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Abstract 
Regarding the higher demand of the total joint replacement (TJR) and revision surgeries 

in recent years, an implant material should provide much longer lifetime without failure.  

Nickel titanium (NiTi) is the most popular shape memory alloy in the industry, especially in 

medical devices due to its unique mechanical properties such as pseudo-elasticity, damping 

capacity, shape memory and good biocompatibility. However, concerns of nickel ion release 

of this alloy still exist if it is implanted for a prolonged period of time. Nickel is well known for 

the possibility of causing allergic response and degeneration of muscle tissue as well as being 

carcinogenic for the human body beyond a certain threshold. Therefore, drastically improving 

the surface properties (e.g. wear resistance) of NiTi is a vital step for its adoption as 

orthopaedic implants. 

To overcome the above-mentioned risks, different surface treatment techniques have 

been proposed and investigated, such as Physical Vapour Deposition (PVD), Chemical Vapour 

Deposition (CVD), ion implantation, plasma spraying, etc. Yet all of these techniques have 

similar limitations such as high treatment temperature, poor metallurgical bonding between 

coated film and substrate, and lower flexibility and efficiency. As a result, laser gas nitriding 

would be an ideal treatment method as it could overcome these drawbacks. 

Moreover, the shape memory effect and pseudo-elasticity of NiTi from a reversible phase 

transformation between the martensitic phase and the austenitic phase are very sensitive to 

heat. Hence, NiTi implant is subjected to the following provisions of the thermo-mechanical 

treatment process, and this implant provides desired characteristics. It is important to suggest 

a surface treatment, which would not disturb the original build-in properties. As a result, the 

low-temperature methods for substrate have to be employed on the surface of NiTi. This 

present study aims to investigate the feasibility of applying diffusion laser gas nitriding 

technique to improve the wettability and wear resistance of NiTi as well as establish the 

optimization technique.  

The current report summaries the result of laser nitrided NiTi by continuous-wave (CW) 

fibre laser in nitrogen environment. The microstructure, surface morphology, wettability, 

wear resistance of the coating layer has been analysed using scanning electron microscopy 

(SEM), X-ray diffractometry (XRD), sessile drop technique, 3-D profile measurement and 

reciprocating wear test. The resulting surface layer is free of cracks, and the wetting behaviour 

is better than the bare NiTi. The wear resistance of the optimised nitride sample with different 
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hatch patterns is also evaluated using reciprocating wear testing against ultra-high-molecular-

weight polyethylene (UHMWPE) in Hanks’ solution. The results indicate that the wear rates 

of the nitride samples and the UHMWPE counter-part were both significantly reduced. It is 

concluded that the diffusion laser gas nitriding is a potential low-temperature treatment 

technique to improve the surface properties of NiTi. This technique can be applied to a 

femoral head or a bone fixation plates with relatively large surface area and movable 

components.     
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1. Introduction  

1.1. Background of Study 

People all over the world are demanding better quality of life. Thus, there is a growing 

demand of replacement and revision surgeries in recent years. Total joint replacement (TJR) 

is therefore more essential and critical in orthopaedics. In 2012, over 98,000 total hip 

replacements (THRs) were performed in the UK, more than 1 in 10 of these were revision 

THRs [1]. According to the data collected on TJR surgery, it is estimated that by the end of 

2030, the demand of THRs will rise by 174% and total knee arthroplasties is projected to grow 

by 673% from the present rate [2]. Moreover, the hip or knee prostheses are expected to 

increase its longevity in order to reduce the possibilities of future revision surgery as revision 

surgery is very expensive and the results are usually less satisfactory than the primary surgical 

treatment [3].  

Metallic implants are recommended for orthopaedic implants, especially for load bearing 

application, because of their excellent mechanical properties compared with ceramic and 

polymer. The metallic materials possess appropriate combination of high strength and low 

modulus, high fatigue and wear resistance, high ductility and be without cytotoxicity [4]. 

Therefore, metallic implants are proposed in such application. 

Although the metallic material is an ideal candidate for implant material, there are still 

some drawbacks after long term use, such as malpositioning, instability, periprosthetic 

fracture (i.e. a broken bone occurred around the implant components of TJRs) and infection 

(i.e. bacteria exists during implant surgery or post-surgery without appropriate hygiene) [3, 5, 

6]. The debris generated between the implant movement will affect the proper function of 

implants giving to loosening and components mismatch, and subsequently create a side effect 

to the surrounding body tissues and bones. These debris also provide a source for bacteria 

growth which will increase the rate of infection. With this scenario, improvement to metallic 

implants is necessary in extending the implants lifetime so that the number of revision 

surgeries is kept at a minimum. 

The wear behaviour of the implant materials is a concern in implants, because of its 

subsequent side effect to the patient. The process of wear in TJR can generate wear debris 

that causes TJR aseptic loosening and implant failure including femoral component [7, 8]. 



P a g e  | 2 

 

2 | P a g e  
 

Worse still, the patient may be infected by wear debris. With regards to the above-mentioned 

issues, the design engineer need to strike a balance between different properties and 

considerations, including processing time and cost, material surface chemistry, mechanical 

properties, corrosion resistance and biocompatibility etc. In this connection, surface 

modification provides an alternative to enhance surface and mechanical properties without 

altering substrate bulk properties.  

1.2. Nickel Titanium as an Implant Material 

Nickel Titanium (NiTi) shape memory alloy is a stoichiometric compound which is a solid 

solution with 55 w.t. % of Ni and 45 w.t. of Ti [9]. Comparing to conventional metallic 

materials, such as stainless steels and Ti-6Al-4V, the shape memory effect, super-elasticity 

and good biocompatibility of the NiTi are the attractive mechanical properties for this 

promising material in commercial medical implants [10, 11, 12, 13, 14]. Especially the shape 

memory effect, its alloy can restore the original shape of a deformed sample by heating it up 

to a specific temperature (i.e. transformation temperature).  This phenomenon is named as 

‘thermoelastic martensitic transformation’. The brief process is that cool austenite (high 

temperature phase in NiTi) to form twinned martensite (low temperature phase), then 

deform/untwine martensite by external force, afterwards heat to revert to austenite (original 

shape). It is known as shape memory effect and the detail will be discussed in section 2.2.1. 

Apart from the shape memory properties, NiTi alloy also has excellent corrosion resistance, 

wear resistance and mechanical damping capacity [10, 11, 12, 13, 14].  

Stress shielding is related to the redistribution of load and consequently the reduction of 

the bone density, which results in the removal of stress on the living bone by the nearby 

implant, for example, the metal components in the total hip replacement [15]. Referring to 

Wolff’s law, the human or animal bone is ready to remodel under load, thus, the loading on 

a bone is decreasing, the bone is trend to reduce the density and weaken due to no stimulus 

for the remodelling in order to maintain the bone mass. The great mismatch in Young’s 

modulus between metallic materials and the surrounding bone results in stress shielding. In 

comparison with the Young’s modulus of Co-Cr alloys (200-220 GPa) and stainless steel 

(approximately 200 GPa), NiTi SMAs have lower Young’s modulus (e.g. 70-110 GPa for B2 

austenite and 29-69 GPa for the B19’ martensite), which may reduce the stress shielding 

effect if they are used as orthopaedic implant [16]. As a result, this alloy may be applied for 
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the manufacturing of equipment and devices used for medical application in orthopaedics 

and dentistry, such as stents, bone anchors, fixation nails, bone staples, compression plates, 

orthodontic arch-wires, dental root implants and adjustable brackets [17, 18].  

Although NiTi is not currently used as the major component in TJR implants, it has been 

recommended as a material with high potential for such orthopaedic applications [19] among 

10 metallic materials in current use (e.g. Ti-6Al-4V and CoCr) and potential materials. This 

recommendation based on a holistic consideration to judge the material’s possibility for the 

implantation. For example, factors including density, tensile strength, Young’s modulus, 

elongation, wear resistance and osseointegration. However, similar to other Ti alloys, there is 

a concern of the relatively poor wear properties, especially for NiTi alloys with high Ni content 

(i.e. Ni ion release may cause toxicity, asthma, allergic and immune sensitizing [20, 21]). In 

potential orthopaedic application where they are used as femoral head against with plastic 

liner [22, 23], wearing of NiTi will produce debris which might invoke inflammatory and 

immunological responses [24]. To avoid this, surface modification of NiTi may be effective in 

keeping the bulk properties while improving the wear performance by forming a protective 

layer (e.g. TiN) to prevent Ni ion from being released. 

1.3. Motivation of Current Study 

1.3.1. Need of Surface Modification  

       The wear debris generation after a long term wearing in the movable component is a 

major factor affecting the performance of NiTi implants. The high concentration of nickel in 

the NiTi alloy also has hindered its use for long term implantation. Some studies reported that 

the high Ni content alloys might release Ni ions in an aggressive physiological in vivo 

environment, and the release of nickel may induce toxic and allergic response to body tissues 

[18, 25, 26, 27]. The subsequent release of Ni ions into the body system is a fatal issue for 

long term application of this alloy in the human body, and currently poses a challenge to use 

NiTi for long-term implantation. Given the excellent properties of NiTi related to its high Ni 

content, significantly reducing Ni content inside the bulk substrate is therefore non-

negotiable. It will be most advantageous if NiTi surface could be modified without sacrificing 

the bulk composition, to reduce surface nickel content, and improve the wear resistance and 

biocompatible properties of the surface. 
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1.3.2. Importance of Low-Temperature and Non-Roughening Treatment 

        Various surface modification methods (e.g. Physical vapor deposition (PVD), plasma 

immersion ion implantation (PIII), physical treatment and hydrothermal deposition of calcium 

phosphate coating) are available in literature [28, 29, 30, 31] for enhancing the wear resistance 

and biocompatibility of metallic implants, such as titanium and stainless steel implants. Those 

methods were successfully performed, for example, PVD coated 316L stainless steel showed 

significant enhancement on both wear and corrosive condition in simulated body fluid; PIII 

treated samples demonstrated better blood compatibility and antibacterial property. 

However, most of these methods may not be an ideal solution for NiTi although they work 

well for other metallic materials. NiTi shape memory alloys exhibit shape memory effect and 

pseudoelasticity from a reversible phase transformation between a low-temperature phase 

(martensite) and a high-temperature phase (austenite) [32]. It is well known that the 

transformation features and the mechanical properties of NiTi are very sensitive to heat (e.g. 

temperature above 400 °C). When the temperature is too high, phase change may take place, 

resulting in an undesirable effect on the mechanical properties of NiTi implants. It is important 

that any surface modification and sterilization process should avoid undergoing at high 

substrate bulk temperature, otherwise the built-in properties of the NiTi implants may be 

affected. High temperature treatment will cause the surface of NiTi to melt and subsequently 

re-solidify after cooling. More importantly, non-roughening treatment, a low temperature 

surface modification method, is necessary, so as to avoid the occurrence of undesirable 

roughened surface that may reduce the wear resistance. The roughened surface requires 

post-treatment as well, which may increase manufacturing cost. For non-roughening 

treatment, the process should be controllable to reduce the risk of affecting the built-in 

properties and surface feature of NiTi implants. Not only does it improve the mechanical 

properties of NiTi, but it also sheds lights on scaling up the lab-based research to industrial 

application.  

1.3.3. Surface Modification – Laser Gas Nitriding 

        Laser is accepted as an effective tool to modify the surface appearance or composition 

of a material in order to improve their mechanical and chemical properties as well as 

biocompatibility. Conventional Laser Gas Nitriding (LGN) of titanium alloys was initiated by 

Katayama et al in 1983 [33]. LGN is an efficient technique offering accurate spatial control of 
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surface treatment without any undesired heating of the substrate. It is chemically clean and 

capable for remote non-contact processing. It is also relatively easy to automate. 

Conventional LGN usually forms an atomically intermixed layer between metallic substrate 

and coating, resulting in high bonding strength [34]. Initial research in this field focused on 

the microstructure characterization and mechanical behaviour of nitride surface. Hoeche et 

al [35] discussed the cracking problem observed in the LGN of titanium. They concluded that 

cracking is a major concern, especially on thick layers’ formation. Schaaf et al [36] studied the 

wear resistance of the laser nitrided titanium alloys and reported that the abrasive wear 

resistance of Ti-6Al-4V could only be improved if the thick layer exhibits hardness of 800 HV 

or above. The friction coefficient and the mass loss under sliding wear conditions can be both 

minimized effectively by continuous-wave (CW) laser nitriding [36]. Nevertheless, 

conventional LGN involves surface melting and roughening in a nitrogen atmosphere. Thus, 

the post surface treatment is inevitably required. Alternatively, diffusion laser gas nitriding 

(DLGN) method without surface melting and roughening was developed [37]. The results 

showed that the Titanium Nitride (TiN) on the surface of the Ti alloy (i.e. Ti-6Al-4V) could 

significantly reduce the wear debris from the bulk material to the surrounding. However, 

there is no any investigation of non-roughened homogenous TiN fabrication by the DLGN on 

NiTi surface. It is believed that the thin and homogenous TiN could improve the hardness, 

wear resistance and wettability on Ti and Ti alloys. As a result, a comprehensive analytical 

study on NiTi by DLGN is necessary. 

1.4. Aims and Objectives 

As introduced previously, on one hand, proper surface treatment, promotes wear 

resistance, on the other hand, it reduces ions release rate that enhance the safety of metallic 

implants in the long run. Moreover, in the implant fixation (i.e. involves the surgery of 

implants implementation for repairing a bone or a joint), bone-cell adherence also is the 

another concern and affects the successful rate of implants in early stage. It has been well 

researched that bone cell adherence is associated with the surface topography, chemical 

composition and roughness [30, 38, 39, 40]. So these properties of the implants should be 

extensively investigated which ensure the wear resistance and biocompatibility of implant 

materials in long term use by applying suitable surface treatment. In particular, the debris 

generated from the implant movement has high potential to affect both wear and biological 
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responses of implants, so wear improvement and debris reduction combined with analysis of 

surface topography, chemistry and roughness is the first priority to be studied in current case. 

As a result, the cell adherence and biological performance will not be included in the present 

study. 

        Existing studies in this area are based on the conventional laser gas nitriding (CLGN) 

method by which only a single parameter is varied in each run with other parameters being 

kept constant. It is ineffective to understand the laser parameters because the interactions 

between each other are normally neglected. Because of this, there is a knowledge gap 

between study of design of experiments (e.g. Taguchi method) and optimisation of the laser 

parameters with their interactions on the surface properties. The aim of the study is to 

understand the relationship between different laser parameters and their interactions on the 

surface properties. Besides, coating with the process optimization, coverage quantification, 

surface morphology, wear behaviour as well as wettability of nitriding surface will also be 

studied.  

The following specific objectives are pursued: 

1. To investigate the relationship of laser processing parameters upon the geometric 

characteristics of the single track of TiN on NiTi 

2. To study the surface coverage of laser track after nitriding of NiTi after process 

optimization 

3. To create full of TiN surface and different hatch patterns TiN surface on the NiTi and 

examine the wear resistance of these specimens 

4. To study the wettability of bare and nitrided NiTi by eliminating the surface roughness 

effect in wetting property 

1.5. Research Significance and Value 

Good mechanical properties and biocompatibility of NiTi make them favourable in various 

areas of application, such as orthopaedic and dentistry applications. NiTi can further be 

applied into other industries, e.g. aerospace, if its tribological performance and wetting 

properties can be better understood and improved. Therefore, the results of the current 

research may facilitate the nitrided NiTi for better cell adhesion and its biological responses 

inside the human body. The significance of this research includes: 
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1. Contribution to the development of an optimum laser nitriding process of NiTi 

2. Improvement of surface properties of NiTi for potential application such as femoral 

component in hip/knee implant 

3. Determination of the percentage of nitrided area on the NiTi surface by Image analysis 

4. More comprehensive understanding of the wetting properties of NiTi by changing 

surface composition only 
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2. Literature Review  

2.1. Introduction 

Inserting biomaterials as an implant into the human body can facilitate better biological 

and mechanical functioning, which can improve the quality of life of patients. Due to a wide 

variety of biomedical applications, the implant should withstand under higher mechanical 

load and also has a desirable long-term biological response with the surrounding tissues. The 

part for the load bearing application is mainly controlled by the mechanical properties of the 

implant materials whereas the interaction between the surrounding tissue and implants is 

affected by the surface properties of the implant materials [20, 30, 38]. The implant surface 

influences the wettability, and subsequently affects the interaction and absorption of 

different proteins which in order to govern the cell adhesion and behaviour. In general, the 

overall reaction relating the human body to an implant is a complex systematic process that 

includes many aspects, namely surface morphology, surface chemistry, surface free energy, 

biodegradation, implant movement and surgical aspects. Moreover, the relative corrosive 

human body fluid and the high sensitivity of the human body to some dissolved metal ions 

(i.e. Ni and V) prohibit the materials to be a promising implant materials. Nowadays, the 

current used metallic biomaterials which can be employed in medical applications as implants 

are CoCr alloy, stainless steel, NiTi shape memory alloy, titanium and its alloys. In this chapter, 

the mechanical properties, surface properties and the medical applications of NiTi shape 

memory alloy are reviewed. In addition, the problems including the wear behaviour are 

scrutinized and the possible treatment methods are illustrated. The wear behaviour and 

surface roughness of the Ti and its alloys by the laser nitriding are studied at the end of the 

reviewing of literatures 

2.2. Metallic Materials for Hard Tissue Replacement 

Metallic materials has emerged as an important biomaterial for fabricating implantable 

devices, such as replacement implants in human joints, orthodontic arch wires and 

intravascular stents, due to its outstanding mechanical performances that may not be found 

in the polymer and ceramic [14, 41]. Regarding their excellent mechanical properties, the 

most commonly used metallic materials for medical application include Ti, Ti alloys, NiTi shape 

memory alloys, stainless steels and cobalt chromium alloys for bone plate, hip and knee 
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replacement. In particular, NiTi shape memory alloy is an attractive biomaterial in the 

biomedical applications due to its shape memory effect. 

2.2.1. NiTi Shape Memory Alloys 

Nickel Titanium (NiTi) shape memory alloy has been increasingly used in the medical 

devices industry as their specific characteristics [10, 11]. NiTi alloy is a stoichiometric 

compound which is a solid solution with 55 w.t. % of Ni and 45 w.t. % of Ti [9]. The shape 

memory effect, super-elasticity and good biocompatibility of the NiTi are the attractive 

concerns in commercial medical implants [10, 11, 12, 13]. Apart from the shape memory 

properties, NiTi alloy also has excellent corrosion resistance and mechanical damping 

capacity. For the shape memory effect, it is a phenomenon such that a specimen is deformed 

below martensite finish temperature (Mf) or at temperatures between Mf and austenite start 

temperature (As). Upon to a temperature above Austenite finish temperature (Af), the NiTi 

specimen may regain its original shape by reverse transformation. The shape of the NiTi alloys 

does not change due to the transformation occurs in a self-accommodating manner. When 

the external stress exists, the twin boundaries move to accommodate the applied stress. 

Furthermore, if the stress is high enough, it will become a single variant of martensite and 

changes into the twin orientation by shearing to create a large twinning shear strain. A 

subsequent heating is applied to the specimen and the temperature is above Af, reverse 

transformation is likely to occur, and the crystallographically reversible, the original shape will 

be rewarded. This is the mechanism related to shape memory effect. Besides the shape 

memory effect, super-elasticity is one of the attractive properties of NiTi alloys. When the 

NiTi alloys is in its austenite phase, a highly elastic behaviour is exhibited. This allows the 

material to deform up to 7 % which the common alloys are far below 1 % in the elastic strain 

[42]. Super-elastic NiTi can be strained several times more than ordinary metal alloys without 

being plastically deformed, which reflects its rubber-like behaviour [43]. In addition, for the 

elastic modulus, the NiTi shape memory alloys can exhibit as low as 30 GPa in the martensitic 

state (The elastic modulus of Bone: 10 – 40 GPa [20]) which can get rid of stress shielding 

effect. With the above-mentioned properties about NiTi shape memory alloys, they are more 

appropriate than other metallic material in load-bearing applications. 
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2.2.1.1. Orthopaedic Applications 

The NiTi shape memory alloys have been widely used in orthopaedic as its well-known 

shape memory effect and outstanding mechanical performances that may not be found in 

titanium and stainless steels [20, 44, 45]. For example, the spinal vertebra spacer is one of 

devices applied for orthopaedic, as shown in Fig. 1 [46]. This spacer is inserted between two 

vertebrae which can avoid any traumatic motion during the healing process depending on the 

local reinforcement. The shape memory spacer, can sustain a constant load in the certain 

position of a patient and avoid some degree of motion [47]. Normally, it is used in the 

treatment of scoliosis [48]. As shown in Fig. 1, it can be observed that the left side in part B, 

the spacer is in the martensitic stat, and on the other side, the spacer is in its original shape 

which is related to the recovery by the pseudo-elastic phenomenon.  

According to the fractured bone healing, one most expected application is the recovery 

of the bones. The bone plates, which are made from NiTi shape memory alloys, are primarily 

used in situations where a cast cannot be applied to the injured area, such as jaw and eye 

socket. The aim is to maintain the original alignment of the bone and allow a better tissue 

proliferation. In accordance with the shape memory effect, when the suitable temperature is 

applied on these bone plates, these bone plates tend to recover their former shape while a 

constant force exerts to join parts separated by fractures, helping with the healing process 

[48]. Fig. 2 shows the prototype designed for the above-mentioned application. 

It is worth to note that one more interesting application is the porous shape memory alloy. 

It has a great potential in orthopaedic implants with regard to their porosity that allows the 

flow of body fluids from outside to inside the bone. It can enhance the successful rate of 

treatment and also helps the fixation of the implants [49]. 
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Figure 1 The schematic diagram of spinal vertebrae (a) and shape memory spacers (b) [46] 

 

Figure 2 Shape memory bone plates, (a) plates fixed upon a human jaw, (b) Detail of the plate and the screw [46] 

2.3. Problems Associated with Biomaterials used in Medical applications 

On the basis of the attractive mechanical properties and corrosion resistance, Ti and its 

alloys become ideal candidates used in medical applications since last mid-century and NiTi 

SMA has been widely developed as metallic biomaterial for medical purpose [50]. For the 

long-term reliability of implantation, a problem associated with biomaterials (e.g. Ti and NiTi), 

such as long-term wear and debris generation, is discussed in following sections in details. 

Laboratory-scale performance testing and measurement of biomaterial properties are also 

illustrated. 

2.3.1. Long-Term Wear and Debris Generation 

Wear is a technical term and is defined as the continuous removal of material with 

progressive generation of wear debris. The relative motion is the result obtained between 
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two opposing surfaces under certain loading [51]. It is perhaps the most important aspect of 

biomaterials which used in TJRs and for this reason is attracting considerable attention at the 

present time. There are five main types of wear mechanisms, that is, adhesion, abrasion, 

fatigue, corrosion and erosion [52, 53]. Moreover, delamination, penetration, pitting, fretting 

and cavitation which are descriptive of the appearance of the worn surface  [54].  

For example, adhesion is occurred when two surfaces are pressed together under loading 

to form surface bonds; sufficient relative motion causes the material pulling away from one 

or two of the surfaces, which often happens on the weaker material surface. In the abrasion 

situation, the asperities or protuberances on the harder surface plough through the softer 

surface, the result is to remove the material from the softer surface. There are two types of 

abrasive wear, such as two-body and three-body abrasive wear. For the two-body wear, it is 

resulting from the hard protuberances on the harder surface sliding between two contact 

surfaces; On the other hand, three-body wear is caused by the hard particles being free slid 

and rolled between two contact surfaces. For the fatigue wear, it is induced by the applied 

local stress once it has exceeded the fatigue strength of a material subjected to a period of 

loading cycles, the material will be thus failed to release material from the surface. Chemical 

or electrochemical reactions involved in the wear process is known to be corrosive wear. 

Erosive wear is defined as the loss of material from a solid surface in contact with a fluid 

containing solid particles during relative motion. 

In many cases, two or more wear mechanisms could be mutually inclusive. For example, 

adhesive wear may release wear particles, subsequently induce an abrasive action. In the case 

of polymers, adhesion, abrasion and fatigue wear could be existed simultaneously to the 

overall wear process [54]. Abrasive wear could be minimised and reduced by creating a 

smooth surface on the harder material or a better sealing to control abrasive particles release. 

For the fatigue wear, it could be managed by material stress levels in the design process and 

the frequency of stress reversals. The careful material selection or environmental selection 

can reduce harmful chemical reactions to minimise corrosive wear. It should be mentioned 

that adhesive wear could be the least manageable wear mechanism in joint tribology, because 

the adhesion is easily formed between two contact surfaces in relative motion [53] and 

therefore, this wear mechanism is most of concern in joint tribology. 
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2.4. Wear Testing and Measurements of Biomaterials 

The wear rate of the bearing biomaterials in the medical devices is a crucial parameter to 

determine the life of the implants. Therefore, it is important to accurately measure the wear 

rate of proposed designs for medical components and ensure that the certain designs will be 

satisfied [54, 55]. Moreover, the wear tests can help to understand the basic wear 

mechanisms under certain circumstances. There are several procedures to evaluate wear 

performance, such as testing components in joint simulators, laboratory testing of 

biomaterials under controlled situations and monitoring the performance etc.  

Direct measurements of the prostheses under tribology condition can be clinically 

performed in vivo, for instance, by the radiographic measurements or the measurement of 

dimensional changes in explanted prostheses [53]. However, due to creep effect, it is difficult 

to distinguish the wear and deformation for each measurement. 

The long test time of the bearing assembly and the expensive test procedure of the total 

joint displacement simulator, a simple laboratory test is attractive in the case of basic 

information of the wear mechanism between the two surfaces [54]. The main idea of 

laboratory wear testing is to utilise the known applied load, the known sliding materials and 

the known velocity with controlled circumstance to record the amount of material removal 

rate under wear condition. Laboratory equipment was identified as a screening device for 

studying the wear behaviour of prosthetic biomaterials to develop an integrated wear process 

and to further understand the level of wear in order to develop joint designs in the future. 

Commonly used screening devices for the wear process may be pin-on-ring, pin-on-disc and 

reciprocating pin-on-plate testing machines. Pin-on-disc screening device is most popular due 

to stable operating conditions and good operating conditions. However, in the Pin-on-disc 

test, only high-speed and unidirectional motion are used, so this screening test failed to 

investigate the characteristics of the joint movement as it is a reciprocating motion. The 

reciprocating pin-on-plate screening device can be a good reflection of the lower limb bearing 

joints encountered at this situation [53]. Thus, the reciprocating pin-on-plate screening test 

can provide more realistic quantitative data to estimate the tribological performance of total 

hip and knee arthroplasty in vivo.  
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Tribo-pairs of implant materials are often recorded in different ways in the laboratory 

scale, such as material weight loss measurement, the collection of wear debris and optical 

measurement of surface topography changes. In general, by using these recording techniques 

to evaluate the wear performance, it can be seen that increase in normal load, sliding distance 

and hardness of softer counter-part may result in an increase in wear rate [54]. If the average 

contact stress between two counter-parts is not high, the wear rate of the polymer and 

metallic counter-part can be given with fair accuracy by the following equation [56, 57]:  

Equation 1 Archard Equation 

𝑘𝑖 =
𝑉

𝐹 × 𝑆
 

Where 𝑘𝑖  is the wear factor (or the specific wear rate coefficient) (mm3/Nm). Index i 

identifies the surface considered. F is the normal load (N), S is the total sliding distance (m), V 

is the wear volume of material (mm3). The wear factor is an indication of the wear rate with 

given combination of materials, and it is usually used for comparative purposes to study the 

wear properties of potential prosthetic materials [53]. 

The conventional wear screening devices may excessively simplify the motion/loading 

configurations, and the low wear rate of UHMWPE may be attributed to the liner motion of 

the conventional wear testing devices [53]. Therefore, the linear motion of the conventional 

wear tester may underestimate the wear factors of the joint simulators and clinical results, 

and provide some inappropriate wear rate rankings for the relative components. From the 

literature [58, 59], the higher clinical wear rates in UHMWPE counter-part may ascribe to the 

multidirectional motion of the human joint. Consequently, the reliable wear rate of polymer 

and metallic biomaterials should be comparable to that of clinical wear rates, and should be 

examined in the multi-directional motion of the wear screening devices or joint simulator [58, 

59].  

In the wear mechanism between two contact surfaces, a frictional force is always 

presented that opposes the motion of an object [51]. Sliding and rolling are the two classes 

of relative motion in friction. The difference between rolling and sliding is remarkable, but 

cannot be mutually exclusive because almost all rolling motion involves some sliding motion. 

In the ideal case of rolling and sliding motion, a tangential force (F) is required to slide the 
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upper object over the stationary counter-part. The ratio between this force and the applied 

normal load (P) is defined as the coefficient of friction (µ) [60]: 

Equation 2 Coefficient of friction equation 

𝜇 =
𝐹

𝑃
 

The friction force is directly proportional to the applied normal load for most metallic and 

ceramic materials under lubricated and unlubricated sliding conditions. However, polymeric 

materials do not always follow the same condition happened in both metallic and ceramic 

materials. Generally speaking, the frictional force is usually greater in the initiation of sliding 

than in the maintenance of sliding, hence, the coefficient of dynamic friction (µk) is lower than 

the coefficient of static friction (µs). Once the static friction (µs) is established during sliding, 

it is found that static friction is nearly independent of sliding velocity for a wide range of 

sliding. Moreover, dynamic friction (µk) may fall with increasing velocity in the very high speed 

sliding.  

In the real life, for example, in the natural hip joints sliding motion, the coefficient of 

friction is around 0.005 [61]. The data of the coefficient of friction can give a help to illustrate 

the wear behaviour between two contact surfaces in total joints replacement. Throughout 

tracking frictional force data and identifying the range of the coefficient of friction, it can 

make a reasonable prediction of the duration of the use of artificial joints.  

2.5.  Laser Nitriding of Titanium and its Alloys  

The chemical cleanliness, automated control and fast processing times have been 

identified as the reason of surface modification of biomaterials by laser nitriding in terms of 

effectiveness and reliability. Another advantages in the view of material science of laser 

nitriding is that the titanium nitride layer is metallurgically bonded with substrate. In other 

words, this method could increase the bonding strength between substrate and nitride layer. 

Hence, this method could minimize the possibility of peeling off nitride layer. In this section, 

laser nitriding was mainly discussed with respect to the principles and major parameters of 

the nitriding process as well as the mechanical properties of the nitrided surface. 
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2.5.1. Principles of Laser Gas Nitriding 

Laser gas nitriding is one of the category in the area of laser surface alloying. It normally 

involves a surface melting and roughening of the treated samples with the nitride layer 

fabricated on the surface. The nitride layer is tightly bonded with the substrate and provide a 

superior protection to the metallic materials in terms of wear and corrosion resistance. For 

the better understanding of the nitriding process to facilitate well in mechanical 

improvement, the individual physical and chemical interaction within the process by 

implementing different laser parameters should be clearly identified. However, the entire 

process of laser nitriding is difficult to clarify due to the complexity of its interaction in various 

scientific background (e.g. chemical reaction between gas and metallic materials, materials’ 

physical properties) [28, 29]. 

 In general, the nitriding process is dominated by the local heating from the laser 

irradiation and subsequently rising surface temperature. This determines the nitrogen intake 

for TiN fabrication and the surface condition after the treatment. The lower heat input, the 

reaction rate between nitrogen and metal surface may be reduced. The higher heat input, the 

over-saturated TiN surface may be formed and this results in roughening surface and highly 

brittle surface feature. Therefore, various laser processing parameters should be included in 

the systematic approach to understand the influences between each processing parameters, 

subsequently pave a way to improve the heating and melting effects and even the sensitivity 

of evaporation on the sample surface [35]. For the purpose of better understanding the laser 

nitriding process, it is necessary to clarify and quantify the influences from different 

processing parameters to the coatings and their properties [35]. 

2.5.2. Process Control and Optimization 

In order to optimise the nitriding process of LGN research, extensive experiences in the 

laser processing will be necessary. First of all, the laser processing parameters should be 

analysed to understand the dependency on the process control, such as the beam size, and 

the most important processing parameters and the range of parameter values that need to 

be determined or estimated. The laser power density may be the most important parameter 

in the laser material processing, and can be varied by the focal length and the laser spot size 

[35]. The pulsed and continues wave modes are also key factors in determining the laser 

materials processing. For the continuous-wave (CW) mode, the scanning velocity is an 



P a g e  | 17 

 

17 | P a g e  
 

important parameter in the process whereas the pulse frequency is decisive for the pulsed 

mode [35]. Other parameters corresponding to the optimisation process are the gas pressure 

and gas flow [35]. These two parameters indirectly determine the surface quality and 

morphology.  

In addition, it has to be noted that another factor affecting the nitriding process is the 

material itself. In the processing, thermodynamic and mechanical properties of the irradiated 

material are gradually changed, and the mechanism is significantly affected by the changes in 

the accumulation state [35]. Moreover, the size of the work-piece, especially the thickness, 

strongly affects the cooling rate that controls the solidification process and the subsequent 

surface quality [35]. The similar process, such as laser welding, involves heating and cooling, 

which preheating the substrate before processing to reduce residual stresses in the welded 

thick section. This idea can be applied to laser nitriding as well and the effect of the preheating 

was proved to be remarkable in the LGN titanium alloys [62].  

For the optimisation of laser nitriding, it was rarely found in the literatures that most of 

the researchers focused on the microstructure and mechanical behaviour of the laser treated 

samples [35, 62]. For example, Perez et al [62] demonstrated the limited laser processing 

parameters for optimisation with the combination of the laser power and the scanning speed. 

The quality of the laser nitrided layer was found that free of porosity and crack [62]. In order 

to better understand the optimisation of laser nitriding, it is more important that the 

optimisation process should be based on a quantitative basis beyond the qualitative 

foundation for laser nitriding process optimisation. 

2.5.3. Cracks in Laser Gas Nitriding 

The cracks are rarely avoided in most of the metallic materials during laser nitriding.  

Therefore, the approaches to eliminate the cracks have been reported. Liu [63] found that 

the cracks formed on the nitrided surfaces of Ti-6Al-4V alloys were divided into two 

categories: the first type was the macro-cracks induced by the accumulation of residual 

stresses due to surface melting; the second type was the micro-cracks ascribed to the 

inherent brittleness of Titanium Nitride (TiN). The proper selection of laser parameters and 

condition, such as gas environment, energy level and scanning speed, were thus suggested in 

his work to avoid cracks formed in the nitrided surface.  
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Moreover, Hoche et al [35] found that cracks formed in thick nitride surface were always 

a critical issue. The reduction of nitrogen content in the nitriding processing was an effective 

way to prevent the cracks formed, however, this approach resulted in a significant reduction 

in hardness and wear resistance, which were not expected. An alternative has been published 

to use diode laser, the authors found that the cracks were only eliminated once the work-

piece was preheated to 500 °C , which was not sensitive to the nitrogen content applied [62]. 

However, this result was in conflict with most of previous studies in the laser nitriding process 

[64, 65, 66]. The reason might be the author using thick work-piece or performing the nitriding 

in different environment. Therefore, the effect of preheating the work-piece before the 

nitriding process has to be further elucidated in experiment.  

2.5.4. Phase Transformations of Laser Nitrided Surface  

Phase transformations or phase transition is a change in a feature of a physical system, 

often involving the energy absorption (e.g. heat) from the system, resulting in transitions 

between solid, liquid and gaseous states of matter. The laser gas nitriding method can be 

simply explained as the surface melting results in the surface of titanium and its alloys. As the 

surface melting is involved, this means that a phase change is likely existed on the surface of 

titanium and its alloys from the solid state to the liquid state during laser irradiation, and the 

liquid state of titanium and its alloys react with the surrounding gases to form new 

compounds (e.g. TiO2, TiN). If the cooling rate is sufficiently fast (i.e. depending on the process 

parameters and the size of the sample), and the nitrogen content is under 6.2 At. % inside the 

titanium and its alloys, a martensitic transformation (ά-Ti) could be obtained.  

The hardness is an indicator to indirectly illustrate the phase transformation inside the 

materials. For example, if the hardness is reduced from the top of surface layer to the 

substrate, this means that the phase on the surface is completely different from that in the 

substrate [67, 68]. In the case of nitriding samples, due to the presence of TiN, a higher 

hardness occurs on the surface, the hardness is decreased from the top (e.g. TiN) of the 

sample to the ά Ti-N solid solution matrix area (e.g. TiN dendrites) and the substrate (e.g. Ti). 

Between melt zone and heat affected zone, only the ά Ti-N solid solution exists, and the lower 

hardness level reflects lack of TiN, this means that the phase between melt zone and heat 

affected zone is not the same [67, 68].  
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Selemat et al [69] stated that cubic nitrides could appear in different stages of non-

stoichiometry. The X value in TiNx could be obtained between 0.5 to 1.1, and the X value 

depended on the percentage of nitrogen in the processing environment [69]. In addition, the 

X value is close to 1, the Nitrogen content is 100 %, whereas, 80 % of nitrogen content 

corresponds to an X value of 0.8 [69]. The concentration of TiNx is inversely proportional to 

the depth of the nitride layer [35]. Increasing of the depth from surface reduces the amount 

of TiNx precipitates. This means that the overall phase transformation on the top surface is 

not equal to the depth below 300 µm below the surface [70]. 

For the conventional laser gas nitriding, the volume fraction and distribution of the TiN 

phases strongly depend on the nitrogen content in the nitriding condition [36]. The very low 

nitrogen content contributed to the martensitic ά-Ti. When it is over 5 % of nitrogen content 

in the processing environment, a fine mixture of α- and β-Ti grains appeared due to 

suppression of martensitic transformation (β-Ti -> ά-Ti) by dissolving nitrogen atom to the 

solidified body-centred-cubic (bcc) lattice [65, 71]. When it is up to around 11 % of nitrogen 

content in the processing, a formation of globular and plate-shaped TiN0.3 could be observed 

[65, 71]. Therefore, the structure changed to a mixture of globular and plate-shaped TiN0.3 in 

a metallic fine disperse matrix of α- and β-Ti. With the nitrogen content up to 40 % in the 

process, δ-TiN dendrites became dominated in the microstructure of laser nitrided Ti-6Al-4V 

[36]. In addition, the phase of Ti2N, TiN0.3, α- and β-Ti were discovered in Ti-6Al-4V with hard 

and brittle nitrides and more ductile metallic components [36]. In the low concentration of 

nitrogen in the processing, the nitrogen atom dissolved interstitially in the ά- or α-lattice while 

in the higher concentration of nitrogen, the high amount of nitrogen atom in the melt zone 

led to the formation of TiN during solidification.  

Compared with conventional LGN, the phase transformation of nitrided surface on 

titanium and its alloys is a more advanced and complicated in diffusion LGN. Several reactions 

may appear simultaneously at the boundary between atmosphere and material surface. The 

basic principle of the diffusion nitriding based on Ti was presented by Zhecheva et al. [72]. 

This simplified model was developed based on reaction of diffusion rules to predict the 

processing temperature under the β transus temperature. When the titanium material is 

exposed to the nitrogen atmosphere at high temperature, the nitrogen atom diffuses into the 

titanium to form interstitial solution of nitrogen in the hexagonal-close-packed (hcp) α-Ti 
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phase [72]. In the Fig. 3, it shows that the surface layer is called the diffusion zone in terms of 

α(N)-Ti. This process could be continually repeated irradiating of the same surface until the α 

or ά-Ti matrix can dissolve more nitrogen atom at the surface of titanium. When the nitrogen 

concentration on the titanium surface is high, the α phase is not present in interstitial 

solution, subsequently, the reaction takes place at the interface forming the new Ti2N phase 

which is shown in the second row in the Fig. 3. In the same case, when the nitrogen 

concentration at the interface is further increased, phase transformation occurs at the 

titanium surface and the Ti2N transforms to TiN, where Ti2N is located below TiN. The 

compound layer consists of TiN and Ti2N while α- or α(N)-Ti as the diffusion zone is observed 

underneath the compound layer. This physical model is developed for the diffusion of 

nitrogen in pure titanium, and it can be deduced by using the reaction diffusion rules to the 

binary Ti-N phase diagram of the Ti-6Al-4V alloy. Moreover, titanium alloys (e.g. Ti-6Al-4V or 

NiTi) should be further investigated for confirmation of the actual phase development and 

stated any differences of microstructure with this basis model. 

  

Figure 3 A schematic diagram of the formation and growth of surface layers during diffusion nitriding of titanium [72] 

2.5.5. Properties of the Laser Nitrided Surface 

2.5.5.1. Surface Roughness 

The surface roughness induced by laser nitriding usually depends on the morphologies, 

such as ridges and periodic structures [70]. From György et al. [73, 74], a rippled structure 

developed under further laser irradiation might be an effective way to create micro-columns 
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over the entire nitrided surface. In addition, the nitrogen gas pressure was also a key factor 

on the surface morphology. When the pressure of nitrogen gas was high, smooth flat islands 

appeared, accompanied by a wave-like micro-relief plane [74]. An increase in the number of 

laser pulses, polyhedral structures were also found in the surface plane [74]. Xue et al [71] 

claimed that surface roughness after laser processing was determined by the laser processing 

parameters (e.g. nitrogen concentration) and the overlapping ratio between two adjacent 

laser tracks. Baker [70] also found that the surface roughness of the samples after laser 

treatment was smoother than that of the as-ground surface and the shot peening surface [68, 

71]. Under the 100 % of nitrogen gas environment, both Ti and Ti-6Al-4V alloys could improve 

the relatively smooth surface to the Ra values of 2.7 µm and 4.6 µm, respectively [68, 71], 

although these values were still greater than those by laser processing in 100 % argon 

atmosphere or under a vacuum situation [64].  

Therefore, in a word, the nitrogen gas pressure and concentration, laser processing 

parameters (e.g. laser power), overlapping ratio of two adjacent laser tracks and the number 

of the laser tracks are the principal determinant factors of surface roughness of nitrided 

samples.  

2.5.5.2. Wear Behaviour of Nitride Layer 

A high wear resistance for bio-implant was also concerned as priority. Therefore, surface 

modification is necessary to increase the surface strength to reduce the wear tendency of 

titanium and its alloys. Laser nitriding can effectively achieve the surface roughness as micron 

level so that the wear resistance can be obviously improved [70]. In the findings of 

Yerramareddy and Bahadur [75], Ti-6Al-4V alloy was tested in both sliding wear and abrasive 

wear following laser surface treatments, such as surface melting in an argon atmosphere, 

nitriding and nickel powder deposition where the 25 – 50 µm nickel layer was melted in an 

argon atmosphere. The results of sliding wear test showed that the steady state wear rate 

was decreased from 40 x 10-4 mm3 m-1 to 0.8 x 10-4 mm3 m-1 with nickel powder deposited; a 

further reduction to 0.5 x 10-4 mm3 m-1 was achieved following the surface melting in an argon 

atmosphere, and the minimum wear rate at 0.3 x 10-4 mm3 m-1 was measured in the laser 

nitrided samples [75]. For the abrasive wear test, the wear rate of the as-received titanium 

alloys was about 0.16 mm3 m-1, which was decreased by a factor of 1.5 for the nickel alloying 

samples and three times lower for the laser nitriding specimen. The higher abrasive wear 
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resistance of Ti-6Al-4V seemed associated with the improved surface hardness [70, 75]. 

Moreover, the higher thickness of the TiN layer would cause a greater abrasive wear 

resistance, even though the fine cracks were still found in the TiN layer [91]. 

Schaaf et al. [36] studied the pulsed laser nitriding process and compared four time scales 

of pulsed laser nitriding: the femtosecond, the nanosecond, the microsecond and the 

millisecond pulsing time scales. It was found the most widespread version was millisecond 

time scale pulsed nitriding, which the coating fabricated from this process was most satisfied 

by the typical wear performance and demands [36].  

It was also found that sliding wear of laser nitrided samples was dependent on the hard 

and thick TiN layer with TiN dendrite, which could help abrasive wear improvement even 

cracks existed. It was recommended to control the nitrogen content during nitriding to avoid 

unexpected cracks generation [65]. In addition, continuous-wave laser nitriding could be 

considered improving the wear resistance of metal surfaces [36].  

2.5.6. Conventional Laser Gas Nitriding (CLGN) 

Laser gas nitriding is one of the categories in laser surface alloying which involves either 

surface roughening or non-roughening by laser irradiation on the target surface in the 

nitrogen gas environment. In the conventional laser gas nitriding (CLGN), the surface is 

roughened in a nitrogen atmosphere to fabricate a nitride layer on the irradiated surface. This 

nitride layer is metallurgically bonded with substrate and can exhibit superior interfacial 

adhesion than those produced by other nitriding method, such as plasma and ion 

implantation [34]. Most of the metallic materials can be nitrided by laser, such as iron, 

stainless steel, titanium and its alloys. In particular, titanium and its alloys are sensitive to 

laser processing, the titanium nitride layer can be easily formed under laser irradiation due to 

higher negative standard Gibbs free energy of TiN formation (-337.7 kJ/mol) [76]. With 

respect to the various categories and capabilities of the laser, the thickness of the nitride layer 

can vary from several microns to several hundred microns. Although the CLGN can offer 

better interfacial properties, two defects that need to be addressed before widespread used, 

such as roughening surfaces and cracking caused by surface melting [64, 71, 77].  
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2.5.7. Diffusion Laser Gas Nitriding (DLGN) 

In the case of CLGN, the post-treatment is always required after the sample is roughened 

and cracked, which could take extra cost of materials and experiments as well as time 

consuming. Man et al [37] hence proposed diffusion laser gas nitriding (DLGN) method to 

avoid post-treatment process applied. And this method has offered several advantages using 

in the surface treatment compared to CLGN, such as lower heat energy input & surface 

temperature, a homogenous coatings fabrication and a disappearance of heat-affected zone. 

In terms of high quality of solid state diffusion process, a preliminary parameters selection 

has to be implemented, which allows to narrow down the range of different laser parameters 

(e.g. laser power, scanning speed, stand-off distance) and minimises the possibility of large 

heat input. This in turn provides a successful DLGN with the features of non-roughening and 

uniform surface. Hence, Man et al [37] implemented the preliminary process optimization in 

the DLGN to avoid significant surface roughening. And the thickness of nitride layer could be 

increased by repeated laser irradiation on the same track, most importantly, the surface 

roughness was not affected remarkably after several times of laser irradiation [37]. Compared 

with CLGN, DLGN also provided consistent high hardness and wear resistance [37].  

Previous studies have demonstrated that DLGN could be used to successfully form TiN on 

Ti alloys (e.g. Ti-6Al-4V) and enhance the wear properties of the alloys. However, Nd:YAG laser 

was the only laser system applied for laser modification process. The use of other types of 

lasers (e.g. Fibre laser) has little research on the DLGN. Moreover, their focus was on the 

mechanical performance and the microstructure characteristics [37]. Therefore, the different 

titanium alloys (e.g. NiTi) should be further investigated to extend the laser application, and 

the process optimization with all laser parameters (i.e. laser power, scanning velocity and 

stand-off distance) should be determined by some well-established systematic methods (e.g. 

Taguchi Method) to establish standard procedure for industrial application. These 

considerations have been added as part of this work. If the results are shown to be positive, 

this approach will become a potential application for practical use. 
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3. Experimental Details  

3.1. Preparation of Metal Substrate 

A commercially NiTi-SMA (Ti-50.8 at% Ni) sheet with a thickness of 5 mm was wire 

electrical discharge machined for the dimensions of 40 mm x 30 mm for laser experiment. 

The surface of the plates was polished with a series of sand paper until 1200 grits to remove 

any surface oxides and produce the homogenous surface before diffusion laser gas nitriding 

(DLGN). The samples were also polished with 1μm diamond paste for 5 minutes, and then 

ultrasonically cleaned in ethanol bath for 10 mins, rinsed in distilled water, and dried 

thoroughly in a cold air stream prior to DLGN. 

3.2. Process Optimisation by Taguchi Method 

Taguchi method is implemented in problem solving and process parameters optimisation 

[78]. In general, massive various parameters could potentially influence the process of laser 

gas nitriding, such as laser power, scanning speed, beam diameter, focal distance and 

nitrogen gas flow rate. In particular, laser power, scanning speed and beam diameter were  

identified to be most sensitive to impact laser surface treatment to control surface quality 

[79, 80]. Therefore, a Taguchi orthogonal array design L9 experiment with fixed nitrogen gas 

flow rate was conducted to investigate the effect of laser parameters to the nitride layer 

formation with maximum track width in non-melted condition. The width of TiN coverage was 

acquired using an image processing program ImageJ (downloaded from the NIH website: 

https://imagej.nih.gov/ij/). Maximisation of the track width and a desirable non-roughened 

TiN surface are two primary objectives to optimise the laser treated surface, which was 

chosen for the micro-structural analysis and wear performance. Each set of experiment 

included 3 control factors while 3 levels were defined in each factor. The factors were 

specified as laser power, scanning speed and beam diameter. In order to determine the 

optimal parameters for DLGN, the factors were initially tuned in a predefined range. For 

instance, the laser power was tested in the range of 80 to 100 W; the scanning speed was 

varied between 60 and 240 mm/min; the beam diameter was selected from 1.1 to 2.2 mm. 

The details of parameters applied are listed in Table 1. Three replicates were performed for 

every set of experimental condition. 

 

https://imagej.nih.gov/ij/
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Table 1 Levels of each laser parameter 

 Level 1 Level 2 Level 3 

Power (W) 80 W 90 W 100 W 

Scanning Speed (mm/min) 60 mm/min 120 mm/min 240 mm/min 

Beam diameter (mm) 1.1 mm 1.6 mm 2.2 mm 

 

        Maximisation of the track width via the DLGN process could obtain the non-roughened 

nitride surface and improve the effectiveness and efficiency of the laser processing. The 

signal-to-noise ratio (S/N) was determinant to control the responses and reduce the 

variances, which can be analytically predicted by the constitutive equation below and applied 

in the present study [81]. 

Equation 3 S/N ratio equation 

S/𝑁𝐿 = −10log (
1

𝑛
∑

1

yi
2

𝑛

𝑖=1
) 

       where n is the number of replication and yi can be obtained by the experimentally 

observed data. Through the application of Taguchi method, the experiment time can be 

minimised accordingly. In addition, this approach helps to randomise all factor levels to give 

an equal opportunity for influence from the noise factors. Owing to these two benefits, the 

effects of the DLGN parameters on the design objective were analysed by MiniTab 17. 

3.3. Diffusion Laser Gas Nitriding (DLGN) Procedures  

A 100 W CW fiber laser (SP-100C-0013 provided by SPI and A&P Co., Ltd, UK) with output 

wavelength of 1091 nm was used in the laser nitriding experiment. The samples were 

processed in a specific gas chamber containing high purity N2 gas (99.99%). The gas flow rate 

was controlled at 40 L/min. The samples were processed in a self-constructed chamber and 

the laser interaction point was continuously shielded with pure nitrogen gas at a rate of 40 

L/min. The purpose of using pure nitrogen gas was for oxidation prevention and good 

condition of Titanium Nitride (TiN) formation by creating stable nitrogen zone. It should be 

noted that the target material and laser experimental set-up were held in a laser safety 

cabinet in which the ambient gas was air. Moreover, an extraction system was used to remove 

any exhausted gas formed during DLGN process. 
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3.3.1. Selective Area Diffusion Laser Gas Nitriding (DLGN)  

In order to control the surface coverage ratio, two different hatch patterns, namely 1 mm 

(H1) and 3 mm (H3) between the nitride tracks, were designed during the nitriding process. 

In addition, a wholly nitrided (WN) and polished sample (P) were used. The applied laser 

scanning patterns were illustrated in Fig. 4. To provide an accurate and quantitative 

estimation, the surface morphology was firstly captured by optical microscopy (OM, Leica 

DM4000M, Germany). The captured images were exported as a high resolution micrograph 

which is shown in Fig. 5a. The total nitrided area was directly measured from the optical 

micrograph by manually selecting the boundary of nitrided zone and untreated zone using 

ImageJ (see Fig. 5b). The ImageJ helped to measure the percentage of nitrided area by 

manually identifying the golden yellow colour. In Fig. 5a, due to the colour contrast between 

the bare NiTi (silver colour) and TiN (golden yellow colour) capturing under microscopy, the 

brown colour observed in Fig. 5a was represented by the TiN (golden yellow colour) and the 

yellow colour (in Fig. 5a) indicated that the bare NiTi exist. The nitrided zone was measured 

with the red colour indication as shown in Fig. 5b. The yellow colour observed in Fig. 5 was 

unselected manually which was to avoid the surface area calculation including the bare NiTi 

area. The total nitrided area was then calculated by the ImageJ in terms of mm2. 

 

 

Figure 4 Schematic diagram showing the laser scanning patterns [82] 
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Figure 5 Example of showing the ImageJ measurement on the laser nitrided sample [82] 

3.4. Microstructural and Surface Characterization 

The cross-section of samples was polished by 1μm diamond paste for 5 minutes and the 

surface was swabbed in the etching reagent (HF 10%, HNO3 40%, H2O 50%) for metallographic 

characterisation by 15 seconds, which was observed by scanning electron microscope (SEM, 

JEOL Model JSM-6490, USA). An X-ray diffraction (XRD, Bruker D8 Advance, USA) was used for 

the phase identifications on the surface of nitrided and untreated sample. The parameters 

were set at 40 kV and 25 mA using Cu Kα radiation with a scanning rate of 1° min-1 and various 

2θ angles from 20° to 90°.  

Morphological analysis, in terms of surface roughness Ra, nitrided and untreated samples 

were compared by a non-contact surface profilometery (IFM G4 System, Alicona, Austria) 

with surface map software. The 3D profiler was set up using a 5x resolution probe at a working 
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distance of 20 mm. The set-up parameters for the 3D profile measurement were defined as 

follows: size = 3 mm x 4 mm, standard implemented = ISO 4287. 

3.5. Wettability Assessment 

3.5.1. Static Contact Angle Measurement 

The surface hydrophilicity/hydrophobicity of the laser nitrided and bare NiTi were 

examined by sessile droplet method with the aid of contact angle goniometer OCA 20 

DataPhysics and a CCD video camera. The samples were ultrasonically cleaned in an ethanol 

bath for 5 min and dried thoroughly in a cool air stream between measurements. Distilled 

water and diiodomethane were used as the reference liquids to acquire the data of surface 

free energies of each specimen. The volume of each sessile drop was controlled at 2 ± 0.1 μl 

using a microliter syringe which is small enough to ignore the effects of gravity. Droplet 

images were captured in the direction perpendicular to the laser track orientation at fixed 

time intervals, counting since the start of droplet placing on the sample surface to the 

cessation of droplet spreading (i.e. at least 60 s). The mean value and standard deviation of 

contact angle value were then calculated from the experimental data of at least 5 repetitive 

tests on the same sample.  

3.5.2. Surface Free Energy Calculation 

Owens-Wendt (O-W) (Equation 4) [83, 84] and Neumann equation of state (Equation 5) 

[85] were used in the current study to determine the surface free energies of the laser nitrided 

and untreated samples. Surface energy of sample surface was calculated via static contact 

angle measurements according to the Owens-Wendt (O-W) (also called as Geometric mean 

approach) and Neumann equation of state, which are based on well-known Young’s equation 

for the calculation [86]. 

For the Owens-Wendt (O-W) method [83, 84], it followed Fowkes’ ideas  [87, 88, 89, 90] 

that the surface free energy comprised two components: London dispersion interaction γd 

and polar (non-dispersive) γp component.  

Equation 4 Owens-Wendt (O-W) method 

𝛾𝐿(1 + cos 𝜃) = 2√𝛾𝑆
𝑑𝛾𝐿

𝑑 + 2√𝛾𝑆
𝑃𝛾𝐿

𝑃 
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where the dispersion component is referred to 𝛾𝑑  and polar component is represented 

by 𝛾𝑝 , whereas, 𝛾𝑆  represents the solid surface and 𝛾𝐿  represents liquid surface. The surface 

tension and energy components of distilled water and diiodomethane are shown in Table 2.  

Table 2 Surface tension and its components of the distilled water and diiodomethane at 20°C, in γ mJ/m2 

Liquid γ γ𝑙
d γ

𝑙
p

 

Distilled Water 72.8 21.8 51.0 

Diiodomethane 50.8 50.8 0 

 

Solid-liquid interface tension in the equation of state could be obtained by the work of 

Kwok and Neumann [85]. β (β = 0.0001247 m2/mJ) in the equation of state is a constant of 

the interfacial system which was determined experimentally [85]. Combining the Young’s 

equation with the Kwok and Neumann equation, the surface energy can be calculated by the 

measured contact angle.  

Equation 5 Neumann equation of state 

𝛾𝐿(1 + cos 𝜃) = 2√𝛾
𝑆
𝛾

𝐿
𝑒𝛽(𝛾𝑆−𝛾𝐿)

2

 

3.6. Wear Resistance Analysis 

The coupling of Titanium alloys and Ultra-High-Molecular-Weight Polyethylene 

(UHMWPE) represents the bearing pair challenged in orthopaedic implants, namely metallic 

femoral ball head against plastic acetabular [91, 92]. The evaluation of the wear behaviour of 

laser nitrided and untreated NiTi against UHMWPE is an important criterion to identify the 

long-term performance of suggested implant material in wear pair for the life of total joint 

prostheses. Reciprocating wear tests were employed to assess the wear properties of nitrided 

and untreated NiTi samples against UHMWPE. Linearly reciprocating pin-on-plate sliding test 

was performed with Hanks’ balanced salt solution as a lubricant under the ambient conditions 

(TE99 Universal Wear Machine, Phoenix Tribology, UK). A schematic diagram of the pin-on-

plate machine is shown in Fig. 6. The nitrided and untreated plate were located on a turntable 

driven at a constant speed of 0.12 m/s and UHMWPE pin was loaded at a contact stress of 

around 2 MPa by means of static weights. The friction force was recorded by the computer 

and converted into friction coefficient data. The average specific wear rate of UHMWPE, 

nitrided and untreated surface were calculated using the Archard equation [56, 57]: 
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Equation 6 Archard equation 

𝑊𝑒𝑎𝑟 𝑓𝑎𝑐𝑡𝑜𝑟 (𝑚𝑚3𝑁−1𝑚−1) =
𝑉𝑜𝑙𝑢𝑚𝑒 𝑙𝑜𝑠𝑠 (𝑚𝑚3)

𝑆𝑙𝑖𝑑𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑚)𝑥 𝐿𝑜𝑎𝑑 (𝑁)
 

The wear factors for the nitrided and untreated surfaces were obtained, and the average 

percentage of the weight change was also determined. The results were taken from the 

average of three repetitive tests with the standard deviation for comparing each type of 

samples. After the wear tests, the wear tracks which were observed under an optical 

microscope were compared. All values were expressed as means ± standard errors. 

 

 

Figure 6 Schematics of pin-on-plate tribo-meter, test configuration and test pin [82]  
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4. Results and Discussions 

4.1. Taguchi Analysis 

4.1.1. Signal-to-Noise Ratio (S/N ratio) 

S/N ratio was analysed by the conceptual approach, which mainly focus on identification 

of the optimal factors [93]. The S/N ratio assess how individual factors may predict the 

responses. The signals are an indication of average responses effectiveness, and the noises 

were derived based on the average responses. In this work, two objectives using Taguchi 

analysis were of most interest: (1) to acquire the most efficient DLGN on the surface of NiTi; 

(2) to obtain a desirable non-roughened surface. The maximum width of the laser track was 

determined to ensure the DLGN successful without surface roughening. In addition, since the 

goal of the experiment is to maximise response, the larger S/N ratio, the better the outcome. 

The width of laser track and the calculated S/N ratio for nine experiments are listed in Table 

3. The graphical results of different laser parameters with 3 different levels are shown in Fig. 

7. The maximum average S/N ratio corresponds the optimal parameter level to the smaller 

variance of the output characteristics at the desired value. Consequently, highest point in 

each plot indicated that recommended level for each laser parameter. The results in Fig. 7 

suggest that the laser power at level 2 (90 W), the scanning speed at level 1 (1 mm/s) and the 

beam diameter at level 3 (2.2 mm) to obtain the widest laser track without roughening the 

surface.   
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Table 3 Results for the width of TiN coverage and calculated S/N ratio [82] 

Run 
Power 

(W) 
Scanning Speed 

(mm/s) 

Beam 
Diameter 

(mm) 

Measured Width 
of laser track 

(mm) 

Calculated S/N 
ratio (Larger-the-

better) 

1 80 1 1.1 1.00 -0.02 

2 80 2 1.6 1.23 1.79 

3 80 4 2.2 1.14 1.06 

4 90 1 1.6 1.94 5.75 

5 90 2 2.2 1.42 3.02 

6 90 4 1.1 1.24 1.83 

7 100 1 2.2 1.79 5.01 

8 100 2 1.1 1.13 1.08 

9 100 4 1.6 1.03 0.22 

 

 

Figure 7 Means of the S/N ratios for each laser parameters [82] 

4.1.2. Analysis of Variance (ANOVA) 

The results shown in section 4.1.1 could indicate the differential response at different 

experimental parameters, but it is unknown whether such difference is due to random 

experimental errors or due to true differences. ANOVA is a useful statistical method to 

objectively identify differences relative to the internal variability (i.e. random experimental 

errors).  In the ANOVA analysis, a larger F ratio indicates a higher difference relative to the 

internal variabilities and usually considered significant if the F ratio is larger than 4 [94]. In 

addition to the F ratio, variation resulting from the individual processing parameter was 

evaluated by percentage of contribution (P), i.e. the higher the percent contribution, the 

higher the influence. Table 4 shows the result of ANOVA for different laser parameters. The F 
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ratio of Power, Scanning Speed and beam diameter were both lower than 4, indicating that 

the effect of change in the level of the three laser parameters to the diffusion laser gas 

nitriding process is insignificant. Among three laser parameters, the laser power was the 

strongest factor to affect the nitriding process by its highest percentage of contribution, which 

followed by the scanning speed and the beam diameter. The P of the laser power was 30.54% 

while the scanning speed and the beam diameter accounted for 30.29% and 21.68%, 

respectively. The P of error was found to be 17.48%. This value, smaller than 50 %, indicates 

that no important factors were omitted or significant measurement error was involved. 

Moreover, the Delta statistics in Table 5 were additional way to assess the importance of 

individual parameters for the response. Delta statistics measured the effectiveness of output 

characteristic by taking the differences between the highest and lowest average values for 

the response characteristic [95]. The process parameter was ranked from highest to lowest 

importance according to the delta values. Consistently, the laser power was the most 

determinant parameter to measure the effectiveness DLGN; the scanning speed was second 

and the beam diameter showed the least importance. From the above analysis, the level 2 of 

laser power (i.e. 90 W), the level 1 of scanning speed (i.e. 1 mm/s) and the level 3 of beam 

diameter (i.e. 2.2 mm) were selected as the optimised laser processing parameters for 

producing the wholly nitrided (WN) and all hatch patterns (i.e. H1 & H3) samples for 

wettability and wear assessment. 

Table 4 Analysis of the variance for S/N ratio of different laser parameter [82] 

Source DF Seq SS Adj SS Adj MS F Percent Contribution, P 

Power (W) 2 10.14 10.14 5.07 1.75 30.54 

Scanning Speed (mm/s) 2 10.05 10.05 5.03 1.73 30.29 

Beam Diameter (mm) 2 7.20 7.20 3.60 1.24 21.68 

Residual Error 2 5.80 5.80 2.90  17.48 

Total 8 33.19     
 

Table 5 Response table for S/N ratio of different laser parameter [82] 

Level Power (W) Scanning Speed (mm/s) Beam Diameter (mm) 

1 0.94 3.60* 0.96 

2 3.54* 1.96 2.59 

3 2.12 1.04 3.05* 

Delta 2.60 2.56 2.08 

Rank 1 2 3 

Total mean of S/N ratio = 2.20; *Optimized level of parameters 
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4.2. Microstructural and Surface Analysis 

4.2.1. Microstructural Analysis 

Ni ion release from NiTi has two main sources [96]: the Ni-containing surface of the oxide 

layer which was responsible for the short term Ni release (≤ 21 days), and the Ni-rich layer 

underneath the oxide responsible for the long term Ni release (8 months). Increasing the 

content of the Ni ions within the surrounding tissue would generate inhibition on pathways 

associated with actin cytoskeleton1, focal adhesion2, energy metabolism3, inflammation4 and 

amino acid metabolism5 [97]. Therefore, the TiN coating was purposed to improve endothelial 

cell function, increase energy metabolism, enhance regulation of inflammation and promote 

amino acid metabolism by the effective prevention of Ni ions release from NiTi [97]. 

Moreover, Ni ion released from NiTi implant reduced significantly when the TiN coating is 

fabricated by the laser gas nitriding (LGN) method [77]. In this study, Ni-depleted surface 

arising from the TiN coating by DLGN was developed to enhance biocompatibility of NiTi 

where this surface could assist the inhibition of short term and long-term Ni ion release. 

The laser nitrided sample was carried out by the optimal parameter combined with fixed 

nitrogen gas flow rate. A golden colour was observed on the sample surface, indicating the 

formation of TiN. The SEM image of the cross-sectional TiN layer is shown in Fig. 8. It can be 

clearly seen that the uniform TiN layer of approximate 2 μm was formed. The DLGN method 

seemed to be the most ideal to provide coating with consistent thickness and better surface 

finish. It also has no heat affected zones, i.e. any cracking or porosities and reduced part 

distortion. The binding energy of the crystal lattice and the diffusion rate of Ni ions through 

the barrier layer were two of the most predominant factors to affect the Ni ion release rate 

from NiTi substrate to the surrounding tissue where the thickness of the coating on the 

surface of NiTi was inversely proportional to the Ni ion release rate [98]. In addition, cracking 

is a major concern in the laser nitriding process, especially in thick layer formation because 

                                                           
1 The cytoskeletion mainly composes of actin filaments and microtubules that offer a suitable mechanical 
support and plays an important role in cell shape, differentiation and movement.  
2 Focal adhesion is a type of adhesive contact to serve as mechanical linkages to the extracellular matrix and 
cells. 
3 It is the process of using nutrients to the energy (ATP) generation, and composes a wide variety of 
interconnected pathways that can work in whether the presence of oxygen or not. 
4 It is related to an infection, injury or illness to give rise to painful redness of the human body. 
5 It is the process to transfer the protein food inside the body to make tissue proteins, and these proteins are 
used to produce energy after a break down process. 
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the formation of large and brittle titanium nitrides strongly promoted cracks, minimising the 

effectiveness of TiN coating. A micron level thick TiN coatings could accommodate more than 

1% elastic strain without cracking [99], hence, the current method to create high performance 

TiN coating (around 2 μm thick) on the NiTi to inhibit Ni ion release is possible. This method 

was expected to improve biocompatibility of NiTi implant even the uniform TiN layer was 

about 2 μm thick. There is also an explanation of DLGN method that can suppress the release 

of Ni ions from NiTi substrate. In this method, nitrogen (N) is firstly absorbed at the surface 

under laser irradiation which is then diffused inward into NiTi at elevated temperatures. Rapid 

diffusion of N into the surface of NiTi during laser processing will first form an interstitial 

solution in NiTi. Upon saturation of this interstitial solution, TiN will eventually be formed on 

the surface due to the great affinity of Ti for N [91]. When TiN is formed on the surface by 

consuming Ti from NiTi substrate, a Ni-rich phase will be depleted from the surface and 

formed in the substrate due to the conservation of matter. Therefore, the depletion of Ni in 

the surface layer after nitriding is expected. 

 

Figure 8 SEM micrograph showing the cross-section view of TiN layer [82]. 

4.2.2. Phase Characterisation 

The XRD patterns of the optimised laser nitrided and untreated surface are shown in Fig. 

9. On the untreated surface, no additional diffraction peaks were observed, which correspond 

to intermediate precipitations, namely Ni3Ti and Ni4Ti3. The untreated NiTi only consisted of 

the NiTi (B2) phase, which is also known as the austenite phase. The major component of the 

untreated NiTi was austenite at room temperature. As observed from Fig. 9, the laser nitrided 
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NiTi had two distinct peaks, corresponded to cubic titanium nitride (TiN) preferentially grown 

on (200) and (311) plane. The intensity of the TiN (200) peak was much stronger than that of 

the TiN (311) peak. There were no other peaks detected from the laser nitrided NiTi surface 

and the intensity of diffraction peaks of NiTi (B2) phase was suppressed, indicating that the 

pure TiN layer was formed on the NiTi surface. Moreover, the laser gas nitriding process did 

not affect the phase composition of NiTi substrate due to absence of intermediate 

precipitation of XRD patterns.  

 

Figure 9 XRD patterns of the laser nitrided and untreated surface [82] 

4.2.3. Surface Roughness Analysis 

Surface characteristics of NiTi are critical to evaluate the performance of the implant on 

tissue responses. It is also crucial to understand its material reaction to physiological 

environment due to a direct contact between the implant material (e.g. NiTi) and the 

surrounding tissue. For the laser irradiation on the samples’ surface, the surfaces would rise 

in temperature and be melted when the threshold of melting of the laser-material interaction 

was reached. Scanning a predetermined pattern across the NiTi surface gave rise to a 

significant variation in surface topography and roughness when compared with the untreated 

samples. In this analysis, the nitride surface (i.e. WN, H1 & H3) and the polished surface 

showed similar surface features and 3-D morphology under the 3-D profiler measurement. 

The nitride surface became less apparent compared with the polished sample via the 3-D 

image observation, and the typical 3-D profiles image is shown in Fig. 10. It can be deduced 
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that the optimised DLGN process gave low temperature and energy input to the sample 

surface, and the wholly nitrided (WN) samples exhibited similar surface features to polished 

samples, in terms of the highest maximum peak heights Table 6. It was found that the 

patterned samples (H1 and H3) had larger surface roughness values in comparison with the 

polished sample and WN sample, which was attributed to the hatch patterns. These patterns 

had discrete TiN coating and untreated surface on the sample, and a single pass of the laser 

beam induced a periodic pattern, causing a slight increase in surface roughness. For the case 

of WN sample, the more the surface area was irradiated by laser, the more homogenous TiN 

layers were formed. Thus, the periodic pattern would not exist and the whole surface was 

covered by homogenous TiN layer. As a result, the surface roughness Ra of the WN sample 

slightly increased where the maximum peaks’ heights increased to 1.30 ± 0.21 μm (Table 6). 

 

Figure 10 A typical 3-D profiles image for polished, WN, H1 and H3 samples. 

Table 6 The surface roughness, area coverage of nitrided and untreated area across target material [82] 

Sample Ra (nm) Rp (μm) Nitrided Area coverage Untreated Area Coverage 

WN 277.23 ± 28.60 1.30 ± 0.21 100% 0% 

H1 324.59 ± 23.27 2.29 ± 0.95 76% 24% 

H3 322.23 ± 45.74 1.99 ± 0.99 52% 48% 

Polished 248.03 ± 26.09 1.15 ± 0.17 0% 100% 
 

4.3. Wettability Study 

To investigate the wetting properties of the treated surface, the contact angle was 

measured using distilled water and diiodomethane. The results of probe liquid (degree) and 
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their standard deviations are given in Table 7. The mean value was obtained from 5 contact 

angle measurements on the droplets of given probe liquid settled on the specimen. According 

to the American Society for Testing and Materials D7334-08 specifications [100], when the 

water contact angle is less than 45°, the surface is hydrophilic; when the contact angle 

exceeds 90° the surface is hydrophobic. The NiTi surface shows a hydrophilic tendency after 

laser treatment. The lower contact angles of distilled water and diiodomethane were found 

in laser nitrided sample, which indicated that the surface hydrophobicity of NiTi was reduced 

after DLGN. Furthermore, the decrease in the contact angle of distilled water was more 

profound than those of diiodomethane for the nitrided NiTi, possibly because of more polar 

components on the surface of nitride NiTi that attracts strongly to water molecules (distilled 

water is polar liquid). Since diiodomethane was a nonpolar liquid, minor change was expected 

due to the absence of polar interaction between the diiodomethane molecules and the nitride 

surface. 

Table 7 Average contact angle of probe liquids (°) and their standard deviations measured on the bare and nitrided NiTi 

samples surface. * P value is smaller than 0.05 was considered as significant difference. 

                       Liquids 

Sample                   
Distilled Water (°) Diiodomethane (°) 

Bare NiTi 74.78 ± 1.58 49.83 ± 1.05 

Nitrided NiTi 68.13 ± 2.20 * 47.05 ± 0.64 * 
 

Results of total surface free energy measurements for nitrided and bare NiTi are shown in 

Table 8. It can be clearly seen that the laser treated sample has higher surface free energy 

than bare NiTi. The values of polar and dispersive components obtained from O-W method 

are illustrated in Table 9. It shows that a higher surface free energy was measured for samples 

treated by laser nitriding. In addition, the nitrided NiTi became more hydrophilic with lower 

values of contact angle and higher value of the polar component. This finding was consistent 

with the literature [101]. It was also found that a hydrophilic-hydrophobic coupling can 

facilitate the efficiency of lubrication due to the presence of pressed water film between the 

tribo-pair. Low wear rate and low friction coefficient are the evident to support hydrophilic-

hydrophobic coupling in the tribological system (see Fig. 11 and 12). UHMWPE is hydrophobic, 

and the nitrided NiTi is more hydrophilic than bare NiTi, so they would improve lubricating 

effect and reduce friction and wear between the tribo-pair. 
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Table 8 Total surface free energy (mJ/m2) of bare and nitrided NiTi samples surface calculated from Owens & Wendt (O-W) 

and Neumann equation of state. * P value is smaller than 0.05 was considered as significant difference. 

          Surface Free 
Energy 

Sample                   

Owens & Wendt Method 
(mJ/m2)  

Equation of State Approach  
(mJ/m2)  

Bare NiTi 41.15 ± 1.11 38.74 ± 0.98 

Nitrided NiTi 45.39 ± 1.33 * 42.86 ± 1.36 * 

 

Table 9 Dispersive and polar components (mJ/m2)  of surface free energy of bare and nitrided NiTi samples from Owens & 

Wendt (O-W) calculation. * P value is smaller than 0.05 was considered as significant difference. 

Sample Dispersive Components 
(mJ/m2)  

Polar Components 
(mJ/m2)  

Bare NiTi 34.37 ± 0.59 6.78 ± 0.54 

Nitrided NiTi 35.90 ± 0.35 * 9.49 ± 1.00 * 
 

4.4. Wear Behaviour  

Wear resistance of the NiTi articulating implants is a crucial factor for its whole service life 

in hard tissue replacement. A massive amount of microscopic particles could be produced in 

the movement of artificial joints which are worn off during motions. Titanium nitrides is an 

ideal choice for wear resistant materials because the nitride layer fabricated on the Ti alloys’ 

surface could reduce cracking and avoid the rapid failure during the movement of artificial 

joints.  

Coefficient of friction (COF), defined as friction over load applied, was recorded between 

the contact of the pin (i.e. UHMWPE) and the plate (i.e. NiTi or nitrided NiTi) across the entire 

experiment. Fig. 11 depicted the COF of nitrided and polished samples. For most nitrided NiTi, 

the COF signals were fairly stable without remarkable changes over the entire sliding distance, 

except for first few sliding cycles. The COF of polished NiTi was relatively less stable compared 

with laser nitrided samples. COF was quickly increased to 0.14 within the first few sliding 

cycles, gradually reached the top (0.26), and finally maintained the value of 0.24, because of 

more severe wear of the pin (i.e. UHMWPE) and plate (i.e. polished NiTi). In the comparison 

with the COF of polished sample, both nitrided samples (i.e. WN, H1 and H3 samples) 

increased slightly after several number of sliding cycles and were finally kept between 0.02 

and 0.04. The low values of friction coefficient are typical phenomenon for TiN coatings sliding 

against UHMWPE [102]. Severe worn off was not shown on nitrided samples due to the 
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consistently low level of friction coefficient (i.e. between 0.02 and 0.04) across the entire 

sliding distance. In addition, improved water lubrication leads to the reduced friction and 

wear of the tribological interface, i.e. the metallic surface and UHMWPE. As reported in 

chapter 4.3, improved water wettability of the laser-treated NiTi samples (static water 

contact angle from 74.78° to 68.13°) can support the hypothesis that the TiN formation on 

the NiTi surface and led to reduced friction and wear factor of the tribo-pair. Therefore, the 

wear resistance of nitrided NiTi was better than that of polished NiTi with the lower COF and 

wear factor (see Fig. 11 and 12).  

A higher wear factor indicates more serious wear damage and hence lowers wear 

resistance. Fig. 12 shows the wear factor of UHMWPE pins, laser nitrided and polished NiTi 

surfaces. The wear factors of nitrided samples are lower for overall tribo-system, and the 

downward pattern is noticeably observed in UHMWPE. The wear factor was decreased by 

43.51 % (H3 sample), 87.43 % (H1 sample) and 98.17 % (WN sample) on average after laser 

nitriding on NiTi surface (see discrete error bars in Fig. 12), confirming the excellent wear-

resistant effects of laser nitriding on NiTi surface. Between polished NiTi/UHMWPE and 

wholly nitrided NiTi/UHMWPE pairs, about 10 times higher wear factor from polished 

NiTi/UHMWPE pairs can be correlated to its higher COF (see Fig. 11). TiN is much higher in 

hardness than NiTi and has a higher wear resistance. All these differences were all statistically 

significant with p-values < 0.05, indicating that the differences were highly unlikely to be due 

to random experimental errors.  The above experimental results indicate that the nitrided 

NiTi/UHMWPE pair exhibits much better wear behaviour than that consisting of untreated 

NiTi/UHMWPE pair. Thus enhancing the TiN coverage area favours wear performance. 

Moreover, the small error bars in Fig. 12 indicate that the wear test results are accepted as 

reliable, and both nitrided samples demonstrated smaller variations in the wear factors of 

UHMWPE pins and metal plates. These results ensured that laser nitriding could produce 

more stable and reproducible wear resistant NiTi samples. 
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Figure 11 Frictional curves of polished, WN, H1 and H3 samples [82] 

 

Figure 12 Wear factor for each samples in relation to laser processing time. * P value is smaller than 0.05 was considered as 

significant difference. [82] 

Optical morphology of the polished and wholly nitrided surfaces after the wear test are 

shown in Fig. 13. It can be observed that the sliding tracks are clearly visible from both the 

polished and the wholly nitrided NiTi. The polished sample showed the formation of several 

craters on the surface with severe worn off under the same wear condition. The wholly 
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nitrided sample only presented few shallow sliding tracks, in particular, cracks, flakes and 

fragmentation were absent. This is in agreement with improvement of wear properties of NiTi 

by laser treatment due to the formation of hard TiN surface layer. In addition, the higher wear 

rate of the polished NiTi (smoothest sample, see Table 6) could be explained in the following 

approach. The same condition with same amount of energy is dissipated in the wear test, the 

large amount of the energy is used for asperity deformation and laser induced patterning 

ridges deformation on the rougher samples (i.e. H1 and H3 samples), whilst almost all energy 

is used for the grooves and craters formation on the polished sample surface.  

 

 

Figure 13 Optical images of the surface of (a) polished and (b) WN sample after wear test [82] 
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The downward trend was clearer for UHMWPE pins than nitrided NiTi plates, and the 

reduction of the wear factors was clearly observed (i.e. 68.26 % (H3 sample), 84.51 % (H1 

sample) and 96.61 % (WN sample)) which was good evidence for the laser nitriding to enhance 

wear behaviour of tribo-pair. The improved wear rate of UHMWPE is due to surface wear 

resistant improvement of the counterpart, namely NiTi by the laser nitriding, especially if 

three body abrasive wear was the determinant wear mode: Since NiTi is harder than 

UHMWPE, wear of NiTi surface occurs mainly by NiTi particles as a third body, even though 

some protruded asperities on the NiTi surface can be initially removed by the UHMWPE 

surface. Furthermore, the wear factors of UHMWPE were higher than those of the NiTi for 

both polished and laser treated samples (see in Fig 12). In view of the abrasive wear 

mechanisms, the hardness of NiTi and TiN were substantially higher than that of UHMWPE, 

and abrasive wear was expected to occur mainly on the softer side of the tribo-pair, i.e. 

UHMWPE in this study. Therefore, UHMWPE wear debris could be easily worn off by the 

harder metal side. Due to the low contact pressure applied in this work, i.e. approximate 2 

MPa, adhesive wear was not considered as a major wear mode. Although the Hanks’ solution 

(Cl- ion contained) was used as a lubricant in the wear test and it might induce pitting attack 

to the metal surface, no pitting was observed from both polished and nitrided surface after 

wear test. There were no signs of corrosive wear. In this study, it is assumed that the abrasive 

wear mainly occurred between the tribo-pair. The reason of the reduction was attributed in 

the wear resistant properties improvement on the counter surface by the formation of TiN. 

Although the wear mechanism might be different for each case, the common reasons of the 

wear resistant improvement are the formation of hard coating layer on the target surface and 

the improved wettability of the target materials. 

In summary, the TiN layer formed by laser is attributable for the wear resistant 

improvement of the tribo-pair. DLGN suggested that there was a correlation between the 

promotion of wear resistance and the percentage of TiN coverage (see Fig. 12). A longer laser 

processing time could result in a higher percentage coverage of TiN, thereby increasing the 

wear resistance of NiTi. However, considering the cost and time required for manufacturing, 

the partially nitrided surface might be a promising choice that could balance the benefit 

between manufacturing efficiency and the wear resistance improvement. The H1 sample with 

76% TiN coverage is potential candidate for the ball joint in artificial joint, as 59% of laser 
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processing time could be saved compared with that of the wholly nitrided sample (WN 

sample). Moreover, over 80 % reduction rate was achieved in the H1 sample for both tribo-

pair surface. Therefore, this study helped to recommend the partially nitriding for the field of 

orthopaedic applications.  
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5. Summary of Current Study 

Owing to the attractive properties of NiTi shape memory alloy, such as shape memory 

effect, pseudo-elasticity and formability as well as stability, it is a favourable material for the 

medical components and devices. The Ni content in NiTi shape memory alloy is always the 

main concern for its long-term performance because the Ni may cause allergy due to the 

leakage of Ni ions from NiTi substrate. Therefore, conventional laser gas nitriding (CLGN) was 

proposed to fabricate a TiN film on the NiTi surface, which it not only can prevent the Ni ions 

from leakage, but also improve the wear resistance so that the debris generation can be 

minimized during wear between tribo-pair.  

It is well known that CLGN can induce a roughen surface due to surface melting occurrence 

during the nitriding process. Therefore, diffusion laser gas nitriding (DLGN) was purposed to 

fabricate TiN layer on the NiTi substrate without surface melting and roughening via careful 

processing parameters selection in this study. The insignificant change of the surface 

roughness after DLGN is the advantage for the surface modification of NiTi shape memory 

alloy while it can reduce the need of post-manufacturing. 

Taguchi method was applied to investigate the effectiveness of the laser processing 

parameters on the DLGN with minimised trial experiments where the outcome was used to 

fabricate TiN on the NiTi substrate. The nitrided surface was compared with bare NiTi by the 

surface characterization and application performance. Moreover, the wear behaviour of 

various TiN surface coverage under lubrication condition was investigated. The following 

conclusions could be drawn: 

1. The optimal parameters to form a uniform and non-roughen TiN layer on NiTi surface 

were found based on Taguchi method:  40 L/min of the nitrogen gas flow rate, 90 W 

of the optimal laser power is found to be, 1 mm/s of the laser scanning speed and 2.2 

mm of the beam diameter, respectively.  

2. The surface morphology of bare and nitrided NiTi insignificantly differed, which was 

determined by optical profilometry. The polar component was increased by DLGN 

with the TiN formation, although the nonpolar component had enhanced a little bit 

after the nitriding. 
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3.  A fibre laser could create different percentage of TiN coverage as well as small 

changes of surface roughness of up to 325 nm and to improve wear factor using a 

simple but effective hatch pattern. 

4. The partially nitrided sample with 76% TiN coverage was a promising solution for 

improvement of the wear resistance for the artificial joint due to 59% of laser 

processing time was saved comparing with the manufacturing time of wholly nitrided 

method. 

As the growing demand for a higher quality of life, the need for new technologies has 

been increasing. These new technologies can be a benefit on pharmaceutical scale and the 

demand of replacement and revision surgeries. Owing to the ease of automation, chemical 

cleanliness and fast manufacturing cycle of laser technology, DLGN is a promising method for 

modifying NiTi articulating implant as well as improving the tribological properties of tirbo-

pair. DLGN can also help to propose NiTi as femoral head in artificial hip joint.  
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6. Suggestions for Future Work 

The present study explored laser technology as a feasible tool for improving the surface 

properties of NiTi, namely hydrophilicity and wear resistance. These results verified that the 

nitrided NiTi can be an ideal candidate as a tribological safe implant material. Further studies 

based on the current investigation are suggested taking on this thesis forward. 

1. The corrosion is often occurred inside human body as the body fluid is acidic. So using 

simulated body fluid such as Hanks’ solution and Ringer solution for corrosion 

behaviour analysis is necessary. Therefore, the measurement result may serve as a 

reference to understand the biomaterials working within body fluid environment.  

2. The surface composition should be investigated deeply by TEM, XPS and EBSD in order 

to make a clear picture of the formation and growth of surface layers during diffusion 

nitriding of NiTi, and what exact phases are created during the process. 

3. As the material is suggested to insert into the human body, the in vitro analysis should 

be included to evaluate the short- and long-term biological performance. And the 

cellular mechanisms and biological responses for the nitrided NiTi should be further 

investigated.  

4. The surface Ni content should be analysed by XPS in order to confirm that the Ni 

content can be reduced by diffusion laser gas nitriding. Moreover, the relationship 

between the cell responses and Ni content on the nitride surface should be studied. 

The critical threshold value for Ni content in the nitride surface should be obtained.  

5. Animal tests can be involved to examine the bioactivity and biocompatibility of 

nitrided NiTi in vivo. It is because the information is very useful for clinical application 

from in vivo experiments.  
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