m1t

µoµzi1r

)

En
r (i, j) −

1t

µoµz

[(

i + 1
2

)

1r En
φ(i +1, j)−

(

i − 1
2

)

1r En
φ(i, j)

i1r2

]

(10)

H
n+ 1

2
r (i, j) = H

n− 1
2

r (i, j) −

(

m1t

µoµr (i − 1
2
)1r

)

En
z (i, j)

+
1t

µoµr

[

En
φ(i, j + 1) − En

φ(i, j)

1z

]

(11)

H
n+ 1

2
z (0, j) = H

n− 1
2

z (0, j) −
(

41t

µoµz1r

)

En
φ(1, j). (12)

Due to the singularities which occur for r = 0, a half

cell is used at the axis and the Hz component is calculated

using Faraday’s law as shown in (12) [23]–[25]. The spatial

increment and time step must be carefully selected in order

to maintain numerical stability. The numerical stability limit

for the BOR algorithm described here can be empirically

represented [23] using the following equation:

1t ≤
1x

s × c
(13)

where 1x is the smallest spatial increment and s represents

a stability factor that is dependent on the azimuthal mode

number m. For m > 0, s ≈ m + 1 and for m = 0, s =
√

2.

The time step was further reduced by an additional 10% to be

conservative.

A. Quality Factor Computation

The Bragg resonator is an extremely high-Q structure and

in order to perform an accurate simulation we must correctly

model the loss in the metals walls as well as the dielectric

materials. In a high conductivity metal, the skin effect dictates

that the current density will be greatest near the surface of

the conductor with a rapid decay as the field penetrates the

metal. A very fine spatial grid and lengthy computation time

would therefore be required in order to fully model the loss

in the metal walls. The perturbation method as described by

Wang et al. [26] can be used as an alternative. If the material

is sufficiently low loss then we can assume that fields at the

surface of the lossy material are not sufficiently different from

the lossless case. The quality factor for a low-loss structure

can then be expressed, in discrete form, as

Qc =
2

δ

(

∑

1V µ(i, j)|F H (i, j)|21V
∑

1S µ(i, j)|F Ht (i, j)|21S

)

(14)

Qd = ω0

(

∑

1V �(i, j)|F E (i, j)|21V
∑

1V σ(i, j)|F E (i, j)|21V

)

(15)

where Qc and Qd are the quality factors associated with the

conductive loss and dielectric loss, respectively. FE (i, j ) and

FH (i, j ) are the complex values of Fourier transforms of the

E- and H -field at the mesh point (i, j ). FHt (i, j ) is the Fourier

transform of the tangential magnetic field on the surface of the

conductor walls.
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TABLE III

SIMULATION PARAMETERS FOR THE BOR FDTD SIMULATION

OF THE TUNEABLE APERIODIC BRAGG RESONATOR

Fig. 3. Frequency response of the aperiodic Bragg resonator after 280×106

iterations.

B. Field Patterns

Energy is coupled into the FDTD mesh using an internal

field source which was implemented by adding the value

of a temporal driving function to the E-field at a specific

node. A Gaussian modulated sinusoidal pattern was used as

this signal has no dc component, is time limited and has a

finite bandwidth. The cavity specifications are those outlined

in Tables I and II and the simulation parameters are shown

in Table III. A wideband source, placed at the center of the

model, was used in order to excite a broad range of modes.

The source energy was designed to fall to the simulation noise

floor at the edges of the bandwidth.

Fig. 3 shows a frequency domain plot of the structure after

280 × 106 iterations, normalized to the frequency response of

the source excitation. The Eϕ-field in the monitored cell had

decayed by 29 dB. The TE011 resonant mode is clearly visible

at 10.02 GHz, as are many additional modes.

The perturbation method described previously was used to

calculate the Q-factor of the cavity, at the center frequency

of the TE011 mode, after every 10 000 time steps. A Hann

window was applied in the frequency domain to minimize the

effects of the early truncation of the time series. A plot of

the data is shown in Fig. 4 where it is clearly visible that

by 40 00 000 iterations the Q-factor has converged to within

±0.01% of its final value of 367 275. This is lower than the

predicted value of 401 513 obtained from the ABCD model.

The cause of this is thought to be the overly simplistic end

Fig. 4. Simulated quality factor of the aperiodic Bragg resonator. The Q-
factor was calculated using the perturbation method after every 10 000 time
steps of the FDTD-BOR solver.

Fig. 5. Plot of the magnitude of the Eϕ -field inside the aperiodic Bragg
resonator at 10.02 GHz.

wall model used in the ABCD waveguide simulations. This

effect was not observed in the periodic Bragg field simulation

as the end wall losses form a smaller portion of the total loss.

This is because the high field regions are located closer to the

center of the cavity in the periodic resonator.

Figs. 5–7 show 2-D plots of the magnitude of the Eϕ-,

Hr -, and Hz-field distributions inside the cavity at the resonant

frequency. These plots show the presence of the TE011 mode

at 10.02 GHz.

Fig. 8 shows a plot of the voltage standing wave distribution

predicted by the ABCD model and the magnitude of the

Eϕ-field, from the FDTD-BOR model. These plots were

created by normalizing each distribution to the peak field

magnitude or voltage produced by the simulators. Both plots

overlay which is why only one line (blue) is visible. It can be

seen that the field peaks occur in the lower loss air sections

outside of the dielectric plates. It is this redistribution of energy

away from the higher loss dielectrics which increase the Q of

the aperiodic resonator relative to an equivalent periodic Bragg
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Fig. 6. Plot of the magnitude of the Hr -field inside the aperiodic Bragg
resonator at 10.02 GHz.

Fig. 7. Plot of the magnitude of the Hz-field inside the aperiodic Bragg
resonator at 10.02 GHz.

design. A similar plot for a periodic Bragg resonator is shown

in [17].

V. TUNEABLE RESONATOR CONSTRUCTION

The resonator developed in [17] was modified and a new

center section was designed in order to tune the center fre-

quency. Initially, a tuneable center section consisting of two

close fitting concentric cylinders was used but due to energy

leakage the Q was greatly degraded. As a result, a new center

section was designed where the central section consists of an

upper section, bottom section and a solid middle section for

the probes with two bellows either side of the middle section.

The air waveguide dimensions of the center sections were

optimized to incorporate the thickness of the copper sheets

which form the tuning bellows. A cross-sectional view of the

prototype resonator is shown in Fig. 9.

The following construction technique was used to fabricate

the center section: first, each bellows is made up of two

Fig. 8. Normalized plots of the voltage standing wave distribution predicted
by the ABCD model and the magnitude of the Eϕ -field taken along the center
of the aperiodic Bragg resonator model.

Fig. 9. Cross-sectional view of the six-plate tuneable aperiodic Bragg
Resonator. The tuning bellows are visible as are the coupling probes.

Fig. 10. Copper rings which form the tuning bellows. The etched solder
release groove is visible, and these are used to control the position of the
solder during assembly.

large copper rings cut by etching from 0.3-mm copper sheet.

In addition, solder release groves were etched into the rings

as shown in Fig. 10. This controls the exact position of the

solder within the bellows and also prevents it from flowing into

the cavity which may degrade the quality factor. These rings

also have a number of tabs around the outer edges which are

folded shut to ensure the bellows remain soldered during the

later processing stages. This was then soldered to the upper
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Fig. 11. Tuneable cavity center section with the micrometers and the loop
probes used to excite the cavity.

Fig. 12. Tuneable Bragg resonator showing the micrometers and upper and
lower reflector sections.

section and finally the entire assembly was soldered to the

lower section to form the tuneable center section. Since a

number of different soldering operations have to be performed

at different times, two different temperature solders (unleaded

and leaded solder) were used to stop the solder from reflowing

when a new joint was produced.

To obtain the correct ratio of loaded-to-unloaded Q (QL /Q0)

and insertion loss for low-noise oscillators [27]–[29], the

probes need to be placed in the middle of the center section

close to the cavity wall. The tuneable center section is shown

in Fig. 11. Micrometers were used to tune the length of the

central section. It is planned to use an electronic micrometer

with piezo-nanotips for coarse and fine electric control.

The complete resonator assembly including the micrometers

and the upper and lower reflector sections is shown in Fig. 12.

VI. MEASUREMENT RESULTS

Measurements of the tuning range were achieved by initially

setting the micrometers to a maximum position so that the

spacing between the upper section and the lower section was

maximized. The micrometers were then adjusted so that the

high-Q mode was observed with reasonable spacing from the

nearest unwanted modes. The forward transmission coefficient

scattering parameter (S21) was measured on a network ana-

lyzer for a frequency span of 1 GHz as shown in Fig. 13.

Fig. 13. Plot of the measured forward transmission coefficient (S21) for the
six-plate aperiodic tuneable Bragg resonator for a frequency span of 1 GHz.

The high-Q resonance can be clearly seen at the center of this

plot. Many additional modes are also clearly visible.

Once the high-Q mode was located, the micrometers were

then slowly adjusted in 10-MHz steps in order to tune the

resonant frequency. A combined plot showing the tuning range

of this mode is shown in Fig. 14. Each trace shows a plot of

S21 over a span of 100 MHz and the traces are cascaded left to

right with increasing frequency. A tuning region of 130 MHz

from 9.30 to 9.43 GHz is observed. Within this range, the

resonance passes through several lower Q modes degrading

the quality factor at these frequencies.

Fig. 15 shows plots, with a 100 MHz span, of the wanted

mode at the start (blue trace), middle (red trace), and end

(yellow trace) of the tuning range. At the start of the tuning

range (9.3 GHz), the closest unwanted mode is approximately

4 MHz lower in frequency than that of the desired mode

and as we tune the center section, we move away from this

mode. At the center of the tuning range, which is 9.37 GHz,

the unwanted modes are approximately 9 MHz below and

24 MHz above the center frequency. Finally, at the end of

the tuning range at 9.43 GHz, the closest unwanted mode is

approximately 4 MHz higher in frequency.

The span was reduced to 1 MHz (1601 points) to get an

accurate measurement of the insertion loss (S21) and the loaded

Q (QL ) for the individual frequencies. A nine-point moving

average filter was applied to the measured S-parameter data

before calculating the quality factor. The unloaded Q (Q0)

was calculated from (16) using the return loss method [30].

The advantage of this method is that it does not assume the

input–output couplings are equal and can therefore account

for any unequal coupling which results from differences in

the structure and position of the probes

QO =
(

2QL

S11 + S22

)

. (16)
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Fig. 14. Plot of the measured insertion loss versus frequency over the tuning range. Each trace shows a plot of S21 over a span of 100 MHz, and the traces
are cascaded left to right with increasing frequency.

Fig. 15. Plot of the measured insertion loss versus frequency at the start, center, and end of the tuning range. The location of the closest spurious modes is
visible.

The results are shown in Fig. 16 where it can be seen that the

maximum and minimum unloaded quality factors are 122 550

and 43 788, respectively, over the tuning range (130 MHz). The

insertion loss (S21) varies between −2.84 and −12.03 dB over

this range. Ignoring the frequencies (9.3, 9.36, and 9.4 GHz)

where the wanted resonance interacts with an unwanted mode,

the unloaded Q is above 100 000 and the insertion loss above

−7 dB. There may be other frequencies where this problem

can occur because it is difficult to make high-Q measurements

over such a broad frequency range.

A plot of insertion loss versus frequency with a narrow

span of 1 MHz with the 3-dB points for the highest unloaded

Q of 122 550 is shown in Fig. 17. The insertion loss (S21) was

measured to be −6.15 dB at 9.38 GHz. The unloaded Q is

significantly lower than the numerical simulation results. This

may be due to conductor losses in and around the bellows

including losses in the solder as well as leakage and mode

conversion due to the discontinuities in the structure. Also, the

loss tangent (tan δ) of the Alumina plates may have been larger

than the manufacturer’s specification resulting in increased

dielectric losses. Performing a second numerical simulation

with a tan δ of 2 × 10−5 demonstrates an unloaded quality

factor of 219 476. Finally, the slots in the metal used to support

the Alumina discs will have introduced discontinuities into the

structure as well as providing small openings at their interfaces

that could potentially radiate. It should also be noted that in

order to achieve a significant tuning range the bellows were

located in the central region of the cavity. This is a high
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Fig. 16. Plot of the measured insertion loss and unloaded quality factor (Q0)
for the tuneable Bragg resonator. The cavity was tuned over a 130-MHz range.

Fig. 17. Plot of measured insertion loss versus frequency with a 1-MHz
span showing an unloaded Q of 122 550. S21 = −6.15 dB, S11 = −9.13 dB,
and S22 = −4.81 dB at 9.38 GHz.

field, high energy storage region, and radiation or losses in

this section are likely to degrade the Q-factor. An absorbing

boundary condition could be implemented in the 2.5-D field

solver [25]. A narrow slot could then be modeled in the central

air region and the effect of radiation losses investigated.

VII. DISCUSSION OF TEMPERATURE STABILITY

The temperature dependence of a tuneable resonator can

reduce the maximum allowable tuning range around a fixed

center frequency because the center frequency will shift as a

function of temperature.

The effect of this can be reduced by active temperature

compensation and by varying the temperature coefficients of

the materials used to construct the resonator. Based on the

data sheet, the dielectric (alumina) used in this paper has

a coefficient of thermal expansion (CTE) of approximately

+8.2 × 10−6/°C and the aluminum shield has a CTE of

approximately +22.2 ×10−6/°C. The variation in the alumina

dielectric constant with temperature is not known.

The cavity is also held together with 28 steel bolts, the

torque on these is not fixed as these are adjusted to obtain

maximum Q (minimum leakage) between the metal sections.

This leakage is probably due to the imperfect flatness of the

metal plates.

Calculating the temperature dependence of the resonant

frequency is therefore nontrivial and further evaluation through

measurement and modeling will be required.

VIII. CONCLUSION

In this paper, we have demonstrated a high-Q tuneable

Bragg resonator with a tuning range of 130 MHz. The insertion

loss S21 varies from −2.84 to −12.03 dB while the unloaded

Q varies from 43 788 to 122 550 over the tuning range. At the

center of the tuning range, there are unwanted modes approx-

imately 9 MHz below 24 MHz above the center frequency.

The fitness function in the optimization algorithm could be

modified to include mode to mode spacing as well as the

magnitude of the input reflection coefficient. It may then be

possible to find alternative plate arrangements that have a more

desirable spurious mode response.

We believe that this combination of quality factor and tuning

range is not possible with any other microwave resonators

present in the literature. Broad tuning ultrahigh-Q cavities such

as this one will enable versatile ultra-low phase noise tuneable

oscillators offering broadband electromechanical course tuning

and electronic fine tuning.

X-band oscillators with a fixed frequency Bragg resonator

which have an unloaded Q of 200 000 are currently under

investigation. Initial phase noise results for these oscillators are

around −153 dBc/Hz at 10-kHz offset. The results are based

on a measured residual flicker noise corner of around 26 kHz

(an operating power noise figure of 8.1 dB including phase

shifter/cable losses) and a PAVO at the input of the resonator

of 11.5 dBm. These results are within 1 dB of the theory

[27], [28]. Also, residual phase noise measurements of the

active components are being measured using a broadband cross

correlation phase noise measurement system [31].
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