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What does the research say about how Artificial Intelligence and Big Data 
can close the achievement gap? 

Introduction 

Currently, we are failing to meet the needs of all learners. The gap 

between those who achieve the most and those who achieve the least is a 

challenge that teachers, school leaders, administrators, and government 

officials face every day, in every country. Globally, students from poorer 

backgrounds perform worse than students from richer backgrounds 

(Conroy and Rothstein, 2013). The results of this achievement gap impacts 

upon a country’s economy as well as the social well-being of their 

population (Hanushek and Woessmann, 2010). The reasons behind the 

achievement gaps in different countries vary, but the fact remains that not 

all learners are achieving their potential at school. 

(Luckin, Holmes, Griffiths, and Forcier, 2016: 42)  

 

We observe achievement gaps even in rich western countries, such as the 

UK, which in principle have the resources as well as the social and technical 

infrastructure to provide a better deal for all learners.  The reasons for such gaps 

are complex and include the social and material poverty of some learners with 

their resulting other deficits, as well as failure by government to allocate 
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sufficient resources to remedy the situation. On the supply side of the equation, a 

single teacher or university lecturer, even helped by a classroom assistant or 

tutorial assistant, cannot give each learner the kind of one-to-one attention that 

would really help to boost both their motivation and their attainment in ways that 

might mitigate the achievement gap. 

In this chapter Benedict du Boulay, Alexandra Poulovassilis, Wayne 

Holmes, and Manolis Mavrikis argue that we now have the technologies to assist 

both educators and learners, most commonly in science, technology, engineering 

and mathematics subjects (STEM), at least some of the time. We present case 

studies from the fields of Artificial Intelligence in Education (AIED) and Big 

Data. We look at how they can be used to provide personalised support for 

students and demonstrate that they are not designed to replace the teacher. In 

addition, we also describe tools for teachers to increase their awareness and, 

ultimately, free up time for them to provide nuanced, individualised support even 

in large cohorts.  

Artificial Intelligence and Big Data in Education  

The name “Artificial Intelligence” (AI) can be a little scary, especially at 

present where the notion of (an) AI taking over the world to the detriment of 

society is a popular contemporary nightmare.  
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Artificial intelligence in education is not about educational robots taking 

away jobs from teachers and brainwashing children. It is much more prosaic and 

consists of programs running on tablets and laptops that help teach learners on a 

one-to-one basis in a way that adapts the tasks, assistance and the feedback to the 

capabilities and progress of the individual learner. 

Artificial Intelligence in Education is a computer-based technology that 

tries to provide insightful, adaptive and personalised teaching, at the level of 

competence of an expert human tutor, for individuals and groups. In particular, 

such computer-based systems attempt to choose appropriate tasks for the learner 

to work on and then react dynamically to how they go about dealing with these 

tasks. These reactions can take the form of specific hints on individual steps taken 

and on requests for help, as well as providing general assistance (or 

“scaffolding”). Note that the reactions of the system are not only provided once 

the learner has submitted an answer but can also be provided in response to 

individual steps towards that answer. Such systems are also known as “intelligent 

tutoring systems” (ITS). Other systems are more open-ended and sometimes less 

individually adaptive but provide opportunities for a learner to explore a domain; 

they are referred to as Exploratory or Open-Ended Learning Environments (ELE). 

We will refer to all of these here as “AIED systems”. 

The term “Big Data” is also a little scary, especially where corporations 

and governments hoover up huge amounts of personal data, where there seems to 
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be endless breeches of privacy and data hacking, and the boundary between 

secure and insecure data is very porous.  In an educational context, Big Data can 

be beneficial in that it can collect information about how a cohort of learners are 

interacting with a learning environment and making progress with their learning.  

This information can be used by teachers and instructional designers to improve 

the environment and the support it offers to students. So Big Data enables 

learning environments to be adapted by showing where they work well and where 

they do not. 

This chapter is organised as follows.  In the next section we describe in 

more detail what an AIED system is and provide some examples.  We then 

describe some exploratory learning environments.  We then move to Big Data, 

both to describe it and give examples.  In the final part of the chapter we examine 

the evidence for the educational value of AIED systems and Big Data. 

The key parts of AIED systems 

The capability to individualise its teaching and assist even with partial 

answers depends on an AIED system having the following four components:  

1.   The Domain Knowledge Model is the component that provides the 

capability of the system to complete the tasks that it sets the students and 

to judge which steps contribute towards a solution, or which parts of an 

answer are correct. In other words the system needs to understand the 



5 

 

material that it is teaching, unlike a book or a website that can merely 

present that material. Because STEM subjects lend themselves much more 

readily to having their domains represented in ways that can be 

automatically reasoned about, most AIED systems have been built to teach 

these areas.  

2.   The Student Model is the component that provides a representation of the 

learner in terms of their developing knowledge and skills. This is needed 

so that tasks of an appropriate complexity and difficulty can be set. As the 

learner works through various tasks, the system builds up a “student 

model” of what the learner can reliably get right, what they seem to 

partially understand, and what they seem to be as yet very poor at. This 

model can never be exact, but is a best guess and can be used, for 

example, to select the next task for the learner or to give a little bit of 

challenge in areas not yet mastered and also practice in areas that seem 

well understood. 

3.   The Model of Pedagogy is the component that represents the teaching 

capability of the system. This is used to make decisions about how best to 

present new material, how best to deal with requests for help, how best to 

deal with incorrect steps and answers and so on. This might also include 

an understanding of how to motivate the learners if they become 

demotivated and tactics to deal with students who try to “game the 
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system” (Baker et al., 2008) by demanding so much help that the system 

might otherwise give them all the answers. 

 

4.   The Interface is the component that provides the channel through which 

the learner and the system communicate. This channel might be through 

spoken dialogue, or text and diagrams provided either by the learner or the 

system (see Figure 2). Such an interface may also include an animated 

pedagogical agent taking the role of a tutor or of a fellow student. 

 

We present below some examples of AIED systems illustrating their 

Domain Model, Student Model, Pedagogical Model and Interface. We chose a 

variety of systems and their potential to support students in different contexts. 

Examples of AIED systems  

Procedural skills – the Cognitive Algebra Tutor 

Our first example is an older and ‘traditional’ intelligent tutoring system. It 

teaches algebraic skills such as equation solving.  In the Pittsburgh Algebra Tutor, 

and other similar systems derived from it, the overall form of interaction is that 

the system chooses an individualised sequence of algebraic problems for the 

learner to solve and then monitors each step that the learner takes in solving each 

problem. The system has gone through several iterations. The interface shown in 
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Figure 1, taken from a much-cited early paper (Koedinger et al., 1997), offers a 

problem specific worksheet for the learner to fill out their partial answers to each 

sub-step of the problem. Later versions, such as the one used in a large evaluation 

described later, provide a more modern look and feel with access to a number of 

other tools to help the learner and find information (Koedinger and Aleven, 2016). 

 

<<FIGURE 1 about here>> 

Figure 1. Interface for the Pittsburgh Algebra Tutor,  

taken from (Koedinger et al., 1997) 

 

The system uses its domain model and student model to sequence the 

problems for each learner on an individual basis, depending on their rate of 

progress in mastering the various algebraic subskills needed for each problem (see 

bottom right of the interface). They are also used to reason about partial answers 

in various representations, such as a graph, spreadsheet and equation solver, to 

decide when a partial answer is a step in the right direction to solving the overall 

problem and when it is not. The pedagogical model makes the system react 

quickly to any mistake made by the learner so as to reduce the chance that they 

stray too far from the solution and get muddled. It also dynamically assesses what 

is the best next problem for the learner to work on so as to ensure that new skills 

are encountered and old skills practiced. 
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Exploratory Learning Environments for conceptual understanding - BETTY’s 

Brain 

Our second example is Betty’s Brain, a system designed to teach scientific 

conceptual understanding of river ecosystems (Leelawong and Biswas, 2008).  In 

particular, it aims to help learners appreciate the complexity of the causal and 

other relationships between different processes occurring in such ecosystems; for 

example, that fish produce waste and that this waste is food for bacteria (see 

Figure 2). There is also skill building in the learner’s interactions with Betty’s 

Brain, such as following causal chains of reasoning and developing generic study 

skills, but the main focus is still on conceptual understanding. 

 

<<FIGURE 2 about here >> 

Figure 2. Betty’s Brain interface, taken from (Leelawong and Biswas, 2008) 

 

The heart of the system is the Concept Map Editor pane in the top right of 

the interface. This is where the learner builds up a conceptual map of the river 

ecosystem, using nodes and links via the Editor on the top left of the screen. The 

conceptual map can also be understood by the system and this enables it to answer 

questions based on it. 
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The narrative behind the interaction is that the human learner is attempting 

to teach fellow student, Betty, seen on the bottom left of the screen in Figure 2. 

The conceptual map is a record of what the learner has so far taught Betty – hence 

“Betty’s Brain”. The learner can test the adequacy of what Betty has learnt by 

asking her to take a quiz administered by Mr Davis, the teacher. Mr Davis 

assesses Betty’s answers to the quiz questions and provides feedback to the 

learner, who then has the chance to edit the conceptual map in an attempt to help 

Betty get a better quiz score. Mr Davis assesses Betty’s answers to the quiz by 

reasoning from the conceptual map created by the human learner. This slightly 

indirect way of learning has a particular advantage for the human learner in terms 

of somewhat forestalling any negative reactions from the learner to mistakes in 

the quiz, as they are Betty’s mistakes. 

The learner can test the adequacy of the conceptual map directly by asking 

Betty such questions as “If macroinvertebrates increase what happens to 

bacteria?” Betty can answer such a question and explain that answer by following 

the causal reasoning indicated in the conceptual map using qualitative reasoning 

techniques. 

The system also provides learning materials that the learner is encouraged 

to use, see the lower part of the screen in Figure 2. In addition to feedback about 

the domain of river ecosystems, Mr Davis also makes suggestions at the meta-
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cognitive level, for example about making better use of the reading materials, in 

an effort to help the learner develop good study skills.  

In terms of the four components mentioned in the previous section we note 

that domain knowledge of the system is its ability to reason using the conceptual 

maps produced by the learner. Its student model is made up of a record of the 

various actions taken by the learner and the partial but growing understanding of 

the domain as exemplified in the conceptual map. In pedagogical terms the 

system is driven by the actions of the learner, although the overall educational 

goal of having Betty pass all the quizzes is clearly provided by the system. The 

system does have a model of pedagogy that drives how and when it makes 

comments at the metacognitive level, for example when Betty reacts to being 

asked to take a second quiz even though there has been no change to the 

conceptual map. Finally, the interface is key to the interaction as the conceptual 

map built by the learner is both an expression of their evolving understanding and 

can be reasoned about by the system (even if the map is wrong or partial). 

 

eXpresser and the MiGen system 

Another example of an exploratory environment is a mathematical microworld 

called eXpresser that aims to support 11-14 year olds’ learning of algebraic 

generalization, as part of a system called MiGen (Noss et al., 2012)1. Using 

eXpresser, students are asked to construct two-dimensional tiled models and 
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associated algebraic rules. The algebraic rules relate to the number of tiles of each 

colour required to paint each pattern and their model overall (see Figure 3). 

 

<<FIGURE 3 about here >> 

Figure 3. The eXpresser microworld. Letters highlight the main features: (A) An 

‘unlocked’ number (i.e. variable) is given the name ‘reds’ and signifies the 

number of red (dark grey) tiles in the pattern. (B) Building block to be repeated to 

make a pattern. (C) Number of repetitions (in this case, the value of the variable 

‘reds’).  (D, E) Number of grid squares to translate B to the right and down after 

each repetition.  (F) Units of colour required to paint the pattern.  (G) General 

expression that gives the total number of units of colour required to paint the 

whole pattern. 

 

Figure 4 illustrates a feedback message given by the eXpresser to a student 

who has constructed a correct pattern and a correct colouring rule for it, nudging 

the student towards “unlocking” a number (i.e. turning it into a variable) so as to 

now generalise their pattern and rule.  Figure 5 shows a message of 

encouragement but also a stronger prompt to guide the student towards 

generalising their construction.  

 

<<FIGURE 4 about here >> 
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Figure 4. A ‘nudge’ from the eXpresser 

 

 

<<FIGURE 5 about here >> 

Figure 5. A message of encouragement and a stronger ‘prompt’ from the 

eXpresser 

 

In terms of the four components of AIED systems mentioned earlier, the 

domain knowledge of the system is its internal model of mathematical concepts 

relating to algebraic generalisation. The student model records the learner’s 

gradual mastery of these concepts as the learner works through successively 

harder tasks, as well as a history of the learner’s constructions and interactions 

with the system. In pedagogical terms, each task comprises a set of learning goals 

that the learner needs to achieve as they work on the task using eXpresser. The 

system provides adaptive support based on how the student is approaching the 

task and how they are interacting with the system. Again, the eXpresser interface 

is key to the student-system interactions and the student’s growing conceptual 

knowledge, as their construction of models and rules can be reasoned about by the 

system in order to provide appropriate support and also demonstrates the student’s 

evolving understanding of the domain. 
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Combining ITS and ELE – the case of iTalk2Learn 

Intelligent Tutoring Systems like Cognitive Algebra Tutor and Exploratory 

Environments like eXpresser do not have to exist in isolation. The iTalk2learn 

project developed an adaptive digital learning platform for primary school 

mathematics that allows interaction via direct manipulation and speech to provide 

intelligent interventions and individualized task sequences.2 Importantly, for the 

discussion here, iTalk2Learn combines structured and exploratory activities to 

improve learners’ procedural as well as conceptual knowledge (Rummel et al., 

2016). It does so by offering activities from a commercial intelligent tutoring 

system (Math-Whizz, www.whizz.com) to support procedural knowledge, and 

from a microworld called Fractions Lab to improve students’ conceptual 

knowledge of fractions (Hansen et al., 2016).  In Fractions Lab, students are 

asked to construct one or more fractions and, using the affordances of the system, 

to compare, add or subtract fractions. In Figure 6, for example, the student has 

been asked to create a fraction, and then to create four equivalent fractions with 

increasingly larger denominators. So far the student has created their first fraction, 

but has not yet created any equivalent ones. The glowing lightbulb at the top of 

the screen indicates that there is help currently available from the system 

(Grawemeyer et al., 2015a). Clicking on the lightbulb results in the feedback 

message shown in Figure 7, which is aiming to nudge the student towards the next 

step. Figure 8 shows that the student has indeed made their first equivalent 
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function. After a period of inactivity, Figure 9 shows a message of encouragement 

and also an unsolicited prompt (Grawemeyer et al., 2015b) to guide the student 

towards the next step.   

As students are undertaking tasks, they are encouraged to talk aloud. A 

speech recognition system extracts keywords which are combined with prosodic 

features also extracted from the speech signal and used as input to methods for the 

classification of students’ sentiment and cognitive load. The outcomes of this 

emotion and affect recognition serve as input for providing intelligent support to 

the student and automatic selection of interventions. This relies on large amounts 

of data and student modelling, as described in the next section on Big Data. 

 

<<FIGURE 6 about here >> 

Figure 6. FractionsLab microworld, showing the availability of low-interruption 

feedback. 

 

<<FIGURE 7 about here >> 

Figure 7. FractionsLab microworld, showing the elective display of low-

interruption feedback. 

 

<<FIGURE 8 about here >> 
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Figure 8. FractionsLab microworld, showing that the student has progressed to the 

next step. 

 

<<FIGURE 9 about here >> 

Figure 9. FractionsLab microworld, showing a message of encouragement and 

also a stronger prompt to guide the student towards accomplishing the subsequent 

step. 

 

In terms of the four components of AIED systems, these are similar in 

functionality to those of eXpresser, except that in Fractions Lab the student model 

also includes information about the student’s evolving affective state as the 

student works on a task using the microworld.  

Two ways in which AIED systems might be used 

There are two main ways that AIED systems can be used effectively in schools. 

First, such systems can be deployed as classroom assistants in the following 

sense. While whole group teaching or small group teaching by a human teacher 

continues to be the norm, it is commonplace for an individual or a small group to 

be handed over to a human classroom assistant. This might be to provide 

individual help for pupils who are not doing so well, or it might be to assist pupils 

who have already mastered the material ahead of the rest of the class and who 
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need a bit more of a challenge. The idea here is that in addition to the human 

classroom assistant, an AIED system could be used by an individual pupil or a 

group of pupils who need extra practice or who need exposure to more 

challenging material. The ability of such systems to monitor the individual 

problem-solving steps of the pupil and to provide help, hints and scaffolding 

specifically appropriate to the individual could be a valuable extra tool in the 

classroom.  

There are also potential benefits for a group of pupils working with such a 

system to discuss and argue about different possible answers to problem-solving 

steps, as well as the meaning and intent of feedback received from the system on 

their errors. For the more able pupils running ahead of the rest of the class, such 

systems can provide more challenging problems, possibly with less help and 

scaffolding, thus maintaining their motivation. 

The second way that AIED systems can be used is as assistants in after-

school classes, revision classes or for homework. In these situations the classroom 

teacher is typically less available, but the pupil will still need the kind of detailed 

assistance that such systems are able to provide. Just as we have mentioned that 

groups of pupils can discuss an ongoing interaction with an AIED system to help 

create better understanding, so a child and a parent at home can have a similarly 

fruitful discussion together in the context of using an AIED system. 
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Note that our use cases have the AIED system working in tandem with the 

classroom teacher and not as a replacement. Those visions of future education 

involving simply computer-based instruction without the social and pedagogic 

support of human teachers are barren indeed. It is instructive to note the high 

drop-out rates when college-level courses are delivered solely via Massive Open 

Online Courses (MOOCs) direct to the individual learner, with little in the way of 

face-to-face interaction with either the teacher or with fellow students 

(Liyanagunawardena et al., 2013). 

Big Data in Education 

Emergent web, mobile, and pervasive digital technologies are generating data at 

unprecedented scales and speeds in virtually all areas of human activity. Across 

industry, commerce and the public sector this Big Data is being digitally collected 

and computationally analysed in order to gain better understanding of providers’ 

services and products, consumers’ needs and preferences, and, more 

fundamentally, to expand human knowledge across the sciences, social sciences 

and humanities.      

 Originally, Big Data was taken to mean data sets that are beyond the 

management and analysis capabilities of traditional software tools. The generation 

of such data sets led to the development of new data storage and data processing 

paradigms, such as NoSQL data stores (Cattell, 2011), massively data-parallel 
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distributed processing frameworks (Dean and Ghemawat, 2008; EMC, 2015) and 

cloud computing platforms (Armbrust et al., 2010).   

Big data is distinguished from other data by exhibiting the so-called ‘V’ 

attributes. These include:  

•   volume – the size of the datasets; 

•   velocity – the rapid rate at which the data may generated; 

•   variety – different types of data being generated from multiple sources, 

needing to be cross-referenced and combined in order to be fully 

exploited;  

•   veracity – the incompleteness of the data being collected, and the 

imprecision of inferences being made from it; and 

•   volatility – data being collected or inferred may become less relevant over 

time. 

  

More recently, there is a recognition that these ‘V’ attributes are not the 

whole story and that what is most important is the ability to extract value from 

such data while also complying with given time, human and technical resource 

constraints.   
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Learning Analytics and Educational Data Mining 

Big data in the education sector is the focus of two complementary academic 

fields: Learning Analytics and Educational Data Mining.  

The field of Learning Analytics (LA) is concerned with gathering, 

analysing and visualising data about learners and learning processes, so as to 

increase stakeholders’ understanding of these and hence to improve learning and 

the environments in which it occurs (Siemens, 2012; Drachsler and Greller, 2012; 

Ferguson, 2012).  This data may be collected from many different sources: 

•   virtual learning environments (VLEs) that track and support students’ 

activities, interactions, reflections and progress through learning tasks; 

•   students’ assessment activities – both formative and summative; 

•   students’ personal records and records of prior achievement; 

•   learner profiling and learner modelling software; 

•   software supporting social networking, peer support, and collaboration;   

•   audio and video recordings;  

•   gesture and physiological sensor recordings (e.g., heart rate, galvanic skin 

response, blood pressure, EEG readings); and 

•   mobile learning apps, gathering large-scale user-centred and context-

aware data. 
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This exceptionally broad range of data sources is allowing increasingly 

individualised, detailed and longitudinal data to be collected and analysed, 

bringing with it the potential to derive new insights and to provide more effective 

support to learners and tutors.     

The field of Educational Data Mining (EDM) was established a few 

years earlier than the LA field and it, too, is concerned with gathering and 

analysing data so as to understand, support and improve students’ learning. 

However, the LA and EDM fields have somewhat different emphases (Siemens 

and Baker, 2012): 

•   LA focuses on tools to aid users in their roles, whereas EDM focuses on 

tools for automated knowledge discovery. 

•   LA focuses on understanding learning processes as a whole, whereas 

EDM focuses on understanding specific aspects of learning and the 

relationships between them.  

•   LA focuses on tools that empower students, learners, teachers and other 

stakeholders to make decisions, whereas EDM focuses on automated 

personalisation and adaptation of learning environments.   

 

Nonetheless, there is also much commonality between LA and EDM and 

they can indeed be regarded as parts of a larger interdisciplinary continuum of 

research and practice involving disciplines such as computer science, education 
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and psychology, as well as teachers, learners, learning designers, policy makers 

and other stakeholders in learning processes from across the public and private 

sectors.  

There is also commonality in the computing techniques developed and 

applied in the LA and EDM fields, which include: data modelling; data cleansing, 

transformation and integration; knowledge representation and reasoning; data 

mining, analytics and visualisation; learner modelling; recommender systems; 

predictive modelling; social network analysis; and discourse analysis. We refer 

readers to (Poulovassilis, 2016) for a more detailed discussion of these different 

techniques, their applications, and references to the relevant technical literature.  

The Sources and Design Process of Big Data in Education 

Collection and analysis of learning-related data has been used in Technology 

Enhanced Learning research and practice for many years. Big data, however, start 

playing a particular role when considering data from systems such as the AIED 

ones presented in the previous section. We can see from the description of these 

systems that the data they generate include:  

 

•   Event-based data: log data of students’ interactions with the system; 

students’ responses, ranging from simple answers to a question to more 

complex reflections, e.g., through text (in MiGen) or speech (in 
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iTalk2Learn); occurrences of key indicators as students interact with the 

system; generation and provision of feedback by the system. 

•   Students' constructions: the diagrams in Betty’s brain, or the models and 

mathematical expressions being constructed by students in eXpresser, 

including a full history of how each was constructed.   

•   Task information: task descriptions, task learning goals, common solution 

approaches to each task.  

•   Learner models: information about students’ level of attainment of 

concepts and skills, recent history of interactions with the system, progress 

with tasks set, achievement of learning goals, affective states.   

 

We can see that this data exhibits all of the ‘V’ attributes that we discussed 

earlier. As well as its evident volume and velocity, under the ‘variety’ attribute we 

have unstructured data (e.g., the students’ reflections), semi-structured data (e.g., 

the log data, task information, and students’ constructions) and structured data 

(e.g., the learner models and indicator data). Under ‘veracity’ there is the inherent 

imprecision of the inferences being made by the system’s intelligent components, 

e.g., in the detection of task-dependent indicators (Gutierrez-Santos et al., 2012) 

or students’ affective states (Grawemeyer et al., 2015a). Under ‘volatility’, a 

student’s history of interactions, inferred indicators and affective states may 

become less relevant with time.   
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The rich range of data that can be collected by an AIED system provides 

not only the possibility to generate personalised feedback for the learner, but also 

the opportunity to design visualisation and notification tools for the teacher. The 

provision of such tools can help the teacher to formulate her own interventions to 

support both individual students and the class as a whole.  

To be fully effective in the classroom, such tools need to be designed by 

multi-disciplinary teams involving teachers, pedagogical experts and computer 

scientists. In our own work in this area, we have used an iterative participatory 

methodology, comprising successive phases of prototyping, requirements 

elicitation, incremental development and evaluation (Gutierrez-Santos et al., 

2012; Mavrikis et al., 2016; Gutierrez-Santos et al., in press). The next section 

illustrates this through examples. 

Examples of applications of Big Data in Education 

Student modelling from big data – the case of affective learning  

Perhaps the most common use of data from digital learning environments is to 

inform the system’s internal conception of the learner and its learner modelling, 

as mentioned already in the previous section. One of the most innovative 

applications of such data is for the detection of a student’s affective state. Such 

information can be used to enhance learning by means of nudges that move 

students out of negative states such as boredom or frustration that inhibit learning 
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into positive states such as engagement or enjoyment. Affective states can be 

detected through computational analysis of data extracted from speech, facial 

expressions, eye tracking, body language, physiological signals, or combinations 

of these (D'Mello and Kory, 2015). In the iTalk2Learn system, for example, a 

student’s affective state is determined through detection of keywords and prosodic 

features in their speech as they talk aloud when interacting with the system 

(Grawemeyer et al., 2015b).  Such detailed student modelling can enable affect-

aware support for the student, which has been shown to contribute to 

reducing boredom and off-task behavior, with promising effects on learning 

(Grawemeyer et al.,, in press).  

In addition, rich data from such systems can be used by designers and 

researchers to investigate the system’s performance and efficacy and to identify 

areas requiring further development. For example, the system-student interaction 

data arising from iTalk2Learn have been recently remodelled using graph-based 

methods so as to more easily investigate the effectiveness of the intelligent 

support being provided by the system. Figure 10 illustrates one possible 

visualisation of how a student’s affective state changes during a learning task.   

 

<<FIGURE 10 about here >> 

Figure 10. Graph-based modelling and visualisation of students' interactions; the 

figure illustrates how one student’s affective state changes between states of 
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Engagement (green), Frustration (amber) and Confusion (red). Successive events 

are shown in blue and are connected by red edges. 

 

Teacher tools for Exploratory Learning Environments 

We described earlier the eXpresser mathematical microworld, which is one of the 

tools making up the MiGen system. Figures 11 and 12 illustrate two of that 

system’s Teacher Assistance tools, each of which draws on the data generated by 

students’ use of eXpresser: the Classroom Dynamics (CD) tool and the Goal 

Achievements (GA) tool. In the CD tool, each student present in the classroom is 

represented by a circle containing their initials. At the outset of the lesson, the 

teacher can drag-and-drop these circles so that their positions on the screen reflect 

the students’ spatial positioning in the classroom. The colour of a student's circle 

reflects the student's current activity status, as inferred by the system. Green 

indicates a student working productively on the task set. Amber indicates a 

student who has not interacted with eXpresser for some time (by default, five 

minutes). Red indicates a student who has requested help from the system in a 

situation where the intelligent support cannot help any further: in such cases, the 

eXpresser displays the message “The teacher will come to help you now” to the 

student, and the student's circle becomes coloured red to attract the attention of 

the teacher. 
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Most of the time, the teacher will have the CD tool selected for display on 

her handheld computer. When students show as amber, she can approach them 

and encourage them to resume working on the task set. If students who are not 

showing as red call out for help she can encourage them to first seek help from the 

system, knowing that if the intelligent support cannot help the student’s circle will 

automatically appear as red in the CD tool. If a student does appear as red, the 

teacher can click on the student’s circle on her way over to the student so as to see 

their current model and rule, which helps her to prepare her feedback for the 

student.   

From time to time, the teacher will also consult the GA tool, which again 

visualises part of the big data being generated by the system (in this case, 

indicators inferring the current status of the student’s achievement of the expected 

learning goals of the task). The GA tool presents a tabular display of students and 

task goals. Each row of the table shows the progress of one student (identified by 

their initials) in completing the task goals. A white cell indicates a goal that has 

not yet been achieved by the student. A green cell indicates that the goal is 

currently being achieved by the student's construction. An amber cell indicates 

that the goal was achieved at some point, but is not currently being achieved by 

the student's construction. Knowing which students have accomplished all the 

task goals allows the teacher to set them additional activities, for example 

comparing their construction approach with that of a peer (see below). If the GA 
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tool shows that many students are not achieving a particular task goal, the teacher 

can interrupt the lesson to help all the students at the same time.  

 

<<FIGURE 11 about here >> 

Figure 11. MiGen’s Classroom Dynamics tool. On the left, a classroom with the 

students sitting at benches in rows. On the right, the teacher has clicked on the 

‘red’ student to see their construction and rule on the way over to help them. 

 

<<FIGURE 12 about here >> 

Figure 12. MiGen’s Goal Achievements tool.  We see that some students have 

achieved all or most task goals, some students have not made any progress yet, 

and some students are moving back and forth. 

 

Another of MiGen’s teacher tools – the Grouping Tool (GT) (Gutierrez-

Santos et al.,, in press)  – supports the teacher in managing group discussion 

activities after students have finished their individual construction activities, by 

automating the pairing of students based on their constructions. Identifying 

appropriate pairs would be very time-consuming for the teacher to do manually 

during a lesson: it would require the teacher to investigate every student’s 

construction, identify pairs of constructions that are sufficiently dissimilar to lead 

to fruitful student discussions and reflections, and then put the students into pairs, 
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taking also into account interpersonal factors. The GT generates an initial set of 

pairings, aiming to minimise the overall similarity across all pairings. The 

proposed pairings are presented visually to the teacher, who can then confirm or 

change each pairing – see Figure 13 (we note that in the case of an odd number of 

students, one of the ‘pairings’ generated will be a triplet!). In the GT, students are 

represented by their initials within a circle. The degree of similarity between pairs 

of constructions is represented by a small green rectangle for low similarity; 

medium-sized yellow rectangle for moderate similarity; or large red rectangle for 

high similarity. The teacher can select students’ circles and drag them into 

different groups in order to change the pairings suggested by the system so as to 

take into account factors that are beyond the system’s knowledge, such as 

students’ interpersonal relationships. 

 

<<FIGURE 13 about here >> 

Figure 13. MiGen’s Grouping Tool. 

 

The immediacy of the big data presented through MiGen’s teacher tools 

can help teachers formulate their interventions during the current lesson, set 

additional homework, plan the next lesson, as well as adjust the design of future 

tasks to be set for a given class of students. The availability of such tools allows 

teachers to use ELEs in the classroom in new ways because they provide a greater 
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sense of awareness than is possible with general-purpose student monitoring 

tools. Moreover, such tools can support teachers in providing evidence of 

students’ learning, even in a context that is less subject to formal assessment, and 

to engage in their own enquiry into more conceptual student learning.  

 

Tools for planning and reflecting on learning 

So far, we have seen examples of educational software in which data volume and 

velocity arise from the fact that the majority of the data are being generated by the 

system as users interact with it. There are other categories of system (most 

notably, social networking and collaboration software) in which high data volume 

and velocity arise from the numbers of users and where the majority of the data 

are user-generated. Research in the L4All and MyPlan projects3 provides an 

example of this latter category of system. The prototype L4All system developed 

by these projects aimed to support adult learners in exploring learning 

opportunities and in planning and reflecting on their learning. The system allows 

users to create and maintain a chronological record of their learning, work and 

personal episodes—their timelines. Users’ timelines are encoded as RDF triples, 

compliant with an RDFS ontology4. There are some 20 types of episode, each 

belonging to one of four categories: Educational, Occupational, Personal, and 

Other. Figure 14 illustrates a fragment of the overall L4All ontology.  
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<<FIGURE 14 about here >> 

Figure 14. Fragment of the L4All ontology. Each instance of the Episode class is: 

linked to other episode instances by edges labelled `next' or `prereq' (indicating 

whether the earlier episode simply preceded, or was necessary in order to be able 

to proceed to, the later episode; linked either to an Occupation or to an 

educational qualification (Subject) by means of an edge labelled ‘job’ or ‘qualif’. 

Each occupation is linked to an instance of the Industry Activity Sector class by 

an edge labelled ‘sector’.  Each qualification is linked to an instance of the 

National Qualification Framework (NQF) class by an edge labelled ‘level’. The 

Occupation, Subject, Industry Activity Sector and NQF hierarchies are drawn 

from standard United Kingdom occupational and educational taxonomies (see 

Labour Force Survey User Guide, Vol 5, http://www.ons.gov.uk/ons/guide-

method/method-quality/speci_c/labour-market/labour-market-

statistics/index.html). 

 

Users can choose to make their timelines ‘public’ and thus accessible by 

other users. This sharing of timelines exposes future learning and work 

possibilities that may otherwise not have been considered, positioning successful 

learners as role models to inspire confidence and a sense of opportunity.  The 

system’s interface provides screens for the user to enter their personal details, to 
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create and maintain their timeline (see Figure 15), and to search over the timelines 

of other users based on a variety of search criteria.  

 

<<FIGURE 15 about here >> 

Figure 15. The main screen of the L4All system. At its centre is a visual 

representation of the user's timeline, and the system functionalities are organised 

around this. Each episode of learning or work is displayed in chronological order, 

depicted by an icon specific to its type and a horizontal block representing its 

duration. Details of an episode can be viewed by clicking on the block 

representing it, which pops-up more detailed information about the episode (dates, 

description), as well as access to edit and deletion functions. 

 

Van Labeke and colleagues (2009, 2011) describe two of the search 

facilities provided by the system, one to search for “people like me” and another 

to find recommendations of “what to do next”.  The latter is illustrated in Figure 

16 where we see one of the recommended timelines being displayed beneath the 

user’s own, for easy visual comparison. 

 

<<FIGURE 16 about here >> 

Figure 16. The “What Next” user interface. Episodes in the recommended (lower) 

timeline that match episodes in the user’s own (upper) timeline are shown in blue; 
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episodes that start after all blue episodes are shown in orange – these are deemed 

by the system to be relevant for this user as they occur after the matching 

episodes, and thus represent possible choices that the user may be inspired to 

explore further for their future learning and career development; episodes that 

occur earlier than all blue episodes or have no matches within the user’s own 

timeline, are shown in grey. 

 

The technical basis for both the “people like me” and the “what to do 

next” facilities is the users’ annotation of their episodes with concepts drawn from 

the L4All ontology. The availability of this metadata allows similarity algorithms 

to be used to compare the user’s own timeline with all other timelines (see Van 

Labeke et al., 2009, 2011; Poulovassilis et al., 2012).    

In terms of the four components of AIED systems, the domain knowledge 

of the system is represented in the L4All ontology. Its ‘student model’ is the 

timeline that is created and annotated by the user. The pedagogical model is 

encapsulated in the “people like me” and “what to do next” functionalities offered 

to users, to help them explore possible future learning and career options and to 

plan and reflect on their lifelong learning.  Again, the system’s interface is key to 

the user’s growing knowledge and confidence as they interact with their peers’ 

timelines.  
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Evidence of Effectiveness 

Over the last 35 years or so a great variety of AIED systems have been developed 

and evaluated in the laboratory and in schools, colleges and universities. Such 

evaluations have compared AIED systems against more traditional teaching 

methods, such as whole class teaching by an individual human teacher, one-to-

one tutoring by a human teacher, or the use of a text-book on its own, or some 

blend of these and other teaching methods. The evaluations have usually looked at 

either comparative learning gains or the study time needed to reach some mastery 

criterion. To date, there have been few comparative evaluations of big data-

enabled interventions (although see Ferguson et al., 2016 for a recent review of 

the use of Learning Analytics in education), so our scope in this chapter is AIED 

systems in general.  

There has now been a sufficient body of work published to allow a 

number of meta-reviews to be created. These are reviews that look at a large 

number of individual evaluations and try to draw general conclusions, typically by 

computing an average of the comparative learning gains. This chapter focuses on 

the meta-review evaluations of AIED systems, comparing them either against 

one-to-one human tutoring or against whole class teaching by a single instructor. 

These include using an AIED system blended into whole class teaching as 

compared to simply whole class teaching by an individual teacher. 
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Table 1 shows the results from six meta-reviews as well as a large study 

that evaluated a single AIED system, the Cognitive Algebra Tutor described 

earlier, in a large number of schools in the USA. Some meta-reviews involved 

more than one kind of comparison. In the table positive effect sizes and percentile 

rank changes indicate that the AIED system produced better learning outcomes 

than the human method it was compared with. Negative effect sizes and percentile 

rank changes indicate the opposite. 

 

Table 1. Six meta-reviews and a large scale study, adapted from (du Boulay, 2016) 

<< TABLE 1 about here >> 

 

Column 2 in the table shows the kind of comparison being made and 

column 3 shows the number of such comparisons collected in that meta-review. 

Column 4 shows the mean effect size across the comparisons (bigger indicates a 

larger effect). Column 5 shows the standard error of the mean effect size (smaller 

indicates reduced disparity between the individual studies examined). The effect 

size measures how far the mean of the experimental group is from the mean of the 

control group measured in terms of the standard deviation of the control group 

scores, with effects above 0.4 “worth having” (Hattie, 2008). Note that although 

most of the effect sizes in Table 1 are positive, some are negative. A negative 
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effect size indicates that the AIED systems produced worse learning outcomes 

than human tutoring (see rows 1, 2, 6 and 9).  

Column 6 shows the equivalent increase/decrease in percentile rank as a 

result of using the AIED system in the comparison. For example, a change in 

percentile rank of 10 would mean that on average students using the AIED system 

would have increased their ranking by 10 percentage points compared to the 

control group. 

The final study, Row 11 in Table 1, was different from the others. This 

was an evaluation of a single system, The Cognitive Tutor for Algebra (this is a 

successor to the Pittsburgh Algebra Tutor, see earlier) across a large number of 

matched pairs of schools in the USA (Pane et al., 2014). The comparisons were 

between schools that included the AIED system “blended” into their algebra 

teaching versus schools that carried on teaching in a traditional manner. There 

were four comparisons, see Row 9 of Table 1. The study was conducted over two 

years in both middle schools and high schools. The most positive result (an effect 

size of 0.21) was in the second year of the study in the high schools. The other 

results were more mixed, but still broadly positive with respect to the utility of 

AIED system used in a blended fashion. 

The overall picture from the meta-reviews is positive with respect to the 

use of AIED systems compared to whole class teaching. The weighted mean 

(weighted by number of comparisons) of the effect size from the meta-reviews is 
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0.47 (see row 10 of Table 1). When AIED systems have been compared to one-to-

one human teaching they do not do so well, with a weighted mean of -0.19 (see 

row 9 of Table 1). This is hardly surprising at this stage of the development of 

such systems.  

The authors of these meta-reviews made the following comments.  For 

example, VanLehn found that AIED systems were, within the limitations of his 

review, ‘just as effective as adult, one-to-one tutoring for increasing learning 

gains in STEM topics’ (VanLehn, 2011: 214).  While Nesbit and colleagues 

found, ‘a significant advantage of ITS over teacher-led classroom instruction and 

non-ITS computer-based instruction’ (Nesbit et al., 2014: 99).  Likewise, Kulik 

and Fletcher concluded that,  

This meta-analysis shows that ITSs can be very effective instructional 

tools . . . Developers of ITSs long ago set out to improve on the success of 

CAI tutoring and to match the success of human tutoring. Our results 

suggest that ITS developers have already met both of these goals.  

(Kulik and Fletcher, 2016: 67).   

Steenbergen-Hu and Cooper found that,  

ITS have demonstrated their ability to outperform many [human led] 

instructional methods or learning activities in facilitating college level 

students’ learning of a wide range of subjects, although they are not as 
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effective as human tutors. ITS appear to have a more pronounced effect on 

college-level learners than on K-12 students.  

(Steenbergen-Hu and Cooper, 2014: 344).  

 

Two points are of special note. First, there is some double counting in that 

there is some overlap in the papers that the meta-reviews examined. Second, most 

of the comparisons concerned STEM subjects, as it is these kinds of domain that 

are best suited to the development of AIED systems (see the earlier section on 

What is Artificial Intelligence in Education). 

Conclusions 

This chapter has described, on the one hand, the nature of AIED systems 

in terms of their four major components and provided examples of such systems 

and, on the other hand, examples of some of the opportunities that Big Data 

brings to children’s and adults’ learning. 

We have argued that AIED systems have been sufficiently evaluated 

through a number of meta-reviews to demonstrate their effectiveness as part of 

blended learning in STEM subjects. These meta-reviews have shown that AIED 

systems do rather better than conventional classroom teaching, though a bit worse 

than one-to-one human tutoring. We have also made the case that the provision of 

personalised and adaptive feedback to students can enhance students’ 
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engagement, motivation and self-confidence, leading to improved learning 

outcomes.  

No argument in favour of replacing teachers by AIED systems has been 

offered or is implied by these results. Human teachers are still the essential factor 

in any classroom to take control of the overall learning trajectory of the students, 

to motivate the unmotivated and the demotivated and to answer queries from 

students, particularly those who do not exactly know what it is that they do not 

understand. Indeed it is acknowledged that some students may not have the study 

skills and reasoning powers to take advantage of such systems (Biswas et al., 

2016) and so need support beyond what the system itself can provide.  

However, we do argue that provision of individual automated feedback to 

students for common occurrences can free up time for the teacher to formulate 

more complex or nuanced support for students, particularly in larger classes. In 

addition, the rich data generated by such systems are being used to design 

visualisation and notification tools for the teacher. Such tools can increase the 

teacher's awareness of the classroom state and of individual students' progress on 

the task set, and hence help the teacher in supporting both individual students and 

the class as a whole.  

Despite these opportunities, there are still many challenges to fully 

exploiting the potential of AIED and big data in education. For example, this 

chapter has not addressed the issue of the cost-effectiveness of such systems. 
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They are time-consuming to create and, for them to be effective, multi-

disciplinary teams of pedagogical experts, learning designers and computer 

scientists must work together to understand what information is useful to whom 

and in what learning contexts, and to design computational techniques for 

detecting or inferring such information and generating appropriate feedback for 

users. Also, many AIED systems cover only a small part of the curriculum. 

However, both these factors are changing for the better, as authoring tools emerge 

that allow more cost-effective design of intelligent systems without the need for 

specialist computing expertise. Moreover, as AIED systems are increasingly used, 

the data they collect can be analysed so as to design improvements to them.  

There are also wider socio-technical challenges. As we have already 

argued, the design of AIED systems and of methods for collecting, managing, 

integrating, analysing and visualising their big data needs to be both practically 

feasible and pedagogically meaningful. Moreover, it requires teachers, learners 

and other stakeholders to be sufficiently empowered, involved, and trained to 

make effective use of these systems and the information that can be obtained from 

them. Lastly, agreements need to be framed between different educational 

stakeholders so as to allow sharing of learning-related data for the benefit of 

learners. This exposes numerous ethical questions, such as: What data about an 

individual should require their explicit consent in order to be collected, combined, 

used and shared? Likewise, what knowledge should be allowed to be inferred 
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from the data, and what uses of such knowledge should be permitted? What levels 

of information and explanation are needed so that individuals can make fully 

informed decisions? What are appropriate anonymization, privacy, authorisation 

and preservation policies for both data and inferred knowledge in different 

contexts of usage?  From the opposite perspective, what inequalities may be faced 

by students (for example from less advantaged backgrounds) whose learning-

related data is not being collected and used to offer them enhanced educational 

opportunities? Some of these ethical issues are explored by Manca and colleagues 

(2016), focussing specifically on the information being gathered by large-scale 

web-based learning platforms and social media applications.   

In our own research projects, we aim to address these challenges through 

close collaboration between researchers, developers, students, teachers, and other 

stakeholders.  We draw on multi-disciplinary expertise from across computer 

science, the learning sciences and education. In the absence as yet of sufficiently 

broad and robust ethical frameworks, we address ethical challenges on a project-

by-project basis, fully engaging with our institutions’ processes for ethical review 

of research, and also aiming to inform and shape these anticipating an era where 

Artificial Intelligence and Big Data are pervasive. 
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What the research says 

•   Globally, students from poorer backgrounds perform worse than students 

from richer backgrounds. Artificial Intelligence in Education (AIED) and 

Big Data in Education are technologies that can help with this problem. 

•   AIED might be used both in classrooms (to support teachers much as 

human classroom assistants support teachers) and at home (enabling 

students to build on what they have learned in the classroom while being 

given personalised support). 

•   The AIED known as Intelligent Tutoring Systems (ITS) have been shown 

in many classroom studies to be more effective than group tuition but not 

(yet) quite as effective as individual tuition. 

•   AIED is most effective when it is working in tandem with the classroom 

teacher. 

•   Digital educational systems, such as VLEs, ITS and ELEs, are generating 

data at unprecedented scale and speed. Computational techniques can 

extract value from such data. 

•   The two complementary fields of Learning Analytics and Educational 

Data Mining are devising multiple computational techniques to gather, 

analyse and visualise data about learners and processes of learning. 
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•   Visualisation and other tools can help teachers integrate AIED systems in 

the classroom, increase their awareness and, ultimately, free up time to 

provide nuanced support to students, beyond what is possible through the 

system. 

•   There remains a range of challenges – pedagogical, technical, socio-

technical and ethical – that need to be addressed by multidisciplinary 

teams. 
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