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Abstract We investigate the radiation to infinity of a mass-

less scalar field from a source falling radially towards a

Schwarzschild black hole using the framework of the quan-

tum field theory at tree level. When the source falls from

infinity, the monopole radiation is dominant for low initial

velocities. Higher multipoles become dominant at high ini-

tial velocities. It is found that, as in the electromagnetic and

gravitational cases, at high initial velocities the energy spec-

trum for each multipole with l ≥ 1 approximately is constant

up to the fundamental quasinormal frequency and then drops

to zero. We also investigate the case where the source falls

from rest at a finite distance from the black hole. It is found

that the monopole and dipole contributions in this case are

dominant. This case needs to be carefully distinguished from

the unphysical process where the source abruptly appears at

rest and starts falling, which would result in radiation of an

infinite amount of energy. We also investigate the radiation

of a massless scalar field to the horizon of the black hole,

finding some features similar to the gravitational case.

1 Introduction

Black holes (BHs) stand out as the most relevant and sim-

ple objects described by General Relativity. BHs are trapped

regions, even to light, due to their extremely intense gravita-

tional field. The boundary of no return from which light can-

not escape, the BH event horizon, is determined as a function

of only three parameters associated with the BH, i.e. mass,

angular momentum and electric charge [1]. Particles falling

into BHs emit radiation which carries information about the

a e-mail: laoliveira@ufpa.br

b e-mail: crispino@ufpa.br

c e-mail: atsushi.higuchi@york.ac.uk

event horizon to infinity, as a “fingerprint” of the BHs [2–5].

Thus, in principle, evidence for the existence of an event hori-

zon and therefore for the existence of BHs can be obtained

by analyzing the radiation emitted from a source falling into

BHs. The scientific literature about the dynamics of a test

particle falling into BHs has developed significantly in the

early 1970s. The existing results for the problem of radia-

tion emission from a particle falling radially into BHs were

obtained using the formalism of the Classical Field Theory

(CFT) [2–17]. The investigation of this kind of problems

from the viewpoint of the Quantum Field Theory (QFT) has

not been carried out. The formalism of QFT applied to the

problem of radiation emission has been used for the deter-

mination of the radiation emission by sources and charges

rotating around a BH, known as synchrotron radiation [18–

25]. Furthermore, QFT has been used to investigate radiation

emission from an uniformly accelerated source in flat space-

times [26,27] and also to investigate the interaction of sources

with Hawking radiation [28–34]. In this paper, using QFT at

tree level, we investigate in detail the properties of the radi-

ation emission due to the radial infall of a particle source of

a massless scalar field into a Schwarzschild BH. One of the

main advantages in computing the emitted energy using the

framework of QFT at level tree is that this approach makes the

extension to the radiative quantum corrections more straight-

forward. We note in passing that the change in the geometry

due to the Hawking radiation for an astrophysical black hole

is extremely small [35] and, as a result, that it is legitimate

to use the eternal black hole in our calculations.

The remainder of this paper is organized as follows. In

Sect. 2 we briefly review the general formalism used in this

paper. In Sect. 3 we describe the radial infall of a source into a

Schwarzschild BH according to General Relativity. In Sect. 4

we obtain expressions for the emitted energy spectrum and
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the total emitted energy for a quantum scalar field minimally

coupled to the scalar source. In Sect. 5 we obtain the zero-

frequency limit of the emitted energy spectra, using approxi-

mate analytic solutions. In Sect. 6 we analyze and discuss our

numerical results for the radiation emission obtained from

the viewpoint of QFT. We summarize some features of our

results in Sect. 7. We use natural units with G = c = h̄ = 1,

unless otherwise stated.

2 General formalism of QFT in Schwarzschild

spacetime

The total Lagrangian density with a classical source j (xμ),

minimally coupled to a massless and chargeless scalar field

Φ̂ (xμ), can be written by

L =
√

−g

(

1

2
∇μΦ̂∇μΦ̂ + jΦ̂

)

, (1)

where g ≡ det(gμν) is the determinant of the metric gμν .

The line element ds2 = gμνdxμdxν of the Schwarzschild

spacetime can be written

ds2 = f dt2 − f −1dr2 − r2
(

dθ2 + sin2 θdφ2
)

, (2)

where f (r) = 1 − 2M/r . Note that f (r = rh) = 0, with

rh ≡ 2M being the position of the event horizon of the

Schwarzschild BH, and f (r → ∞) = 1. This spacetime

is asymptotically flat.

The scalar field Φ̂ (xμ) can be expanded in terms of a com-

plete set of positive- and negative-frequency modes, uω l m

and u∗
ω l m , as

Φ̂ =
∞
∑

l=0

m=l
∑

m=−l

∫ ∞

0

dω

[

uω l m âω l m + u∗
ω l m â

†
ω l m

]

, (3)

with ω > 0, where “∗” denotes complex conjugation and

âω l m and its Hermitian adjoint â
†
ω l m are, respectively, the

annihilation and the creation operators [36]. These operators

satisfy the following non-vanishing commutation relations:

[

âω l m, â
†
ω′ l ′ m′

]

= δ
(

ω − ω′) δl l ′δm m′ . (4)

Since the Schwarzschild spacetime is spherically symmetric,

the positive-frequency modes uω l m(xμ), can be written by

uω l m(xμ) = Cω l m

ψ∗
ω l(r)

r
Yl m(θ, φ) exp (−iωt), (5)

which satisfy the Klein–Gordon equation

∇μ∇μuω l m = 1√−g
∂μ

(√
−g gμν∂νuω l m

)

= 0, (6)

where Cω l m is a normalization constant, Yl m (θ, φ) are the

spherical harmonics [37] and
√−g = r2 sin θ [obtained

from the line element (2)]. The Klein–Gordon inner prod-

uct for the mode functions is defined as follows:

σK G(ϕ1, ϕ2) = i

∫

S

dSμ
[

ϕ∗
1∇μϕ2 − (∇μϕ∗

2 )ϕ1

]

, (7)

with dSμ = r2 sin θdrdθdφ δ
μ
0 / f (r), where S is a constant-

time hypersurface, which is a Cauchy surface [38]. The com-

mutation relations (4) imply that the modes uω l m are normal-

ized as follows:

σK G (uω l m, uω′ l ′ m′) = δ(ω − ω′)δl l ′δm m′ , (8)

σK G

(

u∗
ω l m, uω′ l ′ m′

)

= 0. (9)

The conditions (8) determine the normalization constant

Cω l m in Eq. (5).

Substituting Eq. (5) into the Klein–Gordon equation (6),

we obtain the following ordinary differential equation for

ψω l(x):

[

d2

dr2∗
+ ω2 − Vl(r)

]

ψω l(r∗) = 0, (10)

where Vl(r) is the effective potential, given by

Vl(r) = f (r)

[

l (l + 1)

r2
+ 1

r

d f

dr

]

. (11)

The Regge–Wheeler coordinate r∗ is defined by dr∗/dr ≡
f (r)−1, which for the Schwarzschild BH can be explicitly

written as

r∗ = r + rh log (r/rh − 1) . (12)

Equation (10) admits two independent sets of solutions

which can be represented by the modes ψ
up
ω l(r∗), purely

incoming from the past horizon H−, and the modes ψ in
ω l(r∗),

purely incoming from the past null infinity J −. The solu-

tions ψ
up
ω l(r∗) and ψ in

ω l(r∗) satisfy, respectively, the following

boundary conditions at the event horizon (r∗ → −∞) and at

spatial infinity (r∗ → ∞):

ψ
up
ω l(r∗) ≈

{

A
up
ω lχ

∗
hor + B

up
ω lχhor (r∗ → −∞) ,

χinf (r∗ → ∞) ,
(13)

and

ψ in
ω l(r∗) ≈

⎧

⎨

⎩

χhor (r∗ → −∞) ,

Ain
ω lχ

∗
inf + Bin

ω lχinf (r∗ → ∞) .
(14)

The functions χhor and χinf are defined to be of the form

exp(−iωr∗) and exp(iωr∗), respectively, at leading order in

1/r∗. In our numerical computations we write these functions

near the horizon and near spatial infinity as

123
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χhor = exp(−iωr∗)
jmax
∑

j=0

a j (r − rh)
j , (15)

χinf = exp(iωr∗)
jmax
∑

j=0

b j

r j
, (16)

where the coefficients a j and b j are obtained from Eq. (10),

with the choice a0 = 1 and b0 = 1. We let jmax = 10 in our

computation. The coefficients A
up/in
ω l and B

up/in
ω l are deter-

mined by matching the boundary conditions (13) and (14)

with the numerical solution ψω l(r∗), obtained from Eq. (10),

at the event horizon r∗ → −∞ and at spatial infinity

r∗ → ∞, respectively. Note that the coefficients A
up/in
ω l and

B
up/in
ω l are related to the transmission coefficient |T up/in

ω l |2
and reflection coefficient |Rup/in

ω l |2, respectively, as follows:

|T up/in
ω l |2 ≡ 1

|Aup/in
ω l |2

, (17)

|Rup/in
ω l |2 ≡

∣

∣

∣

∣

∣

B
up/in
ω l

A
up/in
ω l

∣

∣

∣

∣

∣

2

. (18)

The reflection and transmission coefficients satisfy the fol-

lowing relation:

|Rup/in
ω l |2 + |T up/in

ω l |2 = 1. (19)

From the boundary conditions (13) and (14) and Eq. (8) we

find that the normalization constant Cω l m can be written

C
up/in
ω l m = 1

√
4πωA

up/in
ω l

. (20)

We note that, because of the complex conjugation in Eq. (5)

of ψω l(r), the modes uω l m(xμ) are the modes purely ingoing

into the future horizon H+ [with ψ
up∗
ω l (r)] or purely outgo-

ing to the future null infinity J + [with ψ in∗
ω l (r)]. These are

the modes that are used for computing the radiation into the

horizon and to null infinity in the next section.

3 Radial infall of a source into a Schwarzschild black

hole

We consider a source falling radially into a Schwarzschild

BH. The source has a zero angular momentum as a result.

Without loss of generality we let the source fall along the

z-axis. The stress–energy tensor for a point source can be

written by

T μν =
∫

dτ√−g
q δ4

[

xα − xα(τ )
] dxμ

dτ

dxν

dτ
, (21)

where τ is the source’s proper time.

By setting j (xμ) = T ν
ν (corresponding to a scalar source)

we find the following expression for a massive source:

j (xμ) = q√−gvt
δ (r − rs) δ (θ − θs) δ (φ − φs) , (22)

where (r, θ, φ) = (rs, θs, φs) refers to the spatial coordinates

of the source at given time t in spherical polar coordinates, q

is a coupling constant between the source and a massless and

chargeless scalar field Φ̂ [18,32], and vt is the contravariant

t-component of the four-velocity of the source. The factor

1/vt makes the source boost invariant along its trajectory.

The four-velocity vμ of a source infalling radially is given

by the following expression:

vμ ≡ dxμ

dτ
=

[

E

f (r)
, −

√

E2 − f (r), 0, 0

]

, (23)

where E is the source’s conserved energy divided by its rest

mass [1]. If the source has initial position r = r0 and velocity

v0 in the ingoing radial direction (at t = 0), then [38]

E =
√

f (r0)

1 − [v0/ f (r0)]
2
. (24)

Using Eqs. (2) and (23) it is possible to find an expression

for the modulus of the velocity of the source (falling radially)

at position r in the static frame [39], namely

Ur =
∣

∣

∣

∣

f (r)−1 dr

dt

∣

∣

∣

∣

= 1

E

√

E2 − f (r). (25)

In Fig. 1 we exhibit plots of Ur for selected values of v0 and

r0.

We write the radial coordinate of the source as rs ≡ rs (ts)

with ts being the time coordinate in Eq. (2) associated with the

trajectory of the radial infall along its geodesic. The function

ts(rs) is obtained from the relation

dts

drs
= − E

f (rs)
√

E2 − f (rs)
. (26)

This formula follows from Eq. (23). Using the properties of

the Dirac delta function and Eqs. (23) and (26) Eq. (22) can

be rewritten as follows:

j (xμ) = q δ (t − ts) δ (θ − θs) δ (φ − φs)

r2
s sin θ

√

E2 − f (rs)
, (27)

where ts(r) is the inverse function of r = rs(ts). The constants

θs will be set to 0 (and then φs will be ambiguous and can be

set to any value).

4 Total emitted energy

Now the computation of the total emitted energy (for each

multipole number l and azimuthal number m) by a source

123
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Fig. 1 Modulus of the radial component of the velocity of the source

(measured by a static observer, located at r , as a particle passes by

her [39]), as a function of r , for a source released from spatial infinity

(r0 → ∞) with initial velocity v0 = 0.5, v0 = 0.75 and v0 = 0.95

(plots on the left) and for a source infalling from rest (v0 = 0) released

at positions r0 = 5 rh, r0 = 2.5 rh and r0 = 1.1 rh (plots on the right)

j (xμ) minimally coupled to a scalar field Φ̂ (xμ) in a back-

ground of a spherically symmetric spacetime using QFT at

tree level can be done. The starting point is the following

expression [18,19]:

E
hor/inf
l m =

∫ ∞

0

dωω|A up/in
ω l m |2, (28)

where the labels “inf” and “hor” correspond to the energy

radiated, respectively, to infinity and to the event horizon.

A
up/in
ω l m are the emission amplitudes at tree level given by

A
up/in
ω l m =

〈

ω l m|i
∫

d4x
√

−g j (xμ)Φ̂(xμ)|0
〉

, (29)

corresponding to a transition between the vacuum state and

one scalar particle state. By recalling that

âω l m |0〉 = 0, (30)

with |0〉 being the Boulware vacuum [36,40], and |ω l m〉 =
â

†
ω l m |0〉, we find, using the commutation relations (4),

〈ω l m|â†
ω′ l ′ m′ |0〉 = δ(ω − ω′)δl l ′δm m′ . (31)

Then, substituting Eq. (3) into Eq. (29) and using Eqs. (30)

and (31), we find

A
up/in
ω l m = i

∫

d4x
√

−g j (xμ)u∗
ω l m(xμ). (32)

If we had chosen the Unruh or Hartle–Hawking vacuum [41,

42] there would be absorption and stimulated emission of the

scalar particles. The rates of these two processes would be

exactly the same and, as a result, the net emission would be

the same as in the Boulware vacuum (see, e.g. [18,43]). It is

well known that the Boulware vacuum is unphysical because

the expectation value of the stress–energy tensor is singular

at the past and future horizons for this state [44]. Our results

can be regarded to be about the net emission from the scalar

source in the Unruh vacuum, which is more physical.

As stated before, the motion is along the z-axis with-

out loss of generality because of the spherical symmetry

of Schwarzschild spacetime. Thus we consider θs = 0 and

φs = 0. (The value of φs is arbitrary once we have θs = 0.

However, we choose this value for definiteness.) As a con-

sequence only the mode m = 0 contributes to the emission

amplitude [9,17]. Because of this fact the only spherical har-

monics which will be associated to non-vanishing amplitudes

are Yl 0(θ, φ) with

Yl 0 (0, 0) =
√

2l + 1

4π
. (33)

From now on we will omit the azimuthal quantum number

m from A
up/in
ω l m and E

hor/inf
l m for the reason stated above.

By substituting Eqs. (5), (20), (27) and (33) into Eq. (32)

the following expression for the emission amplitude is found:

A
up/in
ω l = iq

√
2l + 1

4π
√

ωA
up/in
ω l

∫ r0

rh

drs

ψ
up/in
ω l (rs) exp (iωts)

rs

√

E2 − f (rs)
. (34)

Using Eq. (26), Eq. (34) can be rewritten by integrating by

parts as follows:

A
up/in
ω l = q

√
2l + 1

4π Eω
√

ωA
up/in
ω l

[

−B +
∫ r0

rh

drs

(

ψ
up/in
ω l

rs

d f

drs

+ f

rs

dψ
up/in
ω l

drs
−

f ψ
up/in
ω l

r2
s

)

exp (iωts)

]

, (35)

where

B =
[

f (rs)ψ
up/in
ω l (rs) exp (iωts)

rs

]

rs=r0

. (36)
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Equation (34), or equivalently (35), in fact represents the

emission amplitude from a scalar source that suddenly

appears at ts = 0 and starts falling. To obtain the ampli-

tude from a scalar source that is static until ts = 0 and then

starts falling, we first convert the rs integral in Eq. (34) for

the amplitude back to the ts integral using Eq. (26) and find

A
up/in
ω l = iq

√
2l + 1

4π E
√

ωA
up/in
ω l

∫ ∞

−∞
dts

f (rs)

rs

×ψ
up/in
ω l (rs) exp (iωts) . (37)

Since rs(ts) = r0 for ts ≤ 0 we can readily evaluate the

integral over (−∞, 0] by changing exp(iωts) to exp(iωts +
ǫts) with ǫ > 0 and letting ǫ → 0. We integrate by parts

over [0,∞) and find that the boundary term is canceled by

the integral over (−∞, 0]. Thus the result turns out to be

Eq. (35) with B = 0.

Finally, using Eq. (28), we write the emitted energy spectra

as 1:

E
hor/inf
ω l = ω|A up/in

ω l |2. (38)

5 The zero-frequency limit

In this section we obtain the zero-frequency limit (ZFL) of

the spectra of the energy emitted to infinity (Eq. (28)), using

approximate analytic solutions of Eq. (10) in order to check

the results obtained for the energy spectra considering the

full numerical solution.

Since there is only one parameter M with dimensions

in Schwarzschild spacetime the low-frequency limit is the

limit where ω ≪ M−1. Since the energy spectra Ehor/inf
ω l are

dimensionless, they are functions of Mω for r0 = ∞. Hence,

their ω → 0 limit for r0 = ∞ is achieved by letting M → 0

[45]. (Note that r0 introduces another parameter with dimen-

sions if it is finite.) In this limit we may replace the potential

Vl(r) in Eq. (11) by its leading term for a large r ,

Vl(r) ≈ l(l + 1)/r2, (39)

and we let

f (r) ≈ 1. (40)

Equation (10) in this approximation is the wave equation in

Minkowski spacetime with the following familiar solutions:

(Ain
ω l)

−1ψ in
ω l(r) ≈ 2ωr jl(ωr), (41)

where jl(ωr) are the spherical Bessel functions [37], up to a

phase factor. Thus, in the limit M → 0 Eq. (34) for r0 = ∞
becomes

1 Some authors define E
hor/inf
ω l to be 1/2 times ours because the total

energy emitted is obtained by integrating Ehor/inf over ω from −∞ to

∞ in their case.

√
ωA in

ω l = iq
√

2l + 1

2π

√

v−2
0 − 1

×
∫ ∞

0

ωdrs jl(ωrs) exp(−iωrs/v0)

= q
√

2l + 1

2π

√

v−2
0 − 1 (−i)l Ql(v

−1
0 ), (42)

where Ql(z) is the Legendre function of the second kind with

the branch cut [−1, 1]. Hence for r0 = ∞ we find the ω → 0

limit of the spectra of the energy emitted to infinity, E inf
ω l

E
inf,r0=∞
0 l = q2(2l + 1)

4π2
(v−2

0 − 1)[Ql(v
−1
0 )]2. (43)

Now, if r is held fixed, then (see, e.g. Sec. VI of Ref. [32])

lim
ω→0

(Ain
ω l)

−1ψ in
ω l(r) = δ0

l r. (44)

For r0 finite this limit can be used for all r ≤ r0 in Eq. (35)

(with B = 0). Thus, we find

E inf
0 l =

q2δ0
l

4π2 E2

(

1 − 2M

r0

)2

=
q2δ0

l

4π2

(

1 − 2M

r0

)

if v0 = 0. (45)

Note that this formula is not valid for r0 = ∞ because the

limits ω → 0 and r0 → ∞ do not commute. The zero-

frequency limit of (A
up
ω l)

−1ψ
up
ω l(r), relevant to the radiation

emitted to the horizon, is also known (see, e.g. Ref. [32]). It

can be used to find the zero-frequency limit of the spectra of

energy emitted to the horizon, Ehor
ω l , for finite r0 in a similar

manner with the following result:

Ehor
0 l = (2l + 1)q2

π2 E2
[Ql(r0/M − 1)]2

(

1 − 2M

r0

)2

= (2l + 1)q2

π2
[Ql(r0/M − 1)]2

(

1 − 2M

r0

)

if v0 = 0.

(46)

6 Numerical results

In Sect. 4 we described how to find the energy spectra of

massless scalar radiation from a source freely falling radially.

In this section numerical evaluation of the energy spectra

is presented. As for the source’s motion, the following two

distinct cases are being considered: (i) the source coming

from r = ∞ with a non-vanishing initial velocity v0 and (ii)

the source released from rest at a certain position r = r0.

The results for the spectra for the energy emitted to the

horizon, Ehor
ω l , and to infinity, E inf

ω l , for the radial infall of

a source starting from r = ∞ for selected values of initial

velocity v0 are shown in Fig. 2. These results were obtained

numerically from Eqs. (34) and (38) as a function of ω and

for selected values of the multipole number l. [We obtain the
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Fig. 2 Numerical estimates of the spectra of the emitted energy, Ehor
ω l

(plots on the left) and E inf
ω l (plots on the right) as functions of ω

for selected values of the multipole number, obtained from Eqs. (34)

and (38) for the radial infall of a source from spatial infinity (r0 → ∞),

with the initial velocity v0 = 0.5 (plots at the top), v0 = 0.75 (plots in

the middle) and v0 = 0.95 (plots at the bottom)

same results by using Eq. (35), instead of Eq. (34), and setting

B = 0, because the boundary term (36) vanishes.] We note

that the spectra of energy emitted to the horizon, Ehor
ω l , (plots

on the left in Fig. 2) starts from zero (at ω = 0), reaches a

maximum and then slowly decreases to zero (for high val-

ues of ω). Note that the energy emitted to the horizon does

not decrease as the multipole number l increases unlike the

energy emitted to infinity. This behavior of the spectra Ehor
ω l

is similar to that of the corresponding spectrum for the grav-

itational radiation [5]. It reflects the fact that the source has

infinite self energy due to the Coulomb-like potential and

that the region of large energy density passes through the
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Fig. 3 Numerical estimates of the spectra of the emitted energy, Ehor
ω l

(plots on the left) and E inf
ω l (plots on the right), as functions of ω,

for selected values of the multipole number, obtained from Eqs. (35)

and (38) (with B = 0), for a source infalling from rest (v0 = 0) at

positions r0 = 5 rh (plots at the top), r0 = 2.5 rh (plots in the middle)

and r0 = 1.1 rh (plots at the bottom)

horizon as the source approaches it. The spectrum of energy

emitted to infinity, E inf
ω l , (plots on the right in Fig. 2) starts

from a non-vanishing finite value (at ω = 0) and goes to zero

for high frequencies. The contribution of higher multipoles

decreases rapidly with increasing l as in the gravitational case

[4]. These spectra were studied by Brito [45] and our results

are in agreement with his. It is interesting that for high ini-

tial velocities the spectrum for each l ≥ 1 is approximately

constant and drops to zero around the fundamental quasinor-

mal frequency. [These frequencies ωqn are given as ωqnrh =
0.215 (l = 0), 0.586 (l = 1), 0.967 (l = 2), 1.351 (l = 3)

and 1.733 (l = 4) (see, e.g. Ref. [46]).] The spectra for the

gravitational and electromagnetic radiation behave in a sim-

ilar manner [7,13].
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Fig. 4 Numerical estimates of the spectra of the emitted energy, Ehor
ω l

(plots on the left) and E inf
ω l (plots on the right) as a function of ω

for selected values of the multipole number, obtained from Eqs. (34)

and (38), considering a source infalling from rest (v0 = 0) at posi-

tions r0 = 5 rh (plots at the top), r0 = 2.5 rh (plots in the middle) and

r0 = 1.1 rh (plots at the bottom)

The results for the emitted energy spectra Ehor
ω l and E inf

ω l

for the radial infall of a source starting from rest for selected

values of position r0 obtained numerically from Eqs. (35)

(with B = 0) and (38) are shown in Fig. 3 as functions of ω

and for selected values of the multipole number l. We note

that the emission to infinity is dominated by lower multipoles

(l = 0, 1) while there is a substantial contribution from the

modes with l ≥ 2 to the emission to the horizon, reflecting the

region of high energy density surrounding the source passing

through the horizon.

Next we show the same spectra using Eq. (34) instead of

Eq. (35) (with B = 0). As we stated before, the emission in

this case is from a source that emerges suddenly at r = r0 and

starts falling. The results are shown in Fig. 4. We note that
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Fig. 5 Numerical estimates of the emitted energy radiated to infin-

ity, E inf
l , as a function of v0 for multipole numbers l = 0, 1, 2, 3, 4,

obtained from Eq. (28)

the spectra of the emitted energy both to the horizon and to

infinity, Ehor
ω l and E inf

ω l , vanish for both ω = 0 and ω → ∞, (i)

oscillating between these limits for mid-to-large values of r0

(e.g., r0 = 5 rh) or (ii) behaving with a Gaussian-like profile,

for small values of r0 (e.g., r0 = 2.5 rh and r0 = 1.1 rh).

In the plots of Fig. 5 we show the energy emitted to infin-

ity E inf
l , obtained from Eq. (28), as a function of the initial

velocity v0. The monopole (l = 0) emission is dominant

for low initial velocities while higher multipoles (l ≥ 1)

become significant for high initial velocities. We note that

for l = 0 as the initial velocity v0 increases, the value of E inf
0

decreases. It is interesting that this behavior for the multipole

number l = 0 is the opposite to that for the multipole num-

bers l ≥ 1. In the plots of Fig. 6 we show the emitted energy

E inf
l , obtained from Eq. (28), as a function of the position r0.

We note that, as the position r0 gets closer to the BH event

horizon, the emitted energy E inf
l goes to zero as expected.

The plot on the right uses Eq. (35) with B = 0. It can be

Table 1 Spectra of the energy radiated to infinity in the ZFL for multi-

pole numbers l = 0, 1, 2, considering the source released from infinity

with non-vanishing initial velocity. We compare the results obtained

numerically by using Eq. (10) with the ones obtained analytically in

Eq. (43)

v0 Method l = 0 l = 1 l = 2

0.5 Numerical 0.022854 0.002252 0.000176

Analytic 0.022929 0.002216 0.000170

0.75 Numerical 0.018646 0.00524 0.001162

Analytic 0.018650 0.00522 0.001150

0.95 Numerical 0.009132 0.007002 0.00406

Analytic 0.009182 0.007072 0.00413

seen that the emission is mainly with l = 0 and l = 1 and

that it increases as a function of r0. The plots on the left use

Eq. (34). The spectrum does not decrease as a function of l.

This is an ultraviolet effect arising from a sudden emergence

of a source at r = r0.

In Tables 1, 2 and 3, we compare the zero-frequency limit

(ZFL) of the energy spectra obtained numerically with the

corresponding analytic results. In Table 1 we compare the

ZFL of the spectrum of the energy radiated to infinity from

a source infalling from r = ∞ obtained analytically in

Eq. (43) with the ones obtained using the numerical solution

of Eq. (10) in order to check the numerical results. Similarly,

in Table 2 we compare the ZFL for the spectrum of the energy

radiated to infinity for the source infalling radially from rest

from a certain position r0, given by Eq. (45), with the ones

obtained using the numerical solution of Eq. (10).

In Table 3 we compare the ZFL for the spectrum of the

energy radiated to the event horizon for the source infalling

radially from rest at a certain position r0, given by Eq. (46),

with the ones obtained using the numerical solution of
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Fig. 6 Numerical estimates of the emitted energy radiated to infinity, E inf
l , as a function of r0, obtained using Eq. (28), considering Eq. (34) (plots

on the left) and Eq. (35) with B = 0 (plots on the right) for selected choices of multipole numbers obtained from Eq. (28)
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Table 2 Spectra of the energy

radiated to infinity in the ZFL

for l = 0. The numerical results

are compared with the exact

values given by Eq. (45) (the

results for l > 0 are identically

zero), considering the source

released from rest at a certain

finite position r0

r0/rh Method l = 0

1.1 Numerical 0.002312

Analytic 0.002302

2.5 Numerical 0.015288

Analytic 0.015198

5.0 Numerical 0.020384

Analytic 0.020264

Table 3 Spectra of energy radiated to the event horizon in the ZFL. The

numerical results are compared with the exact values given by Eq. (46)

for l = 0, 1, 2, considering the source released from rest at a certain

finite position r0

r0/rh Method l = 0 l = 1 l = 2

1.1 Numerical 0.013133 0.005228 0.001612

Analytic 0.013240 0.005319 0.001667

2.5 Numerical 0.003944 0.000081 < 10−6

Analytic 0.003965 0.000085 < 10−6

5.0 Numerical 0.001000 < 10−6 < 10−8

Analytic 0.001009 < 10−6 < 10−8

Eq. (10). In all cases the ZFL of the numerical results agree

very well with the analytic expressions.

7 Summary

In this paper we studied the radiation emission of mass-

less scalar field from the radial infall of a source into a

Schwarzschild BH, using the formalism of QFT at tree level.

We numerically computed the spectra of the emitted energy,

Ehor
ω l (energy radiated to the event horizon) and E inf

ω l (energy

radiated to infinity), in two distinct situations related to the

initial condition of the radial infall of a source, namely: (i)

the source starting with non-vanishing velocity v0 from spa-

tial infinity and (ii) the source infalling from rest at a certain

finite position r0.

Some aspects of the case in which the source comes from

infinity with a certain non-vanishing velocity v0 are sum-

marized here. For all multipole numbers l the spectra of the

energy emitted to infinity are nonzero in the low-frequency

limit. For high initial velocities the spectrum is approximately

constant until the frequency is around the fundamental quasi-

normal frequency and then rapidly goes to zero. For low ini-

tial velocities the monopole (l = 0) radiation and the dipole

(l = 1) (to a lesser extent) are dominant while higher multi-

poles are significant at higher initial velocities. Interestingly,

as the initial velocity v0 is increased, the emitted energy for

the monopole radiation (l = 0) decreases whereas that for

the higher multipoles increases. The spectrum of the energy

emitted to the event horizon starts from zero increases to a

maximum and then decreases very slowly, reflecting the fact

that, as the source falls toward the horizon, the Coulomb-like

energy of the source passes through the black hole.

Next, some properties of the energy spectra when the

source starts falling from rest at a certain distance from the

black hole are being discussed. The monopole spectrum of

the energy emitted to infinity starts from a nonzero value,

while for l ≥ 1 the spectra start at zero. These spectra all rise

to a maximum and then decrease to zero. As for the spec-

trum of energy emitted to the event horizon, the emission is

mainly with l = 0 (monopole) and with l = 1 (dipole). The

emission to the horizon has more contribution from higher

multipoles. It is also remarked that a naïve calculation would

lead to a source appearing abruptly and then starting to fall.

A boundary term needs to be subtracted in order to calculate

the emission from a source at rest and then starting to fall.

Finally, it is noted that the behavior of the spectra of the

emitted energy, E inf
ω l , and the total emitted energy E inf

l to

infinity for multipole numbers l ≥ 1 are similar to the electro-

magnetic and gravitational cases (see e.g. Refs. [7,8,10,13]).
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