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h  i g  h  l i  g h t  s

• We  classified  brain state  using a  vector-based categorisation  of neural  frequencies.
• Changes  in  cerebral  blood  volume (CBV)  were  observed  when brain state altered.
• During  these  state  alterations,  changes in blood  oxygenation  were  also found.
• State  dependent  haemodynamic  changes  could affect  blood  based  brain imaging.
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a  b  s t  r a  c t

Background: Many  brain  imaging  techniques  interpret  the  haemodynamic  response  as an indirect indica-

tor of underlying neural  activity.  However,  a  challenge  when  interpreting  this  blood  based  signal is  how

changes in brain state  may  affect  both  baseline and  stimulus  evoked haemodynamics.

New method: We  developed  an  Automatic  Brain  State Classifier  (ABSC), validated on data  from  anaes-

thetised  rodents.  It  uses vectorised  information  obtained  from  the  windowed spectral  frequency  power

of the  Local  Field  Potential.  Current  state is then  classified  by  comparing  this  vectorised  information

against  that  calculated  from  state  specific  training  datasets.

Results:  The ABSC identified two  user  defined brain  states  (synchronised  and  desynchronised),  with  high

accuracy  (∼90%).  Baseline  haemodynamics  were  found to be  significantly  different  in the two  identified

states. During  state  defined  periods  of elevated baseline haemodynamics  we  found  significant  decreases

in evoked haemodynamic responses  to  somatosensory  stimuli.

Comparison  to  existing  methods:  State  classification – The ABSC (∼90%)  demonstrated  greater  accuracy

than  clustering  (∼66%) or  ‘power threshold’ (∼64%)  methods  of comparison.

Haemodynamic  averaging  – Our  novel  approach of selectively  averaging stimulus evoked  haemody-

namic trials by  brain state yields  higher quality  data  than  creating  a single  average  from  all  trials.

Conclusions:  The ABSC can account for some of the  commonly  observed  trial-to-trial  variability  in haemo-

dynamic responses  which arises from  changes  in cortical state.  This  variability  might otherwise  be

incorrectly  attributed  to alternative  interpretations.  A  greater understanding of the  effects  of cortical

state  on haemodynamic changes could  be  used  to inform  techniques  such  as  general  linear  modelling

(GLM),  commonly  used in fMRI.

© 2016 The Authors.  Published  by  Elsevier B.V. This is an open  access article  under  the  CC  BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

It is unclear whether, and to what extent, cerebral haemody-

namics are modulated by spontaneous changes in  cortical state.

This is important for the accurate interpretation of  perfusion-

related imaging signals, such as Blood Oxygen Level Dependent

Functional Magnetic Resonance Imaging (BOLD fMRI). BOLD fMRI

infers the location and magnitude of neural responses to stimuli
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or cognitive tasks by exploiting a  process known as neurovascu-

lar coupling, in which concurrent alterations in  the local demand

for glucose and oxygen during neuronal activation are accom-

panied by regional changes in cerebral blood flow (CBF), blood

volume (CBV) and oxygenation (Attwell et al., 2010; Kleinfeld et al.,

2011; Masamoto and Kanno, 2012). Within such techniques, brain

responses to identical stimuli routinely exhibit considerable trial to

trial variability in their timing and magnitude (Duann et al., 2002).

This information may  well be behaviourally meaningful, but a  full

understanding of its origins is currently lacking.

Since haemodynamic responses to  stimuli/task presentations

are often small, typically representing a  slight fractional change

from baseline conditions, a  common approach in  brain  imaging

studies is to average across multiple stimulus evoked trials in order

to enhance the signal to noise ratio (SNR) (Boorman et al., 2010;

Martin et al., 2013). However, such methods implicitly assume that

the  baseline brain state remains constant during the experiment,

which may  not be appropriate. Indeed, changes in  brain state have

been widely reported in both human and animal studies and have

been linked to alterations in  sleep cycles (Steriade et al., 2001;

Castro-Alamancos, 2004b; Gervasoni et al., 2004; Timofeev et al.,

2012), affect (Nakic et al., 2006), alertness/arousal (Junghöfer et al.,

2006; Poulet and Petersen, 2008; Stoelzel et al., 2009; Poulet et al.,

2012) and attention (Kastner et al., 1999; O’Connor et al., 2002;

Kohn et al., 2009; Rossi and Pourtois, 2012). Changes in state have

also been shown to  alter the processing of sensory stimuli (Castro-

Alamancos, 2004b), modulate the delicate equilibrium between

cortical excitation and inhibition (Taub et al., 2013) and to be  cor-

related with variability of encoding into working memory (Myers

et al., 2014) therefore making identification of brain state a pre-

requisite for accurate interpretation of how sensory stimuli are

represented in the brain. Furthermore, both baseline and stimu-

lus evoked haemodynamics have  been shown by our laboratory

to be altered during changes in  cortical state actively induced by

direct stimulation of the brainstem (Jones et al., 2008), intravenous

infusion of psychostimulants (Berwick et al., 2005), and during

hypercapnia challenge (Kennerley et al., 2012). Notwithstanding

these insights, the question remains as to whether haemodynamics

are altered during spontaneous changes in  brain state.

The somatosensory cortex of the anaesthetised rodent allows

invasive concurrent optical measures of cortical haemodynamics

and electrophysiological recordings to be  made. Furthermore, ure-

thane anaesthesia is an ideal model with which to  address this,

as it induces cyclic and spontaneous changes in cortical state, as

observed in the ongoing Local Field Potential (LFP) (Friedberg et al.,

1999). Indeed, since the 1950s (Moruzzi and Magoun, 1949) it has

been known that the cortex can interchange between states of

quiescence and activation (Castro-Alamancos, 2004a). These two

states were traditionally referred to as synchronised (large ampli-

tude low frequency neuronal oscillations) and desynchronised

(high frequency low amplitude neuronal oscillations) (Steriade

et al., 1993; Lampl et al., 1999; Steriade et al., 2001). Although many

different brain states can be experienced, Harris and Thiele (2011)

suggest brain states change over a continuum from the synchro-

nised to the desynchronised state. Therefore for simplicity, we have

chosen to initialise the Automatic Brain State Classifier (ABSC) on

only the synchronised and desynchronised states. Classification of

states purely by observation presents certain challenges. For exam-

ple, if the subject does not change brain state for the length of an

experiment, it can be hard for the observer to classify based on

a single LFP amplitude, as absolute values can vary from animal

to animal. State classification can also be a  lengthy process and

may  elicit boredom or tiredness in the observer, and thus errors

could occur. The need to  classify brain states has been acknowl-

edged, and some methods for separation are already in existence

that show evidence for identifying different states, and state tran-

sitions (Gervasoni et al., 2004; Michel et al., 2012). However, as

these methods are dependent upon techniques such as supervised

clustering of the data, they typically require large quantities of data

in  order to provide a  robust and reliable result. The use of a  neu-

ral marker to classify states reduces the need for large amounts

of data, as state can be identified whenever the marker is found.

We have made a  formal comparison between our novel technique

which uses a  set of neural markers, a clustering technique, and a

‘power threshold’ of the broadband LFP signal.

Here, we present the Automatic Brain State Classifier (ABSC), a

novel method that efficiently identifies neural markers to classify

different brain states. The ABSC was  initialised using spontaneous

LFP data recorded from the whisker barrel region of the somatosen-

sory cortex in  the urethane anaesthetised rat. Once initialised,

the ABSC is unsupervised, and is a stable, absolute classifier able

to  detect state from small time  periods of data without need-

ing observation of a  state change before classification. During the

desynchronised state, the ABSC is able to detect an increase in

the power of the upper spectral frequencies relative to the lower

spectral frequencies. These identified shifts in  spectral mass were

associated with a  significant increase in the baseline haemodynam-

ics and a decrease in the stimulus evoked haemodynamic response.

Our results confirm and extend previous work by our labora-

tory and others. We  demonstrate the ability of the ABSC to conduct

post-experiment state classification (with the potential to con-

duct online state classification), and highlight the importance of

accounting for spontaneous variations in brain state during neu-

roimaging studies in  the anaesthetised rodent.

2. Method

In  this paper, we describe a  novel method to automatically

classify neural brain states in order to evaluate the coupled haemo-

dynamics. The method for data collection is described, followed by

an explanation of the novel analysis technique and finally the com-

parison to  two existing standard methods is  described. The ABSC

is  initialised on  LFP data where synchronised and desynchronised

states are both present.

2.1. Data collection

2.1.1. Animal preparation and surgery

All experiments were performed in accordance with the

Animal (Scientific Procedures) Act 1986, with approval from

the United Kingdom Home Office. Neural and haemodynamic

responses were collected from adult female Hooded Lister rats

weighing (200–350 g). Rats were kept in a  12 h light/dark cycle

and allowed access to food and water ad libitum. After being

briefly anaesthetised with isoflurane, the animals were intraperi-

toneally injected with 1.25 g/kg urethane. After the injection, a

homoeothermic heating blanket (Harvard Instruments, UK) with

rectal monitoring was  subsequently used to maintain the core

body temperature at 37◦ C  until the termination of the experi-

ment. Atropine was  administered at 0.4 mg/kg subcutaneously to

decrease mucous secretions during surgery. To allow artificial ven-

tilation (Harvard Instruments, UK) and to monitor end-tidal CO2

recordings (CapStar-100, CWE  Systems, USA), the animals were

tracheotomised. The cannulation of the femoral artery and vein per-

mitted the monitoring of the mean arterial blood pressure (MABP)

and the infusion of phenylephrine (0.13–0.26 mg/h) respectively,

ensuring MABP was kept between 100 and 110 mmHg (Golanov

et al., 1994; Nakai and Maeda, 1999). The arterial cannulation also

allowed blood samples to be taken for measurement of blood oxy-

gen saturation. This ensured that  the ventilator parameters could be

adjusted to  maintain the animal within normal physiological lim-
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its.  Animals were placed in a Kopf Instruments stereotaxic frame,

and the surface of the head was exposed. Following this, the right

side  of the skull was thinned to translucency using a  dental drill.

Optical translucency was maintained by affixing a  plastic well with

dental cement to the edge of window and infusing through the well

a continuous supply of saline.

2.1.2. Concurrent electrophysiology and 2D optical imaging

spectroscopy

2D-OIS was used to measure the haemoglobin concentration

and blood oxygen saturation across the surface of the somatosen-

sory (S1) cortex. The imaging procedure followed that detailed in

(Berwick et al., 2008) and therefore will only be briefly described

here. A CCD camera (Dalsa 1M30P, USA) recorded images at 32 Hz

from the cortical surface. Four wavelengths (495 ±  31, 559 ±  16,

575 ± 14, and 587 ± 9 nm,  full-width half-maximum) with con-

trasting absorption coefficients were used by a high-speed Lambda

DG-4 filter changer, to illuminate the cortex, giving an effec-

tive image sampling rate of 8 Hz. From this multi-wavelength

data, estimates of total haemoglobin (Hbt), oxyhaemoglobin (Hbo)

and deoxyhaemoglobin (Hbr) were obtained using a  modified

Beer–Lambert law (Berwick et al., 2005).

An initial optical imaging spectroscopy experiment was  con-

ducted to localise the whisker barrel region. Haemodynamic

responses were evoked in the whisker barrel cortex, through elec-

trical stimulation of the whisker pad, further detail is described

in the application protocol below. The haemodynamic data was

analysed using a standard GLM approach, to  localise the region

overlying the whisker barrel somatosensory cortex, activated by

the  stimuli.

The resultant ‘activation map’ was used to guide the insertion of

a 16 channel linear array electrode (NeuroNexus technologies, USA)

perpendicular to  the whisker barrel cortical surface. The electrode

was inserted into, and normal to, the cortex to  a  depth of 1500 mm

(i.e. approximately layer VI) and sampling occurred at 24.414 kHz.

This data was then downsampled to  1.53 kHz. The electrode had

16 channels in total with 100 mm  spacing, site area 177 mm2,

1.5–2.7 MW impedance, and 33 mm  tip width (Neuronexus Tech-

nologies, Ann Arbor, MI,  USA). Concurrent electrophysiological and

2D-OIS (haemodynamic) data were recorded. To examine the 2D-

OIS data over time, a  region of interest (ROI) was selected, centered

on the electrode, and extended to capture the cortical region that

was associated with the stimulus evoked haemodynamics, elicited

in  the initial experiment. The average ROI size for an animal was

515 pixels with a  SD of 202.6 (1 pixel =  ∼49 mm2).

2.1.3. Overview of application protocols

Three datasets were used; the ABSC was initialised using the

first dataset and comparisons between the ABSC and exisiting state

sorting methods were made. The second and third datasets were

then used to examine both the effectiveness of the ABSC and to

examine the stability of the ABSC over long periods of time. The

three datasets are described in  more detail below.

2.1.3.1. (A1, n  = 12) spontaneous recordings. Concurrent neural

and haemodynamic changes were recorded concurrently for

1000–2500 s, in  the absence of stimuli, from 12 subjects. A sub-

set of the recordings were used to initialise the ABSC, before the

ABSC was applied to classify the whole dataset. The ABSC classifi-

cation of A1 was then compared to the ‘expert’ classification of A1

(see Section 2.2.2) to check classification timings and accuracy.

2.1.3.2. (A2, n  =  14) electrical stimulation of the whisker pad. The ini-

tialised ABSC was applied to  concurrent neural and haemodynamic

recordings, acquired during electrical stimulation of the whisker

Fig. 1. Protocol for classifying brain state  from LFP data. The ABSC is  initialised on

an  experiment from a  single animal (the training dataset) and then classification of

the remaining experiments and animals takes place.

pad. The classifications arising from the ABSC were again com-

pared to an ‘expert’ classification. Stimulation of the whisker pad

was evoked through two insulated stainless steel electrodes (2 mm

exposed tip) inserted subcutaneously into the whisker pad between

rows A/B and C/D. Electrical stimulation (0.8–1.2 mA;  300 �s pulse

width, 16 s duration at 5 Hz) caused a  visible full pad whisker twitch

confirming that stimulation was effective. This stimulation caused

no changes to the MABP or CO2 recordings. Haemodynamic and

neural signals were recorded concurrently for 2100 s, split into 30

trials of 70 s inter-trial interval with the stimulus applied after 10 s.

2.1.3.3. (A3, n = 5) electrical stimulation of the brainstem reticu-

lar formation. The third dataset used neural recordings presented

previously (Jones et al., 2008), where brainstem stimulation was

applied to actively change brain state. Details of the exact procedure

can be found in Jones et al. (2008). In brief, the method of data col-

lection followed that detailed above although recordings of neural

and haemodynamics were not concurrent. Modulation of  cortical

state was produced in  4  out of 5 animals by direct electrical stim-

ulation of the brainstem reticular formation (2 s duration, 200 Hz,

stimulation current: <200 �A, pulse duration: 3 ms). In this paper,

we examine only neural recordings for this dataset. We present

Fig. 7 for the reader to visually judge ABSC performance.

2.2. Data analysis

The ABSC method to classify the different brain states consists

of three main components; Feature Extraction, Model Vector Def-

inition and Model Vector Comparison. The main components are

described in detail below.

2.2.1. Feature Extraction

A Fast Fourier Transform (FFT) was applied to raw neural record-

ings from channels 13 to  16 (∼1200–1500 �m, below the cortical

surface, approximately layer Vb and VI according to depth informa-

tion found in Wright and Fox (2010) or Meyer et al. (2013)), which

were split with a  moving window of length 10 s (overlapped by

1/10 of the window size—1 s step), giving a  frequency resolution

of 0.1 Hz. This was  used to  extract spectral information from the

neural recordings. A different window size and overlap was used

for initialisation and is  detailed in Section 2.2.2 below. The spectral

power was then subdivided into the five main frequency bands:

Delta (ı, 0.5–3 Hz), Theta (�, 4–7 Hz), Alpha (˛, 8–12 Hz), Beta (ˇ,

13–30 Hz) and Gamma  (
 , 31–80 Hz), to obtain frequency power

time series for each band (fi) and each channel (13–16). The infor-

mation from channels 13 to  16 of the electrode was then averaged

together. Electrode channels 13–16 were used for all ABSC analy-

sis, throughout this paper, as the deeper channels have previously

been shown to give the best signal power, especially in  some of  the

EEG bands such as delta (Rappelsberger et al., 1982; Sirota et al.,

2003).
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2.2.2. Model Vector Definition

All animals and experiments in  the ‘spontaneous’ dataset (A1)

were classified by a human ‘expert’ observer. To classify, the ‘expert’

examined the entire time series visually (in a MATLAB figure win-

dow, with the ability to adjust the zoom function) and the points in

time at which state changes occurred, based on reductions in  the

broadband LFP amplitude, were recorded using a  custom written

MATLAB (The Mathworks, USA) script. The ‘expert’ observer also

indicated if the state was stable for the entire experiment, and if so,

in what state the experiment remained. We  defined an ‘expert’ here

as someone who has previously published work on brain  states.

Approximately 10% of this dataset was designated as a  training

dataset (a single full experiment, Fig.  2A) and was used to generate

the model vectors (Ml)  for the state classifier. The training dataset

was split into synchronised and desynchronised states defined by

the  ‘expert’ observer and the feature extraction step performed. The

only change to the feature extraction step detailed above (Section

2.2.1) is that a 4 s window with a  0.4 s step was used in initialisa-

tion (giving a frequency resolution of 0.25 Hz). We used a  smaller

window during initialisation to capture more of the time variations

present in the raw data as at this stage, more detail with regards to

time variation was more valuable than processing speed. After ini-

tialisation the larger window (10 s, 1 s step) was used as the reduced

processing time was deemed to be more valuable than the finer

time resolution, especially when processing larger datasets. Each

state subset of the training dataset was examined as follows, with

the desynchronised subset examined first:

(1) A simple measure of the relation of each frequency band power

to the other four bands was calculated using subtraction of each

frequency power time series from the other bands frequency

power time series, ensuring each band was only examined in

relation to the others once (i.e. combinations were used, so

alpha is subtracted from delta but  delta is not  subtracted from

alpha).

fi =
[

ı, �, ˛, ˇ, 

]

Errk =  fi − fi+1 ∀1 ≤ i ≤ 5, k  = 1 : 10
(1)

This produces a  set of ten time series (Errk),  providing a  measure

of the relation of each frequency band power to  the others, rather

than an absolute frequency power measure. Each point (j)  in  each

time series represents a  measure of a  pair of relative frequencies

for a particular window of LFP data. The absolute value of each

data point is then taken to negate the importance of the order of

subtraction.

Errkj = |(Errkj)| j ≥ 1 (2)

(2) Upper (UB) and lower (LB) error bands were automatically set

as follows:

UB  = mean (|mean (Errk) |)

(Rounded to the nearest decimal place)

LB = 0.5 × UB

(3)

These bounds can only be  set once, as consistency in the coded

vectors needs to be maintained. They should be set from the

state subset of training data that shows the smallest variance in

frequency power. In  this paper, the bounds were set in  the desyn-

chronised state as this had smaller variance in frequency power

than the synchronised state (Fig. 2D).

(3) Each data point in each of the subtracted time series was then

coded (CErrkj) to classify it,  based on its relation to the upper and

lower bounds. This gives three possible codes for each point.

Case 1: If Errkj <  LB CErrkj =  C1

Case 2: If LB≤ Errkj ≤ UB CErrkj =  C2

Case 3: If Errkj >  UB CErrkj =  C3

(4)

At any time point (j), this therefore gives a  10 point coded vec-

tor (Vj) representing the 10 subtracted frequency band pairs for a

window of LFP data (see Fig.  2C for example). Here, we set C1 = 2,

C2 = 3 and C3 =  4, but any integer separated coding could be used to

the same effect.

(4)  The l  most frequently occurring coded vectors in the desyn-

chronised classified state were set as the model vectors (Ml),

where l  vectors explained 76.4% of the coded vector variance in

the desynchronised state. The same number of model vectors

were selected for the synchronised state to maintain a  consis-

tent comparison, although this number explained less vector

variance (8.4%). These vectors were defined as the model vec-

tors.

2.2.3. Model Vector Comparison

The data (∼90%) not  used to train the ABSC was  used to  test the

state classifier. Steps 1 and 3 from the Model Vector Definition were

performed. Each coded vector (Vj)  was  then compared to  the model

vectors (Ml)  from each state with the best fit selected as the state,

desynchronised or  synchronised, for that window of LFP data (Wj).

SWj = min
l

(

�|Vj − Ml|
)

SWj

∈
{

desynchronised, synchronised
}

(5)

2.2.4. Details of the application of the ABSC to the experimental

datasets

(A1) The A1 Dataset (spontaneous) was used in  initialising the

ABSC and testing whether there were differences in the concur-

rently recorded haemodynamic changes, between the two brain

states inferred from the LFP.  This dataset was  also used for the

comparison with the two existing methods of classification.

The model vectors from the initial analysis (A1) were kept con-

stant during A2 and A3  to check the stability of the vectors.

(A2) The A2  test dataset (‘stimulus evoked’) was subject to  the

above feature extraction and pattern classification steps with a

minor amendment. During the feature extraction step, time points

during the 16 s period of stimulation (−0.001–16.432 s for each

trial) were ignored to prevent the interference of the stimulus in the

spectral analysis. Once the ABSC had been applied to each subject

dataset, trials were classified using only a  pre-stimulation period

of varying length (1–10 s). We varied the length of the pre-stim

period to observe how the accuracy of the ABSC changed as it was

given decreasing amounts of data with which to classify. The most

common state was  found for this pre-stim time period and the trial

was classified as belonging to this state. Accuracy levels of  the ABSC

compared to the ‘expert’ classified trials were calculated.

(A3) The A3 dataset (‘electrical stimulation of the brainstem

reticular formation’) followed the feature extraction and pattern

classification steps. Again, the period of stimulation was  not  subject

to classification by the ABSC.

2.2.5. Sectioning of concurrent haemodynamic data

We  describe how the ABSC was  used to partition the concur-

rent haemodynamic data for each of the applicable experimental

datasets.
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Fig. 2. (A) Exemplar raw training data showing LFP recording (channel 13–16, averaged) with clear distinction between the two  states within the data. (B) Fourier power

spectrogram of the LFP data in A.  (C) Obtaining coded vectors from desynchronised training data. A sliding window Fourier transform was applied to the neural recording

to  calculate the classical EEG bands (middle). The  red vertical lines mark the time point for the frequency power band information obtained from the moving window (left,

red  box). The EEG bands were then subtracted from one another to give relative frequency information. This information was coded with regards to  an  upper bound (UB)

and a lower bound (LB), see Model Vector Definition, point 2 for how the bounds were obtained and point 3 for coding. An example of the coded error vector that would

be  obtained at the time point of the  red line is  then given below. (D) As C,  but with synchronised training data. Note, UB and LB are the same as C,  this is necessary to keep

coding  of the vectors consistent. (For interpretation of the references to colour in this figure legend, the reader is referred to  the web version of this article.)

(A1) If the time period of a cortical state detected from the neu-

ral recordings was of long duration (>30 s), then the concurrently

measured haemodynamics were examined over the same time

period. These long duration haemodynamic time periods were then

averaged across time to obtain the mean level of Hbo, Hbr and Hbt

for each state.

(A2) The individual 70 s stimulation trials were averaged accord-

ing to the state classification from the neural activity, during the

pre-stimulus baseline period and again the concurrent haemo-

dynamics (Hbo, Hbr and Hbt) were examined for each state. An

inclusion criteria was specified, to  reduce potential noise from sub-

jects that did not have many simulation trials in  a  specific state.

Thus for an experimental run to  be included in the overall state

classified haemodynamic averaged, it must be found to  provide at

least 5  trials in that particular state.

2.3. Method comparison

The ABSC was  compared to two other typical state sorting meth-

ods, one based on a  popular clustering methodology taken from the

paper by Gervasoni et al. (2004),  the other using a  simple ‘power

threshold’ of the raw LFP signal similar to that used by Papanicolaou

et al. (1986).  The A1 ‘spontaneous’ dataset was used for these meth-

ods.

2.3.1. Comparison to a clustering technique

We  followed the methodology shown in the Gervasoni et al.

(2004) paper to cluster the A1 dataset. We are grateful to the

authors for kindly supplying their code for this comparison, which

we used for the more complicated analysis after extracting the

spectral ratio and performing the principal component analysis

(PCA). The only alteration we made to  their methodology was to
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decrease the window size, as our dataset was much smaller than

the dataset they used. We used a 1 s window with a  0.5 s step, rather

than the 2 s window with a  1 s step that  was used in  their original

paper.

2.3.2. Comparison to  a ‘power threshold’ technique

A simple ‘power threshold’ technique was applied to  the raw

LFP data within the A1 dataset, and as the threshold required for

this technique is based on absolute power it was recalculated for

each experiment.

Obtaining the ‘power threshold’

1. LFP Data were obtained from channels 13–16 within a  mov-

ing window of size 10 s (stepped by  1 s)  to extract raw power

information from these neural recordings.

2. To obtain the RMS  of each temporal window, we squared each

data point within the window, took the mean of these points,

and then took the square root of the mean.

3. Data were averaged across channels 13–16.

4. The threshold for each individual experiment was calculated.

We  took the average value of all the RMS  windowed data points

for the experiment and set this number as the individual state

threshold for the experiment.

RMS  windowed data points that were higher than the individ-

ual threshold were classified as synchronised and points that were

lower than this threshold were classified as desynchronised.

3. Results

The ABSC was  used to classify temporal periods of neural record-

ings into two brain states. These classifications were then used

to investigate whether a change in brain state caused changes in

baseline and stimulus evoked haemodynamics. The accuracy of the

ABSC was compared to two other methods of state sorting.

3.1. The initialisation of the ABSC using spontaneous data

(dataset A1) and comparison to alternative techniques

Data were collected from 13 experiments across 12 animals,

where no stimulus was applied. Each experiment involved the con-

current recording of neural and haemodynamic data for durations

between 1100–2500 s.  Each animal contributed one experiment to

the experimental dataset. One animal also provided an additional

experiment which was used solely for training data. The ABSC was

trained on state separated data previously classified by an ‘expert’.

The five most frequently occurring error vectors (Ml),  resulting

from initialising the ABSC, explained 76.4% of the coded vector

variance in the desynchronised state spectral information from the

training dataset and were set as the desynchronised model vectors.

To keep the number of vectors consistent, the five most frequently

occurring vectors in  the synchronised state were also set as the

model vectors for the state sorter, giving a  total of 10 model vec-

tors. Once the model vectors were selected, the ABSC was applied

to the experimental dataset. A demonstration of the application of

the ABSC for state sorting is shown for three subjects in  Fig. 3.

Visual inspection of the classification of the ABSC of the spon-

taneous neural activity, demonstrates its ability to capture the

periods of cortical state change (Fig. 3, top row). The frequency

band spectral information (Fig. 3,  middle row) reflects an increase

in the ratio of the upper relative to  the lower spectral frequencies

for the desynchronised state, whereas in the synchronised state,

this ratio decreased or disappeared. A clear difference in the rela-

tional frequencies can be observed (Inset boxes below Fig. 3), with

gamma  and beta high relative to alpha, delta and theta in the desyn-

chronised state, whilst all frequencies except alpha were in close

proximity in the synchronised state.

We  have systematically evaluated the accuracy of the ABSC

across all 12 animals by comparing the ABSC classified state time

periods to ‘expert’ classified state time periods on a  point by point

basis (Table 1,  row two). We have also compared the performance

of the ABSC to the performance of two  alternative methods of clas-

sification, a  clustering technique (Table 1,  row three) and a  ‘power

threshold’ technique (Table 1,  row four). The alternative meth-

ods were assessed in the same way as the ABSC by comparison

to  ‘expert’ classified state time periods on a  point by point basis.

The Clustering method had a  slightly higher accuracy than the

ABSC on the data points it assigned to  a particular cluster (Table 1,

column 2), however, when the amount of data it was unable to  clas-

sify was taken into account, the total accuracy was greatly reduced

compared to that of the ABSC (Table 1, column 4). The clustering

method was often unable to identify periods of desynchronised

data, only succeeding when large amounts of very clearly distinct

data were present in the desynchronised state. In contrast, as the

ABSC classifies on a  point by point basis, it did not have this draw-

back. The ‘power threshold’ technique also had a  greatly reduced

accuracy rate when compared to  the ABSC (Table 1,  column 4),

again this technique suffered when the neural data did not have

even temporal periods in both of the two states. Thus, the ABSC

presents clear advantages over the other two techniques and so  we

continue our analysis of the concurrently recorded haemodynamic

data using the ABSC as the state classifier.

The ABSC classified time periods of synchronised and desyn-

chronised state were used to  extract the concurrent haemodynam-

ics  (Fig. 3,  bottom row). Clear increases in Hbo and Hbt can be seen,

with a drop in Hbr during extended time periods of desynchroni-

sation. During these periods, the levels of Hbt rose to a peak and

remained elevated. Decreases back to baseline were identified by

the ABSC as occurring during the synchronised time periods. Three

animals were classified as having no state changes, and so were

excluded from further analysis. Across the remaining 9 animals,

we  examined the levels of Hbo, Hbr and Hbt (Fig. 4A). Only time

periods where the neural activity was classified as being in a  single

state stable for longer than 30 s were included, since shorter time

periods would render data more vulnerable to noise distortions

and the effects of state transitions. The average baseline change

of Hbt was significantly larger during desynchronised, rather than

synchronised states (Fig. 4B, p  = 0.0104, t-test, p  corrected for mul-

tiple comparisons). Hbo was also significantly larger (p =  0.0025,

t-test p corrected) and Hbr was  significantly lower (p =  0.01, t-test

p  corrected) during these respective states.

In order to exclude the possibility that the training data chosen

could have unduly influenced the results of the ABSC, we initialised

the ABSC using both training data from an alternative individual

animal (within A1) and additionally, training data from an aver-

age of 6 animals (the experimental dataset being the 7 remaining

experiments from the other 6 animals in A1) and repeated our

assessment of state sorting accuracy. The mean percentage error

when comparing the ABSC results to  the ‘expert’ sort using alterna-

tive  training datasets were similar, with only one animal providing

an outlying accuracy measure for both alternative datasets (Fig. 4D).

A repeated measures ANOVA revealed no significant variation in

accuracy between the training datasets (F(1.131, 12.44) =  0.694,

p  =  0.438, Greenhouse–Geisser values used as Mauchley’s test of

sphericity was significant), indicating that the accuracy of the ABSC

was independent of the training datasets used.

To ensure the haemodynamic effects found were not different

by chance, we randomly assigned the time periods identified by

the ABSC to  either the synchronised or desynchronised state for

each animal, then averaged within and across animals for the two

states, again using only periods of 30 s+ stable state. This was then
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Fig. 3. The application of the  ABSC demonstrating classification of concurrently recorded neurovascular coupled spontaneous data. 500 s of data shown for each example

animal. Top line: LFP with classified section shaded in grey for desynchronised brain state and white for synchronised (repeated throughout figure). Middle: demonstrates

feature  extraction step of the method, the windowed frequency bands are plotted continuously on  the same time scale as the neural and haemodynamic data.  Bottom:

concurrent haemodynamic time series showing micromolar changes in Hbo, Hbr and Hbt from baseline levels. Insets indicate a  zoomed view of the ratio changes in the

frequency bands as the cortical state changes. (For interpretation of the references to colour in this figure legend, the reader is referred to  the web version of this article.)

Table 1

Showing the comparison between the ABSC and two  alternative methods for state classification. Computer spec.: running a 4.2 GHz quad core processor, 16 GB of RAM, with

neural data downsampled to  1.53 kHz.

Method Accuracy Time taken (s) Fully automated?

%  Classified

correctly

%  of data unable

to  classify

% Total

accuracy

ABSC M =  90.01 0  M = 90.01 626.37 Y (after initialisation)

SD = 7.72 SD = 7.72

Clustering (Gervasoni et al., 2004)  M =  95.09 M = 28.78 M = 66.31 3402.17 N—requires identification of cluster centres

SD  = 9.38 SD =  39.04 SD = 36.93

Power threshold M =  64.88 0  M = 64.88 60.14 Y

SD = 53.04 SD = 53.04

repeated 50 times and the results compared to  the ABSC averages

(Fig. 4C).The results indicate that the differences in  the haemo-

dynamic baseline between the two cortical states are not due to

chance as the ABSC difference was the only outlier in each box

plot analysis. Thus, we  have demonstrated that the state sorter can

effectively classify LFP data into two states and this classification

has a significant effect on the levels of concurrently measured Hbo,

Hbr and Hbt during spontaneous recordings.

3.2. Classification of cortical state and the implications for

associated haemodynamics using a stimulus evoked dataset 16 s

5 Hz (A2)

Using the same ABSC initialisation settings as (A1), we  used the

ABSC to classify the state of neural activity, recorded during 16 s

5 Hz electrical stimulation of the whisker pad. This allows for the

examination of the effect of cortical state on the stimulus-evoked

neurovascular responses. Neural and haemodynamic data were

recorded during 30 stimulus presentation trials, with 70 s between

each stimulus presentation. In  addition to the classification of  the

entire time series of neural recordings (as in A1), we also applied the

ABSC to 10 s, 5 s and 1 s pre-stimulation baseline neural information

to predict the cortical state of each trial.

The state classifier took 1085 s to classify all 16 s 5  Hz stimula-

tion data (14 animals and 24 experiments, giving a total of 875 min

of data) on our lab computer (4 core, 4.2 GHz). Again comparisons

were made on a single window basis between ‘expert’ classified

data and the ABSC, this gave the classifier an accuracy of 88.6%

(SD = 8.54%). On this occasion, the ‘expert’ was  unable to correctly

classify 3 experiments from 3 animals where the state was  invari-

ant. Based on the ratio of the upper and lower spectral frequencies,

it appeared the ABSC made the correct classification of these exper-

iments (see S1, Fig. A.1 for further information in Supplementary

material) and examination of the time-course of haemodynamic
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Fig. 4. Baseline haemodynamic changes observed during periods of classified state in the absence of stimuli (A1). (A) Changes in Hbo (left), Hbr (middle) and Hbt (right)

between  synchronised (S) and desynchronised (D)  states for all animals. Synchronised state values have been normalised to  0  to  allow observation of the  changes in baseline

concentrations. Dotted black lines show the change averaged across all  animals. (B) Average micromolar changes in Hbt, Hbo and Hbr across all animals with error bars

showing  standard error of the mean. (C) Boxplot denoting variation in spontaneous haemodynamic averages from  randomised periods of synchronised and desynchronised

time  periods (control analysis, randomisation classifications were performed 50 times and ABSC classifications were included in plotted data). For each state, the average

across animals was found and then the desynchronised average was subtracted from the synchronised. On each box, the central red line is the median, the edges of the box

are  the 25th and 75th percentiles, the whiskers extend to the most extreme data points not considered outliers, and outliers (defined by the MATLAB boxplot function) are

plotted individually (red crosses—these mark the ABSC classified averages). (D) Variation in the accuracy of the ABSC by  using alternative training datasets to  initialise the

model  vectors (original animal, N  = 6 average training set,  alternative single animal training dataset). (For interpretation of the references to colour in this figure legend, the

reader is referred to the  web version of this article.)

changes also reinforced the ABSC classification. The state invari-

ant experiments were therefore removed from the overall accuracy

measure for the 16 s stimulation data (n =  13) and highlight the

importance of using an automatic classifier.

Variable amplitude oscillations can be observed, during the non-

stimulation periods, in  the time course of the neural responses (see

Fig. 5, top row, for exemplar subjects demonstrating clear periods of

synchronised and desynchronised state in their neural recordings).

Periods of desynchronisation are  marked by decreases in the ampli-

tude of LFP oscillations (Fig. 5,  trials marked with gray sections),

when compared to synchronised periods (Fig. 5,  trials marked with

white sections). Spectral frequency power analysis of the same

desynchronised periods shows the characteristic increases in the

ratio of higher to lower spectral frequencies (Fig. 5 middle row),

as seen in the exemplar spontaneous data (Fig. 3). During the same

periods of desynchronisation, increases in  the baseline Hbt and Hbo

and decreases in  Hbr can also be observed (Fig. 5, bottom row),

when compared to synchronised periods. In contrast to the base-

line haemodynamic changes, the stimulus evoked haemodynamic

changes show an inverse relationship, whereby responses evoked



R. Slack et al. / Journal of Neuroscience Methods 267  (2016) 21–34 29

Fig. 5. The predictive classification of stimulus evoked trials by the ABSC for concurrent neural and haemodynamic data to 3 exemplar animals which have been subject to

16  s  electrical stimulation of the whisker pad. Eight individual stimulation trials of 70 s length are shown for each example animal. Top line: LFP with pre-stimulus period,

used  by the ABSC, boxed and shaded in grey for desynchronised brain state and white for synchronised (repeated throughout figure). Middle line: demonstrating the feature

extraction step of the method, the  windowed frequency bands are plotted continuously on the same time scale as the neural and haemodynamic data. Bottom line: concurrent

haemodynamic time series showing micromolar changes in Hbo, Hbr and Hbt from baseline levels. Insets indicate a close view of the changes in the frequency band power

as  the cortical state alters. (For interpretation of the references to colour in this  figure legend, the  reader is  referred to the web version of this  article.)

during periods classified as desynchronised show evoked Hbo,  Hbr

and Hbt responses that are attenuated, or greatly reduced, whilst

responses evoked during periods classified as synchronised appear

robust, with clear differences from baseline present in Hbo, Hbr

and Hbt. The large differences in evoked neural and haemodynamic

responses across the different states could have a large effect on

the accurate interpretation of neuroimaging data, we  have there-

fore compared averaging across all stimulation trials to averaging

selectively by using the cortical state sorter.

3.2.1. Comparison with standard averaging of evoked trials,

without accounting for state

To better understand how the state classification of neural data

and the subsequent classification of the concurrent haemodynam-

ics affects evoked responses, we  examined average neurovascular

responses across all animals for trials classified as desynchronised

(Fig. 6 B) and synchronised (Fig. 6C) and compared our state clas-

sified averages with the standard method of averaging across all

trials for all animals (Fig. 6A). Following on from our investigation

of the effects of cortical state on baseline haemodynamics, we cal-

culated that the average change in  baseline haemodynamics for the

desynchronised state was an increase of 8.56 �M for Hbo, 2.00 �M

for Hbt and a decrease of 5.56 �M for Hbr, when compared to the

synchronised state. These changes altered the initial parameter

assumptions for the desynchronised state, giving a  new micromo-

lar concentration of 106 and blood saturation of 58% (Fig. 6B and

C  reflect these parameters). The average neural responses (Fig. 6,

top row) show distinct differences after the onset of stimulation,

for the different conditions. Stimulus evoked LFP depolarisations

in the desynchronised state (Fig. 6,  top row, second column), start

with a small magnitude, but then increase gradually in magnitude

with the subsequent stimulation pulses. Stability in the magnitude

of the LFP depolarisations is achieved approximately 10–12 s after

stimulus onset. Conversely in  the synchronised state, the initial

LFP depolarisation is of greater magnitude (Fig. 6, top row, third

column), followed by a  fast return to a  smaller more stable LFP mag-

nitude, approximately 8–10 s after stimulus onset. The averaged

unclassified neural response can be seen to  be a combination of the

neural responses from desynchronised and synchronised classified

trials. In contrast to  the desynchronised LFP responses, the stan-

dard average response shows a  maximal LFP on the first response,

although the magnitude of this is not  as large as the synchro-

nised initial LFP. The subsequent LFPs reach a  steady magnitude

by approximately 9–10 s after stimulation onset.

The stimulus evoked haemodynamic changes accompanying the

changes in  neural activity have magnitudes which are  modulated in

a  similar manner to  that observed for the state sorted neural activ-

ity. Haemodynamic responses in the synchronised state (Fig. 6C,

bottom) display a  larger initial peak around 5 s after stimulus onset,

followed by a subsequent plateau and return to baseline, whilst

evoked haemodynamic changes during desynchronised periods

(Fig.  6B bottom) do not show an initial peak and reach their maxi-

mum around 16 s after stimulus onset, before returning to baseline.

Evoked Hbt responses were significantly larger during the syn-

chronised state compared to  the desynchronised state (Fig. 6D,

p =  0.00023, t-test, corrected for multiple comparisons), Hbo was

also significantly larger (p = 0.00018, t-test, corrected) and Hbr

was significantly lower (p =  0.00011, t-test, corrected) during these

respective states.

To ensure the haemodynamic effects found were not sig-

nificantly different due to chance, we randomly assigned

haemodynamic trials to either the synchronised or desynchronised
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Fig. 6. Application of the ABSC to  neurovascular coupled 16 s 5  Hz whisker pad stimulation data. (A) Undivided averaged responses from all  trials, from all  animals (neural

activity top left and haemodynamics bottom left). The error patches on  the haemodynamic figures show 1 unit of standard deviation for each time series. (B) Average

responses from all stimulation trials classified in the desynchronised brain state (n = 13, one animal did  not show a desynchronised time-period) average neural activity (top)

and  haemodynamic responses (middle). (C) Average responses from all stimulation trials classified in the synchronised brain state (n = 14) average neural activity (top) and

haemodynamic responses (middle). (D) State classified micromolar changes in Hbt, Hbo and Hbr, averaged over 0–10 s after stimulation and averaged across all  subjects,

with error bars showing 1 unit of standard error. (E) Box plot denoting variation in evoked haemodynamic averages from  50 randomised trial selection datasets.
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state for each animal, and then averaged within and across animals

for the two states (Fig. 6E). This was then repeated 50 times and the

results were plotted in a  box plot including the real ABSC averages.

We  used the standard formula to  determine outliers in this dataset

of 51 averages: x  > Q3 + 1.5 × IQRorx < Q1 + 1.5 × IQR,  where x is

the average micromolar difference, IQR is the inter-quartile range

and Q1 and Q3 are the 25th and 75th percentiles respectively. The

ABSC averages were the only outliers in this data group, indicating

that the effect of extracting and averaging sections of haemody-

namic data is reliant upon our method of classification.

We examined the effect on classification accuracy of varying the

time period of data the ABSC was applied to, before each stimulus

onset, to predict the classification of the state. We  found that a

decrease in the amount of time allowed for predictive trial classifi-

cation, did cause a  slight drop in the accuracy of the sorter, but this

was not significantly different (Fig. 6F, p =  0.399, one way ANOVA).

We also found that using an alternative single animal or average of

6 animals to create the initialisation training dataset (the animals

used for Fig. 4D) had virtually no effect on the overall classification

accuracy rates. To further validate the accuracy and to assess the

ability of the ABSC to sort non-spontaneously state shifting data,

we applied the ABSC to a  previously published dataset, which artifi-

cially changed cortical state through direct stimulation of the brain

stem and is described below.

3.3. Electrical stimulation of the brainstem reticular

formation—application dataset (A3)

The  ABSC was also tested on data from Jones et al. (2008) to

check the stability of the model vectors. Jones et al., stimulated the

brainstem directly to produce a  cortical desynchronisation, so the

time at which the state change took place was artificially fixed and

allowed for a further validity check. Using the same initialisation

settings as in (A1), the ABSC successfully identified the brainstem

stimulation in  4 out of 5 cases (Fig. 7), demonstrating clear stability.

In  the 5th case, the ABSC did not find a  clear change in  state, how-

ever upon evaluation by eye, it appeared that the cortical state had

not been artificially changed in  this case (see S2 Fig. A.2 for further

information in  Supplementary material).

4.  Discussion

We  have proposed a  spectral frequency ratio-based coding of

neural data to classify cortical state and then investigated whether

the simultaneously collected haemodynamic data reflected these

cortical state changes. This method has novel aspects for both the

analysis of neurovascular coupled data and also for the area of brain

state classification. We  have validated this method by classify-

ing three experimental datasets—one of concurrent ‘spontaneous’

neural and haemodynamic signals, a  second dataset of concurrent

neural and haemodynamic signals where 16 s of electrical stimu-

lation was applied to  the whisker pad and a  final dataset where

neural signals were recorded whilst electrical stimulation of the

reticular brainstem formation was used to artificially change brain

state. We demonstrated that the method of classifying brain state

using the ABSC gave important insight into the differences in the

both baseline and stimulus evoked haemodynamic changes, espe-

cially when compared to  unclassified data. The method described

also provides an explanation for some of the inherent variability

commonly seen in BOLD fMRI signals.

4.1. Comparison to previous methods

Neural data was classified according to brain state and the

concurrently recorded haemodynamic data was extracted and

averaged. During the desynchronised brain state, an increase in

the ratio of higher spectral frequencies to lower spectral frequen-

cies was  identified. This ratio change corresponded with significant

increases in  the baseline CBV and blood oxygen saturation, which

agrees with the theoretical predictions of Kilner et al. (2004) and

the experimental work of Magri et al. (2012).  Along with increases

in the baseline haemodynamics, decreases in  stimulus evoked

response magnitudes were again associated with the desynchro-

nised state. The decreases in the evoked response magnitude in

desynchronised state are consistent with previous investigations

into state evoked haemodynamics (Niessing et al., 2005; Schei et al.,

2009; Jones et al., 2008; Berwick et al., 2005), although the corre-

sponding frequency ratio has not previously been documented. This

decreased evoked haemodynamic signal could not be  identified in

the gross unclassified average, and thus the additional haemody-

namic information would have been lost, with the resultant average

signal reflecting a  weaker version of the synchronised average.

This method (ABSC) for classifying brain states, based on relative

frequency band vectors, was shown to  be  both stable and accurate

for state classification. Previous brain state classifiers have relied

upon clustering neural data, with post-clustering coherence analy-

sis and supervised clustering of data (Gervasoni et al., 2004; Michel

et al., 2012). We compared the ABSC to the clustering method put

forward by Gervasoni et al. and whilst the accuracy for the data

that could be classified was  slightly higher than the accuracy of

the ABSC, there was  much data that the technique was  unable to

identify, leading to  a large overall drop in  accuracy. The clustering

method was  weakest at identifying the desynchronised brain state,

which the animals spent less time in. Therefore, with large contin-

uous time periods such as the recordings of 48 h+ that the authors

used, we suspect that the performance of the clustering method

may  improve. The ABSC was also compared to a  method of taking

an RMS  ‘power threshold’ from the raw neural data, and was found

to  be less accurate than the ABSC or the clustering technique. The

poor performance of a  RMS  ‘power threshold’ technique is unsur-

prising given the bias that it must entail towards a  particular state,

unless approximately equal time periods are spent in  each of  the

examined brain states within an experiment.

Whilst these alternative methods can identify distinct brain

states, the ABSC represents a  different approach. The ABSC has been

validated as identifying brain state changes that have robust effects

on the concurrently recorded haemodynamics. A  further benefit of

the ABSC is that it does not rely on human input to  detect state, post

initialisation. This makes the ABSC an objective classifier. Therefore,

a change of state is not  required in  order to  classify subsequent

data correctly. Additionally, the ABSC can be  modified to search

and classify as many states as set by the user. In this paper, we

have initialised the classifier to identify only two states: synchro-

nised and desynchronised. Its design however, means that it could

adapt to  incorporate identifications of multiple states, for exam-

ple, REM, SWS and awake. A point to note on this matter is that the

training dataset would therefore need to include time periods of all

For each randomised trial set, the average across animals was found and then the desynchronised average was  subtracted from the synchronised. For each box, the central

red line is the median, the edges of the box are the  25th and 75th percentiles, the whiskers extend to  the most extreme data points not considered to  be outliers, and outliers

(defined  by the MATLAB box plot function) are plotted individually (red crosses mark the ABSC classified trial set). (F) Variation in the accuracy of the predictive trial onset by

period  of time provided to the ABSC (10, 5  and 1 s) as well as by  initialisation of ABSC by  alternative training dataset (original animal, N  = 6 average training set and alternative

single animal training dataset). Horizontal black bars denote stimulation period. (For interpretation of the  references to  colour in this figure legend, the  reader is  referred to

the  web version of this article.)
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Fig. 7. The application of the ABSC to  4 animals from the dataset of Jones et al.  (2008).  Neural activity with ABSC classified sections shaded in grey for desynchronised brain

state  and white for synchronised. The black bars denote the duration of time that the reticular stimulation was  applied. Stimulation artefacts can be seen in 3 out of 4  animals.

(For  interpretation of the references to  colour in this figure legend, the reader is referred to  the web version of this article.)

the states that were to be classified. Importantly, the ABSC has the

potential to classify brain state in real-time. This potential is  based

upon three qualities that it displays: Firstly, its initialisation param-

eters are stable over time and across different subjects. Secondly,

the ABSC requires a  small sample of the dataset to make a classifica-

tion and finally, the ABSC classification is  absolute, as it classifies on

an automated point by point basis. The stability of the initialisation

parameters was demonstrated by  using the single animal training

data to classify a much older dataset (Jones et al., 2008)  where the

state was actively changed by  stimulating the brainstem. Further

stability of the ABSC was shown by using training datasets from an

alternative single subject or a  merge of subjects, and yet still achiev-

ing high levels of classification accuracy. Therefore, whilst initial

parameters may  need to be set offline, future experiments could be

classified in real-time. The small number of neural sampling points

required to give high accuracy classification of experimental trials

was demonstrated by  the ABSC achieving similar levels of accuracy

in single trial brain state prediction when using 10, 5 and 1 s as

the time period of data given to  the ABSC to  classify. With accurate

online classification, more understanding of the data in single trial

experiments is possible as differences in the data from the brain

state rather than the experimental manipulation are more likely to

be identified.

4.2. Methodological considerations

The initialisation of the ABSC requires careful input. For instance,

a compromise of accuracy over efficiency can be made by selecting

a larger sliding window, or a  larger step size. We also selected the

five most frequently occurring model vectors to  initialise the ABSC,

as this captured a large amount of the calculated vector variance,

whilst still making the comparisons with the dataset vectors not

too computationally intensive. However, additional vectors could

be selected to capture more of the variance if the speed of  classifi-

cation was of less importance. Combining additional vectors with

a multicore CPU or  graphical processing units (GPU, e.g. with 1280

cores) could potentially optimise both the speed and the accuracy

of the ABSC.

We  used a urethane anaesthetised rodent model, as urethane is

thought to produce similar physiological patterns to the sleep cycle

(Clement et al., 2008; Pagliardini et al., 2013), and certainly shows

irregular fluctuating periods of synchronised and desynchronised

brain states. Urethane is also a stable anaesthetic, causing mini-

mal changes in the ratios of neurotransmitter levels compared to

other anaesthetics such as propofol, ketamine or  isoflurane (Hara

and Harris, 2002) and with minor cardiovascular effects (Maggi and

Meli, 1986). Urethane is  therefore a  favourable choice of anaes-

thetic for investigating the changes in haemodynamics that occur

from spontaneous variations in  neural activity.

4.3. Implications for future research

An  understanding of neurovascular coupling during different

brain states may  be a vital prerequisite for uncovering the aetiology

of neurodegenerative diseases such as dementia (D’Esposito et al.,

2003; Iadecola, 2004; Kövari et al., 2007), hypertension (Kazama

et al., 2003; Calcinaghi et al.„ 2013)  and ischemic stroke (Shin et al.,

2006; Lin et al., 2011), because inferred differences in stimulus

evoked haemodynamics or  the underlying activity may  be due to

differences in brain state alone. This manuscript gives a  robust

method for investigating and understanding how differences in

brain state affect both  baseline and stimulus evoked haemodynam-

ics and this understanding may  therefore benefit research into the

aetiology of neurodegenerative diseases.
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The  ABSC also shows potential as a tool to enhance blood based

neuroimaging techniques such as BOLD fMRI, particularly when

used with paradigms using single or low numbers of trials. The abil-

ity to account for cortical state as a  component of the trial-to-trial

variability in fMRI could then be used to increase the accuracy of

the interpretation of experimental data, such as when a  decreased

haemodynamic response is a  function of state, rather than being

generated by stimulus evoked neural changes (Boorman et al.,

2015). To do this, we suggest including EEG recordings to identify

brain state in BOLD fMRI paradigms. Here, the ABSC can potentially

use the EEG recording prior to stimulus presentation to classify

brain state from periods of data (1–10 s) short enough not to  inter-

fere with experiment length. In addition, when considering fMRI

experiments that investigate the BOLD signal without a  direct mea-

sure of neural activity, we  have shown that baseline haemodynamic

drifts can provide information regarding changes in cortical state.

For example, the baseline haemodynamics could be  used as an

indication of subjects becoming cortically aroused during an exper-

iment, information which would previously have been disregarded

as noise.

4.4. Conclusion

We  present an automatic state classifier, optimised with a  train-

ing dataset as a  method to examine how changes in cortical state

affected coupled haemodynamic signals. The ABSC used only neural

data, decomposed into five frequency bands examined in  relation

to one another to classify the state. A ratio-based signature of these

frequencies was found that marked periods of desynchronisation.

This was then used to group the haemodynamics. When these

desynchronised time periods occurred for more than 30 s,  they

denoted an increase in  the baseline CBV and blood oxygen satura-

tion. This increase in baseline haemodynamics was  accompanied by

a decrease in stimulus evoked haemodynamics. It is therefore our

conclusion that the grouping of haemodynamic data by  neural brain

state is essential for the full understanding of neurovascular cou-

pled datasets. This approach will allow more stable responses with

less variance to be extracted from neuroimaging data, increasing

the quality of  the data interpretation and at the same time reducing

the number of subjects required.
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