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Unit of analysis issues in
laboratory-based research
Abstract Many studies in the biomedical research literature report analyses that fail to recognise important data

dependencies from multilevel or complex experimental designs. Statistical inferences resulting from such analyses

are unlikely to be valid and are often potentially highly misleading. Failure to recognise this as a problem is often

referred to in the statistical literature as a unit of analysis (UoA) issue. Here, by analysing two example datasets in a

simulation study, we demonstrate the impact of UoA issues on study efficiency and estimation bias, and highlight

where errors in analysis can occur. We also provide code (written in R) as a resource to help researchers undertake

their own statistical analyses.
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Introduction
Defining the experimental unit is a key step in

the design of any experiment. The experimental

unit is the smallest object or material that can be

randomly and independently assigned to a par-

ticular treatment or intervention in an experi-

ment (Mead et al., 2012). The experimental unit

(e.g. a tissue sample, individual animal or study

participant) is the object a scientist wants to

make inferences about in the wider population,

based on a sample in the experiment. In the sim-

plest possible experimental setting where each

experimental unit provides a single outcome or

observation, and only in this setting, the experi-

mental unit is the same as both the unit of

observation (i.e the unit described by the

observed outcomes) and the unit of analysis

(UoA) (i.e. that which is analysed). In general this

will not always be the case, so care must be

taken, both when planning and reporting

research, to clearly define the experimental unit,

and what data are being analysed and how

these relate to the aims of the study.

In laboratory based research in the biomedi-

cal sciences it is almost always the case that mul-

tiple observations or measurements are made

for each experimental unit. These multiple

observations, which could be simple replicate

measurements from a single sample or observa-

tions from multiple sub-samples taken from a

single sample, allow the variability of the mea-

sure and the stability of the experimental setting

to be assessed. They improve the overall statisti-

cal power of a research study. However, multiple

or repeat observations taken from the same

experimental unit tend to be more similar than

observations taken from different experimental

units, irrespective of the treatments applied or

when no treatments are applied. Therefore data

within experimental units are likely to be depen-

dent (correlated), whereas data from different

experimental units are generally assumed to be

independent, all other things being equal (i.e

after removing the direct and indirect effects of

the experimental interventions and setting).

The majority of widely reported statistical

methods (e.g. t-tests, analyses of variance, gen-

eralized linear models, chi-squared tests) assume

independence between all observations in an

analysis, possibly after conditioning on other

observed data variables. If the UoA is the same

as the experimental unit (i.e. a single observa-

tion or summary measure is available for each

unit) then the independence assumption is likely

to be met. However, many studies reported in

the biomedical research literature using multi-

level design, often also referred to as mixed-

effects, nested or hierarchical designs

(Gelman and Hill, 2007), or more complex

structured designs, fail to recognise the fact that
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independence assumptions are unlikely to be

valid, and thus the reported analyses are also

unlikely to be valid. Statistical inferences made

from such analyses are often highly misleading.

UoA issues, as they are termed in the statisti-

cal literature (Altman and Bland, 1997), are not

limited to biomedical laboratory studies, and are

recognised as a major cause of concern more

generally for reported analyses in bioscience

and medicine (Aarts et al., 2014; Altman and

Bland, 1997; Bunce et al., 2014; Fleming et al.,

2013; Lazic, 2010; Calhoun et al., 2008;

Divine et al., 1992), and also feed into widely

acknowledged issues around the lack of repro-

ducibility and repeatability of much biomedical

research (Academy of Medical Sciences, 2017;

Bustin and Nolan, 2016; Ioannidis et al., 2014;

McNutt, 2014).

The RIPOSTE (Reducing IrreProducibility in

labOratory STudiEs) framework was established

to support the dialogue between scientists and

statisticians in order to improve the design, con-

duct and analysis of laboratory studies in bio-

medical sciences in order to reduce

irreproducibility (Masca et al., 2015). The aim of

this manuscript, which evolved directly from a

number of recommendations made by the

RIPOSTE framework, is to help laboratory scien-

tists identify potential UoA issues, to understand

the problems an incorrect analysis may cause

and to provide practical guidance on how to

undertake a valid analysis using the open source

R statistical software (R Core Team, 2016;

Ihaka and Gentleman, 1996). A simple intro-

duction to the basics of R is available from

Venables et al., 2017 and sources of informa-

tion on implementation of statistical methods in

the biosciences are widely available

(see, for example, Aho, 2014).

A simulation study is undertaken in order to

quantify losses in efficiency and inflation of the

false positive rate that an incorrect analysis may

cause (Appendix 1). The principles of experi-

mental design are briefly discussed, with some

general guidance on implemtation and good

practice (Appendix 2), and two example data-

sets are introduced as a means to highlight a

number of key issues that are widely misunder-

stood within the biomedical science literature.

Code in the R programming language is pro-

vided both as a template for those wishing to

undertake similar analyses and in order that all

results here can be replicated (Appendix 3);

script is available at Parsons, 2017. In addition,

a formal mathematical presentation of the most

common analysis error in this setting is also pro-

vided (Appendix 4).

Methods and materials

Background

A fundamental aspect of the design of all experi-

mental studies is a clear identification of the

experimental unit. By definition, this is the small-

est object or material that can be randomly and

independently assigned to a particular treatment

or intervention in the experiment (Mead et al.,

2012). The experimental unit is usually the unit

of statistical analysis and should provide infor-

mation on the study outcomes independent of

the other experimental units. Where here the

term outcome refers to a quantity or characteris-

tic measured or observed for an individual unit

in an experiment; most experiments will have

many outcomes (e.g. expression of multiple

genes, or mutiple assays) for each unit. The term

multiple outcomes refers to such situtations, but

is not the same as repeated outcomes (or more

often repeated measures) which refers to mea-

suring the same outcome at multiple time-

points. Experimental designs are generally

improved by increasing the number of (indepen-

dent) experimental units, rather than increasing

the number of observations within the unit

beyond what is require to measure within unit

variation with reasonable precision. If only a sin-

gle observation of a laboratory test is obtained

for each subject, data can be analysed using

conventional statistical methods provided all the

usual cautions and necessary assumptions are

met. However, if there are for instance multiple

observations of a laboratory test observed for

each subject (e.g. due to multiple testing, dupli-

cated analyses of samples or other laboratory

processes) then the analysis must properly take

account of this.

If all observations are treated equally in an

analysis, ignoring the dependency in the data

that arises from multiple observations from each

sample, this leads to inflation of the false posi-

tive (type I error) rate and incorrect (often highly

inflated) estimates of statistical power, resulting

in invalid statistical inference (see Appendix 1).

Errors due to incorrect identification of the

experimental unit were identified as an issue of

concern in clinical medicine more than 20 years

ago, and continue to be so (Altman and Bland,

1997). The majority of such UoA issues involve

multiple counting of measurements from individ-

ual subjects (experimental units); these issues
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have particular traction in for instance orthopae-

dics, ophthalmics and dentistry, where they typi-

cally result from measurements on right and left

hips, knees or eyes of a study participant or a

series of measurements on many teeth from the

same person.

The drive to improve standards of reporting

and thereby design and analysis of randomized

clinical trials, which resulted in the widely known

CONSORT guidelines (CONSORT GROUP (Con-

solidated Standards of Reporting Trials) et al.,

2001), has now expanded to cover many related

areas of biomedical research activity. For

instance, work by (Kilkenny et al., 2009)

highlighted poor standards of reporting of

experiments using animals, and made specific

mention of the poor reporting of the number of

experimental units; this work led directly to the

ARRIVE guidelines (Animal Research: Reporting

of In Vivo Experiments; Kilkenny et al., 2010)

that explicitly require authors to report the study

experimental unit when describing the design.

The recent Academy of Medical Sciences sympo-

sium on the reproducibility and reliability of bio-

medical research (Academy of Medical

Sciences, 2017) specifically highlighted poor

experimental design and inappropriate analysis

as key problem areas, and highlighted the need

for additional resources such as the NC3Rs

(National Centre for the Replacement, Reduction

and Refinement of Animals in Research) free

online experimental design assistant

(NC3Rs, 2017).

Design

The experimental unit should always be identi-

fied and taken into account when designing a

research study. If a study is assessing the effect

of an intervention delivered to groups rather

than individuals then the design must address

the issue of clustering; this is common in many

health studies where a number of subjects may

receive an intervention in a group setting or in

animal experiments where a group of animals in

a controlled environment may be regarded as a

cluster. This is also the case if a study is

designed to take repeated measurements from

individual subjects or units, from a source sam-

ple or replicate analyses of a sample itself. Indi-

viduals in a study may also be subject to

inherent clustering (e.g. family membership)

which needs to be identified and accounted for.

As a prelude to discussion of analysis issues,

it is important to distinguish between a number

of widely reported and distinct types of data

resulting from a variety of experimental designs.

The word subject is used here loosely to mean

the subject under study in an experiment and

need not necessarily be an individual person,

participant or animal.

i. Individual subjects: In many studies the
UoA will naturally be an individual sub-
ject, and be synonymous with the experi-
mental unit. A single measurement is
available for each subject, and inferences
from studies comprising groups of sub-
jects apply to the wider population to
which the individual subject belongs. For
example, a blood sample is collected
from n patients (experimental units) and
a haemoglobin assay is undertaken for
each sample. Statistical analysis com-
pares haemoglobin levels between
groups of patients, where the variability
between samples is used to assess the
significance of differences in means
between groups of patients.

ii. Groups of subjects: Measurements are
available for subjects. However, rather
than being an individual subject, the
experimental unit could be a group of
subjects that are exposed to a treatment
or intervention. In this case, inferences
from analyses of variation between
experimental units, apply to the groups,
but not necessarily to individual subjects
within the groups. For example, suppose
n� m actively growing maize plants are
planted together at high density in
groups of size n in m controlled growing
environments (growth rooms) of varying
size and conditions (e.g. light and tem-
perature). Chlorophyll fluorescence is
used to measure stress for individual
plants after two weeks of growth. Due to
the expected strong competition
between plants, inferences about the
effects of the environmental interven-
tions on growth are made at the room
level only. Alternatively, in a different
experiment the same plants are divided
between growth rooms, kept spatially
separated in notionally exactly equivalent
conditions, after being previously given
one of two different high strength foliar
fertiliser treatments. Changes in plant
height (from baseline) are used to assess
the effect of the foliar interventions on
individual plants. Although the intention
was to keep growth rooms as similar as
possible, inevitably room-effects meant
that outcomes for individual plants
tended to be more similar if they came
from the same room, than if they came
from different rooms. In this setting the
plant is the experimental unit, but
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account needs to be made for the room-
effects in the analysis.

iii. Multiple measurements from a single
source sample: In laboratory studies, the
experimental unit is often a sample from
a subject or animal, which is perhaps
treated and multiple measurements
taken. Statistical inferences from analyses
of data from such samples should apply
to the individual tissue (source) from
which the sample was taken, as this is the
experimental unit. For example, consider
the haemoglobin example (i), if the assay
is repeated m times for each of the
n blood samples, then there would be
n� m data values available for analysis.
The analysis should take account of the
fact that the replicate measurements
made for each sample tell us nothing
useful about the variability between sam-
ples, which are the experimental units.

iv. Multiple sub-samples from a single sam-
ple: Often a single sample from an
experimental unit is sub-divided and
results of assays or tests of these sub-
samples yield data that provide an
assessment of the variability between
sub-samples. It is important to note that
this is not the same as taking multiple
samples from an experimental unit. The
variability between experimental units is
not the same as, and must be distin-
guished from, variability within an experi-
mental unit and this must be reflected in
the analysis of data from such studies.
For example, n samples of cancerous tis-
sue (experimental unit) are each divided
into m sub-samples and lymph node
assays made for each. The variability
between the m sub-samples, for each of
the n experimental units, is not necessar-
ily the same as the variability that might
have been evident if more than one tis-
sue sample had been taken from each
experimental unit. This could be due to
real differences as the multiple samples
are from different sources, or batch-
effects due to how the samples are proc-
essed or treated before testing.

v. Repeated measures: One of the most
important types of experimental design
is the so-called repeated-measures
design, in which measurements are taken
on the same experimental unit at a num-
ber of time-points (e.g. on the same ani-
mal or tissue sample after treatment, at
more than one occasion). These multiple
measurements in time are generally
assumed to be correlated and regarded
as repeat measurements from an experi-
mental unit and not separate

experimental units. The likely autocorre-
lation between temporally related meas-
urements from the experimental units
should be reflected in the analysis of
such studies. For example, height meas-
urements for the n� m plants in (ii) could
have been made at each of t occasions.
The t height measurements are a useful
means of assessing temporal changes for
individual plants (experimental unit), such
as the rate of increase (e.g. per day).
However, due to the likely strong correla-
tions, increasing the number of assess-
ment occasions will generally add much
less information to the analysis than
would be obtained by increasing the
number of experimental units.

Clearly many of these distinct design types

can be combined to create more complex set-

tings; e.g. plants might be housed together in

batches that cause responses from the plants in

the same batch to be correlated (batch-effects),

and samples taken from the plants, divided into

sub-samples, and processed at two different

testing centres, possibly resulting in additional

centre-effects. For such complex designs, it is

advisable to seek expert statistical advice, how-

ever the focus in the sections discussing analysis

is mainly on cases (ii), (iii) and (iv). Case (i) is han-

dled adequately by conventional statistical anal-

ysis, and although case (v) is important, it is too

large a topic to discuss in great depth here (see

e.g. (Diggle et al., 2013) for a wide ranging dis-

cussion of longitudinal data analysis). More gen-

eral design issues are discussed in Appendix 2.

Sample size

Power analysis provides a formal statistical

assessment of sample size requirements for

many common experimental designs; power

here is the probability (usually expressed as a

percentage) that the chosen test correctly

rejects the study null hypothesis, and is usually

set at either 80% or 90%. Many simple analytic

expressions exist for calculating sample sizes for

common types of design, particular for clinical

settings where methods are well developed and

widely used (Chow et al., 2008). Power

increases as the square root of the sample size

n, so power is gained by increasing n but at a

diminishing rate with n. Also power is inversely

related to the variance of the outcome s2, so

choosing a better or more stable outcome or

assay or test procedure will increase power.

For the most simple design with a normally

distributed outcome, comparing two groups of n
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subjects (e.g. as in Design case (i)), the sample

size is given by n ¼ 2s2 � fðza=2 þ zbÞ
2=d2g,

where d is the difference we wish to detect, zb
represents the the upper 100� b standard nor-

mal centile, and 1� b is the power and a the

significance level; for the standard significance

of 5% and power of 90%,

ðza=2 þ zbÞ
2 ¼ ð1:96þ 1:28Þ2 » 10:5.

Where there are clusters of subjects (e.g. as

in Design case (ii)), then the correlation between

observations within clusters will have an impact

on the sample size (Hemming et al., 2011). The

conventional sample size expression needs to be

inflated by a variance inflation factor (VIF), also

called a design effect, given by

VIF ¼ 1þ ðm� 1Þ � ICC, where there are m

observations in each cluster (e.g. a batch) and

ICC is the intraclass (within cluster) correlation

coefficient that quantifies the strength of associ-

ation between subjects within a cluster. The ICC

can either be estimated from pilot data or from

previous studies in the same area (see exam-

ples), or otherwise a value must be assumed. For

small cluster sizes (m<5) and intraclass correla-

tions (ICC<0:01), the sample size needs only to

be inflated by typically less than 10% (see

Table 1). However for larger values of both m

and ICC, sample sizes may need to be doubled,

trebled or more to achieve the required power.

For more complex settings, often the only

realistic option for sample size estimation is sim-

ulation. Raw data values are created from an

assumed distribution (e.g. multivariate normal

distribution with known means and covariances)

using a random number generator, and the

planned analysis performed on these data. This

process can be repeated many (usually thou-

sands of) times and the design characteristics

(e.g. power and type I error rate) calculated for

various sample sizes. This has typically been a

task that requires expert statistical input, but

increasingly code is available in R to make this

much easier (Green and MacLeod, 2016;

Johnson et al., 2015). Many application area

dependent rules of thumb exist when selecting a

sample size, the most general being the

resource equation approach of (Mead et al.,

2012), which suggests that approximately 15

degrees of freedom are required to estimate the

error variance at each level of an analysis.

Analysis

Incorrect analysis of data that have known or

expected dependencies leads to inflation of the

false positive rate (type I error rate) and invalid

estimates of statistical power, leading to incor-

rect statistical inference; a simulation study

(Appendix 1) shows how various design charac-

teristics can affect the properties of a hypotheti-

cal study. Focussing on linear statistical

modelling (McCullagh and Nelder, 1998), which

is by far the most widely used methodology for

analysis when reporting research in the biomedi-

cal sciences, there are generally two distinct

approaches to analysis when there are known

UoA issues (Altman and Bland, 1997).

Subject-based analysis
The simplest approach to analysis is to use a sin-

gle observation for each subject. This could be

achieved by selecting a single representative

observation or more usually by calculating a

summary measure for each subject. The sum-

mary measure is often the mean value, but could

be for instance the area under a response curve

or the gradient (rate) measure from a linear

model. Given that this results in a single obser-

vation for each subject, analysis can proceed

using the summary measure data in the conven-

tional way using a generalized linear model

(GLM; (McCullagh and Nelder, 1998)) assuming

independence between all observations.

A GLM relates a (link function) transformed

response variable to a linear combination of

explanatory variables via a number of model

parameters that are estimated from the

observed data. The explanatory variables are so-

Table 1. Variance inflation factors for cluster sizes (m) 2, 5, 10 and 20, and intraclass correlation

coefficients (ICC) 0.01, 0.05, 0.1 and 0.5.

m ICC

0.01 0.05 0.1 0.5

2 1.01 1.05 1.10 1.50

5 1.04 1.20 1.40 3.00

10 1.09 1.45 1.90 5.50

20 1.19 1.95 2.90 10.50

DOI: https://doi.org/10.7554/eLife.32486.002
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called fixed-effects that represent the (system-

atic) observed data that are used to model the

response variable. The lack of model fit is called

the residual or error, and represents unstruc-

tured deviations from the model predictions that

are beyond control. The subject-based approach

is valid but has the disadvantage that not all of

the available data are used in the definitive anal-

ysis, resulting in some lack of efficiency. Care

must be taken when choosing a single measure

for each subject, ensuring the selection does not

introduce bias and if a summary measure is gen-

erated, this value must be meaningful and if

appropriate the analysis should be weighted to

account for the precision in estimation of the

summary measure.

Mixed-effect analysis
A better approach than the subject-based analy-

sis, is a mixed-effect analysis (Galwey, 2014;

Pinheiro and Bates, 2000). A (generalized) lin-

ear mixed effects model (GLME) is an extension

of the conventional GLM, where structure is

added to the error term, leaving the systematic

fixed terms unchanged, by adding so-called ran-

dom-effect terms that partition the error term

into a set of structured (often nested) terms. In

the simplest possible setting

(Bouwmeester et al., 2013), the error term is

replaced by a subject-error term to model the

variation between subjects and a within-subject

error term to model the within subject variation.

This partition of the error into multiple strata

allows, for instance, the correct variability (sub-

ject-error term) to be used to compare groups

of subjects. Random-effects are often thought of

as terms that are not of direct inferential interest

(in contrast to the fixed-effects) but are such that

they need to be properly accounted for in the

model; e.g. a random selection of subjects or

centres in a clinical trial, shelves in an incubator

that form a temperature gradient or repeat

assays from a tissue sample.

The algorithms used to estimate the model

terms for a GLME and details of how to model

complex error structures will not be discussed

further, but more details can be found in for

instance Pinheiro and Bates, 2000. Mixed-

effects models can be fitted in most statistical

software packages, but the focus here is on the

R open source statistical software (R Core Team,

2016). Detailed examples of implementation

and code are provided in Appendix 3 and a

script is available at Parsons, 2017 to reproduce

all the analysis shown here using the R packages

nlme (Pinheiro et al., 2016) and lme4

(Bates et al., 2015).

Results
In order to better appreciate the importance of

UoA issues, to understand how these issues arise

and to show statistically how analyses should be

implemented, two example datasets from real

experiments are described and analysed in some

detail. The aims of the experiments are clearly

not of direct importance, but the logic, process

and conduct of the analyses are intended to be

sufficiently general in nature so as to elucidate

many key problematic issues.

Example 1: Adjuvant radiotherapy and
lymph node size in colorectal cancer

Six subjects diagnosed with colorectal cancer,

after confirmatory magnetic resonance imaging,

underwent neoadjuvant therapy comprising of a

short course of radiotherapy (RT) over one week

prior to resection surgery. These subjects were

compared with six additional cancer subjects, of

similar age and disease severity, who did not

receive the adjuvant therapy. The aim of the

study was to assess whether the therapy

reduced lymph node size in the resection speci-

men (i.e. the sample removed during surgery).

The resection specimen for each subject was

divided into two sub-samples after collection,

and each was fixed in formalin for 48-72 hr.

These sub-samples were processed and ana-

lysed at two occasions, by different members of

the laboratory team. The samples were sliced at

5mm intervals and images captured and ana-

lysed in an automated process that identified

lymph node material which was measured by a

specialist pathologist to give a measure of indi-

vidual lymph node size (i.e. diameter), based on

assumed sphericity. Three slices per sub-sample

were collected for each subject. Table 2 shows

the measured lymph node sizes in mm for each

sample.

Naive analysis
The simplest analysis and the one that may

appear to be correct if no information on the

design or data structure shown in Table 2 were

known, would be a t-test that compares the

mean lymph node size between the RT groups.

This shows that there is reasonable evidence to

support a statistically significant difference in

mean lymph node size between those subjects

who received RT (Short RT) and those who did

not (None); mean in group None = 2.403 mm
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and in group RT Short = 2.120 mm, difference in

means = 0.283 mm (95% CI; 0.057 to 0.508),

with a t-statistic = 2.501 on 70 degrees of free-

dom, and a p-value = 0.015. The conclusion

from this analysis is that lymph node sizes were

statistically significantly smaller in the group that

had received adjuvant RT. Why should the verac-

ity of this result be questioned?

The assumptions made when undertaking any

statistical analysis must be considered carefully.

The t-statistic is calculated as the absolute value

of the difference between the group means,

divided by the pooled standard error of the dif-

ference (sed) between the group means. This lat-

ter quantity is given by sed ¼ s�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1=n1 þ 1=n2Þ
p

,

where n1 and n2 are the sample sizes in the two

groups and s2 is the pooled variance given by

s2 ¼ ððn1 � 1Þs2
1
þ ðn2 � 1Þs2

2
Þ=ðn1 þ n2 � 2Þ; where

s2
1
and s2

2
are the variances within each group.

The important thing to realize here is that the

variances within each of the RT groups are calcu-

lated by simply taking the totality of data for all

six subjects in each group, across all sample

types and slices. One of the key assumptions of

the t-test is that of independence. Specifically,

this requires the lymph node sizes to be all inde-

pendent of each other; i.e. the observed size for

one particular node is not systematically related

to the other lymph node size data used for the

statistical test. What is meant by related to in

this context?

It seems highly likely that the lymph node

sizes for repeat slices for any particular sample

for a subject are more similar than size measure-

ments from other subjects. Similarly, it might be

expected that lymph node sizes for the two sam-

ples for each subject are more similar than

lymph nodes size measurements from other sub-

jects. If the possibility that this is important is

ignored, and a t-test is undertaken, then the var-

iability measured between samples and between

slices within samples is being used to assess dif-

ferences between subjects. If the assumption of

independence is not valid, then by ignoring this,

claims for statistical significance may be being

made that are not supported by the data (See

Appendix 4 for a mathematical description of

the naive analysis).

Subject-based analysis
Given that the lymph node size measurements

within samples and subjects are likely to be

more similar to each other than to data from

other subjects, how should the analysis be con-

ducted? Visual inspection of the data can often

reveal patterns that are not apparent from tabu-

lar summaries; Figure 1 shows a strip plot of the

data from Table 2.

It is clear, from a visual inspection alone of

Figure 1, that data from repeat slices within

samples are more similar (clustered together)

than data from the repeat samples within each

subject. And also that data from the multiple

samples and slices for each subject are generally

clustered together; data from a single subject

are usually very different from other subjects,

Table 2. Lymph node sizes (mm), by sample slice and subject, by radiotherapy (RT) group, subjects 1 to 6 no RT and subjects 7 to 12

short RT; highlighted cells are those removed to unbalance the design.

None Short RT

Subject Sample Slice Subject Sample Slice

1 2 3 1 2 3

1 1 1.71 1.98 1.88 7 1 2.37 2.36 2.20

2 1.72 1.98 1.85 2 2.36 2.62 2.60

2 1 2.51 2.55 2.65 8 1 1.33 1.35 1.15

2 2.98 3.20 2.80 2 1.90 1.87 1.85

3 1 1.69 1.72 1.80 9 1 1.70 1.78 1.78

2 1.82 1.97 1.73 2 2.07 1.76 1.85

4 1 1.72 1.78 2.04 10 1 2.23 2.14 2.21

2 2.50 2.65 2.77 2 2.50 2.33 2.16

5 1 3.32 3.27 3.07 11 1 2.10 1.89 1.75

2 3.11 3.03 3.11 2 2.11 2.16 2.12

6 1 2.33 2.48 2.53 12 1 2.58 2.54 2.59

2 2.86 2.87 2.52 2 2.77 2.65 2.60
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irrespective of the RT grouping. One, albeit

crude, solution to such issues is to calculate a

summary measure for each of the experimental

units at the level at which the analysis is made,

and use these measures for further analysis. The

motivation for doing this is that it is usually rea-

sonable to assume that experimental units (sub-

jects) are independent of one another, so if a

t-test is undertaken on summary measures from

each of the twelve subjects it is also reasonable

to assume that the necessary assumption of

independence is true.

Using the mean lymph node size for each

subject as the summary measure (subjects 1 to

12; 1.85, 2.78, 1.79, 2.24, 3.15, 2.60, 2.42, 1.57,

1.82, 2.26, 2.02, and 2.62 mm), a t-test shows

that there is no evidence to support a statisti-

cally significant difference in mean lymph node

size between those subjects who received RT

(Short RT) and those who did not (None); mean

in group None = 2.403 mm and in group RT

Short = 2.120 mm, difference in means = 0.283

mm (95% CI; -0.321 to 0.886), with a t-statistic =

1.043 on 10 degrees of freedom, and a p-value

= 0.322. Note that the group means are the

same but now the t-statistic is based on 10

degrees of freedom, rather than the 70 of the

naive analysis, and the confidence interval is con-

siderably wider than that estimated for the naive

analysis. The conclusion from this analysis is that

there is no evidence to support a difference in

lymph node size between groups. Why is the

Figure 1. A strip plot showing observed lymph node size data by subject (1-12) and sample, after none and a

short course of radiotherapy (Short RT).
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result of this t-test so different from the previous

naive analysis?

In the naive analysis the variability between

measurements within the main experimental

units (subjects) and the variability between

experimental units was used to assess the differ-

ence between experimental units. In the analysis

in this section the variability between experimen-

tal units alone has been used to assess the effect

of the intervention applied to the experimental

units. The multiple measurements within each

experimental unit improve the precision of the

estimate of the unit mean, but provide no infor-

mation on the variability between units, that is

important in assessing interventions that are

applied to the experimental units. This analysis is

clearly an improvement on the naive analysis,

but it uses only summary measures for each

experimental unit, rather than the full data, it

tells us nothing about the relative importance of

the variability between subjects, between sam-

ples and between slices and it does not allow us

to assess the importance of these design factors

to the conclusions of the analysis.

Linear mixed-effects analysis
To correctly explain and model the lymph node

data a linear mixed-effects model must be used.

The experimental design used in the lymph

node study provides the information needed to

construct the random-effects for the mixed-

effects model. Here there are multiple levels

within the design that are naturally nested within

each other; samples are nested within subjects,

and slices are nested within samples. Fitting

such a mixed-effects model gives the following

estimate for the intervention effect (RT treat-

ment groups); difference in means = 0.283 mm

(95% CI; -0.321 to 0.886), with a p-value = 0.322

(t-statistic = 1.043 on 10 degrees of freedom).

For a balanced design, intervention effect esti-

mates for the mixed-effects model are equiva-

lent to those from the subject-based analysis. A

balanced design is one where there are equal

numbers of observations for all possible combi-

nations of design factor levels; in this example

there are the same number of slices within sam-

ples and samples within subjects.

The mixed effects model allows the variability

within the data to be examined explicitly. Out-

put from model fitting also provides estimates

of the standard deviations of the random effects

for each level of the design; these are for sub-

jects, sP = 0.436 (95% CI; 0.262 to 0.727), sam-

ples sS = 0.236 (95% CI; 0.151 to 0.362) and

residuals (slices) s� = 0.122 (95% CI; 0.100 to

0.149). Squaring to get variances, indicates that

the variability, in lymph node size, between sub-

jects was three and half times more than the var-

iability between samples, and nearly thirteen

times as much as the variability between repeat

slices within samples. The intraclass correlation

coefficient measures the strength of association

between units within the same group; for sub-

jects ICCP = 0.733, where

ICCP ¼ s2

P=ðs
2

P þ s2

S þ s2

� Þ. This large value,

which represents the correlation between two

randomly selected observations on the same

subject, shows why the independence assump-

tion required for the naive analysis is wrong (i.e.

independence implies that ICC = 0). This dem-

onstrates clearly why pooling variability without

careful thought about the sampling strategy and

design of an experiment is unwise, and likely to

lead to erroneous conclusions.

Various competing models for random effects

can be compared using likelihood ratio tests

(LRT). For instance in this example suppose that

the two samples collected for the same subject

had been arbitrarily labelled as sample 1 and

sample 2, and in practice there was no real dif-

ference in the methods used to process or cap-

ture images of nodes from the two samples. In

such a setting, a more appropriate random

effects model may be to have a subject effect

only and ignore the effects of samples within

subjects. Constructing such a model and com-

paring to the more complex model gives a LRT

= 39.92 and p-value < 0.001, providing strong

support in favour of the full multilevel model.

Diagnostic analyses can be undertaken after fit-

ting mixed-effects model, in an analogous man-

ner to linear models (Fox et al., 2011).

Figure 2 shows boxplots of residuals for each

subject and a quantile-quantile plot to assess

Normality of the residuals. Inspection of the

residual plots for the lymph node size data,

show that assumptions of approximate Normal-

ity are reasonable; e.g. the quantile-quantile

plot of the residuals from the model fit fall

(approximately) along a straight line when plot-

ted against theoretical residuals from a Normal

distribution. If residuals fail to be so well

behaved and deviate in a number of well under-

stood ways, or if for instance variances are non-

equal or vary with the outcome (heterogeneity),

then transforming the data prior to linear mixed-

effects analysis can improve the situation (Man-

giafico, 2017). However, in general, if the Nor-

mality assumption is not sustainable, data are

better analysed using generalized linear mixed

effects models (Pinheiro and Bates, 2000;
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Galwey, 2014), that better account for the

distributional properties of the data.

Unbalanced data analysis
Intervention effect estimates for the mixed-

effects and subject-based analyses presented

here are equivalent, due to the balanced nature

of the design. Every subject has complete data

for all samples and slices. By calculating means

for each subject averaging occurs across the

same mix of samples and slices, so irrespective

of the effects on the analysis of these factors,

the means will be directly comparable and esti-

mated with equivalent precision. Whilst balance

is a desirable property of any experimental

design, it is often unrealistic and impractical to

obtain data structured in this way; for instance in

this example, samples may be contaminated or

damaged during processing or insufficient mate-

rial may be available for all three slices.

Repeating the above mixed-effects analysis

after randomly removing 50% of the data (see

Table 2), gives an estimated difference in lymph

node size between groups = 0.263 mm (95% CI;

-0.397 to 0.922), with a p-value = 0.391, and

estimates of the standard deviations of the ran-

dom effects for each level of the design, sP ¼

0:421 (95% CI; 0.224 to 0.794), sS ¼ 0:279 (95%

Figure 2. Boxplots of residuals (observed values - fitted values) for each subject; symbols (.) are medians, boxes

are interquartile ranges (IQR), whiskers extend to 1.5�IQR and symbols (�) outside these are suspected outliers

(a). Quantile-quantile (Q–Q) plot of the model residuals (�) on the horizontal axis against theoretical residuals from

a Normal distribution on the vertical axis (b).

DOI: https://doi.org/10.7554/eLife.32486.005
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CI; 0.160 to 0.489) and s� ¼ 0:124 (95% CI; 0.088

to 0.174). These are, perhaps surprisingly given

that only half the data from the previous analysis

are being used, very similar to estimates from

the complete data. However, in the unbalanced

setting the subject-based analysis is no longer

valid, as it ignores the variation in sample sizes

between subjects; the estimated difference in

lymph node size between groups is 0.199 mm

(95% CI; -0.474 to 0.872) for the subject-based

analysis.

Example 2: Lymph node counts after
random sampling

The most extreme example of non-normal data

is for binary responses, which generally results

from yes/no or present/absence type outcomes.

Extending the lymph node example, in a parallel

study, rather than measure the sizes of selected

nodes or conduct a time-consuming count of all

nodes, a random sampling strategy was used to

select regions of interest (RoI) in which fives

nodes were randomly selected and compared to

a 2mm reference standard (�2mm; yes or no).

This could be done rapidly by a non-specialist.

Five samples were processed for each of twelve

subjects, in an equivalent design to the lymph

node size study; data are shown in Table 3.

Non-normal data analysis
For some subjects there was insufficient tissue

for five samples, resulting in an unbalanced

design. The odds of an event (i.e. observing or

not observing a lymph node with diameter

�2mm), is the ratio of the probabilities of the

two possible states of the binary event, and the

odds ratio is the ratio of the odds in the two

groups of subjects (e.g. those receiving either

None or Short RT). A naive analysis of these

data suggest an estimate of the odds ratio of

(43/82)/(79/46) = 0.31, for RT Short versus None

groups; 43 lymph nodes with maximum diame-

ters �2mm from 125 in the RT Short group ver-

sus 79 from 125 in the None group. Being in the

RT Short group results in a lower odds of lymph

nodes with diameters �2mm. This is the result

one would obtain by conventional logistic

regression analysis; odds-ratio 0.31 (95% CI;

0.18 to 0.51; p-value < 0.001) providing very

strong evidence that lymph node diameters

were lower in the RT Short group.

In logistic regression analysis the estimated

regression coefficients are interpreted as log

odds-ratios, which can be transformed to odds

ratios using the exponential function

(Hosmer et al., 2013). However, one should be

instinctively cautious about this result, as it is

clear from Table 3 that variation within subjects

is much less than between subjects; i.e. some

subjects have low counts across all samples and

others have high counts across all samples. The

above analysis ignores this fact and pools varia-

tion between samples and between subjects to

test for differences between two groups of sub-

jects. This is clearly not a good idea.

Fitting a GLME model with a subject random

effect, gives an estimated odds-ratio for the

Short RT group of 0.26 (95% CI; 0.09 to 0.78;

p-value = 0.016). The predicted probability of

detecting a lymph node with a diameter �2mm

was 0.65 for the None RT group and 0.33 for the

Short RT. The overall conclusions of the study

have not changed, however the level of signifi-

cance associated with the result is massively

overstated in the simple logistic regression, due

to the much smaller estimate of the standard

error of the log odds-ratio (0.264 for logistic

regression versus 0.564 for the mixed-effects

logistic regression). By failing to properly

account for the difference in variability between

Table 3. Number of five selected lymph nodes with maximum diameters �2mm, for up to five tissue samples per subject (1-12), after

either none or a short course of radiotherapy (Short RT).

None Short RT

Subject Sample Subject Sample

1 2 3 4 5 1 2 3 4 5

1 4 4 - - - 7 1 0 0 0 0

2 3 4 5 2 - 8 1 2 - - -

3 2 3 3 2 - 9 1 0 1 0 2

4 2 4 1 2 1 10 2 1 4 0 2

5 3 4 4 3 5 11 4 2 4 3 3

6 2 5 5 3 3 12 3 4 3 - -
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measurements made on the same subject rela-

tive to the variability in measurements between

subjects results in overoptimistic conclusions.

Discussion
The examples, simulations and code provided

highlight the importance of correctly identifying

the UoA in a study, and show the impact on the

study inferences of selecting an inappropriate

analysis. The simulation study (Appendix 1)

shows that the false positive rate can be

extremely high and efficiency very low if analyses

are undertaken that do not respect well known

statistical principles. The examples reported are

typical of studies in the biomedical sciences and

together with the code provide a resource for

scientists who may wish to undertake such analy-

ses (Appendix 3). Although clearly discussion

with a statistician, at the earliest possible stage

in a study, should always be strongly encour-

aged, in practice this may not be possible if sta-

tisticians are not an integral part of the research

team. The RIPOSTE framework (Masca et al.,

2015) called for the prospective registration

(Altman, 2014) and publication of study proto-

cols for laboratory studies, which we believe if

implemented would go a long way towards

addressing many of the issues discussed here by

causing increased scrutiny at all stages of an

experimental study.

The examples, design and analysis methods

presented here have deliberately used terminol-

ogy such as experimental unit, subject and sam-

ple to make the arguments more

comprehensible, particularly for non-statisticians,

who often find these topics conceptually much

easier to understand using such language. This

may have contributed to the widespread belief

amongst many laboratory scientists that these

issues are important only in human experimenta-

tion. Where, for instance, the subject is a partici-

pant in a clinical trial and the idea that subjects

provide data that are independent of one

another, but correlated within a subject seems

perfectly natural. However, although such lan-

guage is used here, it is important to emphasise

that the issues discussed apply to all experimen-

tal studies and are arguably likely to be more

not less important for laboratory studies than for

human studies. The lack of appreciation of the

importance of UoA issues in laboratory science

may be due to the misconception that the within

subject associations observed for human sub-

jects arise mainly from the subjective nature of

the measures used in clinical trials on human

subjects; e.g. patient-reported outcomes. Con-

trasting these with the more objective (hard)

measures that dominate in much biomedical lab-

oratory based science leads many to assume

that that these issues are not important when

analysing data and reporting studies in their own

research area.

Mixed-effects models are now routinely used

in the medical and social sciences (where they

are often known as multilevel models), to for

instance allow for the clustering in patient data

from a recruiting centre in a clinical trial, or to

model the association in outcomes within

schools and classrooms from students

(Brown and Prescott, 2015; Snijders and

Bosker, 2012). Mixed-effects models originated

from the work of pioneering statistician/geneti-

cist R. A. Fisher (Fisher, 1919), whose classic

texts on experimental design have led to their

extensive and very early use in agricultural field

experimentation (Mead et al., 2012). However,

the use of mixed-effects models in the biological

sciences has not spread from the field to the

laboratory.

Mixed-effects models are not used as widely

in biomedical laboratory studies as in many

other scientific disciplines, which is a concern, as

given the nature of the experimental work

reported one would expect these models to be

equally widely used and reported as they are

elsewhere. This is most likley simply a matter of

lack of knowledge and convention; if colleagues

or peers do not routinely use these methods

then why should I? By highlighting the issue and

providing some guidance the hope is that this

article may address the first of these issues.

Journals and other interest groups (e.g. funding

bodies and learned societies) have a part to play

also, particularly in ensuring that work is

reviewed by experienced and properly qualified

statisticians at all stages from application to

publication (Masca et al., 2015).
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Appendix 1

DOI: https://doi.org/10.7554/eLife.32486.007

Simulation study: Demonstrating UoA issues
Consider a small hypothetical study that aims to compare outcomes from subjects randomly

allocated to two contrasting treatment options, A and B. Samples were collected from

subjects and detailed laboratory work undertaken to provide 24 outcome measurements for

each of the two groups. For treatment group A, a measurement was obtained from 24

individual subjects; measurements for group A are known to be uncorrelated, i.e. independent

of one another. However, for treatment group B no such information was available. How

would the sampling strategy for group B impact on the analysis undertaken and how could it

affect the interpretation of the results of the analysis?

Consider the following possibilities; (i) the sampling strategy used for treatment group B

was the same as treatment group A (i.e. 24 independent samples), (ii) in group B 2

measurements were available from each of 12 subjects, (iii) 4 measurements were available

from each of 6 subjects, (iv) 6 measurements were available from each of 4 subjects, (v) 8

measurements were available from each of 3 subjects and (vi) 12 measurements were available

from each of 2 subjects.

Experience from previous studies suggests that the measurements made on the same

individual subjects are likely to be positively correlated; i.e. if one measurement is large then

the others will also be large, or conversely if one measurement is small others will also be

small.

Assume for the ease of illustration that the measurements were Normally distributed, and

of equal variance in each treatment group, and analyses were made using an independent

samples t-test, at the 5% level. One key characteristic that is important here is the false

positive rate (type I error rate); i.e. the probability of incorrectly rejecting the null hypothesis.

Here the null hypothesis is that the sample mean from treatment groups A and B are the

same. Figure 1(a) shows the type I error rates, based on 100000 simulations, for comparison of

groups A and B, where the null hypothesis is known to be true, for scenarios (i) - (vi) for within

subject correlations � = 0, � = 0.2, � = 0.5 and � = 0.8. If data within subjects are uncorrelated

(� = 0), then the type I error rate is maintained at the required 5% level over all scenarios (i) to

(vi), and clearly in scenario (i), where there are 24 single samples in group B, it makes no sense

to consider within subject correlations as there is only a single measurement for each subject,

the type I error rate is controlled at the 5% level. Otherwise, as the number of subjects gets

smaller (greater clustering) and the correlation within subjects gets larger, the type I error rate

increases rapidly. In the extreme scenario where there are data from 2 subjects only, with a

high correlation (� = 0.8) the null hypothesis is incorrectly rejected approximately 45% of the

time.

If grouped data are naively analysed, ignoring likely strong associations between

measurements within the same group, it is very likely that incorrect inferences are made about

differences between treatment groups.

If the true grouping structure in B were known, then how might this be properly accounted

for in the analysis? One simple option to improve on the naive analysis, of assumed

independence, is to randomly select a single value from each subject; this will control the type

I error rate at the required level across all scenarios and correlations (Figure 1b), but will

provide rather inefficient estimates of the treatment difference between groups (Figure 1c).

An alternative simple strategy is to calculate the within-subject means, this provides an

unduly conservative (type I error rate �5%) test (Figure 1b), as the true variability in the data

is typically underestimated by using the subject means. However, the analysis based on

subject means rather than randomly selected values provides more efficient estimates of the

treatment difference between groups (Figure 1(c)), with the efficiency depending on the within

subject correlation; as the correlation within subjects increases then the value of calculating a

mean, in preference to selecting a single value for each subject, diminishes markedly.
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Appendix 1—figure 1. Naive use of a conventional t-test on correlated (grouped by subject)

data, � = 0 (black circle ), � = 0.2 (red circle) � = 0.5 (blue circle) and � = 0.8 (green circle),

inflates the type I error rate (set at 5%). (a). The type I error rate can be controlled to the

required level by randomly selecting a single measurement for each subject, � = 0

(black circle), � = 0.2 (red circle), � = 0.5 (blue circle) and � = 0.8 (green circle), or made

conservative (�5%) by taking the mean of the measurements for each subject, � = 0

(black open circle), � = 0.2 (red open circle), � = 0.5 (blue open circle) and � = 0.8

(green open circle) (b). The relative efficiency of treatment effect estimates declines as the

number of clusters become smaller and is always higher for the mean than the randomly

selected single measurement strategy (c). The scenarios (i) – (vi) are as described in the text.

DOI: https://doi.org/10.7554/eLife.32486.008
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Appendix 2

DOI: https://doi.org/10.7554/eLife.32486.009

Some fundamental principles of experimental design

Appendix 2—figure 1. Design options for a putative laboratory study testing n samples of

experimental material.

DOI: https://doi.org/10.7554/eLife.32486.010

Consider a putative study (Figure 1), where n samples (experimental units) of material are

available for experimentation. Interventions (A and B) are assigned to the experimental units

and sub–samples collected for processing and incubation prior to final testing 48 hours later.

The scientist undertaking the study has control over the sampling strategy and the design; e.g.

how to allocate samples to A and B, whether to divide samples and how to split material

between incubators and the testing procedures used for data collection. What are the key

issues that they need to consider before proceeding to do the study?

1. If possible, always randomly assign interventions to experimental units. Randomization

ensures, on average, that there is balance for unknown confounders between interventions

2. A confounder is a variable that is associated with both a response and explanatory variable,

and consequently causes a spurious association between them. For example, if all samples

for intervention A were stored in incubator 1 and all samples for B were stored in incubator

2, and the incubators were found to be operating at different temperatures, then are the

observed effects on the outcome due to the interventions or the differences in temperature

between incubators? We do not know, as the effects of the interventions and temperature

(incubators) are fully confounded
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3. If there are known confounding factors, it is always a good idea to modify the design to

take account of these; e.g. by blocking
4. Blocking involves dividing experimental units into homogenous subgroups (at the start of

the experiment) and allocating (randomizing) interventions to experimental units within

blocks so that the numbers are balanced; e.g. interventions A and B are split equally

between incubators.
5. Blocking a design to protect against any suspected (or unsuspected) effects on the out-

comes caused by processing, storage or assessment procedures is always a good idea; e.g.

if more than one individual performs assays, or more than one instrument is used then split

interventions so as to obtain balance.
6. In general, it is always better to increase the number of sample experimental units than the

number of sub–samples. Study power is directly driven by the number of experimental units

n.
7. Increasing the number of sub-samples m helps to improve the precision of estimation of the

sample effect and allows assay error to be assessed, but has only an indirect effect on study

power. Usually there is little benefit to be gained by making m much greater than five.
8. If there are two interventions, then it is always best to divide experimental units equally

between interventions. If the aim of an experiment is to compare multiple interventions to a

standard or control intervention then it is to better to allocate more experimental units to

the standard arm of the study. For example, if a third standard arm (S) were added to the

study, in addition to A and B, then it would be better (optimal) to allocate samples in the

ratio 2:1:1 to interventions S:A:B.
9. All others things being equal, a better design is obtained if the variances of the explanatory

variables are increased, as this is likely to provide a larger effect on the study outcomes. For

example, suppose A and B were doses of a drug and a higher dose of the drug resulted in

a larger value of the primary study outcome. If the doses for A and B were set at the

extremes of the normal range, then the effect on the primary outcome is likely to be much

larger than if the doses were only marginally different.
10. If a number of design factors are used then try and make sure that they are independent

(uncorrelated). For example, the current design has a single design factor comprising two

doses of a drug (A and B). If a second design factor were added, e.g. intravenous (C) or oral

delivery (D), then crossing the factors such that the experimental samples are split (evenly)

between the four combination A.C, A.D, B.C and B.D provides the optimal design. The fac-

tors are independent; using the terminology of experimental design, they are orthogonal.
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Appendix 3

DOI: https://doi.org/10.7554/eLife.32486.011

R code for examples
R is an open source statistical software package and programming language (R Core Team,

2016; Ihaka and Gentleman, 1996) that is used extensively by statisticians across all areas of

scientific research and beyond. The core capabilities of R can be further extended by user

developed code packages for very specific methods or specialized tasks; many thousands of

such packages exist and can be easily installed by the user from The Comprehensive R Archive

Network (CRAN) (CRAN, 2017) during an R session. Many excellent introductions to the basics

of R are available online and from CRAN (Venables et al., 2017), so here the focus is on usage

for fitting the models described in the main text with notes on syntax and coding restricted to

implementation of these only. A script is available at Parsons, 2017 to replicate all the analyses

reproduced here.

The first dataset considered here is that for the adjuvant radiotherapy and lymph node size in

colorectal cancer example. For small studies such as this, data can be entered manually into an R

script file, by assigning individual observed data variables to a number of named vectors, using

the <- operator, and combining together into a data frame (data.frame function), which is the

simplest R object for storing a series of data fields which are associated together.

> LNsize < c(1.71, 1.72, 1.98, 1.98, 1.88, 1.85, 2.51, 2.98,

2.55, 3.20, 2.65, 2.80, 1.69, 1.82, 1.72, 1.97,

1.80, 1.73, 1.72, 2.50, 1.78, 2.65, 2.04, 2.77,

3.32, 3.11, 3.27, 3.03, 3.07, 3.11, 2.33, 2.86,

2.48, 2.87, 2.53, 2.52, 2.37, 2.36, 2.36, 2.62,

2.20, 2.60, 1.33, 1.90, 1.35, 1.87, 1.15, 1.85,

1.70, 2.07, 1.78, 1.76, 1.78, 1.85, 2.23, 2.50,

2.14, 2.33, 2.21, 2.16, 2.10, 2.11, 1.89, 2.16,

1.75, 2.12, 2.58, 2.77, 2.54, 2.65, 2.59, 2.60)

> Subject <- factor(rep(1:12, each = 6), levels = 1:12)

> Sample <- factor(rep(1:2, times = 36), levels = 1:2)

> Slice <- factor(rep(rep(1:3, each = 2), times = 12), levels = 1:3)

> RadioTherapy <- factor(rep(1:2, each = 36), levels = 1:2,

labels = c("None", "RTShort"))

> LymphNode < data.frame(Subject, Sample, Slice,

RadioTherapy, LNsize)

The factors define the design of the experiment, and are built using the rep function that

allows structures to be replicated in a concise manner. The first 6 rows of the data frame

LymphNode can be examined using the head function.

> head(LymphNode, n = 6)

Subject Sample Slice RadioTherapy LNsize

1 1 1 1 None 1.71

2 1 2 1 None 1.72

3 1 1 2 None 1.98

4 1 2 2 None 1.98

5 1 1 3 None 1.88

6 1 2 3 None 1.85

This is the standard rectanguler form that will be familiar to those who use other statistical

software packages or spreadsheets for data storage. More generally data can be read

(imported) into R from a wide range of data formats; for instance if data were laid out as above

in a spreadsheet programme it could be saved in comma separated format (csv) (e.g. data.csv)

and read into R using the following code LymphNode <- read.csv("data.csv"). Naive analysis of
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data LymphNode would be implemened using the t.test function

> t.test(LNsize ~ RadioTherapy, var.equal = TRUE, data = LymphNode)

Two Sample t-test

data: LNsize by RadioTherapy

t = 2.501, df = 70, p-value = 0.01473

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

0.05721632 0.50778368

sample estimates:

mean in group None mean in group RTShort

2.402778 2.120278

This is equivalent to fitting a linear regression model using the R linear model function lm,

other than a change in the direction of the differencing of the group means. The R formula

notation y ~ x symbolically expresses the model specification linking the response variable y to

explanaory variable x; here the response variable is lymph node size LNsize and the

explanatory variable is the radiotheraphy treatment RadioTherapy. A full report of the fitted

model object mod can be seen using the summary(mod) function. For brevity, the full output

is not shown here, but rather individual functions are used to display particular aspects of the

fit; e.g. for coefficients coef(mod), confidence intervals confint(mod) and an analysis of

variance table anova(mod).

> mod <- lm(LNsize ~ RadioTherapy, data = LymphNode)

> anova(mod)

Analysis of Variance Table

Response: LNsize

Df Sum Sq Mean Sq F value Pr(>F)

RT.means 1 0.23942 0.23942 1.0868 0.3217

Residuals 10 2.20293 0.22029

---------

Signif. codes: 0 �*** � 0.001 �** � 0.01 �* � 0.05 �. � 0.1 � � 1

> cbind(coef(mod), confint(mod))

2.5% 97.5%

(Intercept) 2.402778 2.2434782 2.56207740

RadioTherapyRTShort -0.282500 -0.5077837 -0.05721632

Th analysis by subject proceeds by first calculating lymph node size means for each subject,

LNsize.means, using the tapply and mean functions, prior to fitting the linear model, including

the new RT.means factor. There is now no need to specify a data frame using the data

argument to lm, as response and explanatory variables are newly created objects themselves,

so R can find them without having to look within a data frame, as was the case for the previous

model.

> LNsize.means <- tapply(LymphNode$LNsize, list(LymphNode$Subject),

mean, na.rm = TRUE)

> RT.means <- factor(rep(1:2, each = 6), levels = 1:2,

labels = c("None", "RTShort"))

> mod.lm <- lm(LNsize.means ~ RT.means)

> anova(mod.lm)

Analysis of Variance Table

Response: LNsize.means

Df Sum Sq Mean Sq F value Pr(>F)

RT.means 1 0.23942 0.23942 1.0868 0.3217

Residuals 10 2.20293 0.22029

> cbind(coef(mod.lm), confint(mod.lm))
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2.5% 97.5%

(Intercept) 2.402778 1.975837 2.829718

RT.meansRTShort -0.282500 -0.886285 0.321285

The linear mixed-effects package nlme must be installed before proceeding to model

fitting. The model syntax for fitting these models is similar to standard linear models in most

respects, with the addition of a random argument to describe the structure of the data. Full

details of how to specify the model can be found in standard texts such as (Pinheiro and

Bates, 2000). Confidence intervals of fixed and random effects are provided using the

intervals command.

> install.packages("nlme")

> library(nlme)

> mod.lme <- lme(LNsize ~ RadioTherapy,

random = ~ 1 | Subject / Sample, data = LymphNode)

> anova(mod.lme)

numDf denDF F value p-value

(Intercept) 1 48 278.60135 <0.0001

RadioTherapy 1 10 1.08682 0.32177

> intervals(mod.lme, which = "fixed")

Approximate 95% confidence intervals

Fixed effects:

lower est. upper

(Intercept) 2.0175137 2.402778 2.7880418

RadioTherapyRTShort -0.8862853 -0.282500 0.3212853

attr(,"label")

[1]"Fixed effects:"

> intervals(mod.lme, which = "var-cov")

Approximate 95% confidence intervals

Random Effects:

Level: Subject

lower est. upper

sd((Intercept)) 0.2619509 0.4364928 0.7273346

Level: Sample

lower est. upper

sd((Intercept)) 0.1509095 0.2335944 0.3615832

Within-group standard error:

lower est. upper

sd((Intercept)) 0.09995826 0.12209407 0.14913186

Competing models can be compared using likelihood ratio tests.

> mod0.lme <- update(mod.lme, random = ~ 1 | Subject)

> anova(mod0.lme, mod.lme)

Model df AIC BIC logLik Test L.Ratio p-value

mod0.lme 1 4 108.71 117.71 -50.36

mod.lme 2 5 -3.9473 7.2952 6.97 1 vs 2 114.66 <0.0001

Model fit can be explored using a range of diagnostic plots. For instance, standardized

residuals versus fitted values by subject,

> plot(mod.lme, resid(., type = "response") ~ fitted(.)

| Subject, abline = 0))

observed versus fitted values by subject,

> plot(mod.lme, LNsize ~ fitted(.) | Subject, abline = c(0,1))
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box-plots of residuals by subject,

> plot(mod.lme, Subject resid(.), aspect = 1)

and quantile-quantile plots.

> qqnorm(resid(mod.lme, type = "response"), pch = 19, col = 1,

main = NULL, las = 1)

> qqline(resid(mod.lme, type = "response"), lty = 2)

For the sake of exposition, creating an unbalanced dataset from the original LymphNode

data is achieved by randomly removing some data values and re-fitting the mixed-effects

model.

> set.seed(8845391)

> remove.cells <- sample(1:72, 36, replace=FALSE)

> Unbalanced.LymphNode <- LymphNode[setdiff(1:72, remove.cells),]

> umod.lme <- lme(LNsize ~ RadioTherapy,

random = ~ 1 | Subject / Sample, data = Unbalanced.LymphNode)

> anova(umod.lme)["RadioTherapy",]

numDf denDF F value p-value

RadioTherapy 1 9 0.8122484 0.3909

> intervals(umod.lme, which = "fixed")[["fixed"]][2,]

lower est. upper

-0.9217043 -0.2625918 0.3965206

> intervals(umod.lme, which = "var-cov")

Approximate 95% confidence intervals

Random Effects:

Level: Subject

lower est. upper

sd((Intercept)) 0.2235331 0.4213178 0.7941049

Level: Sample

lower est. upper

sd((Intercept)) 0.1595688 0.2793512 0.4890497

Within-group standard error:

lower est. upper

sd((Intercept)) 0.08837785 0.12387508 0.17362988

A subject-based analysis ignores the differences in precision of estimation of means

between subjects.

> UB.LNsize.means <- tapply(Unbalanced.LymphNode$LNsize,

list(Unbalanced.LymphNode$Subject), mean, na.rm = TRUE)

> umod.lm <- lm(UB.LNsize.means ~ RT.means)

> cbind(coef(umod.lm), confint(umod.lm))

2.5% 97.5%

(Intercept) 2.3557222 1.9018505 2.8095940

RT.meansRTShort -0.1990222 -0.8722228 0.4741784

The second dataset considered here is grouped binary data from the lymph node count

example; NA indicates a missing value. For model fitting the non-missing data can be found

using the subset and complete.cases functions.

> LN.ind <- c(4, 3, 2, 2, 3, 2, 1, 1, 1, 2, 4, 3,

4, 4, 3, 4, 4, 5, 0, 2, 0, 1, 2, 4,

NA, 5, 3, 1, 4, 5, 0, NA, 1, 4, 4, 3,

NA, 2, 2, 2, 3, 3, 0, NA, 0, 0, 3, NA,
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NA, NA, NA, 1, 5, 3, 0, NA, 2, 2, 3, NA)

> Subject <- factor(rep(1:12, times = 5), levels = 1:12)

> Sample <- factor(rep(1:5, each = 12), levels = 1:5)

> nRoI <- rep(5, 60)

> RadioTherapy <- factor(rep(rep(1:2, each = 6),times=5), levels = 1:2,

labels = c("None", "RTShort"))

> nRoI <- rep(5, 60)

> gLymphNode < data.frame(Subject, Sample, RadioTherapy,

gLNind = as.numeric(LN.ind) / 5, nRoI)

> gLymphNode <- subset(gLymphNode, complete.cases(gLymphNode))

Fitting a conventional logistic regression model to the data provides a naive analysis, with

estimated coefficients that are log odds-ratios. The glm command indicates that a generalized

linear model is fitted, with distributional properties identified using the family argument, which

for binary data is canonically the binomial distribution with logit link function.

> log.reg <- glm(gLNind ~ RadioTherapy, data = gLymphNodeInd,

family = binomial("logit"), weight = nRoI)

> anova(log.reg, test = "Chisq")

Analysis of Deviance Table

Model: binomial, link: logit

Response: gLNind

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 49 113.299

RadioTherapy 1 21.046 48 92.253 4.485e-06***

---------

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

> cbind(exp(coef(log.reg)), exp(confint(log.reg)))

Waiting for profiling to be done...

2.5% 97.5%

(Intercept) 1.7173913 1.1997511 2.4872605

RadioTherapyRTShort 0.3053412 0.1805858 0.5096359

Fitting linear mixed-effects models for non-normal data requires the lme4 package. Model

set-up and syntax for lme4 is similar to nlme; for details of implementation for lme4 see

(Bates et al., 2015) and the vignettes provided with the package.

> install.packages("lme4")

> library(lme4)

> gmod.lme4 <- glmer(gLNind ~ RadioTherapy + (1 | Subject), data = gLymphNo-

deInd, family = binomial("logit"), weight = nRoI)

> mod.sum <- summary(gmod.lme4)

> mod.sum[["coefficients"]]["RadioTherapyRTShort","Pr(>|z|)"]

0.01592349

> par.CI <- confint(gmod.lme4, method = "Wald")

> cbind(exp(fixef(gmod.lme4)), exp(par.CI[2:3,]))

2.5% 97.5%

(Intercept) 1.8822378 0.87036620 4.0704923

RadioTherapyRTShort 0.2569425 0.08511571 0.7756438

Predictions for the fitted model can be obtained for new data using the predict function,

here with no random effects included.

> predict(gmod.lme4, newdata = data.frame(RadioTherapy = c("None",

"RTShort"), type = "response", re.form = ~ 0)
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1 2

0.3259761 0.6530474

The standard errors of the radiotherapy effects for the conventional logistic regression and

mixed-effects model are obtained from the variance-covariance matrices of the fitted model

parameters using the vcov function.

> sqrt(vcov(log.reg)["RadioTherapyRTShort", "RadioTherapyRTShort"])

0.2642883

> sqrt(vcov(gmod.lme4)["RadioTherapyRTShort", "RadioTherapyRTShort"])

0.5637047

Parsons et al. eLife 2018;7:e32486. DOI: https://doi.org/10.7554/eLife.32486 24 of 25

Feature article Science Forum Unit of analysis issues in laboratory-based research

https://doi.org/10.7554/eLife.32486


Appendix 4

DOI: https://doi.org/10.7554/eLife.32486.012

Mathematical description of the naive analysis
The standard method of analysis for simple designed experiments is analysis of variance

(ANOVA), which uses variability about mean values to assess significance, under an assumed

approximate Normal distribution. Focussing on samples as experimental units, it is decided to

collect m replicate measurements of an outcome y on each of T � N samples, divided into T

equally sized treatment groups. Indexing outcomes as yijt, where i ¼ 1; . . . ;N, j ¼ 1; . . . ;m and

t ¼ 1; . . . ; T, the total sums-of-squares (deviations around the mean) which sumarises overall

data variability is

SSTotal ¼
X

i

X

j

X

t

ðyijt ��y:::Þ
2

where the overall (grand) mean is �y::: ¼
1

TNm

P

i

P

j

P

t yijt. The Treatment sums-of-squares (SS) is

that part of the variation due to the interventions and is given by

SSTreat ¼mN
X

t

ð�y::t ��y:::Þ
2

where the treatment means are given by �y::t ¼
1

Nm

P

i

P

j yijt. The residual or error SS is given by

SSError ¼
X

i

X

j

X

t

y2ijt �mN
X

t

�y2::t

and is such that SSTotal ¼ SSTreat þ SSError. This error SS can be partitioned into that between

samples

SSError:Samples ¼m
X

i

X

t

y2i:t �mN
X

t

�y2::t

and that within samples

SSError:Within ¼
X

i

X

j

X

t

y2ijt �m
X

i

X

t

y2i:t

where the sample means are given by �yi:t ¼
1

m

P

j yijt and SSError ¼ SSError:Samples þ SSError:Within. In a

naive analysis, ignoring the sampling structure, significance between treatments is incorrectly

assessed using an F-test of the ratio of the treatment mean-square MSTreat ¼ SSTreat=ðT � 1Þ to

the error mean-square MSError ¼ SSError=TðNm� 1Þ on T � 1 and TðNm� 1Þ degrees of

freedom. However, the correct analysis is that which uses an F-test of the ratio of the

treatment mean-square MSTreat to the between samples error mean-square MSError:Samples ¼

SSError:Samples=TðN � 1Þ on T � 1 and TðN � 1Þ degrees of freedom.

This analysis uses the variability between samples only to assess the significance of the

treatment effects. The naive analysis pools variability between and within samples and uses

this to assess the treatment effects. The naive analysis is generally the default analysis

obtained in the majority of statistics software, such as R, if the error structure is not specifically

stated in the call to analysis of variance.
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