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Abstract

Gao et al. [12] (2014) introduced a numerical scheme to approximate the Caputo fractional derivative with
the convergence rate O(k3−α), 0 < α < 1 by directly approximating the integer-order derivative with some
finite difference quotients in the definition of the Caputo fractional derivative, see also Lv and Xu [22]
(2016), where k is the time step size. Under the assumption that the solution of the time fractional partial
differential equation is sufficiently smooth, Lv and Xu [22] (2016) proved by using energy method that the
corresponding numerical method for solving time fractional partial differential equation has the convergence
rate O(k3−α), 0 < α < 1 uniformly with respect to the time variable t. However, in general the solution
of the time fractional partial differential equation has low regularity and in this case the numerical method
fails to have the convergence rate O(k3−α), 0 < α < 1 uniformly with respect to the time variable t. In this
paper, we first obtain a similar approximation scheme to the Riemann-Liouville fractional derivative with
the convergence rate O(k3−α), 0 < α < 1 as in Gao et al. [12] (2014) by approximating the Hadamard finite-
part integral with the piecewise quadratic interpolation polynomials. Based on this scheme, we introduce a
time discretization scheme to approximate the time fractional partial differential equation and show by using
Laplace transform methods that the time discretization scheme has the convergence rate O(k3−α), 0 < α < 1
for any fixed tn > 0 for smooth and nonsmooth data in both homogeneous and inhomogeneous cases.
Numerical examples are given to show that the theoretical results are consistent with the numerical results.
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1. Introduction

Consider the following time fractional partial differential equation, with 0 < α < 1,

C
0 D

α
t u(t) +Au(t) = f(t), for 0 < t ≤ T, with u(0) = u0, (1)

where C
0 D

α
t u(t) denotes the Caputo fractional derivative defined by

C
0 D

α
t u(t) =

1

Γ(1− α)

∫ t

0

(t− s)−αu′(s) ds,

and u′(s) = ∂u/∂s. Here A is a selfadjoint positive definite second order elliptic partial differential operator
in a bounded regular domain Ω ⊂ Rd, d = 1, 2, 3, with D(A) = H1

0 (Ω) ∩H2(Ω) and u0 ∈ H = L2(Ω) is the
initial value, where L2(Ω), H1

0 (Ω), H2(Ω) denote the standard Sobolev spaces.
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Our analysis will use Laplace transforms. The assumption that A is positive definite implies that A
generates an analytic semigroup, so that for some π/2 < θ0 < π we have the resolvent estimate, see Lubich
et al. [23], Thomée [40]

‖(zI +A)−1‖ ≤ C|z|−1 for z ∈ Σθ0 = {z 6= 0 : |arg z| < θ0}. (2)

In our analysis, we will choose θ > π/2 close to π/2 such that θ < θ0. Hence zα ∈ Σθ0 for any z ∈ Σθ
since 0 < α < 1 implies that arg(zα) = αθ < θ < θ0. Hence there exists a constant C which depends only
on θ and α such that, see Jin et al. [16, (2.3)],

‖(zαI +A)−1‖ ≤ C|z|−α, ∀ z ∈ Σθ = {z 6= 0 : |arg z| < θ}. (3)

Further we will choose θ > π/2 close to π/2 such that zαk ∈ Σθ0 for z ∈ Γ (see Lemma 2.9 below) which
implies that (zαk I +A)−1 exists where zk is defined in (25) and Γ = Γθ = {z : |arg z| = θ}.

Many application problems can be modeled by (1), for example, thermal diffusion in media with fractional
geometry [29], highly heterogeneous aquifer [1], underground environmental problems [14], random walks
[13], etc.

Under the assumptions that the solution u ∈ Cm[0, T ], m ∈ N,m ≥ 2 in time, the error estimates of
some numerical methods are analyzed in the literature, see, e.g., [19], [21], [12], [35], [20], [38], [43], [11],
[10], [37], etc.

However, in view of the smoothing property of the time fractional partial differential equation, the
regularity u ∈ Cm[0, T ],m ≥ 2 in time is restrictive, since it does not hold true even for homogeneous
problem with the smooth initial data, see, e.g., Sakamoto and Yamamoto [32] and Jin et al. [16]. Jin et al.
[16] approximated the Caputo fractional derivative by L1 scheme and established an O(k) convergence rate
for both smooth and nonsmooth initial data. Recently, Yan et al. [36] introduced an improved L1 scheme
for solving (1) and established an O(k2−α) convergence rate for both smooth and nonsmooth initial data.
Jin et al. [18] introduced the Crank-Nicolson scheme for solving (1) and a second-order accuracy in time
was established for both smooth and nonsmooth initial data, see also [24], [27], etc.

There has been much recent interest in developing higher order numerical methods for solving (1),
especially the spectral methods, [3], [4], [41], [42], convolution quadrature correction methods, [44], [43], [5],
the discontinuous Galerkin method [6], [25], [26], [28], nonuniform meshes, [33], [34], [31], [39],

In this paper, we first introduce a higher order scheme to approximate the Riemann-Liouville fractional
derivative with order O(k3−α), 0 < α < 1, which is similar to the approximate methods introduced in [12] and
[22]. The scheme is obtained by approximating the Hadamard finite-part integral with piecewise quadratic
polynomials [7] [8]. Based on this higher order scheme, we introduce a time discretization method for solving
(1) and the convergence rate O(k3−α) of the numerical method is proved for smooth and nonsmooth initial
data in both homogeneous and inhomogeneous cases.

The paper is organized as follows. In Section 2, we consider the error estimates of the time discretization
scheme for solving (1) for smooth and nonsmooth initial data in the homogeneous case. In Section 3, we
consider the error estimates of the numerical methods for solving (1) for smooth and nonsmooth initial
data in the inhomogeneous case. Finally in Section 4, we give some numerical examples to show that the
numerical results are consistent with the theoretical results.

By C we denote a positive constant independent of the functions and parameters concerned, but not
necessarily the same at different occurrences. By c we denote a particular positive constant independent of
the functions and parameters concerned.

2. The homogeneous problem

In this section, we will consider the time discretization scheme for (1) in the homogeneous case. Let
V (t) = u(t)− u0, then (1) is equivalent to

R
0 D

α
t V (t) +AV (t) = −Au0, 0 < t ≤ T, with V (0) = 0, (4)
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where we used the fact R
0 D

α
t (u(t) − u(0)) = C

0 D
α
t u(t) [7]. Here R

0 D
α
t u(t) denotes the Riemann-Liouville

fractional derivative defined by, with 0 < α < 1,

R
0 D

α
t u(t) =

1

Γ(1− α)

d

dt

∫ t

0

(t− s)−αu(s) ds.

Let 0 = t0 < t1 < · · · < tN = T be a partition of [0, T ] with the time step size k. Diethelm [7] introduced
the following approximation scheme to approximate the Riemann-Liouville fractional derivative, with some
sufficiently smooth function u and 0 < α < 1,

R
0 D

α
t u(tn) = k−α

n∑
j=0

wj,nu(tn−j) +O(k2−α), (5)

where

Γ(2− α)wj,n =


1, j = 0,

−2j1−α + (j − 1)1−α + (j + 1)1−α, j = 1, 2, . . . , n− 1,

(j − 1)1−α − j1−α, j = n.

We remark that the approximation scheme (5) to the Riemann-Liouville fractional derivative can also be
obtained by first approximating the Caputo fractional derivative with the L1 scheme introduced in, e.g, [21]
[16] and then applying the relation between the Caputo and Riemann-Liouville fractional derivatives.

Define the following time discretization scheme for solving (4), with V j ≈ V (tj), j = 0, 1, 2, . . . , n,
n = 1, 2, . . . , N ,

k−α
n∑
j=0

wn−j,nV
j +AV n = −Au0, V 0 = 0, (6)

or

k−α
n∑
j=1

wn−j,nV
j +AV n = −Au0. (7)

Jin et al. [16, Theorem 3.16] proved the following theorem for the nonsmooth initial data u0.

Theorem 2.1. Let V (tn) and V n be the solutions of (4) and (7), respectively. Let u0 ∈ L2(Ω). Then we
have

‖V n − V (tn)‖ ≤ Ckt−1
n ‖u0‖.

In order to achieve higher accuracy, by modifying the approximation scheme (6) at the first time step
n = 1, Yan et al. [36] introduced the following modified L1 scheme: with c0 = 1/2,

k−α
n∑
j=1

wn−j,nV
j +AV n = (−Au0)(1 + c0), n = 1, (8)

k−α
n∑
j=1

wn−j,nV
j +AV n = −Au0, n = 2, 3, . . . N, (9)

V 0 = 0, (10)

and show the following result in [36].

Theorem 2.2. Let c0 = 1/2 and let V (tn) and V n be the solutions of (4) and (8)-(10), respectively, Let
u0 ∈ L2(Ω). Then we have

‖V n − V (tn)‖ ≤ Ck2−αtα−2
n ‖u0‖.

3



In this section, we will introduce the following time discretization scheme to approximate (4), with
a1 = 11/12, a2 = −5/12,

k−α
n∑
j=1

wn−jV
j +AV n = (−Au0)(1 + a1), n = 1, (11)

k−α
n∑
j=1

wn−jV
j +AV n = (−Au0)(1 + a2), n = 2, (12)

k−α
n∑
j=1

wn−jV
j +AV n = −Au0, n = 3, 4, . . . N, (13)

V 0 = 0, (14)

where wj , j = 0, 1, 2, . . . are determined by (16) below.

Remark 2.1. The parameter c0 in (8)-(10) and the parameters a1 and a2 in (11)-(12) are very important.
For example, the accuracy of the numerical method (11)-(14) is sensitive to the values V 1 and V 2. One
must use (11) and (12) to calculate the starting values V 1 and V 2. In other words, one can not get the
required accuracy O(k3−α) of the numerical method (11)-(14) at time T if one use other methods to calculate
the starting values V 1, V 2. In numerical example 4.3 in Section 4, we observe that the numerical method
(11)-(14) fails to get the required accuracy even we use the exact starting values V 1, V 2.

Theorem 2.3. Let a1 = 11/12, a2 = −5/12 and let V (tn) and V n be the solutions of (4) and (11)-(14),
respectively. Let u0 ∈ L2(Ω). Then there exists a positive constant C such that

‖V n − V (tn)‖ ≤ Ck3−αtα−3
n ‖u0‖.

Let us first introduce the weights wj , j = 0, 1, 2, . . . in (11)-(14). To do this, we need to introduce a
higher order numerical method to approximate Riemann-Liouville fractional derivative. For simplicity of
the notations of the weights in the approximation scheme to the Riemann-Liouville fractional derivative in
Lemma 2.4 below, we will only consider the weights with n ≥ 5. Similarly one may consider the weights
with n ≤ 5 separately. For our numerical methods (11)-(14), the approximate solutions V j , j = 1, 2, . . . , n
with n ≥ 1 are determined only by the weights wj , j = 0, 1, 2, . . . , n − 1 defined by (16). In other words,
it is not necessary to consider the starting values approximations V 1, V 2, V 3, V 4 by using other ways when
we calculate the solutions V n with n ≥ 5. We may apply the same method (11)-(14) to obtain all V n with
n ≥ 1.

Lemma 2.4. Let 0 < α < 1 and assume that u ∈ C3[0, T ]. Let n ≥ 5, then we have

R
0 D

α
t u(tn) = k−α

n∑
j=0

wj,nu(tn−j) +O(k3−α), (15)

where

Γ(3− α)wj,n =


(1 + α

2 )21−α, j = 0,

(2 + α
2 )31−α − (3 + 3

2α)21−α, j = 1,

(3 + α
2 )41−α − (6 + 3

2α)31−α + (3 + 3
2α)21−α, j = 2,

and, with j = 3, 4, . . . , n− 2,

Γ(3− α)wj,n = (j + 2)2−α − (1− α

2
)(j + 2)1−α − 3(j + 1)2−α

+ (3− 3

2
α)(j + 1)1−α + 3j2−α − (3− 3α

2
)j1−α − (j − 1)2−α

+ (1− α

2
)(j − 1)1−α, j = 3, 4, . . . n− 2,
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and

Γ(3− α)wn−1,n = (4− 2n− 2α)n1−α + (3n− 6 +
3α

2
)(n− 1)1−α − (n+

α

2
− 3)(n− 2)1−α,

Γ(3− α)wn,n = (n− 3 +
3α

2
)n1−α + (1− α)(2− α)n−α − (n− 2 +

α

2
)(n− 1)1−α.

Proof: See the Appendix.

�

We remark that for any fixed n ≥ 5, wj,n, j = 0, 1, . . . , n− 2 are independent on n and only wn−1,n and
wn,n depend on n. For example, we have w0,n = (1+α

2 )21−α for any n ≥ 5, w1,n = (2+α
2 )31−α−(3+ 3

2α)21−α

for any n ≥ 5, . . . . Based on this observation, we may define wj , j = 0, 1, 2, . . . , n − 1 which we need in
the numerical scheme (11)-(14) as follows. For j = 0, 1, 2, we define w0 = w0,n, w1 = w1,n, w2 = w2,n with
n ≥ 5. For wj , j = 3, 4, . . . , n− 2, we define wj = wj,n, j = 3, 4, . . . , n− 2, where

Γ(3− α)wj,n =
1

2
Ej+2 − Fj+1 +

1

2
Gj = (j + 2)2−α − (1− α

2
)(j + 2)1−α − 3(j + 1)2−α

+ (3− 3

2
α)(j + 1)1−α + 3j2−α − (3− 3α

2
)j1−α − (j − 1)2−α + (1− α

2
)(j − 1)1−α.

For wj , j ≥ n− 1, we also define wj by

Γ(3− α)wj =
1

2
Ej+2 − Fj+1 +

1

2
Gj = (j + 2)2−α − (1− α

2
)(j + 2)1−α − 3(j + 1)2−α

+ (3− 3

2
α)(j + 1)1−α + 3j2−α − (3− 3α

2
)j1−α − (j − 1)2−α + (1− α

2
)(j − 1)1−α.

Now for any fixed n ≥ 5, we have defined all wj , j = 0, 1, 2, . . . , n − 2, n − 1, n, . . . . We remark that in
our numerical method (11)-(14), we only need the weights wj , j = 0, 1, 2, . . . , n − 1, where wj = wj,n, j =
0, 1, 2, . . . , n − 2, but wn−1 6= wn−1,n. We shall see that in the proof of Theorem 2.3, we need to define
all wj , j = 0, 1, 2, . . . , n − 2, n − 1, n, . . . in order to use the discrete Laplace transform. For wj , j =
0, 1, 2, . . . , n− 2, n− 1, n, . . . we introduce the so called discrete Laplace transform, [23]

w̃(ζ) :=
∞∑
j=0

wjζ
j . (16)

Remark 2.2. In the numerical method (11)-(14), the weights wj , j = 0, 1, 2, . . . n − 1 are not completely
consistent with the weights wj,n, j = 0, 1, 2, . . . , n − 1 defined in (15). We modified the weight wn−1 such
that wn−1 has the same form as wj , j = 3, 4, . . . , n− 2 for n ≥ 5 and we also define all wj , j = n, n+ 1, . . .
in (16) since we need to apply the discrete Laplace transform

∑∞
j=0 wjζ

j in our analysis later.

Lemma 2.5. We have the following singularity expansion, with ζ = e−zk,

∞∑
j=0

wjζ
j = (zk)α + d2(zk)3 + d3(zk)3+α + . . . , (17)

for some suitable constants d2,d3,. . . .

To prove Lemma 2.5, we need to introduce the polylogarithm function

Lip(z) =

∞∑
j=1

zj

jp
,
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The polynomial function Lip(z) is well defined for |z| < 1 and p ∈ C. It can be analytically continued
to the split complex plane C\[1,+∞); see Flajolet [9] with z = 1, it recovers the Riemann zata function
ς(p) = Lip(1), we also recall an important singular expansion of the function Lip(e

−z)(Flajolet [9],Theorem
1).

Lemma 2.6. ( [16], Lemma 3.2) For p 6= 1, 2, . . . , the function Lip(e
−z) satisfies the singular expansion

Lip(e
−z) ∼ Γ(1− p)zp−1 +

∞∑
l=0

(−1)lς(p− l)z
l

l!
,

where ς(z) denotes the Riemann zeta function.

Lemma 2.7. ([16], Lemma 3.4) Let |z| ≤ π
sin θ with θ ∈ (π2 ,

5π
6 ), and −1 < p < 0. Then

Lip(e
−z) = Γ(1− p)zp−1 +

∞∑
l=0

(−1)lς(p− l)z
l

l!
,

converges absolutely.

Proof of Lemma 2.5: We have, by the definition of w̃(z) in (16) with ζ = e−zk,

w̃(z) =

∞∑
j=0

wjζ
j =

1

Γ(3− α)
(ζ−2 − 3ζ−1 + 3− ζ)

( ∞∑
j=1

j2−αζj
)

+
1

Γ(3− α)

[
(3− 3α

2
)ζ−1 − (1− α

2
)ζ−2 − (3− 3α

2
) + (1− α

2
)ζ
]( ∞∑

j=1

j1−αζj
)

+
1

Γ(3− α)

(α
2
ζ2 − 3α

2
ζ +

3α

2
− α

2
ζ−1

)
=

1

Γ(3− α)

[
(zk)3 +

1

2
(zk)4 +

1

4
(zk)5 + . . .

]
Liα−2(ζ)

+
1

Γ(3− α)

[
(−1 +

α

2
)(zk)3 + (−1

2
+
α

4
)(zk)4 + . . .

]
Liα−1(ζ)

+
1

Γ(3− α)

[
− α

2
(zk)3 +

α

4
(zk)4 + . . .

]
,

where Liα−1(ζ) and Liα−2(ζ) with 0 < α < 1 denote the polylogarithm functions. By Lemma 2.7 with
p = α− 1, α− 2, we have

w̃(z) = (zk)α +
1

Γ(3− α)

(1

2
Γ(3− α) + (−1 +

α

2
)Γ(2− α)

)
(zk)α+1

+
1

Γ(3− α)

(1

4
Γ(3− α) + (−1

2
+
α

4
)Γ(2− α)

)
(zk)α+2 + d2(zk)3 + d3(zk)3+α + . . .

= (zk)α + d2(zk)3 + d3(zk)3+α + . . . ,

for some suitable constants d2, d3, . . . .
Together these estimates complete the proof of Lemma 2.5.

�

Lemma 2.8. Let ζ = e−zk and z ∈ Γk. Let µ(ζ), zk and K(z) be defined as in (27), (25), (29), respectively.
We have,

µ(e−zk)− 1 = O((zk)3−α), as zk → 0, (18)

c|z| ≤ |zk| ≤ C|z|, (19)∥∥K(zk)−K(z)
∥∥ ≤ Ck3−α|z|2−α, (20)∥∥µ(ζ)K(zk)−K(z)

∥∥ ≤ Ck3−α|z|2−α. (21)
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Proof: See the Appendix.

�

We now turn to the proof of Theorem 2.3. To prove Theorem 2.3, we need to show that zαk ∈ Σθ0 for
some θ0 ∈ (π/2, π) where zk is defined in (25) below and θ0 is introduced in (2). We have the following
lemma, [16, Lemma 3.7]

Lemma 2.9. Let θ > π/2 be close to π/2. Let z ∈ Γk with Γk = {z ∈ Γ : |=z| ≤ π/k} and Γ = {z :

|arg z| = θ} (with =z running from −∞ to ∞). Let zk = δ(ζ)
k , ζ = e−zk be defined by (25). Then there

exists θ0 ∈ (π/2, π) such that
zαk ∈ Σθ0 , for all z ∈ Σθ. (22)

Remark 2.3. In Jin et al. [16, Lemma 3.7], the authors proved that for all −π ≤ θ < π, there exists
θ0 ∈ (π/2, π) such that zαk ∈ Σθ0 for all z ∈ Σθ. Actually in our analysis, we only need to show zαk ∈ Σθ0
for all z ∈ Σθ for some θ > π/2 close to π/2.

Proof of Theorem 2.3: Taking the Laplace transform in (4), we have,

V̂ (z) = −z−1(zα +A)−1Au0,

which implies that

V (t) = − 1

2πi

∫
Γ

eztz−1(zα +A)−1Au0 dz, (23)

where Γ = Γθ = {z : | arg z| = θ}, for some θ > π/2 and θ is close to π/2.
Denote

σn =


1 + a1, n = 1,

1 + a2, n = 2,

1, n ≥ 3,

The time discretization problem (11)-(14) can then be rewritten as

k−α
n∑
j=1

wn−jV
j +AV n = (−Au0)σn.

Taking the summation with n = 1, 2, . . . , we have

∞∑
n=1

(
k−α

n∑
j=1

wn−jV
j
)
ζn +

∞∑
n=1

(AV n)ζn = (−Au0)
( ∞∑
n=1

σnζ
n
)
.

Using the following equality

∞∑
n=1

( n∑
j=1

wn−jV
j
)
ζn =

( ∞∑
j=0

wjζ
j
)(
V 1ζ1 + V 2ζ2 + . . .

)
.

we have, with Ṽ (ζ) =
∑∞
j=0 V

jζj ,

k−αw̃(ζ)Ṽ (ζ) +AṼ (ζ) = (−Au0)
( ζ

1− ζ
+ a1ζ + a2ζ

2
)
, (24)

which implies that

Ṽ (ζ) + kαw̃(ζ)−1AṼ (ζ) = kαw̃(ζ)−1(−Au0)
( ζ

1− ζ
+ a1ζ + a2ζ

2
)
.
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Denote δ(ζ)α = w̃(ζ), we have

Ṽ (ζ) +
(δ(ζ)

k

)−α
AṼ (ζ) = −

(δ(ζ)

k

)−α( ζ

1− ζ
+ a1ζ + a2ζ

2
)
Au0,

With

zk =
δ(ζ)

k
, δ(ζ) = w̃(ζ)

1
α , (25)

we obtain

Ṽ (ζ) = −(zαk +A)−1
( ζ

1− ζ
+ a1ζ + a2ζ

2
)
Au0,

By Taylor series expansion, we have, [23],

V n = − 1

2πi

∫
|ζ|=ρ

ζ−n−1
( ζ

1− ζ
+ a1ζ + a2ζ

2
)

(zαk +A)−1Au0dζ

= − 1

2πi

∫
|ζ|=ρ

ζ−n−1
( ζ

1− ζ
+ a1ζ + a2ζ

2
)
zkz
−1
k (zαk +A)−1Au0 dζ. (26)

Let ζ = e−zk, z = 1
k ln 1

ρ + i
(
− θ

k

)
, |θ| ≤ π, we have

V n =
1

2πi

∫
Γk

etnz
( ζ

1− ζ
+ a1ζ + a2ζ

2
)
δ(ζ)z−1

k (zαk +A)−1Au0 dz,

where Γk = {z ∈ Γ : |=z| ≤ π/k}. For the details of the notation Γk, see the proof of Lemma 3.2 in [16].
Denote

µ(ζ) =
( ζ

1− ζ
+ a1ζ + a2ζ

2
)
δ(ζ), (27)

we get

V n =
1

2πi

∫
Γk

etnzµ(ζ)z−1
k (zαk +A)−1Au0 dz. (28)

Subtracting (23) from (28), we have

V (tn)− V n =
1

2πi

∫
Γk

etnz
(
µ(ζ)z−1

k (zαk +A)−1 − z−1(zα +A)−1
)
Au0 dz

+
1

2πi

∫
Γ\Γk

etnzz−1(zα +A)−1Au0 dz

= I + II.

Denote
K(z) = z−1(zα +A)−1A. (29)

For I, we have, by (21),

‖I‖ ≤ 1

2π

∫
Γk

∣∣etnz∣∣∥∥µ(ζ)K(zk)−K(z)
∣∣‖u0‖ |dz| ≤

1

2π

∫
Γk

∣∣etnz∥∥C(k3−α|z|2−α
)
‖u0‖ |dz|

≤ Ck3−α
∫ ∞

0

e−ctnr(rtn)2−αtα−2
n d(rtn)t−1

n ‖u0‖ ≤ Ck3−αtα−3
n ‖u0‖.

For II, we have, by (3) and noting that (zα +A)−1A = I − zα(zα +A)−1,

‖(zα +A)−1A‖ = ‖I − zα(zα +A)−1‖ ≤ ‖I‖+ ‖zα(zα +A)−1‖ ≤ 1 +M ≤ C.
8



Thus, with some constant c > 0,

‖II‖ ≤ 1

2π

∫
Γ\Γk

∣∣etnz∣∣∥∥z−1(zα +A)−1A‖‖u0‖ |dz| ≤ C
∫ ∞

1
k

e−ctn|z||z|−1 |dz|‖u0‖

≤ C
∫ ∞

1
k

e−ctn|z||z|−(3−α)|z|−α+2 |dz|‖u0‖ ≤ Ck3−α
∫ ∞

1
k

e−ctn|z||z|−α+2 |dz|‖u0‖

≤ Ck3−α
∫ ∞

1
k

e−ctn|z|(tnr)
−α+2d(rtn)(tn)α−2(tn)−1‖u0‖|dz|

≤ Ck3−αtα−3
n

∫ ∞
0

e−ctnr(tnr)
−α+2d(rtn)‖u0‖|dz| ≤ Ck3−αtα−3

n ‖u0‖.

The proof of Theorem 2.3 is now complete.

�

Remark 2.4. We remark that assuming u0 ∈ D(A) rather than u0 ∈ L2(Ω) reduces the singular behavior
of the error bound at t = 0. We can prove the convergence order O(k3−α), 0 < α < 1 similarly, see Lubich
et al. [23, p.16]

3. The inhomogeneous problem

In this section we will consider the time stepping method for solving the inhomogeneous problem (1)
based on the time stepping method introduced in Section 2 for the homogeneous problem.

Let u(t)− u0 = V (t). Then (1) is equivalent to

C
0 D

α
t V (t) +AV (t) = −Au0 + f(t), 0 < t ≤ T, with V (0) = 0. (30)

With V n ≈ V (tn), n = 0, 1, 2, . . . , N as in Section 2, we define the following time discretization scheme for
solving (30), with V 0 = 0,

k−α
n∑
j=1

wn−jV
j +AV n = −Au0 + f(tn) + a1(−Au0 + f(0)) + b1kf

′(0), n = 1, (31)

k−α
n∑
j=1

wn−jV
j +AV n = −Au0 + f(tn) + a2(−Au0 + f(0)) + b2kf

′(0), n = 1, (32)

k−α
n∑
j=1

wn−jV
j +AV j = −Au0 + f(tn), n = 2, 3, . . . , N, (33)

where wj , j = 0, 1, 2, . . . are defined by (16). Here the coefficients a1, a2, b1, b2 are defined by

a1 =
11

12
, a2 = − 5

12
, b1 =

1

12
, b2 = 0, (34)

which are determined by Theorem 2.3 and Lemma 3.2 below.

Theorem 3.1. Let V (tn) and V n be the solutions of (30) and (31)-(33), respectively. Let u0 ∈ H = L2(Ω).
Then we have, with 0 < α < 1,

‖V (tn)−V n‖ ≤ Ck3−α
(
tα−3
n ‖u0‖+t2α−3

n ‖f(0)‖+t2α−2
n ‖f ′(0)‖+t2α−1

n ‖f ′′(0)‖+
∫ tn

0

(tn−s)2α−1‖f ′′′(s)‖ ds
)
.

(35)

9



To prove Theorem 3.1, we need the following lemmas.

Lemma 3.2. Let zk be defined as in (25). Let b1 = 1
12 , b2 = 0. Then we have

∥∥∥(zα +A)−1z−2 − (zαk +A)−1
( ∞∑
n=1

nζn + b1ζ + b2ζ
2
)
k2
∥∥∥ ≤ Ck3−α|z|1−2α.

Proof: The proof is similar as the proof of Jin et al. [18, Lemma C.1.]. We omit the proof here.

�

Lemma 3.3. Let zk be defined as in (25), We have∥∥∥(zα +A)−1z−3 − (zαk +A)−1
(
k

∞∑
n=1

t2n
2!
ζn
)∥∥∥ ≤ Ck3−α|z|−2α.

Proof: We have∥∥∥(zα +A)−1z−3 − (zαk +A)−1
(
k
∞∑
n=1

tnζ
n
)∥∥∥

≤ ‖(zα +A)−1z−3 − (zαk +A)−1z−3
k ‖+

∥∥∥(zαk +A)−1z−3
k

(
1− z3

kk

∞∑
n=1

t2n
2!
ζn
)∥∥∥.

It is easy to show that ∥∥∥1− z3
kk

∞∑
n=1

t2n
2!
ζn
∥∥∥ ≤ C|zk|3−α.

The rest of the proof of Lemma 3.3 follows from the arguments in the proof of (20)-(21).

�

Proof of Theorem 3.1: The proof is similar to the arguments developed in Jin et al. [17], [18] for
considering the time stepping methods for solving (1) with f 6= 0.

Denote

f(t) = f(0) + f ′(0)t+R(t), R(t) =
t2

2!
f ′′(0) +

( t2
2!
∗ f ′′′

)
(t).

Here f ∗ g denotes the convolution of f and g.
Taking the Laplace transform in (30), we have

zαV̂ (z) +AV̂ (z) = (−Au0 + f(0))z−1 + f ′(0)z−2 + R̂(z),

which implies that

V (t) =
1

2πi

∫
Γ

ezt
(

(zα +A)−1z−1(−Au0 + f(0)) + (zα +A)−1z−2f ′(0) + (zα +A)−1R̂(z)
)
dz.

Taking the discrete Laplace transform in (31)-(33), we have

∞∑
n=1

(
k−α

n∑
j=1

wn−jV
j
)
ζn +

∞∑
n=1

(AV n)ζn = (−Au0 + f(0))
(
a1ζ + a2ζ

2 +
ζ

1− ζ

)
+

∞∑
n=1

(tnf
′(0))ζn +

∞∑
n=1

R(tn)ζn + b1kf
′(0)ζ + b2kf

′(0)ζ2,

10



which implies that

V n =− 1

2πi

∫
Γk

eztn
(

(zαk +A)−1z−1
k

(
Au0 − f(0)

))(
zkk
(
a1ζ + a2ζ

2 +
ζ

1− ζ
))
dz

− 1

2πi

∫
Γk

eztn
(

(zαk +A)−1z−1
k f ′(0)

)(
− zkk2

( ∞∑
n=1

nζn + b1ζ + b2ζ
2
))
dz

− 1

2πi

∫
Γk

eztn
(

(zαk +A)−1z−1
k

)(
− zkk

( ∞∑
n=1

R(tn)ζn
))
dz,

where µ(ζ) and zk are defined by (27) and (25), respectively. Thus we have

V (tn)− V n = I1 + I2 + I3,

where

I1 =
1

2πi

∫
Γ/Γk

eztn(zα +A)−1z−1(−Au0 + f(0)) dz

+
1

2πi

∫
Γk

eztn
(

(zα +A)−1z−1 − (zαk +A)−1z−1
k µ(e−zk)

)
(−Au0 + f(0)) dz,

I2 =
1

2πi

∫
Γ

eztn
(
(zα +A)−1z−2

)
f ′(0) dz

− 1

2πi

∫
Γk

eztn
(

(zαk +A)−1
( ∞∑
n=1

nζn + b1ζ + b2ζ
2
)
k2
)
f ′(0) dz

I3 =
1

2πi

∫
Γ

eztn
(
(zα +A)−1z−1

)(
zR̂(z)

)
dz

− 1

2πi

∫
Γk

eztn
(

(zαk +A)−1z−1
k

(
zkk

∞∑
n=1

R(tn)ζn
))

dz.

For I1, we have, following the same argument as in the proof of Theorem 2.3,

‖I1‖ ≤ Ck2−αtα−2
n ‖u0‖+ Ck2−αt2α−2

n ‖f(0)‖.

For I2, we have

I2 =
1

2πi

∫
Γ/Γk

eztn
(
(zα +A)−1z−2

)
f ′(0) dz

+
1

2πi

∫
Γk

eztn
(

(zα +A)−1z−2 − (zαk +A)−1
( ∞∑
n=1

nζn + b1ζ + b2ζ
2
)
k2
)
f ′(0) dz

= I21 + I22.

For I21, we have, following the arguments as in the proof of Theorem 2.3,

‖I21‖ ≤ Ck3−αt2α−2
n ‖f ′(0)‖.

For I22, we have

‖I22‖ ≤ C
∥∥∥∫

Γk

eztn
(

(zα +A)−1z−2 − (zαk +A)−1
( ∞∑
n=1

nζn + b1ζ + b2ζ
2
)
k2
)
dz
∥∥∥‖f ′(0)‖.

By Lemma 3.2, we have

‖I22‖ ≤ C
∫

Γk

e−ctnrk3−αr1−2α dr‖f ′(0)‖ ≤ Ck3−αt2α−2
n ‖f ′(0)‖.
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Thus we get
‖I2‖ ≤ Ck3−αt2α−2

n ‖f ′(0)‖.

For I3, we may write I3 as
I3 = I1

3 + I2
3 .

Here

I1
3 =

1

2πi

∫
Γ

eztn
(
(zα +A)−1z−1

)(
zR̂1(z)

)
dz

− 1

2πi

∫
Γk

eztn
(

(zαk +A)−1z−1
k

(
zkk

∞∑
n=1

R1(tn)ζn
))

dz

I2
3 =

1

2πi

∫
Γ

eztn
(
(zα +A)−1z−1

)(
zR̂2(z)

)
dz

− 1

2πi

∫
Γk

eztn
(

(zαk +A)−1z−1
k

(
zkk

∞∑
n=1

R2(tn)ζn
))

dz,

where

R(t) =
t2

2!
f ′′(0) +

( t2
2!
∗ f ′′′

)
(t) =: R1(t) +R2(t).

For I1
3 , we have

‖I1
3‖ =

∥∥∥ 1

2πi

∫
Γ

eztn
(
(zα +A)−1z−3

)
dzf ′′(0)

− 1

2πi

∫
Γk

eztn
(

(zαk +A)−1
(
k

∞∑
n=1

R1(tn)ζn
))

dzf ′′(0)
∥∥∥

=
∥∥∥ 1

2πi

∫
Γ/Γk

eztn
(
(zα +A)−1z−3

)
dzf ′′(0)

− 1

2πi

∫
Γk

eztn
(

(zα +A)−1z−3 − (zαk +A)−1
(
k

∞∑
n=1

R1(tn)ζn
))

dzf ′′(0)
∥∥∥.

By Lemma 3.3, we have
‖I1

3‖ ≤ Ck3−αt2α−1
n ‖f ′′(0)‖.

For I2
3 , we have, following the arguments as in Jin et al. [17], [18],

‖I2
3‖ ≤ Ck3−α

∫ tn

0

(tn − s)2α−1‖f ′′′(s)‖ ds.

Together these estimates complete the proof of Theorem 3.1.

�

4. Numerical example

In this section, we will consider the experimentally determined convergence rates of the numerical method
(11)-(14) for smooth and nonsmooth initial data. We only show the numerical results for the homogeneous
problem here. Similarly we may consider the numerical results for the inhomogeneous problem with f 6= 0
as discussed in Jin et al. [17], [18].
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Example 4.1. Consider, with 0 < α < 1,

C
0 D

α
t u(x, t)− ∂2u(x, t)

∂x2
= 0, 0 < x < 1, 0 < t ≤ T,

u(0, t) = u(1, t) = 0,

u(x, 0) = u0(x),

where (a) u0(x) = sin(2πx) (smooth data) and (b) u0(x) = χ[0,1/2] (nonsmooth data).

Let 0 < t0 < t1 < · · · < tN = T be the time partition and k the time step size. Let Nh be a positive
integer. Let 0 = x0 < x1 < x2 < · · · < xNh = 1 be the space partition and h the space step size. The space
is discretized by using the standard linear finite element method.

We first consider the L1 scheme (7) and the convergence rate was proved to be O(k) for both smooth and
nonsmooth data in [16]. To observe this convergence rate, we first calculate the reference solution uref (t) at
T = 1 with href = 2−6 and kref = 2−10. We then use h = 2−6 and k = κ ∗ kref with κ = [22, 23, 24, 25, 26]
to obtain the approximate solution at u(T ). We obtain the following results which are consistent with the
Table 1 in [16]. The convergence rate indeed is almost O(k) for the different α ∈ (0, 1) in both smooth and
nonsmooth data cases.

α k = 2−8 k = 2−7 k = 2−6 k = 2−5 k = 2−4 Rate
0.1 (a) 2.12e-6 4.96e-6 1.06e-5 2.22e-5 4.56e-5 1.1063

(b) 5.51e-6 1.27e-5 2.74e-5 5.70e-5 1.17e-4 1.1063
0.3 (a) 5.61e-6 1.30e-5 2.80e-5 5.85e-5 1.21e-4 1.1100

(b) 1.43e-5 3.33e-5 7.18e-5 1.48e-4 3.09e-4 1.1099
0.8 (a) 7.81e-6 1.85e-5 4.03e-5 8.57e-5 1.82e-4 1.1359

(b) 1.98e-5 4.66e-5 1.02e-4 2.16e-4 4.59e-4 1.1350
0.9 (a) 5.41e-6 1.28e-5 2.84e-5 6.21e-5 1.40e-5 1.1766

(b) 1.34e-5 3.20e-5 7.08e-5 1.55e-5 3.49e-5 1.1757

Table 1: Time convergence rates with the different α ∈ (0, 1) for the L1 scheme (7) in Example 4.1

We next consider the modified L1 scheme (8)-(10) which has the convergence rate O(k2−α) for both
smooth and nonsmooth data. Using the same notations and the same initial data as in Table 1, we found,
in Table 2, that the modified L1 scheme has the better accuracy than the L1 scheme. When α < 1/2, the
convergence rates are almost 2 which is better than the theoretical results 2 − α. However when α > 1/2,
the convergence rates are almost 2− α as we expected.

Finally we consider the higher order numerical method (11)-(14) which has the convergence rate O(k3−α)
for both smooth and nonsmooth data. Using the same notations and the same initial data as in Tables 1
and 2, we found, in Table 3, that the higher order numerical method (11)-(14) has the better accuracy than
the L1 scheme and the modified L1 scheme as we expected. We observe that when α < 1/2, the convergence
rates are almost 3 which is better than the theoretical results 3−α. However when α > 1/2, the convergence
rates are almost 3− α as we expected.

Example 4.2. In this example, we will consider, with 0 < α < 1,

C
0 D

α
t u(x, t)− 1

4π2

∂2u(x, t)

∂x2
= 0, 0 < x < 1, 0 < t ≤ T,

u(0, t) = u(1, t) = 0,

u(x, 0) = u0(x),
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α k = 2−8 k = 2−7 k = 2−6 k = 2−5 k = 2−4 Rate
0.1 (a) 7.12e-9 3.01e-8 1.25e-7 5.17e-7 2.19e-6 2.0674

(b) 1.82e-8 7.81e-8 3.22e-7 1.33e-6 5.65e-6 2.0668
0.3 (a) 1.31e-8 6.42e-8 2.91e-7 1.30e-6 5.89e-6 2.1914

(b) 4.23e-8 1.71e-7 7.61e-7 3.39e-6 1.53e-5 2.1839
0.8 (a) 7.91e-7 2.01e-6 4.62e-6 9.81e-6 1.78e-5 1.1223

(b) 1.96e-6 4.96e-6 1.14e-5 2.42e-5 4.41e-5 1.1230
0.9 (a) 1.41e-6 3.45e-6 7.78e-6 1.68e-5 3.48e-5 1.1573

(b) 3.47e-6 8.51e-6 1.92e-5 4.16e-5 8.59e-5 1.1572

Table 2: Time convergence rates with the different α ∈ (0, 1) for the modified L1 scheme (8)-(10) in Example 4.1

α k = 2−8 k = 2−7 k = 2−6 k = 2−5 k = 2−4 Rate
0.1 (a) 8.45e-11 7.38e-10 6.09e-9 5.11e-8 4.52e-7 3.0962

(b) 1.92e-10 1.68e-9 1.39e-8 1.16e-7 1.03e-6 3.0974
0.3 (a) 2.78e-10 2.36e-9 1.95e-8 1.64e-7 1.46e-6 3.0909

(b) 6.19e-10 5.26e-9 4.36e-8 3.69e-7 3.30e-6 3.0946
0.8 (a) 6.34e-10 1.38e-9 6.28e-9 1.39e-7 1.71e-6 2.6496

(b) 1.64e-8 7.33e-8 3.01e-7 1.06e-6 2.06e-6 2.1436
0.9 (a) 1.15e-9 4.16e-9 9.81e-9 3.03e-8 8.32e-7 2.3756

(b) 4.11e-8 1.82e-7 7.65e-7 3.09e-6 1.11e-5 2.0202

Table 3: Time convergence rates with the different α ∈ (0, 1) for (11)-(14) in Example 4.1

where u0(x) = sin(2πx) and the exact solution has the form

u(x, t) = Eα,1(−tα) sin(2πx). (36)

Here Eα,1(z) denotes the Mittag-Leffler function defined by [30]

Eα,1(z) =

∞∑
k=0

zk

Γ(αk + 1)
, α > 0.

We use the same notations as in Example 4.1 and the convergence rates are estimated by using the
reference solution. In Table 4, we observe that the convergence rate for the L1 scheme (7) indeed is almost
O(k) for the different α ∈ (0, 1).

We next consider the higher order numerical method (11)-(14) which has the convergence rate O(k3−α)
for both smooth and nonsmooth data. Using the same notations as in Table 4, we indeed observe the
convergence rates are almost O(k3−α) in Table 5 for the scheme (11)-(14).

Finally we consider the importance of the parameters a1, a2 in the scheme (11)-(14). To see this, we
calculate the approximate solutions V n, n = 1, 2 in the first two time levels t1 and t2 by using the exact
solution (36) which can be evaluated by using the Mittag-Leffler MATLAB function ”mlf.m” and then we
obtain the approximate solutions V n, n = 3, 4, . . . , N by using the scheme (13). In Table 6, we obtain
the convergence rates by using the reference solution as above and we see that the convergence rates are
only O(k). In other words, the parameters a1, a2 in the scheme (11)-(14) are very important for improving
the convergence rates of the scheme. Even if we use the exact solutions in the first two time levels, the
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α k = 2−8 k = 2−7 k = 2−6 k = 2−5 k = 2−4 Rate
0.1 2.60e-5 6.07e-5 1.30e-4 2.70e-4 5.52e-4 1.1017
0.3 8.02e-5 1.87e-4 4.02e-4 8.32e-4 1.70e-3 1.1012
0.8 2.65e-4 6.19e-4 1.33e-3 2.76e-3 5.65e-3 1.1032
0.9 3.20e-4 7.48e-4 1.61e-3 3.35e-3 6.93e-3 1.1091

Table 4: Time convergence rates with the different α ∈ (0, 1) for the L1 scheme (7) by using the reference solution in Example
4.2

α k = 2−8 k = 2−7 k = 2−6 k = 2−5 k = 2−4 Rate
0.1 7.79e-10 6.97e-9 5.74e-8 4.79e-7 4.19e-6 3.0987
0.3 1.73e-9 1.50e-8 1.30e-7 1.13e-6 1.03e-5 3.1373
0.8 2.99e-8 1.69e-7 1.00e-6 6.57e-6 4.86e-5 2.6671
0.9 3.25e-7 1.49e-6 6.78e-6 3.20e-5 1.64e-4 2.2445

Table 5: Time convergence rates with the different α ∈ (0, 1) for (11)-(14) by using the reference solution in Example 4.2

convergence rates can not be improved by using the scheme (13). However, if we use the scheme (11)-(14)
to calculate all V n, n = 1, 2, . . . , N , then the convergence rates can be improved, i.e., Table 5.

α k = 2−8 k = 2−7 k = 2−6 k = 2−5 k = 2−4 Rate
0.1 2.18e-5 5.11e-5 1.10e-4 2.28e-4 4.67e-4 1.1047
0.3 3.66e-5 8.77e-5 1.93e-4 4.12e-4 8.60e-4 1.1384
0.8 1.12e-5 2.26e-5 4.72e-5 1.13e-4 3.19e-4 1.2082
0.9 1.40e-5 2.97e-5 6.57e-5 1.64e-4 4.61e-4 1.2591

Table 6: Time convergence rates with the different α ∈ (0, 1) for (13) with exact V 1 and V 2 by using the reference solution in
Example 4.2

Example 4.3. In this example, we consider the same problem as in Example 4.2. Since the exact solution
is available in this example, we shall calculate the experimentally determined convergence rates by using the
exact solution instead of using the reference solution as in Example 4.2.

To see the convergence rate without using the reference solution, we have to choose sufficiently small space
step size otherwise the spacial error will dominates the total error. In our numerical simulation below, we
choose the space step size h = 1/2000 and the same time step size as above. The space is also discretized by
using the linear finite element method. In Table 7, we observe the experimentally determined convergence
rate O(k) for the scheme (7).

In Table 8, we consider the modified L1 scheme (8)-(10) and choose space step size h = 1/2000 and the
time step size as above. We observe that the convergence rates are indeed almost O(k2−α) as we expected.

In Table 9, we obtained the experimentally determined convergence rate for the scheme (11)-(14). We
again choose the space step size h = 1/2000 and the same time step size as above. We find that the
convergence rates are lower than O(k3−α)) for α < 1/2 and almost O(k3−α)) for α > 1/2. We believe
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α k = 2−8 k = 2−7 k = 2−6 k = 2−5 k = 2−4 Rate
0.1 3.46e-5 6.93e-5 1.39e-4 2.79e-4 5.60e-4 1.0043
0.3 1.07e-4 2.14e-4 4.28e-4 8.58e-4 1.72e-3 1.0036
0.8 3.53e-4 7.07e-4 1.42e-3 2.84e-3 5.74e-3 1.0053
0.9 4.26e-4 8.54e-4 1.71e-3 3.45e-3 7.03e-3 1.0111

Table 7: Time convergence rates with the different α ∈ (0, 1) for the L1 scheme (7) by using the exact solution in Example 4.3

α k = 2−8 k = 2−7 k = 2−6 k = 2−5 k = 2−4 Rate
0.1 2.10e-7 4.20e-7 1.32e-6 5.17e-6 2.21e-5 1.6778
0.3 1.60e-7 5.70e-7 1.04e-6 1.12e-6 2.51e-5 1.8299
0.8 4.11e-5 9.21e-5 2.01e-4 4.19e-4 7.79e-4 1.0608
0.9 5.22e-5 1.09e-4 2.18e-4 4.11e-4 6.47e-4 0.9083

Table 8: Time convergence rates with the different α ∈ (0, 1) for the modified L1 scheme (8)-(10) by using the exact solution
in Example 4.3

the reason is that the spatial error still dominated the total error for the case α < 1/2. In other words,
h = 1/2000 is sufficient to observe the time convergence rate O(k2−α) for the modified L1 scheme (8)-(10),
however to observe the convergence rate O(k3−α) for the scheme (11)-(14), one may need to choose even
smaller space step size h < 1/2000. We shall not produce the numerical experiments for such smaller space
step size because of the computational times.

α k = 2−8 k = 2−7 k = 2−6 k = 2−5 k = 2−4 Rate
0.1 6.40e-8 5.78e-8 7.32e-9 4.13e-7 4.12e-6 1.5030
0.3 1.48e-7 1.35e-7 2.03e-8 9.83e-7 1.02e-5 1.5260
0.8 1.54e-7 1.49e-8 8.22e-7 6.40e-6 4.85e-5 2.0739
0.9 1.44e-7 1.31e-6 6.61e-6 3.18e-5 1.64e-4 2.5371

Table 9: Time convergence rates with the different α ∈ (0, 1) for (11)-(14) by using the exact solution in Example 4.3
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5. Appendix

5.1. Proof of Lemma 2.4

Note that the Riemann-Liouville fractional derivative R
0 D

α
t u(t), 0 < α < 1 may be written as

R
0 D

α
t u(t) =

1

Γ(1− α)

d

dt

∫ t

0

(t− s)−αu(s) ds =
1

Γ(−α)

∮ t

0

(t− s)−α−1u(s) ds,

where the integral
∮

must be interpreted as a Hadamard finite-part integral, see e.g., [8, (1.6)].
At t = tn, n = 5, 6, . . . , N , we have

R
0 D

α
t u(tn) =

1

Γ(−α)

∮ tn

0

(tn − s)−α−1u(s) ds =
t−αn

Γ(−α)

∮ 1

0

w−α−1u(tn − tnw) dw

=
t−αn

Γ(−α)

n∑
j=1

∮ wj

wj−1

w−α−1u(tn − tnw) dw.

Denote g(w) = u(tn−tnw) and approximate g(w) by the piecewise quadratic interpolation polynomial g2(w)
defined on the nodes wl = l

n , l = 0, 1, 2, . . . , n by

g2(w) =
(w − w1)(w − w2)

(w0 − w1)(w0 − w2)
g(w0) +

(w − w0)(w − w2)

(w1 − w0)(w1 − w2)
g(w1)

+
(w − w0)(w − w1)

(w2 − w0)(w2 − w1)
g(w2), for w ∈ [w0, w1],

and

g2(w) =
(w − wj−1)(w − wj)

(wj−2 − wj−1)(wj−2 − wj)
g(wj−2) +

(w − wj−2)(w − wj)
(wj−1 − wj−2)(wj−1 − wj)

g(wj−1)

+
(w − wj−2)(w − wj−1)

(wj − wj−2)(wj − wj−1)
g(wj), for w ∈ [wj−1, wj ], j = 2, 3, . . . , n.

More precisely, on [wj−1, wj ], j = 2, 3, . . . , n, g(w) is approximated by the quadratic interpolation polyno-
mial g2(w) determined by g(wj−2), g(wj−1), g(wj), and on [w0, w1], g(w) is approximated by the quadratic
interpolation polynomial g2(w) determined by g(w0), g(w1), g(w2).

By [8, Theorem 2.4], we have the following error estimates

R
0 D

α
t u(tn) =

t−αn
Γ(−α)

∮ 1

0

w−α−1g(w) dw =
t−αn

Γ(−α)

∮ 1

0

w−α−1g2(w) dw +O(k3−α). (37)
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We next calculate the integral on the right side of (37). Note that∮ 1

0

w−α−1g2(w)dw =

∮ w1

0

w−α−1g2(w)dw +

n∑
j=2

∫ wj

wj−1

w−α−1g2(w)dw, (38)

where only the first integral on the right side of (38) is in the sense of the Hadamard finite-part integral and
the other integrals on the right side of (38) are in the usual sense. Further we have∮ w1

0

w−α−1g2(w) dw =

∮ w1

0

w−α−1
(
g2(0) +

∫ w1

0

g′2(y) dy
)
dw.

Note that, by using the definition of Hadamard finite-part integral, [8]∮ w1

0

w−α−1 dw =
w−α1

−α
,

we therefore obtain ∮ w1

0

w−α−1g2(w) dw =
w−α1

−α
g2(0) +

∫ w1

0

w−α−1
( ∫ w1

0

g′2(y) dy
)
dw,

where

g′2(y) = (n2/2)(2y − (w1 + w2))g(0)− n2(2y − w2)g(w1) + (n2/2)(2y − w1)g(w2).

Hence∮ w1

0

w−α−1g2(w) dw =
1

(−α)(−α+ 1)(−α+ 2)n−α
(
(2− α/2)g(0) + (−α)(3− α)g(w1) + (α/2)g(w2)

)
.

For the other integrals in (38), we have, with j = 2, 3, . . . , n,∫ wj

wj−1

w−α−1g2(w) dw = (n2/2)g(wj−2)

∫ wj

wj−1

w−α−1(w − wj−1)(w − wj) dw

− n2g(wj−1)

∫ wj

wj−1

w−α−1(w − wj−2)(w − wj) dw

+ (n2/2)g(wj)

∫ wj

wj−1

w−α−1(w − wj−2)(w − wj−1) dw

=
1

(−α)(−α+ 1)(−α+ 2)n−α

(1

2
Ejg(wj−2)− Fjg(wj−1) +

1

2
Gjg(wj)

)
,

where

Ej = 2j−α+2 − (−α+ 2)j−α+1 − 2(j − 1)−α+2 − (−α+ 2)(j − 1)−α+1,

Fj = 2j−α+2 − 2(−α+ 2)j−α+1 − 2(j − 1)−α+2 + (−α+ 1)(−α+ 2)(j − 1)−α,

Gj = 2j−α+2 − 3(−α+ 2)j−α+1 − 2(j − 1)−α+2 + (−α+ 2)(j − 1)−α+1 + 2(−α+ 1)(−α+ 2)j−α.

Thus we get ∮ 1

0

w−α−1g2(w) dw =

n∑
j=0

αjng(wj),
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where

(−α)(−α+ 1)(−α+ 2)n−ααjn =



2− 1
2α+ 1

2E2, for j = 0,

(−α)(3− α) + 1
2E3 − F2, for j = 1,

1
2α+ 1

2E4 − F3 + 1
2G2, for j = 2,

1
2Ej+2 − Fj+1 + 1

2Gj , for j = 3, . . . , n− 2,

−Fn + 1
2Gn−1, for j = n− 1,

1
2Gn. for j = n.

Therefore we have

R
0 D

α
t u(tn) =

t−αn
Γ(−α)

∮ 1

0

w−α−1g2(w)dw +O(k3−α) =
t−αn

Γ(−α)

n∑
j=0

αjng(wj) +O(k3−α)

= k−α
n∑
j=0

(−α)(−α+ 1)(−α+ 2)n−ααjn
Γ(3− α)

g(wj) +O(k3−α)

= k−α
n∑
j=0

wjnu(tn−j) +O(k3−α),

where, with j = 0, 1, 2, . . . , n, n = 5, 6, . . . , N ,

Γ(3− α)wj,n = (−α)(−α+ 1)(−α+ 2)n−ααjn.

More precisely, for j = 0, we have

Γ(3− α)w0,n = 2− α

2
+

1

2
E2 = (1 +

α

2
)21−α.

For j = 1, we have

Γ(3− α)w1,n = (−α)(3− α) +
1

2
E3 − F2 = (2 +

α

2
)31−α − (3 +

3

2
α)21−α.

For j = 2, we have

Γ(3− α)w2,n =
1

2
α+

1

2
E4 − F3 +

1

2
G2 = (3 +

α

2
)41−α − (6 +

3

2
α)31−α + (3 +

3

2
α)21−α.

For j = 3, 4, . . . , n− 2,

Γ(3− α)wj,n =
1

2
Ej+2 − Fj+1 +

1

2
Gj = (j + 2)2−α − (1− α

2
)(j + 2)1−α − 3(j + 1)2−α

+ (3− 3

2
α)(j + 1)1−α + 3j2−α − (3− 3α

2
)j1−α − (j − 1)2−α + (1− α

2
)(j − 1)1−α.

For j = n− 1, we have

Γ(3− α)wj,n = (4− 2n− 2α)n1−α + (3n− 6 +
3α

2
)(n− 1)1−α − (n+

α

2
− 3)(n− 2)1−α,

For j = n, we have

Γ(3− α)wn,n = (n− 3 +
3α

2
)n1−α + (1− α)(2− α)n−α − (n− 2 +

α

2
)(n− 1)1−α.

Together these estimates complete the proof of Lemma 2.4.
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5.2. Proof of Lemma 2.8

We first show (18). It is sufficient to show

|µ(e−w)− 1| ≤ C|w|3−α, as w → 0.

Note that, by Lemma 2.5,

µ(e−w)− 1 =
( e−w

1− e−w
+ a1e

−w + a2e
−2w

)( ∞∑
j=0

wj(e
−w)j

) 1
α − 1

=
( e−w

1− e−w
+ a1e

−w + a2e
−2w

)
(wα + d2w

3 + d3w
3+α + . . . )

1
α − 1

= (−1/2 + a1 + a2)w + (1/12− a1 − 2a2)w2 + Cw3−α + C1w
3 + . . . .

Since a1 = 11/12, a2 = −5/12, we have

lim
w→0

µ(e−w)− 1

w3−α = C,

which implies (18).
Next we show (19). Note that

|z|
|zk|

=
|z|∣∣∣ δ(e−zk)
k

∣∣∣ =
|zk|

|δ(e−zk)|
.

To show (19), it suffices to prove |zk|
|δ(e−zk)| has limit as |zk| → 0, which follows from

lim
w→0

w

δ(e−w)
= lim
w→0

w

(
∑∞
j=0 wj(e

−w)j)
1
α

= lim
w→0

w

(wα + d2w3 + d3w3+α + . . . )
1
α

= lim
w→0

1

(1 + d2w3−α + . . . )
1
α

= 1.

Hence we have proved, for any fixed constant M > 0, there exists a constant C such that

|z|
|zk|
≤ C, ∀ |zk| ≤M.

Similarly we may show |zk|
|z| ≤ C, ∀ |zk| ≤M . Thus we get (19).

We now show (20). Note that,

zk − z =
δ(e−zk)

k
− z =

δ(e−zk)− zk
k

=

(∑∞
j=0 wj(e

−zk)j
) 1
α − zk

k

=
(zk)(1 + d2(zk)3−α + . . . )

1
α − zk

k
=

(zk)(1 + d2
α (zk)3−α + . . . )− zk

k

= O(k3−αz4−α)

Thus we have, following the proof in [23, (4.6)] and noting ‖K ′(z)‖ ≤ C|z|−2 in [23, (3.12)],

‖K(zk)−K(z)‖ ≤ C|z|−2k3−α|z|4−α ≤ Ck3−α|z|2−α.

Finally we show (21). Following the same proof as in [36, Lemma 3.12], we have, noting that |K(zk)| ≤
C|zk|−1 ≤ C|z|−1, ∥∥µ(ζ)K(zk)−K(z)

∥∥ ≤ ∥∥(µ(ζ)− 1
)
K(zk)

∥∥+
∥∥K(zk)−K(z)

∥∥
≤ |zk|3−αC|z|−1 + Ck3−α|z|2−α ≤ Ck3−α|z|2−α.

Together these estimates complete the proof of Lemma 2.8.
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