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The calcium-based intracellular signalling system is used ubiquitously to couple extracellular stimuli to their
characteristic intracellular responses. It is becoming clear from genomic and physiological investigations
that while the basic elements in the toolkit are common between plants and animals, evolution has acted
in such a way that, in plants, some components have diversified with respect to their animal counterparts,
while others have either been lost or have never evolved in the plant lineages. In comparison with animals,
in plants there appears to have been a loss of diversity in calcium-influx mechanisms at the plasma mem-
brane. However, the evolution of the calcium-storing vacuole may provide plants with additional possibilities
for regulating calcium influx into the cytosol. Among the proteins that are involved in sensing and responding
to increases in calcium, plants possess specific decoder proteins that are absent from the animal lineage. In
seeking to understand the selection pressures that shaped the plant calcium-signalling toolkit, we consider
the evolution of fast electrical signalling. We also note that, in contrast to animals, plants apparently do not
make extensive use of cyclic-nucleotide-based signalling. It is possible that reliance on a single intracellular
second-messenger-based system, coupled with the requirement to adapt to changing environmental condi-
tions, has helped to define the diversity of components found in the extant plant calcium-signalling toolkit.
Introduction
The calcium ion (Ca2+) is a ubiquitous intracellular second

messenger used extensively in plants, animals and microorgan-

isms to couple extracellular stimuli to their characteristic

intracellular responses and to coordinate a wide range of

endogenous processes. Over 15 years ago, Berridge and co-

workers proposed a framework, known as the ‘Ca2+ signalling

toolkit’, around which to build our current understanding of the

operation of Ca2+-based signalling [1,2]. Central to the operation

of Ca2+-based signalling, in any organism, is the concentration

of free Ca2+ in the cytosol ([Ca2+]cyt). In the unstimulated, or

resting cell, bulk [Ca2+]cyt is in the region of 10-7 M. However,

upon stimulation, this increases approximately 10-fold to reach

low-mM levels [3]. Because [Ca2+]cyt is low relative to the extra-

cellular fluid, or intracellular compartments (such as the endo-

plasmic reticulum or plant vacuole), generating an increase in

[Ca2+]cyt can be achieved by allowing the controlled entry of

Ca2+ into the cytosol from these locations. The key here is

that entry into the cytosol needs to be tightly regulated because

above 10-4 M sustained increases in [Ca2+]cyt are cytotoxic.

Having said this, highly localised microdomain [Ca2+]cyt is well

tolerated and is an important effector. The collective mecha-

nisms responsible for generating the increase in [Ca2+]cyt have

been termed the ‘on mechanisms’ [2]. To operate as an effective

signalling system, there is a requirement to return [Ca2+]cyt to its

pre-stimulus levels. This is achieved by the so-called ‘off mech-

anisms’ [2], which encompass a diverse suite of membrane pro-

teins that move Ca2+, against a concentration gradient, into

intracellular stores, such as the vacuole, or expel it from the

cell. The net result of the off and on mechanisms is to form or
Current Biology 27, R667–R679, Ju
This is an open access article und
shape the Ca2+ signature in the sense that they define its spatial

and temporal characteristics [4]. In the context of plant calcium

signalling evolution, it is important to note that the plant vacuole

deserves special attention. Indeed, it has been proposed that,

by making use of the large Ca2+-storing vacuole, plants have

to deal with two extracytoplasmic compartments — the vacuole

and the apoplast [5]. This opens the possibility for a second

suite of Ca2+-signalling components that act independently or

in conjunction with the cytosolic toolkit to facilitate plant Ca2+

signalling.

Cells contain a suite of proteins whose Ca2+-binding proper-

ties allow them to respond to stimulus-induced increases in

[Ca2+]cyt. Typically, this involves an alteration in protein confor-

mation. If the protein is an enzyme, this is likely to be reflected

in an alteration in activity. Ca2+-induced changes in conforma-

tion may also allow the Ca2+-binding proteins to interact with

other targets, or in the case of cytoskeletal proteins, allow

them to perform work. The overall role of these proteins is to

decode and respond to the stimulus-induced increases in

[Ca2+]cyt. The former of these roles should not be overlooked,

because it has a bearing on the question of how specificity is en-

coded in Ca2+-based signalling systems. It is in the context of

this role that, in plants, the spatio-temporal pattern of stimulus-

induced increases in [Ca2+]cyt has been referred to as the ‘Ca2+

signature’ [4]. In plants, it has been proposed that specificity in

Ca2+-based signalling is achieved through the interplay of Ca2+

signatures with cognate Ca2+-binding proteins that act to

decode or interpret these increases [4,6–11]. The complement

of (mostly) proteins that comprise the on mechanisms, the off

mechanisms and the Ca2+-responsive proteins that interpret
ly 10, 2017 ª 2017 The Author(s). Published by Elsevier Ltd. R667
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Figure 1. The plant Ca2+-signalling toolkit.
Three major elements influence the generation
and translation of a stimulus-induced Ca2+ signal:
influx, efflux and decoding. Ca2+ influx ismediated
by Ca2+ channels, namely cyclic nucleotide-
gated channels (CNGCs), glutamate receptor-like
channels (GLRs), two-pore channels (TPCs), me-
chanosensitive channels (MCAs), reduced hy-
perosmolality-induced Ca2+ increase channels
(OSCAs) and potentially by Orai channels (at least
in plants outside of the angiosperm group). To
shape a Ca2+ influx into an informative signature,
plants employ Ca2+-efflux systems: autoinhibited
Ca2+-ATPases (ACAs), ER-type Ca2+-ATPases
(ECAs), P1-ATPases (HMA1), mitochondrial cal-
cium uniporter complex (MCUC) and Ca2+ ex-
changers (CAX). The decoding is brought about
by many different protein families (at least 250
proteins encoded in the Arabidopsis genome
harbour EF-hands). Here, we represent the three
major groups, consisting of calcium-dependent
protein kinases (CDPKs), calcineurin B-like (CBL)
protein kinases (CIPKs) as well as calmodulin
(CaM) and CaM-like proteins (CMLs). See text for
details.
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(decode) the Ca2+ signal form the basic family of tools within the

plant Ca2+ signalling toolkit (Figure 1).

Ca2+-based signalling in plants has been the subject of several

authoritative recent reviews, and the reader is directed towards

these for more information [8–10,12,13]. However, in contrast to

the situation in metazoan (including animal) cells [14–20], the

evolution of the Ca2+-based signalling system in plants has

received rather less attention [21–26].

In this Review, we will discuss the evolution of plant Ca2+ sig-

nalling. What is clear from genomic and physiological investiga-

tions is that while the basic elements in the Ca2+ toolkit are

common between plants and animals, evolution has acted in

such a way that, in plants, some components have diversified

with respect to their animal counterparts, while others have

either been lost or have never evolved in the plant lineages.

This is likely to have fundamental consequences for how Ca2+-

signalling modules are composed, and especially how these

are integrated with other cellular signalling systems. In this

Review, our objectives are to use insights from genomic datasets

to highlight differences between the animal and plant Ca2+-sig-

nalling toolkits. Rapid ‘action-potential’-based electrical signal-

ling is a phenomenon central to the evolution and success of

animals, and yet this was largely lost during plant evolution.

We will describe how electrical, Ca2+-based signalling evolved

separately in plants. Finally, we will take the first steps towards

identifying the nature of the selective pressures, operating over

the evolutionary timescale, which have helped to dictate the

complement of proteins present in the plant Ca2+ toolkit.

Overview of the Evolution of Ca2+-based Signalling in
Plants and Animals
Ca2+-based signalling was present at the unikont–bikont split,

as it is used in prokaryotes and represents a common feature
R668 Current Biology 27, R667–R679, July 10, 2017
of life [27]. A recent study investigated the evolution of Ca2+

signaling based on conserved structural protein domains.

Combinations of these domains form protein architectures that

are characteristic of protein function. Using this approach,

Marchadier et al. (2016) reported that the last eukaryote common

ancestor (LECA) was potentially able to generate and decode

Ca2+ signatures [28]. They also concluded that evolution of the

proteins in the Ca2+-signalling toolkit was radically different

from other proteins. Intra-genome diversity of Ca2+ toolkit

components increased at a far greater rate than other proteins.

Moreover, in comparison with other proteins, the Ca2+ toolkit

components were markedly less duplicated [28].

Comparing inter-genome Ca2+ signalling evolution in different

eukaryote lineages highlights a progressive growth of the Ca2+-

signalling toolkit from that present in LECA. Overlaid on this

pattern, there are also lineage-specific evolution profiles whose

diversity increases with organismal complexity. Looking at the

Ca2+ toolkit as a whole, the strongest difference between line-

ages is observed between animals and plants, while flowering

and lower plants present similar evolutionary profiles. The overall

trend is an increase in the diversity of Ca2+-binding protein archi-

tecture in animals, with a lower diversity in plants, and even lower

in the algae. However, when this is looked at in greater detail, it

becomes apparent that, within Ca2+-binding proteins, protein

architectures associated with Ca2+ influx and Ca2+ decoding

have expanded more in plants than in animals [24,28]. This sug-

gests that evolutionary pressures, operating in plants, have re-

sulted in the differential expansion of these components of the

Ca2+-signalling toolkit.

The detailed phylogenetic analysis by Marchadier et al. also

suggests that animals differentially lost proteins specialized for

Ca2+ efflux during evolution, while in plants influx proteins have

been predominantly lost [21,22,24,28]. We will return to the
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possible significance of this observation later. Interestingly, the

algae present a different case with an increase in the proteins

involved in Ca2+ efflux observed during evolution [28]. However,

they did not expand the repertoire of Ca2+-binding proteins

potentially capable of responding to or decoding Ca2+ signals.

In contrast, the development of decoding mechanisms appears

to have been favoured very early during plant evolution. Surpris-

ingly, a parallel loss of decoding mechanisms is observed in

animals [28]. Having pointed to the trends in the evolution of

Ca2+ signalling across multiple lineages and highlighted similar-

ities and areas of divergence, we will now concentrate on the

evolution of Ca2+ signalling in plants. Our emphasis will be to

concentrate on elements of the Ca2+-signalling toolkit, where

the most significant differences between animals and plants

are apparent. In particular, wewill focus on the loss of Ca2+-influx

systems and the diversification of proteins responsible for de-

coding Ca2+ signatures in plants.

Ca2+ Influx — Diversity Lost along the Way
Based on the evidence currently available, comparisons among

animals, algae and plants suggest that during evolution, plants

show a trend towards reduced diversity of mechanisms respon-

sible for Ca2+ influx [21,22,24,28]. There is, of course, an impor-

tant caveat associated with this statement, which is that there

could be additional Ca2+-influx mechanisms and components

still to be discovered in plants. However, on the basis of what

we currently know, it is apparent that this general loss is also

associated with amplification of a limited array of specific mech-

anisms, including gene families for cyclic nucleotide gated

channels (CNGCs), glutamate receptors (GLRs) and reduced hy-

perosmolality-induced [Ca2+]cyt increase (OSCAs) channels. The

genome of Arabidopsis thaliana and of other sequenced higher

plants do not contain genes for the homologues of 4-domain

voltage-dependent cation channels (VDCCs), inositol tris-

phosphate receptors (IP3Rs), ATP-gated purinergic channels

(P2XRs), the cys-loop superfamily of ligand-gated ion channels

(Cys-loops) or transient receptor potential channels (TRPs)

(though the plant 2-pore domain channel TPC1 has sequence

homology with the 4-domain VDCCs) [29]. However, most of

these Ca2+-permeable channels are present in chlorophyte

algae, indicating that they were part of the last common ancestor

of chlorophytes and streptophytes (within which the evolution of

land plants initiated), and were subsequently lost in plant

evolution. Quite remarkably, most of these channels, with the

exception of the VDCCs, were already lost in the charophyte

Klebsormidium flaccidum, an algal lineage that together with

the embryophytes (which includes all land plants) forms the

streptophytes [24]. The charophytes, as a sister lineage to all

land plants, are understood as the last evolutionary step towards

land colonization, and therefore already harbour many important

characteristics of land plants [24]. A more detailed analysis

including more green algal species would be needed to link

these losses of animal-like Ca2+ channels to specific evolu-

tionary events. Nevertheless, the early loss of these channels

indicates that it did not coincide with the colonization of the

terrestrial environment since it occurred in the charophytes

well before the move to land took place.

In terms of Ca2+ influx, so far, five protein families have

been shown to transport Ca2+in land plants, namely: CNGCs
(20 genes in the Arabidopsis genome) [30], GLRs (20 genes

in Arabidopsis) [31], two-pore channels (TPCs; one gene in

Arabidopsis) [29], mechanosensitive channels (MCAs; two genes

in Arabidopsis) [32], and the most recently identified (OSCAs;15

in Arabidopsis) [33]. OSCAs were identified as an important

component of the early osmotic response in Arabidopsis, and

are a well-conserved family of channel proteins present in all

eukaryotes that have been analysed [24]. However, it is notable

that in plants they have particularly diversified. Phylogenetic

analyses of fully sequenced genomes revealed four major

OSCA clades (I–IV), of which only clade IV is present in genomes

outside of the plant kingdom. So far, two OSCA genes (OSCA1.1

and OCAS1.2) have been characterized and their potential to

transport Ca2+ proven experimentally [33,34]. Further research

and higher-order mutants are needed to elucidate the functions

of additional members of the OSCA family.

In animals, the immune response represents a well-character-

ized Ca2+-based signalling machinery involving a drop in ER

Ca2+ content, which triggers sensor-dependent opening of

plasma membrane Ca2+ channels [35]. In molecular terms, this

involves the stromal interaction molecules (STIMs; which sense

ER Ca2+ concentration using EF-hands) and the pore-forming

Orai proteins (which form the hexameric Ca2+ release-activated

Ca2+ (CRAC) channel) [36–39]. Activation of CRAC leads to the

prolonged low capacity, high selectivity Ca2+ influx associated

with the immune response [40]. Attempts to identify Orai se-

quences in Viridiplantae genomes have failed [41]. A recent study

identified one Orai sequence in the genomes of the green

alga Chlamydomonas reinhardtii and the moss Physcomitrella

patens, showing the preservation of many important sequence

features [42]. However, the activating ER-localized STIMs

appear to be missing in both species. This might suggest that

STIMs have been lost in these species, and that there may be

an alternative role for the Orai proteins.

We extended the search for Orai and STIM sequences to addi-

tional plant species that represent informative evolutionary snap-

shots in the plant tree (Figure 2). Our analysis indicates that Orai

genes are indeed absent in angiosperms, but are still present in

most species up to gymnosperms. Additionally, we confirmed

that STIM proteins are absent from the green lineage, indicating

that the functional regulation of Bikonta Orai proteins may be in-

dependent of ER Ca2+ concentration, and their role thereby likely

different [42]. Additionally, Orai but not STIM sequences were

identified in the Heterokonta phylum (here represented by

different oomycete species). Heterokonta and Archaeplastida

are both part of the Bikonta supergroup, and are believed to

have a common ancestor. This is interesting in the context of

previous studies that have already established commonalities

in terms of Ca2+ signalling between plants and oomycetes [43].

Moreover, lack of STIM proteins in all analysed Bikonta species

supports the hypothesis that STIM evolved only in the Unikonta

supergroup, and that the regulation of the Orai Ca2+ channels by

STIMs is a secondary feature [42]. This raises questions con-

cerning the ancient function and regulation of Orai proteins.

These questions are particularly interesting in the context of

plants, where the presence of Orai proteins without STIM repre-

sents the usual situation.

Animal CRAC channels show a remarkably high Ca2+ selec-

tivity that is mainly brought about by a selectivity ‘ring’ in the
Current Biology 27, R667–R679, July 10, 2017 R669
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Figure 2. Phylogeny and structure of
Bikonta Orai proteins.
(A) Maximum likelihood tree of Orai amino acid
sequences. Numbers on branches indicate boot-
strap probabilities. Multiple-sequence alignment
was performed with MaffT (version. 7), maximum
likelihood analyses were conducted with RAxML
(version 8.2.9) and GTR amino acid substitution
matrix under default parameters. Ain: Aphano-
myces invadans; Aas: Aphanomyces astaci; Bp:
Bathycoccus prasinos; Cr: Chlamydomonas rein-
hardtii; Cs: Coccomyxa subellipsoidea; Dm:
Drosophila melanogaster; Esi: Ectocarpus silicu-
losus; Gpe: Gonium pectoral; Hs: Homo sapiens;
Mne: Monoraphidium neglectum; Mp: Micro-
monas pusilla; Msp:Micromonas sp. RCC299; Ot:
Ostreococcus tauri; Ol:Ostreococcus lucimarinus;
Pis: Picea sitchensis; Pp: Physcomitrella patens;
Pha: Phytophthora alni; Pc: Phytophthora capsici;
Pi: Phytophthora infestans; Phs: Phytophthora
sojae; Ppar: Phytophthora parasitica; Pt: Pinus
taeda; Sm: Selaginella moellendorffii; Sa: Schizo-
chytrium aggregatum; Sfa: Sphagnum fallax; Sdi:
Saprolegnia diclina; Spa: Saprolegnia parasitica;
Tp: Thalassiosira pseudonana; Toc: Thalassiosira
oceanica; Vc: Volvox carteri.
(B) Comparison of the M1 helix from D. mela-
nogaster Orai1 and P. patens Orai1 and
Orai3. Blue indicates lipid membrane. Homology
modelling was conducted with Phyre2 (http://
www.sbg.bio.ic.ac.uk/phyre2) and visualized us-
ing Chimera (version 1.10).
(C) Overall sequence homology among all identi-
fied Orai sequences calculated using Consurf [45]
and plotted on the DmOrai1 crystal structure
(chain A - 4hkr - http://www.ebi.ac.uk/pdbe) in
Chimera (version 1.10).
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pore opening [36,44]. This ring is formed by six glutamic

acids (E). Phylogenetic combined with structural analyses indi-

cate that the E at the extracellular site of the first a-helix repre-

sents the primordial state. Interestingly, land plant Orai genes

have evolved into two phylogenetically distinct groups of which

one still harbours the E at the homologous site. The other group

evolved a glutamine (Q) at this site, thereby potentially changing

the charge at the pore selectivity filter (Figure 2A). Moreover, a

similar trend is visible within the oomycete Orai proteins, where

two distinct groups are present, one harbouring the preserved

E residue, whereas the other group evolved an asparagine (N),

again changing the charge of the pore. It would be of great inter-

est to identify the function and ion selectivity of the ancient ‘E’ as

well as the derived ‘Q’ or ‘N’ Orai versions for the respective

species. The fact that these two different gating amino acids

(Q and N) evolved independently, twice, and remained

conserved in the Bikonta may suggest that it represents the so-

lution to an effective selective pressure enforced on the Bikonta.

A detailed inspection of the M1 helix of two P. patensOrai pro-

teins reveals a strong conservation of the pore-lining amino acids

(Figure 2B) [36,45]. The major differences are found in the cyto-

solic region of the helix. Since this is the region of interaction with

STIM proteins in animals, the general absence of STIMs in plants

and oomycetes creates the need for a different mechanism of

regulation [37]. Alternative regulation (activation) is also dis-

cussed in the metazoan context. Here, two STIM-independent
R670 Current Biology 27, R667–R679, July 10, 2017
mechanisms have been reported that could also function in

plants. Arachidonic acid is discussed as an alternative activation

mechanism for ARC (arachidonate-regulated Ca2+) channels

(very similar to CRAC channels, but formed by different Orai sub-

units) [46]. Interaction between ARC channels and the fatty acid

arachidonic acid leads to a prolonged low-capacity Ca2+ influx.

Studies in seed plants have indicated that arachidonic acid treat-

ment can increase resistance of plants to pathogens [47,48].

Arachidonic acid is not present in plants, but it can be found in

several plant pathogens, including oomycetes like Phytoph-

thora. Orai proteins in lower plants, therefore, could be associ-

ated with plant defence signalling. A second STIM-independent

regulation mechanism revolves around the extracellular redox

state. Orai proteins were reported to be regulated by their redox

state [49]. H2O2 was found to inactivate Orai1 and Orai2 (but not

Orai3), and a conserved site was identified (Cys 195 in HsOrai1;

part of the second transmembrane domain (TM)). Although this

specific site is not conserved in Bikonta Orai proteins, there is

an alternative highly conserved Cys site that also belongs to

TM2 (as Cys 195 does). This site is strictly conserved in all

Bikonta species, and Orai sequences that have been analysed.

This might enable a similar negative regulation by increased

extracellular reactive oxygen species (ROS) concentration. Tak-

ing these two regulatory mechanisms together, it is tempting to

hypothesize a model in which pathogens trigger, through arach-

idonic acid, an Orai-transmitted Ca2+ signal. Ca2+, as well as

http://www.sbg.bio.ic.ac.uk/phyre2
http://www.sbg.bio.ic.ac.uk/phyre2
http://www.ebi.ac.uk/pdbe
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pathogen triggers, are well known to regulate plasmamembrane

NADPH oxidases (RBOHs) leading to an increase in extracellular

ROS to stimulate appropriate defence mechanisms and coun-

teract the pathogen attack. Additionally, extracellular H2O2 has

been shown to activate unidentified plant Ca2+ channels through

membrane hyperpolarization, providing the potential means for

a positive feedback on ROS production, potentially enhancing

the proposed pathogen defence response [50]. However, ROS

in high concentrations can have detrimental effects, and its

production must be tightly regulated. A negative feedback loop

terminating the RBOH-activating Ca2+ signal through redox

regulation of the Orai proteins would provide such amechanism.

All Orai proteins show a remarkably high conservation, partic-

ularly for the pore-forming M1 helix (Figure 2C). Whether these

still form Ca2+-selective channels in plants will be the topic of

future research. In fact, no plant Orai protein has been experi-

mentally characterized so far. However, the loss of Orai genes

after the separation of angiosperms and gymnosperms would

make them themost recently lost Ca2+ channel family in the plant

lineage. It would be of great interest to identify their function in

lower plants and how their loss was compensated for in higher

plants.

Ca2+ Efflux — Shaping Ca2+ Transients into Informative
Signatures
To form [Ca2+]cyt transients into informative signatures, plants

employ a sophisticated set of efflux proteins that help to shape

and terminate a cellular Ca2+ signal, and also to maintain the

low basal Ca2+ levels needed for fast influx. Antiporters, uniport-

ers and Ca2+-ATPases on all major cellular membranes enable

plant cells to expel Ca2+ from the cytosol in a fast and effective

way. The Arabidopsis genome encodes five different Ca2+ efflux

systems, namely autoinhibited Ca2+-ATPases (ACAs), ER-type

Ca2+-ATPases (ECAs), P1-ATPases (HMA1), the mitochondrial

calcium uniporter complex (MCUC) and Ca2+ exchangers

(CAX) (Figure 1). These are discussed in a number of recent

authoritative reviews [51–57].

Calcium Decoding — One Messenger, Many Translators
Ca2+ signatures are the net result of the operation of the ‘on’ and

‘off’ systems [2]. In the previous section, we highlighted some of

the differences in the complement of proteins that contribute

towards the on and off mechanisms in plants and animals. We

shall now turn to a consideration of how Ca2+ signatures are

decoded in plants and animals.

Like animals, plants havemany Ca2+ effector proteins but their

Ca2+-decoding ‘tools’ are remarkably different [28]. Plants

possess specific decoder proteins that are absent from the ani-

mal lineage. It would appear that plants either expanded the

diversity of selected protein families during evolution, or new

specialised functions evolved in existing protein families. One

remarkable feature of plant Ca2+-decoding proteins is that they

are represented by relatively few distinct families, which, during

evolution, expanded greatly. Examples of this phenomenon are

calcineurin B-like (CBL) interacting protein kinases (CIPKs) and

Ca2+-dependent protein kinases (CDPKs) that expanded from

1 and 3, respectively, in algae (e.g., in Ostreococcus tauri) to

around 30 in higher plants [24,25,58]. Approximately 250 pro-

teins in plants contain EF-hands, which are often combined in
certain architectures with other functional enzymatic domains,

such as in plant NOXs (NADPH oxidases, 10 members in Arabi-

dopsis) [59]. Still, it is remarkable that three major Ca2+-decoder

families (CDPKs, 34 in Arabidopsis; CBLs–CIPKs, 10/26 in

Arabidopsis; calmodulins (CaMs)/CaM-like (CMLs), 7/50 in

Arabidopsis) alone account for more than one-third of all EF-

hand-containing Ca+2-sensor proteins encoded in plant ge-

nomes [24,26,58,60]. This scenario suggests that after a

(hypothetical) bottleneck within the evolutionary line to higher

plants, a restricted toolkit of Ca2+ sensors (namely CBLs–CIPKs

CDPKs, CaMs/CMLs) was diversified to acquire multiple distinct

functions.

The increasing complexity of this Ca2+-decoding system coin-

cides with increasingmorphological complexity of plants and the

increasing ability to live in habitats with fluctuating environments.

It is also worth noting that CDPKswere already quite abundant in

many algal species (15 in Chlamydomonas reinhardtii and 12 in

Klebsormidium flaccidum), and that particularly CBLs and CIPKs

were amplified during land plant evolution (1 CIPK and 3 CBLs in

K. flaccidum), perhaps suggesting a prominent role for CBL–

CIPKs after land colonization (compare Figure 3) [24]. An impor-

tant characteristic of CBL–CIPK-dependent Ca2+ signalling is

represented by their cellular targeting (Figure 1). Unlike CDPKs,

interaction of CIPKs with specific CBLs allows for a directed tar-

geting to the plasmamembrane (e.g., interaction with CBL1 or 9)

or to the vacuolar membrane (e.g., interaction with CBL2 or 3)

[61–64]. Thereby, CBL–CIPKs are the only known Ca2+-regu-

lated sensor–kinasemodules that can directly perceive Ca2+ sig-

nals at the vacuolar membrane, a characteristic recently shown

to be important for pH regulation, magnesium stress as well as

pollen tube growth [65–68]. The strong phenotypes of mutations

of multiple tonoplast-localized CBLs (like cbl2/cbl3) are in agree-

ment with their unique function in vacuolar Ca2+ release [69].

However, this is not to say that CBL–CIPKs are the only Ca2+-

receiving proteins at the vacuolar membrane. In fact, the

above-mentioned Ca2+ channel TPC1 is regulated and activated

by cytosolic Ca2+, harbours EF-hands within its structure and is

an integral component of the vacuolar membrane [70,71].

Among the Ca2+ effectors, some are unique to plants, like the

CDPK-related kinases (CRKs) and the phosphoenolpyruvate

carboxylase kinase-related kinases (PEPRKs) [72,73]. Others,

like CDPKs and CBL–CIPKs, were long assumed to be plant

specific. However, the recent availability of sequenced ge-

nomes of key species at informative positions within the tree

of life places the origin of CBLs and CIPKs firmly at the root of

the Bikonta tree [43]. CBLs and CIPKs were identified in a

wide variety of species, including chromalveolate-like Phytoph-

thora infestans, excavate-like Naegleria gruberi or the paraba-

salid Trichomonas vaginalis. Most of these species show very

little amplification of the CBL–CIPK signalling system, and often

retained only one pair of CBL–CIPKs. However, characteristic

sequence features and enzymatic properties of CBLs (number

and structure of EF-hands, phosphorylation sites, Ca2+-binding

abilities) and CIPKs (NAF domain, cofactor preference) were

mostly retained, indicating the importance of the system [43].

Remarkably, only in land plants is the abundance of CBL and

CIPK genes dramatically increased, and this increase can be

correlated with the increase in complexity during plant evolu-

tion. On the other hand, species harbouring only single or
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sometimes duplicated CBL-CIPK pairs mostly represent unicel-

lular species [24,43].

In addition to CBL–CIPKs, CDPKs were also identified in non-

plant species. In the case of CDPKs, they are found in apicom-

plexan parasites [74,75]. Here, the evolutionary events that led

to the occurrence of CDPKs outside of the plant lineage are

less clear, and a potential early horizontal gene transfer has

been suggested as an explanation for their presence. Regard-

less of the evolution of the individual families in the Bikonta

supergroup, all of the above protein families are absent from

the Unikonta, including the metazoan lineage [23,24]. Consid-

ering the importance of CBL–CIPKs, CDPKs, CRKs and PEPRKs

for the signalling capability of plants, it is striking that compared

with animals, the majority of the decoding system is composed

of Bikonta-specific proteins.

Two things can be distilled from these findings: firstly, the

loss of diversity and the low abundance of the remaining Ca2+

sensorsmay indicate a bottleneck in plant evolution that resulted

in a net loss of diversity in the Ca2+ toolkit. Secondly, the

increase in complexity inherent during land plant evolution

forced a radical conversion of the plant Ca2+-signalling toolkit

in which many new functions had to be fulfilled by a limited

number of sensors, leading to their amplification and functional

diversification.

Another important group of Ca2+-effector proteins that illus-

trate an increase in diversity as a function of plant complexity

are CaM and CMLs [26,76]. CaMs are well conserved in all

eukaryotes, whereas CMLs are mainly found in plants and

have not been identified in the Unikonta supergroup [77].

Zhu et al. described correlations between major CaM/CML

evolutionary steps in the green lineage, and the acquisition of

new traits that could have contributed to the adaptation to se-

lective pressure during land colonization. The two main in-

creases in CaM/CML gene numbers correlate with the move

to terrestrial environments (Charophyceae to Bryophyta) and

the extension of multicellularity (gymnosperms to monocots

and dicots) [26].
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Diverging and Converging— Evolution of Fast Electrical
Excitability in Plants
The previous sections have outlined how Ca2+-signalling mech-

anisms in plants have evolved in parallel with losses and expan-

sions of gene families associated with generation of [Ca2+]cyt
signatures, and their subsequent decoding. Electrical excitability

in the form of fast action potentials (APs), intimately associated

with [Ca2+]cyt signal generation and underpinned by 4-domain

Na+/Ca2+ VDCCs, is widespread among basal protists (including

unicellular members of the green lineage such as Chlamydomo-

nas), and indicates an ancient function that was largely lost in

multicellular plants, but that evolved into sophisticated, fast

neuromuscular and other signalling networks in metazoans

[21,22]. The typical fast animal AP lasts for less than 50 ms

and travels along nerves at between 3 and 100 ms�1 [78]. The

Chlamydomonas photoshock AP is a fast depolarization (dura-

tion <10 ms) mediated by light-gated plasma membrane cation

channels (channelrhodopsins) localized above the eyespot. Sub-

sequent membrane depolarization leads to activation of a VDCC

(CAV2) in the flagellar membrane and the associated AP [79].

Multicellular plants do not generally display fast electrical excit-

ability of this type, consistent with the absence of Na+/Ca2+

VDCCs [21,22]. However, there are several examples of rapid

communication and Ca2+-dependent responses in multicellular

plant systems based on electrical excitability, raising the ques-

tion of how this may be achieved in the absence of the key com-

ponents that underlie the canonical AP.

The charophyte AP, induced by wounding or electrical stimu-

lation, is several hundred times slower than the typical animal

AP, with a duration of several seconds and a propagation veloc-

ity of 10–20 mms�1 (see [80,81] for reviews). The initial phase of

the Chara AP involves Ca2+ influx across the plasma membrane,

while the main depolarization current is brought about by Cl�

efflux though Ca2+-activated Cl� channels. There is also a role

for release of Ca2+ from intracellular stores in augmenting

the associated [Ca2+]cyt elevation [82]. While the molecular

counterparts of these currents remain to be identified, it is clear
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that a VDCC, identified in the charophyte Klebsormidium (see

above) does not carry the major depolarization current, though

it may have a role in mediating the initial Ca2+ influx.

Significantly faster electrical signals can be found in multicel-

lular plants. The Venus flytrap Dionaea muscipula displays argu-

ably the fastest electrical signalling in plants. Stimulation of

sensory hair cells by insect prey leads to very rapid depolariza-

tion of the plasma membrane of trap cells, and an AP that prop-

agates across the gland tissue [83,84]. These APs comprise a

sophisticated counting mechanism, closely linked to Ca2+ sig-

nalling and downstream processes that underlie prey digestion

and nutrient absorption [85]. Two or more APs resulting from

hair cell displacement cause rapid closure of the trap, but fail

to generate a Ca2+ elevation in the gland cells. Further hair cell

displacements by the trapped insect result in Ca2+ elevations

and the triggering of a series of downstream responses. The

APs are very rapid — direct microelectrode monitoring of mem-

brane potential in trap lobe cells reports t1/2 of 0.3 s [86], though

a study using surface electrode recording reports shorter dura-

tion (1.5 ms) action potentials [87]. Generation of a flytrap AP is

thought to be preceded by the activation of mechanosensitive

ion channels [84,86], and the most likely candidate for the fast

AP depolarization has been proposed to be rapid R-type Cl-

channels [86], providing another example of substitution of Na+

with Cl- for fast electrical depolarization, consistent with the

absence of VDCCs in Venus flytrap [88]. How this electrical activ-
ity is converted into Ca2+ signatures, in a dose-dependent

manner, remains to be determined. This electrical Ca2+-signal-

ling mechanism is further modulated by plant-specific hormonal

signals like ABA and jasmonic acid [85].

While plants do not possess structures homologous to animal

nerves, rapid long-distance propagation of electrical and Ca2+

signals does occur inmulticellular plants (Figure 4). Electrical sig-

nals comprising fast and slow components propagate through

the phloem in response to cold and wounding in Arabidopsis

[89]. The fast component lasts around 15 s and travels at a veloc-

ity of about 1.0 mms�1. While this is considerably slower than a

typical animal AP-propagation velocity, it presents the possibility

of long-range electrical signalling through specialized phloem

‘green cables’ [89]. It is proposed that R-type QUAC1 voltage-

regulated anion channels, likely also activated by Ca2+ influx

through Ca2+ channels, have biophysical properties consistent

with their role in long-range electrical propagation [89].

Arabidopsis also displays rapidly propagating long-distance

Ca2+ elevations in response to salinity stress that travel through

the innermost cortex and endodermal tissues from root to shoot,

and which play a role in bringing about systemic responses to

salt stress [90]. These Ca2+ elevations travel from cell to cell

at velocities up to 400 mms�1. If these elevations propagate

through cells as waves of [Ca2+]cyt they are extremely rapid. In

animals, a typical ‘fast’ trans-cellular Ca2+ wave, based on

Ca2+-induced Ca2+ release from intracellular stores, travels at
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around 10–50 mms�1 [91], although fast inter-cellular Ca2+ waves

do travel through animal smooth muscle tissues at velocities

around 2 mms�1 [92]. A clue to the mechanism of generation

of cell–cell [Ca2+]cyt signals is found in their dependence on the

expression of two-pore Ca2+ channels (TPCs) [90]. TPCs occur

on animal and plant intracellular membranes, and in plants are

thought to allow Ca2+ release from vacuoles. Mutants defective

in the vacuolar channel TPC1were also defective in propagation

of rapid long-distance Ca2+ signals. Simultaneous global vacu-

olar activation of TPC1-mediated Ca2+ release could potentially

bring about very rapid elevation of Ca2+ in individual cells that

may propagate from cell to cell by an as yet unexplained mech-

anism. It remains to be seen whether there is link between the

electrical signals travelling through the phloem and rapid long-

distance Ca2+ signals.

Selective Pressures Driving the Evolution of Ca2+

Signalling in Plants
One of the most striking features to emerge from the recent in-

vestigations into the evolution of plant Ca2+-based signalling is

the loss of various classes of components that occurred prior

to the conquest of the terrestrial environment [21,22,24]. As

described above, this relates to the loss of influx components.

Worthy of note, however, is an expansion of components asso-

ciated with Ca2+ signature decoding and processing [24,28].

Before thinking about the possible consequence and signifi-

cance of these losses and expansions, it is first necessary to

consider the selection pressures likely to operate on the evolu-

tion of intracellular signalling in plants.

At the cellular level, plants face the same set of challenges as

all other organisms do. However, they also face plant-specific

challenges. To complete their life cycle and reproduce, it is

advantageous for land plants to grow towards the light, exhibit

positive geotropism, to capture water and nutrients from the

soil and to respond appropriately when these resources become

limiting. It is also beneficial to flower at the appropriate time and,

at other times in the life cycle, to lose leaves or plant parts

through abscission. Reproduction is an imperative (although

the timescale varies), as is the ability to mount effective defences

against attack by predators and pathogens. The successful

operation of intra- and intercellular signalling networks underlies

all these processes, and in many, Ca2+ is known to act as an

intracellular second messenger [3,93].

The possibility that the evolution of plant-specific Ca2+-signal-

ling components was associated with colonization of the land

has been suggested in the context of ion channels by some of

us [21,22]. When these suggestions were made, the evolutionary

ancestors of plants were assumed to bemarine green algae, and

one of the major selective pressures would have been the tran-

sition from the saline to the freshwater environment. However,

as recent papers have proposed a possible freshwater origin

for the green plants, it may well be that the importance of the

saline–freshwater transition in shaping the evolution of the

Ca2+-signalling toolkit needs to be re-examined [94,95]. At this

stage, it seems safest to conclude that a complex set of evolu-

tionary drivers have been important in shaping the Ca2+-signal-

ling machinery in plants. These may include a specialised ‘low

Ca2+’ apoplastic environment, very negative membrane poten-

tials, a H+-based (rather than a Na+-based) energization, and
R674 Current Biology 27, R667–R679, July 10, 2017
the need for sophisticated signalling associated with maintaining

cellular water balance, being the most obvious. However, addi-

tional work will be required to shed new light on this aspect of

the evolution of the Ca2+-signalling toolkit.

It has been postulated that loss of VDCCs coincides with the

loss of flagella-mediated motility in widely divergent eukaryotes,

including streptophytes [96]. Interestingly, these authors report a

putative BLAST hit of a VDCC in themoss Physcomitrella patens,

which produces motile sperm, though Wheeler and Brownlee

(2008) reported the absence of 4-domain VDCCs in this species

[21]. A more detailed study of VDCC occurrence in mosses, liv-

erworts and ferns, all of which possess motile sperm, will be

needed to resolve whether loss of motile sperm was a major

driver in the loss of VDCCs in land plants.

In the context of this Review, perhaps the key point we would

like to make is that plant Ca2+-based intracellular signalling

serves the plant well, despite using a toolkit which, compared

with animals, is generally reduced in diversity. The apparent suc-

cess, in the sense that it is fit for purpose, of Ca2+-based signal-

ling in plants suggests that reductions in component diversity

have not translated into reductions in service or capacity. Part

of this must be because, despite the overall reductions in diver-

sity, some components, such as the decoding proteins, have

expanded, diversified and neo-functionalized [23–26,43]. In this

way, expansion and functional diversification of specific protein

families could compensate for the reduction in the overall num-

ber of functional protein families. Before discussing the possible

significance, or otherwise, of these plant-specific reductions, di-

versifications and expansions, it is necessary to pause and

examine the intracellular signalling landscape in plants more

generally. This is because the presence or absence of other,

potentially alternative, intracellular signalling systems can be

viewed as applying either positive or negative selective pres-

sures on the evolution of the Ca2+-based signalling system.

A significant point to bear in mind is that plants either lack, or

fail to make extensive use of, canonical cyclic-nucleotide signal-

ling systems based on a toolkit made up of adenylyl (or guanylyl)

cyclases, cyclic nucleotide phosphodiesterases, protein kinases

A or G, and the intracellular second messengers, cAMP and

cGMP [97]. Interestingly, as pointed out above, plants do

possess ion channels that can be gated by cyclic nucleotides.

However, lack of the canonical cyclic-nucleotide signalling sys-

tems that feature prominently in algae, fungi and animals

suggests that in plants, if cyclic nucleotides are regulatory

molecules, they are not operating in the same way. In animals,

fungi and algae, cyclic-nucleotide signalling is a system which,

just like Ca2+-based signalling, serves to couple extracellular

stimuli to their intracellular responses [98,99] and includes signal

amplification, ensuring response specificity (fidelity) and, in

concert with other signalling pathways, co-ordination and inte-

gration [100].

The point here is that, unless there are yet-to-be discovered

intracellular signalling systems capable of contributing to ampli-

fication, signalling fidelity, coordination and integration in plants,

then the Ca2+-signalling system must shoulder a greater burden

in terms of fulfilling these functions. Might this help to explain the

way that evolution has shaped Ca2+ signalling in plants?

On the basis of the available evidence, it would seem that

plants have lost diversity of Ca2+-influx mechanisms while
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increasing the number of different types of proteins involved

in decoding. At its simplest, a plethora of influx systems

coupled with efflux systems provides the organism with the ca-

pacity, in spatial and temporal terms, to generate highly com-

plex, information-rich, Ca2+ signatures. Is there any evidence

that plants generate less complex Ca2+ signatures than ani-

mals? At this point we don’t have enough experimental data

to provide an authoritative answer to this question. In plants,

Ca2+-imaging studies suggest that complex patterns are pro-

duced; however, there are not enough data to determine

whether these are more or less complex than those found in,

for example, mammals [90,101–111]. Rather, what is striking

is that, in general, where measurements of stimulus-induced

increases in [Ca2+]cyt have been measured, at the level of the

single cell, in plants they are often characterised by slower ki-

netics than in mammalian cells [7]. It is possible, with one

exception, that plants have not experienced the selective pres-

sures which might result in the development of influx and

efflux systems capable of generating rapid Ca2+ signatures.

An intriguing possible exception, as discussed above, are rapid

long-distance Ca2+ signals that may rely on explosive Ca2+

release through vacuolar TPC channels [90]. Taken together,

it would appear that, even without cyclic-nucleotide signalling,

the loss of influx mechanisms has left plants with capacity to

amplify signals and to generate Ca2+ signatures that are suffi-

ciently information rich.

The second observation to emerge from investigations of the

evolution of Ca2+-based signalling in plants is that there has

been a divergence of proteins capable of decoding the Ca2+

signature. Seen in the context of the lack of cyclic-nucleotide

signalling, this expansion is perhaps explicable because of an

increased intracellular workload for Ca2+-based signalling. If

this is the case, expansion of the repertoire of downstream

signature decoding proteins would help to ensure that intracel-

lular signalling exhibits fidelity and robustness and, when new

selective pressures arise, has the capacity to evolve and

produce changed signalling responses. Intracellular second-

messenger-based signalling systems are ideally placed to play

a key role in the orchestration or co-ordination of the multiple in-

dividual reactions that together result in the final cellular

response. A classic example in plants would be stomatal closure

induced by ABA [112–114]. This involves the control of ion chan-

nel activity, membrane trafficking, cytoskeletal movements,

metabolic processes and changes in gene expression — all of

which combine to bring about stomatal closure. Experiments

with EGTA and BAPTA reveal that an increase in [Ca2+]cyt is

required during this process and additional investigations uncov-

ered that it depends on the presence and activity of CPK

and CIPK–CBL decoders targeting guard cell anion channels

[114–117]. In the absence of the cyclic-nucleotide-based signal-

ling system, it is possible that, in this example, the primary re-

sponsibility for orchestration falls to Ca2+. If this assumption is

correct, then expansion of decoding proteins would be expli-

cable and advantageous in order to fulfil this function. Related

to this is the requirement to generate graded responses. Again,

lack of an alternative second-messenger-based system might

have resulted in selection for the expansion of signature decod-

ing proteins exhibiting differing Ca2+ affinities, thereby facilitating

graded or nuanced responses.
Currently, the available information suggests that, while plants

use Ca2+ signatures, they, in most cases, fail to exhibit the rapid

kinetics of their mammalian counterparts. Whether this is as a

result of a lack of diversity in Ca2+ influx systems is not known.

However, the lack of the rapidly generated signals would sug-

gest that these have not been selected for during plant evolution.

The selective pressure to diversify the repertoire of signature-

decoding proteins to provide plants with opportunities for signal-

ling co-ordination may have resulted from the absence of other

second-messenger-based intracellular signalling systems. Like-

wise, it is tempting to assume that the abundance of different

signal decoders (CDPKs, CBL–CIPKs, CMLs) that we see in

extant plants is reflective of an increase in the ability to colonise

a diverse array of environmental niches that have occurred over

evolutionary time. In this scenario, the ability to respond appro-

priately to an increasing range of environmental stimuli would

be of selective advantage to evolving plants.

Unanswered Questions and Opportunities
In the preceding sections, we have sought to describe differ-

ences between animal and plant Ca2+-based intracellular signal-

ling, and have taken some first steps to identify the selective

pressures that might have operated to shape the plant Ca2+-sig-

nalling toolkit. At this stage our approach has been, of necessity,

broad brush, comparing plants with animals and attempting to

account for the tools as represented by the Ca2+ toolkit of today.

With the addition ofmore sequenced genomes, it will be possible

to drill deeper into the evolution of the plant Ca2+-signalling

network. In particular, an increase in the number of genome se-

quences will provide the increase in the granularity required to

investigate whether there is a correlation between, for example,

the increased diversity in the Ca2+ signature-decoding proteins

and the appearance of key innovations in plant morphology

and physiology. Likewise, increased granularity will permit the

overlaying of paleoclimate data on the timeline describing the

evolution of the Ca2+-signalling toolkit and the evolution of plant

morphology. Mapping major losses to, or expansions of, the

plant Ca2+-signalling toolkit onto a timeline of plant innovations

and significant changes to climate and environment might reveal

the identity of the key selective pressures that shaped the evolu-

tion of Ca2+ signalling in plants. Ideally, such approaches should

be paralleled by experimental determination of quantitative

Ca2+-binding characteristics and enzymatic kinetics of the

Ca2+-signalling components to aid understanding of their func-

tional differentiation and diversification during evolution.

In seeking to understand what factors have shaped the evolu-

tion of the Ca2+-signalling toolkit in plants, it might be fruitful to

concentrate more attention on photosynthesis, and in particular

the chloroplast. In this context, it is important to note that in 1987,

Miller and Sanders observed a light-induced reduction in

[Ca2+]cyt in the characean alga Nitellopsis, which they proposed

‘‘constitutes a fundamental signal which enables the rate of ex-

tra-chloroplastic metabolism to be geared to photosynthetic

processes in the chloroplast’’ [118]. The importance of organ-

elles, including the chloroplast and the mitochondria, in influ-

encing cellular Ca2+ signals has been proposed in a number of

studies (see [119] for review). Indeed, it has been proposed

that the chloroplast plays a key role in Ca2+ and ROS signalling

underlying stomatal closure through facilitation of the primed
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state of guard cells to respond to closing stimuli [120]. The dis-

covery of the plant-specific chloroplast thylakoid-localized

Ca2+ sensor, CAS, lends further evidence to the pivotal role

of the chloroplast in the evolution of plant Ca2+ signalling

[121,122]. In Arabidopsis, CAS is responsible for stress related

stromal as well as cytosolic Ca2+ transients and is involved

in Ca2+-modulated MAPK regulation of ABI4 [121,123,124].

However, it is clear that retention of ‘animal-like’ Ca2+-toolkit

components persisted through the evolution of the chloroplast

CAS-related Ca2+-signalling machinery, at least in the unicellular

green algae, as evidenced by the presence of CAS signalling in

photoadaptation responses in Chlamydomonas [125].

In Chlamydomonas, CAS contributes to the transcriptional

regulation of LHCSR3 as well as to components of carbon

concentrating mechanisms [125,126]. Besides chloroplasts,

mitochondria have become a recent focus for Ca2+-related

research [57]. Due to the occurrence of mitochondria in both

the animal as well as the plant lineage, their Ca2+-signalling tool-

kit is of particular interest from an evolutionary point of view. The

mitochondrial Ca2+ uniporter complex MCUC was first identified

in animals, but recently components of this transport machinery

were also found in Arabidopsis, indicating conservation of the

pore-forming protein MCU (mitochondrial calcium uniporter) as

well as the EF-hand-containing regulatory component MICU1

(mitochondrial Ca2+ uptake 1) [127–129]. Absence of MICU1 in

mutant Arabidopsis lines resulted in higher mitochondrial Ca2+

content, indicating that MICU1 may be involved in sensing and

restricting matrix Ca2+ levels [129]. Mitochondria have been re-

ported to influence cytosolic Ca2+ signatures in animals, and

the noticeable homologies between the animal and the plant sys-

tem in terms of the mitochondrial Ca2+-import machinery may

help identify similar mechanisms in plants [130,131]. The

emerging contributions of organelles to cytosolic Ca2+ transients

will have to be taken into account in future models of plant intra-

cellular Ca2+ signalling.

In summary, in this Review we have highlighted some of

the major differences between the way that evolution has

shaped the Ca2+-signalling toolkit between animals and plants

and begun the process of seeking to understand the origin

and significance of these changes. With the increasing avail-

ability of genomic information, the scene is set to make

significant advances in our understanding of this fundamental

process.
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calante-Perez, M., Müller, T., Rennenberg, H., Al-Rasheid, K.A.S., et al.
(2013). The Dionaea muscipula ammonium channel DmAMT1 provides
NH4

+ uptake associated with Venus flytrap’s prey digestion. Curr. Biol.
23, 1649–1657.
Current Biology 27, R667–R679, July 10, 2017 R679

http://refhub.elsevier.com/S0960-9822(17)30556-0/sref109
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref109
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref109
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref109
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref109
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref109
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref110
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref110
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref110
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref111
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref111
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref111
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref111
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref112
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref112
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref112
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref112
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref113
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref113
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref113
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref113
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref113
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref114
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref114
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref114
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref115
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref115
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref115
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref116
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref116
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref116
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref116
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref117
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref117
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref117
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref117
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref119
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref119
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref120
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref120
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref120
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref121
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref121
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref121
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref121
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref122
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref122
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref122
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref122
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref123
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref123
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref123
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref123
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref124
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref124
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref124
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref124
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref125
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref125
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref125
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref126
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref126
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref126
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref126
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref127
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref127
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref127
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref127
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref127
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref127
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref127
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref128
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref128
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref128
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref128
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref128
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref129
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref129
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref129
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref130
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref130
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref130
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref130
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref130
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref130
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref131
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref131
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref131
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref132
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref132
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref132
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref133
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref133
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref133
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref135
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref135
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref135
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref135
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref135
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref135
http://refhub.elsevier.com/S0960-9822(17)30556-0/sref135

	The Evolution of Calcium-Based Signalling in Plants
	Introduction
	Overview of the Evolution of Ca2+-based Signalling in Plants and Animals
	Ca2+ Influx — Diversity Lost along the Way
	Ca2+ Efflux — Shaping Ca2+ Transients into Informative Signatures
	Calcium Decoding — One Messenger, Many Translators
	Diverging and Converging — Evolution of Fast Electrical Excitability in Plants
	Selective Pressures Driving the Evolution of Ca2+ Signalling in Plants
	Unanswered Questions and Opportunities
	Acknowledgments
	References


