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Abstract

This paper presents an investigation on flutter speed of cracked composite plates. This work is divided into two
sections: (a) variation of crack length at a fixed location on the plate, and (b) variation of crack location on
the plate with a fixed crack length, modelled as a unidirectional composite for 00, 900 and 1350 orientations.
Mori-Tanaka homogenization model is applied to obtain the effective composite constitutive properties as
the function of fiber and matrix volume fraction. Doublet Lattice Method (DLM) is used to calculate the
unsteady aerodynamic forces, i.e., lift distributions. It is found that the existence of small crack ratio on the
composite plate (less than 0.4) has triggered an increment of the flutter speed. To support this statement,
flutter response modes for each crack ratio are plotted, where the structure appears to be more stiffened than
the undamaged plate. However, the crack results in the reduction of flutter speed when the crack ratio reaches
0.5. For the crack location assessment, the flutter speed increases as the crack location moves from the root
to the tip due to the reduction of flutter frequency. The results show a good agreement with the validation
using Strip Theory considering unsteady aerodynamics.

Keywords: Flutter; Crack; Composite; Mori-Tanaka; Doublet Lattice Method, FEM.

1. Introduction

In this paper, computational investigations of the
flutter effect to several cracked composite plates are
performed. It is believed that the existence of crack
will affect the stiffness of the structure [1]. There is
a work that investigates the stiffness effect on sym-
metric laminates with arbitrary sequence [2]. The
reduction in transverse and shear stiffness of the lam-
inate as a function of the crack density in one ply was
estimated by deriving an analytical solution. Thus,
the accuracy in predicting the stress redistribution,
from a cracked ply to the rest of the laminate has
been achieved. Hence, it is a logical reason to investi-
gate the flutter speed of cracked composite structures
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Luis Curiel-Sosa)
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since one of the parameters that could affect the flut-
ter speed estimation is the stiffness system.

Flutter is an instability problem due to structural
vibration exerted by the aerodynamic load. Flutter
often categorised as a self-excitation phenomenon, as
the aerodynamic load is a function of the structural
dynamic responses. A critical speed in which the
structural vibration could lead to a catastrophic fail-
ure is called ’critical flutter speed’. One of the most
well-known examples of flutter vibration leading to a
catastrophic failure is well presented in the incident
of the Tacoma bridge collapse on the 7th of November
1940 [3].

It was reported that 42 mph speed of wind had
excited several vibration modes on that day [4]. The
dominant mode was moving vertically with a node at
midspan and thus changed to torsional motion with
a node at midspan abruptly. Within 4 seconds, the
vibration amplitude has twisted the bridge about 450

before it collapse.
The existence of crack will affect the stiffness dis-
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tributions as discussed in the literature. It is also
a requirement to determine the flutter boundary by
considering the structural stiffness. Castravete and
Ibrahim demonstrated that the stiffness significantly
affects the flutter boundary [5]. This evidence has at-
tracted attention to investigating the flutter bound-
ary when there is an existence of crack on the struc-
ture.

In studying the circumstance, one of the aircraft
crash incidents of North American P-51D Mustang
that related to the event is referred as an example.
The racing aircraft which also known as ”The Gal-
loping Ghost” crashed at the National Championship
Air Races in Reno/Stead Airport, Nevada, USA. The
technical investigation report by National Transporta-
tion Safety Board (NTSB) revealed that the existing
fatigue crack in one screw caused the reduction of el-
evator trim tab stiffness [6]. This situation had trig-
gered aerodynamics flutter to occur at racing speed.

There are some works reported regarding super-
sonic flutter on damaged composite such that shear
deformable laminated composite flat panels by Bir-
man and Librescu [7], microstructural continuum dam-
age by Pidaparti [8] and, Pidaparti and Chang [9].
The coupling between two-dimensional static aerody-
namic technique and a higher order transverse shear
deformation theory for the structural plate model were
performed in [7]. Aerodynamic models of Piston the-
ory were applied, and the structures were modelled
based on the damage mechanics theory with an in-
ternal state variable to mark damage characteristic
in the material [8], [9].

There is a work that model a crack on a composite
panel using XFEM at the supersonic region presented
in [10]. A rectangular plate made of a Functionally
Graded Material (FGM) is considered in this work
as an advanced composite structure. The recent in-
vestigation of interaction between cracks on flutter
was presented by Viola et al. [11]. The numeri-
cal flutter analysis was performed on a multi-cracked
Euler-Bernoulli beams under subtangential force as
the non-conservative dynamic load.

Some researchers applied the probabilistic approach
to assess the flutter failure of a composite structure
with crack in subsonic flow. The application of Monte
Carlo simulation in [12] and Polynomial Chaos Ex-
pansion method in [13] show the statistical studies of
flutter with the presence of multiple damage uncer-
tainties.

Based on the overview, it can be seen that there

is a lack of publication on the flutter of cracked com-
posite. Moreover, at subsonic regime, to the au-
thors knowledge, only Wang et al. [14] studied it by
means of analytical/semi-computational model. As
most transport and light aircrafts are operating in
subsonic regime, thus it is considered a great benefit
to investigate the flutter effect on cracked composite
within this airspeed regime.

In the present work, a novel implementation of
fully computational approach to investigate the flut-
ter on cracked composite within subsonic regime is
elaborated. Laminated finite element is used to model
the composite structure. The load is modelled as
unsteady aerodynamic load in frequency domain by
means of Doublet Lattice Method (DLM). The pk-
method is applied to obtain the flutter solution. In
the following sections, the general overview of the
computational methods used are presented.

2. Flutter speed determination

Flutter is defined as a state or phenomenon of
flight instability which can cause structural failure
due to the unfavourable interaction of aerodynam-
ics, elastic, and inertia forces [15]. Flutter can de-
form an aircraft due to dynamics instability. In prac-
tice, structural damping, g versus velocity, V for each
mode shape is plotted to determine the flutter speed
graphically. Based on the Federal Aviation Admin-
istration Regulations in [16], the required structural
damping, (g) value for plotting Fig. 1 must exceed
more than 3%, g > +0.03 in the unstable region so
that the plot can be stated as in flutter region.
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Figure 1: Structural damping graph guided by FAA
(2004)

The procedure has been performed by Nissim and
Gilyard [17] to estimate the flutter speed experimen-
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tally by using the parameter identification technique.
It is pointed out that there is an issue of difficulty
when the ’exact’ analytical scheme to solve the flut-
ter equations. Since the damping merged with aero-
dynamic terms only, the system is assumed to be an
undamped structural system. This is the reason why
the system excitation at zero damping that led to the
zero dynamic pressure could not be performed and
hence will trigger the responses at resonance become
infinite values. To solve this, the 3% of structural
damping is assumed and at the same time, the re-
sponses of the ’exact system’ is calculated. When
this procedure objective is achieved, the flutter speed
can be determined at zero structural damping.

Fig. 1 is referred as an explanation for the flut-
ter phenomenon in graphical presentation. Mode 1
moves towards the instability region in the first place,
but the plot free from the unstable region as the speed
is increasing. Mode 2 crosses the velocity axis where
the structural damping is zero. Since the plot of Mode
2 still has not exceeded g = 0.03, the structure is in a
safe zone. Mode 3 crosses the velocity axis where the
structural damping is zero and has surpassed the lim-
itation of g = 0.03. It is concluded that Mode 3 is the
most dangerous state where the flutter is expected to
happen.

In this study, the flutter speed for each composite
structure is determined by using this technique. Sev-
eral parameters are concerned to be investigated; the
unidirectional composite angle, θ, crack ratio, η and
the dimensionless crack location, ξc.

3. Mean field homogenization

In this part, a process called homogenization which
is considered to represent the composite material prop-
erties is performed. Representative volume element
(RVE) is used to represent the microscale of the struc-
ture. Solving the mesoscale iteration at every guess,
the RVE is computed, and then, the information is
passed to macroscale. The homogenization proce-
dures are explained more in [18],[19] and [20].

The objective of applying this process is to esti-
mate the stresses and strains as the matrix and the
fibers are mixed. In this study, the homogenization
of composite structures is carried out by applying the
Eshelby method. Fig. 2 shows the schematic diagram
of homogenization based on the Eshelby method pre-
sented in [21] and [22].

(a) (b)

+ ɂ௜௝்
+

(c)(d)

ɂ௜௝஼

Figure 2: Schematic diagram of homogenization based
on the Eshelby method

Fig. 2 (a) shows an initial unstressed elastic ho-
mogeneous material. A visualization of a cutting sec-
tion called as inclusion is assumed to this structure,
presented as the circle. The inclusion is presumed en-
counters a shape change free behaviour; causing the
transformation strain εTij in Fig. 2 (b) from the con-
straining matrix.

Assuming the strain is uniform within the inclu-
sion, the stress in the inclusion, σI

ij is estimated using
Eq. 1.

σI
ij = CM

ijkl(ε
C
kl − εTkl) (1)

The constraining strain can be determined in the
form of transformation strain, εTkl as shown in Eq. 2.

εCij = Sijklε
T
kl (2)

The Eq. 2 is substituted in Eq. 1 to compute the
stress in the inclusion. The equation is simplified in
Eq. 3.

σI
ij = CM

ijkl(Sklmn − Iklmn)ε
T
mn (3)

The 4-th rank identity tensor of Iklmn in Eq. 3 is
given in Eq. 4.

Iklmn =
1

2
(δkmδln + δknδlm) (4)

Eq. 3 is transformed in vector and matrices form
as in Eq. 5, where the braces and brackets are indi-
cation of vector and matrices, respectively.

σI = CM (S − I)εT (5)

As the fiber is assumed as infinite long cylindrical,
the expressions of Eshelby tensors are estimated in
form of matrix Poisson’s ratio as in Eq. 6 to Eq. 14.
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S1111 = S2222 =
5− υm

8(1− υm)
(6)

S3333 = 0 (7)

S1122 = S2211 =
−1 + 4υm
8(1− υm)

(8)

S1133 = S2233 =
υm

2(1− υm)
(9)

S3311 = S3322 = 0 (10)

S1212 = S1221 = S2112 = S2121 =
3− 4υm
8(1− υm)

(11)

S1313 = S1331 = S3113 = S3131 =
1

4
(12)

S3232 = S3223 = S2332 = S2323 =
1

4
(13)

Otherwise,

Sijkl = 0 (14)

Eshelby tensors of the inclusion as the function of
matrix material properties and inclusion geometry or
shape are applied. The assumption made in this case
where the shape is an infinite long cylinder as shown
in Eq. 15.

SMnAb = f(Cm, l → ∞) (15)

In this study, the effective composite properties
of the composite plates are obtained by using Mori-
Tanaka method as shown in [23] and [24].

The effective material properties via Mori-Tanaka
of composite Ccomp is expressed in Eq. 16, where V ,
C and AMT are the volume fraction, the material
properties constitutive equation and the concentra-
tion tensor based on Mori-Tanaka method with re-
spect to fiber, f and matrix, m, respectively.

Ccomp = VmCmAMT
m + VfCfA

MT
f (16)

The Mori-Tanaka tensor equation is shown in Eq.
17 where Adi is the dilute concentration tensor and
I is the identity matrix. The dilute tensor equation
is expressed in Eq. 18.

AMT
f = Adi

f [VmI + VfA
di
f ] (17)

Adi
f = [I + SMnAbC

−1
m (Cf −Cm)]−1 (18)

The properties are calculated as the function of
fiber and matrix material properties, volume fractions
and Eshelby tensors as summarised in Eq. 19.

Ccomp = f(Cm,Cf , Vm, Vf ,SMnAb) (19)

Fig. 3 shows the transformation of composite
volume fraction to the homogenized composite using
Mori-Tanaka method.

(a)

௙ܧ ǡ ɓ௙ ௠ǡܧ ɓ௠

(b)

Mori-Tanaka 

method (MFH)

Homogenized composite ሾܥ௖௢௠௣ሿ

Figure 3: Mean field homogenization by Mori-Tanaka
method

4. Aerostructural coupling

In this section, the Doublet Lattice Method (DLM)
is used to predict the unsteady aerodynamics. Dou-
blet Lattice Method has been developed by Albano
and Rodden [25] to calculate the lift distributions in
subsonic flow region.

The same coupling procedure between DLM and
structural modelling using modified higher order shear
deformation theory was performed by Abbas et al.
[26] to estimate the flutter speed. There is another
finite element that can be used, e.g. beam element,
based on [27] but it is unattempted this time.

4.1. Finite element model

The 4-noded quadrilateral shell element is used
in the finite element model. The boundary condition
is fixed displacement on the root. The load used in
the finite element model, is the aerodynamic load ob-
tained via Doublet Lattice Method (DLM). This pro-
cedure allows for a coupling between the structure
(finite element) and the aerodynamics (DLM).
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The edge crack is modelled using double nodes
in the chordwise direction. Two sets of nodes are
assumed along the opposite face of the crack interface.
The displacement fields of these two separated sets of
nodes are independent to account the discontinuity
along the crack interface.

4.2. Doublet lattice method

The specification of boxes along span and chord
direction is required for coupling of FE-DLM using
spline technique as shown in Fig. 4. To compute
the unsteady aerodynamics modelling using DLM, a
set number of elements called aerodynamics box is
specified.

x

y

(n-span direction)

(n-chord direction)
Air flow direction, V 

Figure 4: Aerodynamics modelling for coupling
FE-DLM

The number of box, n and the constant force per
unit length of the 1/4 chord line, f for each box is
visualized. The strategy starts with the definition of
doublet strength amplitude of the j−th division as in
Eq. 20; where lj and dµ are the division line length
and changes of length increment, respectively.

f̄j
4πρ

∫

lj

dµ (20)

The normal wash amplitude generated at point
(xi,si), on the surface by j − th number of doublet
line is given in Eq. 21.

w̄j(xi, si) = (
f̄j
4πρ

U2)

∮

lj

K[xisi;xi(µ), sj(µ)]dµ

(21)
By summing the normal wash developed by n−th

doublet lines, the total normal wash at point (xi, si)
is calculated. This relationship is presented in Eq.
22.

w̄(xi, si) =
n
∑

j=1

(
f̄j
4πρ

U2)

∮

lj

K[xisi;xj(µ), sj(µ)]dµ

(22)
f̄j is evaluated by exerting Eq. 21 at n downwash

points on the total surface of boxes. Eq. 23 is the
pressure difference across the boxes surface; where the
box area is calculated as ∆xjcosλj . The denotions of
∆xj and λj are the box average chord and doublet
line sweep angle, respectively.

P̄j =
f̄j

∆xjcosλj
(23)

Thus, the new expression of parameters from Eq.
20 is shown in Eq. 24, considering the sweep angle of
doublet line.

f̄j
4πρ

U2 =
1

8
πp̄j∆xjcosλj (24)

Based on [25], the normal wash velocity can be es-
timated by implying the Kutta condition. The Kutta
condition meets the requirement when each down-
wash point is the 3/4 chord point at a box midspan.
By applying this specification, Eq. 21 is simplified in
form of pressure distribution as expressed in Eq. 26.

w̄i =
n
∑

j=1

Dij p̄j (25)

where,

Dij = (
1

8
π)∆xjcosλj

∮

lj

K[xi, si;xj(µ), sj(µ)]dµ

(26)
In this study, the composite plate is considered as

a thin plate where the panel is divided into several
boxes for aerodynamics modelling. The thin com-
posite panel is divided equally into 20 boxes in the
spanwise direction and 5 boxes in the chordwise.

5. Flutter solution of pk-method

Here, the coupling of finite element model for struc-
tural and doublet lattice method for unsteady aero-
dynamics has been performed using spline technique.
To estimate the flutter speed/ boundary in this study,
the flutter solution based on pk-method shown in Eq.
27 is applied [28], where Mhh is the mass matrices,

5



  

Bhh is the damping matrices, QR
hh is the real aerody-

namic matrices, QI
hh is the imaginary aerodynamic

matrices and Khh is the stiffness matrices.

Mhhp
2+(Bhh−

1
4
ρc̄QI

hh

k
)p+(Khh−

1

2
ρV 2QR

hh) = 0

(27)
The term pk is referring to two parameters which

are used to predict the flutter speed. p is the root
of the quadratic equation and k is the reduced fre-
quency in Eq. 27. To solve the reduced frequency of
k, Eq. 28 is used where ω is the natural vibration
mode frequency, c̄ is the average chord length and V
is the computed velocity.

k =
ωc̄

2V
(28)

As the solution in Eq. 27 is in quadratic form
of p, structural damping of g can be estimated as
mentioned in Eq. 29.

p = ω(2g + i) (29)

To simplify the Eq. 28 and Eq. 29, the natural
frequency that is obtained from modal analysis de-
noted by ω is eliminated. The relationship between g
and V based on pk-method is now shown in Eq. 30.

p =
2kV

c̄
(2g + i) (30)

In the final solution of Eq. 30, this relationship is
used to plot the structural damping, g versus airflow
velocity, V to obtain the flutter speed. As mentioned
in Section 2, the flutter speed is obtained at g = 0
where the structure begins to fail.

5.1. FE-DLM Coupling procedure

By using an interpolation technique, both struc-
tural and aerodynamic grids are associated. Thus, us-
ing this procedure allows the selection of both struc-
tural and aerodynamic of the lifting surfaces become
independent to be performed in any particular theory
of the fluid- structure interaction. An interpolation
method called as ’splining’ technique is used to inter-
connect both structural and aerodynamic model. The
structure of the body can be modelled in one-, two- or
three-dimensional array of grid points. For aerody-
namic model, a lifting surface theory or strip theory
might be used to model the aerodynamic boxes.

In this work, the composite plate is analysed with
the existence of edge crack as shown in Fig. 5. Thus,

it triggers the separation of the plate surface into sub-
regions that has led to the discontinuous slope. For
this reason, the aerodynamic degrees of freedom de-
pends on the structural degrees of freedom. To make
a relation between both models, a spline matrix is
derived.

In general, the spline matrix that interpolates the
displacements at the grid points of the structural fi-
nite element to the control points of aerodynamic
boxes to resolve the data transferral problem. In Eq.
31, the total spline matrix of Gkg is expressed based
on the generation of spline matrix by surface spline
method, where uk is the interpolated displacement
vector at aerodynamic boxes, including the transla-
tional displacements and their slopes with respect to
the components of the structural grid point deflec-
tions, ug.

uk = Gkgug (31)

Any grid components can be defined to describe
the structural degrees of freedom. In this case, two
transformations are required. The first one is the
interpolation from the structural deflections to the
aerodynamic deflections. The second one is the inter-
polation of the relationship between the aerodynamic
loads and the structural equivalent loads acting on
the structural grid point. From here, the aerody-
namic degrees of freedom is correlated to be depend-
ing on the structural degrees of freedom. Further
details about the aero-structure coupling of ’splining’
technique can be explored in [29].

6. Cantilever unidirectional composite plate model

The unidirectional composite plate of graphite -
fiber reinforced polyimide that is used in this study
was developed in [30]. The unidirectional composite
specimen model is presented in Fig. 5. It is modelled
as a cantilever plate where the length, L is 0.5 m; the
width, b is 0.1 m and the height, h is 0.005 m. As the
crack development in this study is qualitatively mea-
sured, the crack ratio is defined as η = a/b where a
is the crack length. The dimensionless crack location
for this study is denoted by ξc = l/L. The material
properties of graphite - fiber reinforced polyimide is
shown in Table 1.
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Figure 5: Specimen modelling of the unidirectional composite plate

Table 1: Material properties of graphite - fiber reinforced polyimide composite

Modulus of elasticity Em = 2.76 GPa Ef = 275.6GPa
Poisson’s ratio νm = 0.33 νf = 0.2
Shear modulus Gm = 1.036 GPa Gf = 114.8 GPa
Mass density ρm = 1600 kg/m3 ρf = 1900 kg/m3

Fiber volume fraction V = 0.5

6.1. Mean field homogenization (MFH) from Mori -
Tanaka method

A code is developed to estimate the stiffness and
the constitutive matrices based on Mori-Tanaka method
for the presented composite structure. By using Chan-
Unsworth model, the numerical properties calculated
are compared with Mori-Tanaka method developed in
this section. Figs. 6 and 7 present the stiffness ma-
trices estimation of the material. Figs. 8 and 9 show
the constitutive matrices estimation of the material.

As the Mori - Tanaka micromechanical model is
implemented in this study, the constitutive equation
in Plane Stress form Ccomp [unit: Pa] is shown in
Table 2:

6.2. Validation on vibration with modal analysis

Modal analysis is performed to validate the pro-
cedure used in this work. The benchmark results of
vibration modes are compared with the results pre-
sented by Wang et al. [14]. In Table 3, the results of
the modal analysis for a unidirectional composite of
θ = 0 using the presented method are shown and are
compared with the results established in [14].

As the results of the modal analysis are validated,
the procedure is applied to other specimens with ex-
isting crack. All eight vibrations modes (four bending
modes and four torsion modes) that are presented in
Table 3 are plotted in Fig 10.

It is a different modelling technique in observing
the modal vibration modes. Thus, in this case, the fi-
nite element modelling has been applied to the unidi-
rectional cracked composite panel instead of a cracked
beam presented in [14]. In the reference, an analyti-
cal model was used to determine the natural frequen-
cies/ mode shapes. Furthermore, a function of mode
shapes was assumed to satisfy the boundary condi-
tion at the crack location. However, in the present
paper, a full finite element model is used to obtain
the mode shapes and the natural frequencies. Thus,
for the plate with crack, the crack also modelled di-
rectly in the finite element model. Therefore, there
will be discrepancies with the results compared to
the reference. Further flutter analyses are presented
in the next section.

7



  

Table 2: Constitutive values in plane stress form based on Mori-Tanaka method

Ccomp Value (Pa)

C11 = C22 6.8503 x103

C12 = C21 3.1437 x103

C13 = C23 = C31 = C32 0
C33 2.646 x103

Table 3: First four bending modes and first four torsion modes vibrational frequencies for θ = 00

Wang et al. Mode 1st (Hz) 2nd (Hz) 3rd (Hz) 4th (Hz)

Bending 6.94 43.47 121.71 238.49
Torsion 62.81 197.45 329.08 460.71

Present work Mode 1st (Hz) 2nd (Hz) 3rd (Hz) 4th (Hz)

Bending 5.87 36.59 102.87 203.02
Torsion 60.54 184.23 315.74 460.00

Relative error (Wang et al. and present work) Mode 1st (Hz) 2nd (Hz) 3rd (Hz) 4th (Hz)

Bending 15.35 % 15.83 % 15.48 % 14.87 %
Torsion 3.61 % 6.69 % 4.05 % 0.15 %
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Figure 6: Effective stiffness matrix component of S31

6.3. Section a: Flutter effects on the crack ratio

The objective of this subsection is to study the
effects of the flutter speed while the crack location is
fixed and the crack length is changed. Several analy-
ses are performed to the unidirectional composites of
00, 900 and 1350 orientations. The same procedures
are repeated and applied for crack ratio denoted by
η = a/b as η is increased from 0 to 0.75.

The flutter analyses are performed to the undam-
aged (without crack) composite plates for 00, 900 and
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Figure 7: Effective stiffness matrix component of S33

1350 orientations in the first place. The flutter speed
for this situation is considered as the reference for
other cases which is denoted as VR. The flutter speed
estimation for unidirectional composite without crack
for 00, 900 and 1350 orientations are shown in Fig. 11.

In this work, the frequency of vibrational mode
interacting with the speed increment is presented in
Fig. 12 for an oscillating composite plate at unidirec-
tional of 00. Based on the plot, the flutter frequency
is found to be 37.37 Hz, where the structural damp-
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Figure 8: Effective stiffness matrix component of C31

ing is zero. Using FEM-DLM approach, the flutter
frequency for η = 0.2 is found to be a bit higher than
the undamaged specimen.

As the flutter speeds of undamaged unidirectional
composite plates at angle 00, 900 and 1350 have been
determined, the flutter analyses with crack planform
are performed. The flutter speed, VF is determined
for several cases of crack ratio, η = a/b which are
0.2, 0.25, 0.4, 0.5, 0.6 and 0.75. The normalized flut-
ter speeds of VF /VR versus the crack ratio which are
compared with results in [14] as shown in Fig. 13.

The results show that the flutter speeds are in-
creasing for all presented composite angle when the
crack ratio is 0.2 compared to the flutter speed of
undamaged composite plates. The trends of flutter
speed begin to decrease but are still above the refer-
ence flutter speed when η = 0.25. The same pattern
is seen for crack ratio 0.4, but the flutter speed for
this case is almost near to the flutter speed of the un-
damaged composite plate. At η = 0.5, the normalized
flutter speeds of VF /VR for θ = 00 and 900 begin to
decrease about 1.84 % and 8.67 %, respectively. The
same trend is found for θ = 1350 with η = 0.5 with a
difference of 36.77%.

Based on these facts, the existence of crack ra-
tio, η more than 0.4 makes the structure weaker from
the undamaged plate (η = 0). As a result, the struc-
ture vibration amplitude tends to increase with the
increment of crack ratio. This explanation shows an
agreement with the work done by Song et al. [31]
where the crack opening increment has weakened the
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Figure 9: Effective stiffness matrix component of C33

cantilevered composite when it deals with dynamics
loading. The results are almost similar to the results
published in [14] where the flutter speed had found
to be increased when the crack was initiated, but it
began to decrease gradually when the η has reached
0.35. The same trend for present work is seen when
the unsteady aerodynamics is modelled using strip
theory as in Fig. 14.

To gain a deeper understanding of this phenomenon,
flutter response modes are plotted in Fig. 15. This
part aims to study the changes of the mode from
without any crack until the specimen almost breaks
where fF is the flutter frequency for each case. In
Fig. 15 (a) where η = 0, the flutter response mode
is a first torsion mode, with fF = 37.37 Hz. With
the existence and increment of crack ratio, the flutter
frequency keeps reducing, which allows more time for
the structure to oscillate. Next, for η = 0.2 in Fig. 15
(b), the flutter response is the same mode as η = 0.0,
with the deflection a little bit release. This behaviour
made the structure be able to stand more load as the
rigidity is now increased with the existence of small
crack (0.02 m). Thus, it causes an increment of flut-
ter speed compared to the undamaged specimen. The
same behaviour of flutter response is seen until η =
0.4.

In Fig. 15 (e) where η = 0.5, the flutter speed
is now reduced about 3.77 % compared to the un-
damaged specimen, but the flutter response mode is
maintained. With further crack ratio increment, the
flutter response mode has switched to the mixture
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(a) 1st mode: 5.87 Hz (b) 2nd mode: 36.59 Hz (c) 3rd mode: 60.54 Hz (d) 4th mode: 102.87 Hz

(e) 5th mode: 184.23 Hz (f) 6th mode: 203.02 Hz (f) 7th mode : 315.74 Hz (g) 8th mode: 460.00 Hz

Figure 10: First eight vibration modes for θ = 00
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Figure 11: Flutter speed determination for θ = 00

between torsion and bending mode as shown in Fig.
15 (g) for η = 0.75. For this case, the flutter speed
has reduced to about 15.4 %.

6.3.1. Explanation on flutter speed increment for crack
ratio of 0.2

DLM is applicable for interfering the lift distri-
bution on flying surface in subsonic flow. It was de-
veloped based on the linearized aerodynamic poten-
tial theory. Thus, this method establishes a uniform
undisturbed flow either in a steady flow or unsteady
flow (with existence of gust) harmonically.

Aerodynamics modelling technique of DLM used
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Figure 12: Flutter frequency reduction for θ = 00

in this work is much more advanced than Strip theory
since it considers the structural panels, which allows
the lifting surface to be divided into small trapezoidal
lifting elements called as ’aerodynamic boxes’. As the
lifting surfaces are assumed to be almost parallel to
the freestream flow (refer Fig. 4), thus the arranged
aerodynamic boxes also aligned in strip direction to
be parallel to the airflow.

It is a different situation with strip theory mod-
elling technique. The load at each spanwise station of
a wing is assumed to be depending only on the motion
of the station when flutter solution is computed. The
lifting surface is divided into a set number of strips,
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Figure 13: Normalized flutter speeds with respect to
the crack ratio for case θ = 00, θ = 900 and θ = 1350

and the aerodynamic loads are estimated based on
two-dimensional coefficients evaluated at the centre-
line of the strip.

The comparison using both techniques is illus-
trated in Fig. 16. For this reason, the aerodynamics
modelling accuracy using Strip theory is lower than
DLM where the aerodynamic is consider strip by strip
from the root to the tip of the composite plate, in-
cluding the crack surface. The intention of computing
the flutter speed based on Strip theory is to validate
the work using DLM, which is not done by Wang et al
[14]. Thus, it is believed that the aerodynamic mod-
elling for the crack ratio of 0.2 is more reliable to be
modelled with DLM.

To clarify this statement, the real and imaginary
parts of the aerodynamic matrices for crack ratio =
0.2 are computed. Aerodynamic matrices of Qhh in
Eq. 32 shows the aerodynamic matrices computed for
both real and imaginary parts where h = 1 and h = 2
are referred to the bending mode and torsion mode,
respectively. In this case, Q11, Q12, Q21 and Q22

refer to the aerodynamic parameters for both real and
imaginary parts in bending-bending, bending-torsion,
torsion-bending and torsion-torsion, respectively.

Qhh(real&imaginary) =

[

Q11 Q12

Q21 Q22

]

(32)

Both DLM and Strip theory computational aero-
dynamic matrices results are presented in Table 4.
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Figure 14: Comparison of DLM and Strip theory for
normalized flutter speeds with respect to the crack ratio

for case θ = 00, θ = 900 and θ = 1350

Referring to Eq. 27, the real and imaginary parts
of the aerodynamic matrices are contributed to the
aerodynamics stiffness system and aerodynamic damp-
ing system, respectively. The negative sign value in
Table 4 means the addition in the damping or stiff-
ness system while the positive sign means the reduc-
tion to the damping of stiffness system. By analysing
the data, the real part of the aerodynamic matrices
using DLM is higher than the value computed using
Strip theory. Thus, it means that the stiffness system
estimated using DLM is less than strip theory.

The same analysing procedure is applied in eval-
uating the damping system. For this case, the imag-
inary values computed using DLM is less than the
value estimated using strip theory. In this case, the
lesser values of imaginary aerodynamic matrices have
increased the damping system of DLM compared to
Strip theory. For this case, the higher damping sys-
tem has led to the stability of the cracked composite
plate with the crack ratio of 0.2 to be increased; thus
the flutter speed computed also has increased. This
is the reason why the flutter speed of the composite
plate with 0.2 is estimated to be higher using DLM
compared to the flutter speed computed using strip
theory.

6.4. Section b: Flutter effects on crack location

The objective of this subsection is to study the
effects of the flutter speed when the location of the
crack is changing from the root to the tip of the com-
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(a) ɻ = 0.0ி݂ ൌ 37.37 Hz

(b) ɻ = 0.2ி݂ ൌ 34.75 Hz

(c) ɻ = 0.25ி݂ൌ 34.42 Hz

(e) ɻ = 0.5ி݂ ൌ 31.15 Hz

(f) ɻ = 0.6 ி݂ ൌ 29.74 Hz

(g) ɻ = 0.75ி݂ൌ 26.85 Hz  

(d) ɻ = 0.4ி݂ ൌ 32.75 Hz

Figure 15: Flutter response modes for case θ = 00 with variation of crack ratio

Table 4: Aerodynamic matrices data comparison between DLM and Strip theory for crack ratio 0.2

Aerodynamic parameter Doublet Lattice Method Strip Theory

Q11 2.47x101 − 8.68x102i -1.94x102 − 1.12x103i
Q12 -1.32x104 − 6.43x102i 1.96x104 + 1.91x103i
Q21 8.58x101 + 8.13x102i 2.22x102 + 8.99x102i
Q22 1.29x104 − 1.57x103i 1.70x104 − 3.53x103i

posite plate. For this part; the crack length, a = 0.02
m is fixed for each case is validated with work done in
[14]. Fig. 17 shows the results of normalized flutter
speeds of VF /VR versus the crack location denoted
as ξc for the unidirectional composites of 00, 900 and
1350 orientations.

For the same analysed cases, the aerodynamics
modelling for the specimens using DLM is repeated
by changing it using Strip theory. The comparison
results of normalized flutter speeds with respect to
the crack location for case θ = 00, θ = 900 and θ =
1350 orientations using DLM and Strip theory (η =
0.2) are shown in Fig. 18.

In this case, VF /VR approximation using DLM
seems to be higher than the estimation by using Strip
theory. There is a significant part of this case where
VF /VR at ξc = 0.2 is found to be slightly higher than
VF /VR at ξc = 0.4. VF /VR are found to have in-
creased after ξc = 0.4 till near the tip. Hence, the
case of η = 0.2 is much complicated where the VF /VR

is increased due to the crack ratio, as it is shown in

the subsection 6.3.
Thus, to check the effect of the flutter speed when

the location of the crack is changing from the root to
the tip, the procedure is repeated using a different
crack ratio which is η = 0.6. It stems from the fact
of the consistency shows for the case η = 0.6 when
the crack ratio is constructed in the subsection 6.3.
VF /VR results for this case are shown in Fig. 19.

In Fig. 19, it turns out that the VF /VR plot shows
consistency for all unidirectional composite plates of
00, 900 and 1350 orientations. The result indicates
that the VF /VR increases as the crack location moves
from root to tip, as expected. This outcome is ex-
plained in Fig. 20. The flutter responses for unidi-
rectional composite plate of θ = 00 are plotted; the
flutter frequency trend is found to have dropped as
the crack location moves from root to tip. The reduc-
tion of flutter frequency allocates more time for the
structure to swing, thus increase the flutter speed.
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(a) Doublet Lattice Method  ʹ without crack (b) Strip theory ʹ without crack

(c) Doublet Lattice Method ʹ with crack (d) Strip theory ʹ with crack
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Figure 16: Comparison of aerodynamic modelling technique between Doublet Lattice Method and Strip theory for
without crack and with crack specimen
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Figure 17: Normalized flutter speeds with respect to
the crack location (η = 0.2) for case θ = 00, θ = 900 and

θ = 1350
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Figure 18: Comparison of DLM and Strip theory (η =
0.2) for normalized flutter speeds with respect to the
crack location for case θ = 00, θ = 900 and θ = 1350
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Figure 19: Comparison of DLM and Strip theory (η =
0.6) for normalized flutter speeds with respect to the
crack location for case θ = 00, θ = 900 and θ = 1350
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Figure 20: Flutter response modes for case θ = 00 with variation of crack location
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7. Conclusion

This paper offers a new investigation of the com-
putational flutter estimation on a cracked composite
plate. The study is divided into two sections; Sec-
tion a: Flutter effects on the crack ratio and Section
b: Flutter effects on crack location. To the authors’
knowledge, this is the first time that the flutter on a
cracked composite plate is assessed using the coupled
FEM-DLM method. The variation of unidirectional
angle led to different flutter speed obtained for each
composite structures. Using FEM-DLM approach,
the crack ratio initiated until 0.4 has increased the
flutter speed for all unidirectional composite plates
of 00, 900 and 1350 orientations. The existence of
crack on the structure results in a reduction of flutter
speed from the crack ratio of 0.4 until the structure
about to break.

The flutter analysis of fractured unidirectional com-
posite plate due to the different crack location by fix-
ing the crack length, η were performed. For this part,
the analysis is performed where the crack location has
been varied from the root to the tip of the plate. For
η = 0.2, the normalized flutter speed VF /VR shows in-
consistency since the effect of crack length is involved,
where the existence of crack length, η = 0.2 has led
to the flutter speed increment compared with the un-
damaged specimen. The investigation is repeated for
η = 0.6 since the crack length shows a consistency
in the crack length analysis. The results show that
the normalized flutter speed for this crack length in-
creases as the crack location moves from the root to
the tip of the plate. The results of normalized flut-
ter based on FE-DLM are compared with the results
of normalized flutter based on FE-Strip. The com-
parison shows a very good agreement with a slightly
higher of normalized flutter speeds estimation by FE-
DLM compared to FE-Strip.
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