The endocranial morphology of the extinct North American lion (Panthera atrox)

Andrew R Cuff ${ }^{1,2}$, Christopher Stockey ${ }^{3}$, Anjali Goswami ${ }^{1}$

1. GEE, University College London, Darwin Building, Gower Street, London, WC1E 6BT, United Kingdom.
2. Structure and Motion Lab, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts, AL9 7TA, United Kingdom.
3. Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom.

Short title: Endocranial anatomy of Panthera atrox.

Four figures, two tables.

Corresponding author: Andrew R Cuff - Structure and Motion Lab, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts, AL9 7TA, United Kingdom. Phone: 01707 666420. arcuff@rvc.ac.uk.

Abstract

The extinct North American lion (Panthera atrox) is one of the largest felids (Mammalia, Carnivora) to have ever lived, and is known from a plethora of incredibly well preserved remains. Despite this abundance of material, there has been little research into its endocranial anatomy. CT scans of a skull of P. atrox from the Pleistocene La Brea Tar pits were used to generate the first virtual endocranium for this species and to elucidate previously unknown details of its brain size and gross structure, cranial nerves, and inner ear morphology. Results show that the gross brain anatomy is broadly similar to that of other pantherines, although P. atrox displays less cephalic flexure than either extant lions or tigers, instead displaying a brain shape that is reminiscent of earlier felids. Despite this unusual reduction in flexure, the estimated, absolute brain size for this specimen is one of the largest reported for any felid, living or extinct. Its encephalization quotient (brain size as a fraction of expected brain mass for a given body mass) is also larger than that of extant lions, but similar to the other pantherines. The advent of CT scans allows for non-destructive sampling of anatomy that cannot otherwise be studied in these extinct lions, leading to more accurate reconstruction of endocranial morphology and its evolution.

Key words: Fossil lion, brain, endosseous labyrinths, encephalisation

Introduction

Panthera atrox [Leidy, 1853] was a large felid that lived in North America during the Pleistocene epoch from approximately 340 thousand years ago (ka) before going extinct at the end of the last ice age, approximately 11 ka . The precise phylogenetic affinities of P. atrox, and even its status as a separate species, has been heavily debated for decades. Although the earliest work aligned them with the extant lion (P. leo)[Merriam, and Stock, 1932] and the extinct Eurasian cave lion (P. spelaea), several early $20^{\text {th }}$ century comparative studies, as well as more recent morphometric studies, nesting them closer to tigers [Groiss, 1996] or jaguars [Simpson, 1941; Christiansen, and Harris, 2009] although recently a study suggested many of these morphological similarities arise from allometric changes [Benoit, 2010]. The rise of molecular phylogenetics, including techniques that allow for extraction of genetic material from the fossil specimens, has brought new insight into this debate, with molecular data nest P. atrox as sister to P. spelaea, with P. atrox $+P$. spelaea then being a sister clade to the ancestors of today's modern lions, P. leo [Barnett et al., 2009]. If that latter relationship is correct, it suggests that P. atrox was derived from a Beringian population.

The excellent fossil record of P. atrox shows that they attained sizes larger body sizes than modern lion species, and possibly larger than any other felids [Cuff et al., 2015] with estimates up to 420kgs [Sorkin, 2008], although more recently these have been revised down to give size ranges only slightly larger than the maximum recorded for modern lions and tigers [Christiansen, and Harris, 2009]. P. atrox has been found across the southern reaches of North America and into Central America [Montellano-Ballesteros, and Carbot-Chanona, 2009] (with some uncertainty over whether they crossed into South America)[Barnett et al., 2009; Yamaguchi et al., 2004]. As one of the largest predators in the area (larger than the sympatric Smilodon fatalis) it has been suggested that P. atrox was feeding on most of the mega-herbivorous fauna that existed in North America at that time [Van Valkenburgh, and Hertel, 1993]. Modern lions live in pride systems (particularly where there is a high density of prey [Schaller, 1972]), and it has been suggested that this may also be the case for P. atrox, which show similar levels of sexual dimorphism in canine size to their extant relatives [Yamaguchi et al., 2004]. However, the rarity of P. atrox at La Brea relative to S. fatalis [Marcus, 1960], and the observation that the leopard shares canine size dimorphism to that of modern P. leo [Van Valkenburgh, and Sacco, 2002], means that the evidence for group living in P. atrox is still ambiguous.

Most studies of P. atrox have focused on external morphology, particularly cranial proportions, in an attempt to clarify its phylogenetic positon and species status (e.g., [Benoit, 2010]). The only description of the endocranial anatomy have relied on sectioned skulls and casts made from them [Merriam, and Stock, 1932]. Since then the endocranial anatomy of P. atrox has been generally overlooked with published data focussing particularly on the size of the brain (e.g., [Wroe, and Milne, 2007]). The advent and increasing availability of CT scanning has brought new ability to reconstruct the internal morphology of fossil taxa with precision and without destructive sampling. Endocranial anatomy has been heavily studied in recent years using CT technology, bringing great insights into brain and inner ear structure, their evolution, and their relationship to numerous ecological attributes (e.g., [Macrini et al., 2006; Arsznov, and Sakai, 2012]). Here, we present the first high-resolution reconstruction of the endocranium of P. atrox including cranial nerve and inner ear morphology.

Methods

Page Museum specimen LACMP23-555 is a remarkably well-preserved skull and skeleton of P. atrox from the La Brea Tar Pits (Project 23-1), dating to approximately 35 ka [Fuller et al., 2014]. The skull was microCT scanned at The Aerospace Corporation in four sections, with a GE Phoenix c/tome/x
scanner ($200 \mathrm{kV}, 80 \mathrm{~mA}, 0.24 \mathrm{~mm} /$ pixel $)$. One of the CT scan sections contained the entirety of the braincase which was segmented using Mimics 16.0 (Materialise Corp, Belgium) to isolate the endocranium. This involved manually isolating the endocranial space (which is a combination of matrix and air in the P. atrox specimen) from the foramen magnum at the posterior towards the cribriform plate at the anterior. In this specimen of P. atrox the cribriform plate is not preserved due to the thin bones being destroyed so the anterior margins are estimated. Nerves were identified by the canals leading from the endocranium, with the semi-circular canals identifying the inner ear morphology. For anatomical comparisons the skull of an Asian Lion (P. leo persica) was scanned at the Royal Veterinary College (helical scan resulting in resolution of $0.58 \mathrm{~mm} /$ pixel, 178 slices with 5mm slice thickness, 120kV, Lightspeed Pro 16 CT scanner, GE Medical Systems) and the resulting scans were segmented in Avizo 8.1 (VSG SAS, Bordeaux, France). As the P. leo persica specimen was a captive specimen at a local zoo that died unexpectedly, it was subjected to a post-mortem that involved removal of the brain via sawing through and removing the dorsal region of braincase. This piece was digitally replaced onto the skull in Avizo 8.1 by rotating the skull piece into position to provide the original dorsal margins of the braincase. During segmentation, each of the anatomical structures (nerves, inner ear and brain) was isolated for individual study and comparison between P. atrox and P. leo persica.

The body mass for LACMP23-555 was estimated using published regressions using condylobasal length (for pantherines [Mazák et al., 2011]) and femoral length [Anyonge, 1993]. The resulting masses of 195.2 kg and 219.5 kg , respectively, were averaged to give the mean body mass for LACMP23-555 of 207.4 kg , which is the mass used for the following analysis. Additionally, a convex hull model was constructed for calculating the body mass using the entire skeleton which produced an average body mass estimate of 200kg (Cuff et al., in review).

For a broad comparison of felid endocranial anatomy, braincases of a Acinonyx jubatus (AMNH VP CA2502), Caracal aurata (AMNH 51996), Felis silvestris (AMNH 81233), Leopardus wiedii (AMNH 95085), Lynx rufus (AMNH 24225), Neofelis nebulosi (AMNH 22919), Panthera pardus (AMNH 113745), Panthera tigris (AMNH 45519), Pardofelis marmorata (AMNH 102844), Prionailurus viverrinus (AMNH 102691) and Puma concolor (AMNH 6677) were scanned at the Microscopy and Imaging Facility (MIF). All endocrania were segmented using Avizo 8.1 and volumes were measured using the "surface statistics" function. Additionally a comparative measure for relative cephalic flexure across the felids was carried out. This involved measuring the lateral aspects of the endocasts (aligned so that CN II was horizontal for each specimen) for total length from anteriormost cerebrum
to posteriormost cerebellum and the length of "exposed" cerebellum (the length posterior to the cerebrum) and calculating a percentage of "exposed" cerebellum to total cerebrum and cerebellum lengths.

Brain scaling

The mass of the brain of P. atrox was estimated from the full endocranial volume and multiplied by the density of brain tissue. Due to the variability in published densities (from $1.027 \mathrm{~g} / \mathrm{cm}^{3}$ [Schröder, 1968] to $1.100 \mathrm{~g} / \mathrm{cm}^{3}$ [Barber et al., 1970]) maximum and minimum estimates were used to generate a range for estimated brain mass. These estimates were combined with data from the additional 11 extant endocasts and published data for an additional four felid brain sizes (Leopardus pardalis, Leptailurus serval, Lynx lynx, Panthera onca [Weisbecker, and Goswami, 2010]) before both brain and body masses were log-transformed (Table 1). Log brain mass was then regressed again log body mass using Standardised Reduced Major Axis (SMA) regression in the 'smatr' package package [Warton et al., 2012] in R 3.1.0 (R Core Team, 2014). Because relative brain size has been previously shown to be strongly influenced by phylogenetic relatedness [Weisbecker, and Goswami, 2010], we further conducted a phylogenetically-correction using independent contrasts, before repeating the SMA regression. Phylogenetically-corrected analyses used the phylogeny from Piras et al. (2013) pruned to include only the taxa in this analysis.

Results

Brain anatomy

The endocranium of this P. atrox specimen is incredibly well preserved (Figure 1), showing little to no evidence of taphonomic deformation in comparison to the recently deceased specimen of the extant P. leo persica (Figure 2). Overall, the gross morphology (particularly the size and relative positions of the cerebrum and cerebellum, see below) resembles that of the leopard more than the Asian lion (Figure 3), but the brain volume of P. atrox $\left(323 \mathrm{~cm}^{3}\right)$ corresponds to a brain mass of between $331 \mathrm{~g}-355 \mathrm{~g}$ making it as large as the biggest extant tigers [Yamaguchi et al., 2009]. P. atrox has a relatively longer brain (distance from olfactory bulbs to foramen magnum) to condylobasal length than that of an extant P. leo persica (42.4% against 40% respectively). This measure would likely be even longer if the anteriormost margins of the olfactory bulbs could be accurately defined, discussed below. Most of this difference in brain length can be ascribed to differences in the cephalic flexure of the brain, with the cerebrum extending less over the cerebellum in P. atrox than in P. leo. This more extended condition in P. atrox resembles that observed in the most basal felids (Figure 3)[Radinsky, 1975] although there is no clear pattern in regards to relative levels of cephalic flexure
across Felidae (Table 3). Within the Machairodontinae there is high levels of cephalic flexure, which is also seen independently within P. leo and P. tigris (Figure 3). Of the extant, non-pantherine felids, there are generally higher levels of cephalic flexure, but this may be a result of a rotation of the forebrain such that the olfactory bulbs emerge relatively lower (Figure 3).

The majority of the cranial nerves can be located within the endocranium in similar positions to those in all other examined felids. CNs III (oculomotor), IV (trochlear), and VI (abducens) could not be located in the reconstruction, but are likely to exit with $C N s V_{1}$ and V_{2} through the cavum epiptericum, and the CN XI accessory nerve, which also was not visible, likely exits with CNs IX-X.

The anterior margins of the olfactory bulb are poorly defined. This endocranial region is normally demarcated by soft tissue and turbinates which do not preserve readily, even in Lagerstätten like La Brea. Even still the posterior olfactory bulbs appear relatively small particularly compared to the cerebral cortex. For example, in P. atrox the narrowest region of the olfactory bulbs is 15% the maximal width of the cerebral cortex, whilst in P. leo this number is 26% (Figure 1-2).

The structures of the inner ear were well generally well preserved, although the horizontal canal on the left hand side appeared to be incomplete (Figure 1). The overall morphology of the semicircular canals appear similar in most aspects to other felids, such as P. leo but the scan quality for the specimen here proved too low to get detailed morphological comparisons (Figure 2). The angle of the lateral semicircular canal is of particular interest, as previous studies have identified that the lateral semicircular canal is horizontal in alert head posture [Witmer, and Ridgely, 2009]. For P. atrox this angle may be as high as 55 degrees, which is comparable and possibly even exceeds that of extant lions.

Brain scaling

As in all mammals [Weisbecker, and Goswami, 2010], felids display a significant correlation between brain mass and body mass, with or without phylogenetic correction (Table 2). The log brain mass scaled against log body mass slope varies between $0.51-0.52$ (95% between 0.44 and 0.60) across felids before phylogenetic correction and 0.895-0.905 (95\% between 0.64 and 1.261) after phylogenetic correction, depending on the metric used. The P. atrox specimen falls above the regression line for all felids whilst the closest relative, P. leo, falls below (Figure 4). The result is that
the EQ for P. atrox is above 1.0, but when the 95% confidence intervals are accounted for this result may not always hold.

Discussion

We present here the first digital reconstruction of a P. atrox endocranium from CT scans, allowing detailed visualisation of its anatomy. When compared to the two published endocrania for P. atrox that were described from casts [Merriam, and Stock, 1932], the gross brain morphology and the location and relative sizes of nerves are very similar, but the CT scans have allowed the addition of inner ear morphology. This specimen of P. atrox possesses the one of the largest published felid brains to date (behind that estimated from an endocranial cast of another P. atrox specimen, LACM2900-1 [Merriam, and Stock, 1932]), but appears to have a larger endocranial volume than that of LACM2900-16 which is an individual with a larger skull [Merriam, and Stock, 1932]. The endocast for LACM2900-16 is derived from an cast, a method which is known to be less accurate than CT scans for estimating endocranial volumes [Macrini et al., 2006] although it is uncertain if this volumetric difference is a result of methodology or intraspecific variance.

Previous work has suggested that tigers have relatively larger brains than any of the other extant large cats [Yamaguchi et al., 2009], but felids in general scale differently to other carnivorans, with greater encephalisation observed in smaller cats than in larger ones (up to about 90kg mass) when pooled with other carnivorans [Finarelli, and Flynn, 2009]. Although this one specimen of P. atrox follows this larger pattern, its brain is not only greater in raw size than found in most of the extant felids (which is expected given its larger body size), but it also is greater than expected for its body size, with a positive residual from the regression of brain and body mass across felids. There is the caveat that this is a single specimen, but at only half the estimated mass of some of the largest individuals of the species [Sorkin, 2008], P. atrox likely had the largest average raw brain size across Felidae. It should be noted that if the ontogenetic scaling of the P. atrox endocranium is like most felids (and Carnivora as a whole), larger individuals of the species will have relatively smaller endocranial volumes [Kruska, 2005], which will shift the position of the P. atrox towards the right of Figure 3.

Within felids, sociality - group living - is important for helping to maintain territories and reducing infant mortality through territorial conflict [Mosser, and Packer, 2009], and in certain locations reduce kleptoparasitism from other species [Cooper, 1991]. However, there is little support for a correlation between overall brain size and sociality [Yamaguchi et al., 2009], but there may be a
correlation between anterior cerebrum volume and group living (at least for female African lions vs male lions or any gender of Puma) [Arsznov, and Sakai, 2012]. Unfortunately, we do not know the sex of the P. atrox specimen under study so the question of whether P. atrox practiced pride living cannot be easily assessed here.

The use of CT scans allows a greater understanding of complex endocranial anatomy that cannot be obtained otherwise without using destructive techniques. Here we provided the first digital models of the inner cranial morphology of P. atrox demonstrating that this individual had a relatively large brain compared to other pantherines and possesses a cephalic flexure pattern more like that of early felids. The cephalic flexure patterns and the effect on overall morphology varies tremendously across not just the large felid species, but across Felidae as a whole. This work, and other future work on additional specimens, provides a foundation for more in depth studies of the evolution of endocranial morphology, behaviour, and posture of this extinct cat.

Acknowledgements

This work was funded by Leverhulme Trust grant RPG 2013-124 to Anjali Goswami and John R Hutchinson (RVC). We thank John Hutchinson and Marcella Randau (UCL) for identifying and scanning the P. atrox specimen, Aisling Farrell from The George C Page Museum, and Gary Takeuchi and Luis Chiappe from the NHMLA for allowing access to this specimen and facilitating its loan for scanning, and Neil Ives and Gary Stupian from The Aerospace Corporation for scanning this specimen. We thank John Hutchinson for scanning the P. leo specimen and Tseng, ZJ., Grohé C., Flynn JJ for providing the scans of the other species.

Author contributions

ARC and CS segmented the CT scans, AG provided the data for extant felid brain masses, ARC carried out the analyses, ARC and AG interpreted the results and wrote the paper.

Competing financial interests

There are no conflicts of interests to declare.

References

Anyonge W (1993): Body mass in large extant and extinct carnivores. J Zool 231: 339-350.
Arsznov BM, Sakai ST (2012): Pride diaries: sex, brain size and sociality in the African lion (Panthera leo) and cougar (Puma concolor). Brain Behav Evol 79: 275-289.

Barber TEDW, Brockway JA, Higgins LS (1970): The density of tissues in and about the. Acta Neurol Scand 46: 85-92.

Benoit MH (2010): What's the difference? A multiphasic allometric analysis of fossil and living lions; in Goswami A, Friscia A (eds): Carnivoran Evolution. Cambridge, Cambridge University Press, pp 165-188.

Barnett R, Shapiro B, Barnes I, Ho SY, Burger J, Yamaguchi N, et al. (2009): Phylogeography of lions (Panthera leo ssp.) reveals three distinct taxa and a late Pleistocene reduction in genetic diversity. Mol Ecol Apr;18:1668-1677.

Christiansen P, Harris J (2009): Craniomandibular morphology and phylogenetic affinities of Panthera atrox: implications for the evolution and paleobiology of the lion lineage. J Vertebr Paleontology 29:934-945.

Cooper SM (1991): Optimal hunting group size: the need for lions to defend their kills against loss to spotted hyaenas. Afr J Ecol 29: 130-136.

Cuff AR, Randau M, Head J, Hutchinson JR, Pierce SE, Goswami A (2015): Big cat, small cat: reconstructing body size evolution in living and extinct Felidae. J Evol Biol 28:1516-1525.

Finarelli JA, Flynn JJ (2009): Brain-size evolution and sociality in Carnivora. Proc Natl Acad Sci USA 106:9345-9349.

Fuller BT, Fahrni SM, Harris JM, Farrell AB, Coltrain JB, Gerhart LM, et al. (2014: Ultrafiltration for asphalt removal from bone collagen for radiocarbon dating and isotopic analysis of Pleistocene fauna at the tar pits of Rancho La Brea, Los Angeles, California. Quat Geochronol 22: 85-98.

Goldfuss GA (1810): Die Umgebungen von Muggendorf. Ein Taschenbuch für Freunde der Natur und Altertumskunde.

Groiss JT (1996): Der höhlentiger Panthera tigris spelaea (Goldfuss). Neues Jahrbuch für Geologie und Paläontologie 7:399-414.

Kruska DC (2005): On the evolutionary significance of encephalization in some eutherian mammals: effects of adaptive radiation, domestication, and feralization. Brain Behav Evol 65: 73-108.

Leidy J (1853): Description of an extinct species of American lion: Felis atrox. T Am Philol Assoc 10: 319-321.

Macrini TE, Rowe T, Archer M (2006): Description of a cranial endocast from a fossil platypus, Obdurodon dicksoni (Monotremata, Ornithorhynchidae), and the relevance of endocranial characters to monotreme monophyly. J Morphol 267:1000-1015.

Marcus LF (1960): A census of the abundant large Pleistocene mammals from Rancho La Brea. Museum of Natural History of Los Angeles County, Contributions to Science 35:1-11.

Mazák JH, Christiansen P, Kitchener AC (2011): Oldest known pantherine skull and evolution of the tiger. PLoS ONE 6:e25483.

Merriam JC, Stock C (1932): The Felidæ of Rancho La Brea. Washington, Carnegie Institute of Washington.

Montellano-Ballesteros M, Carbot-Chanona G (2009): Panthera leo atrox (Mammalia: Carnivora: Felidae) in Chiapas, Mexico. Southwest Nat 54:217-222.

Mosser A, Packer C (2009): Group territoriality and the benefits of sociality in the African lion, Panthera leo. Animal Behaviour 78: 359-370.

Piras P, Maiorino L, Teresi L, Meloro C, Lucci F, Kotsakis T, et al. (2013): Bite of the cats: relationships between functional integration and mechanical performance as revealed by mandible geometry. Syst Biol 62: 878-900.

Radinsky L (1975): Evolution of the felid brain. Brain Behav Evol 11:214-254.
Schaller GB (1972): The Serengeti Lion: A Study of Predator-Prey Relations. Chicago, University of Chicago Press.

Schröder R (1968): Über das spezifische Gewicht des Hirngewebes in der Nachbarschaft von Tumoren. Aus dem Max-Planck-Institut fur Hirnforschung, Abteilung fur Tumor forschung und expirementelle Pathologie, und der Neurochirurgischen Universitiitsklinik, Koln.

Simpson GG: Large Pleistocene felines of North America. American Museum Novitates 1941;1136:127.

Sorkin B (2008): A biomechanical constraint on body mass in terrestrial mammalian predators. Lethaia 41:333-347.

Van Valkenburgh B, Hertel F (1993): Tough times at La Brea: tooth breakage in large carnivores of the late pleistocene. Science 261:456-459.

Van Valkenburgh B, Sacco T (2002): Sexual Dimorphism, Social Behavior, and Intrasexual Competition in Large Pleistocene Carnivorans. J Vertebr Paleontology 22:164-169.

Warton DI, Duursma RA, Falster DS, Taskinen S (2012): smatr 3- an R package for estimation and inference about allometric lines. Methods in Ecology and Evolution: 257-259.

Weisbecker V, Goswami A (2010): Brain size, life history, and metabolism at the marsupial/placental dichotomy. Proc Natl Acad Sci USA 107: 16216-16221.

Witmer LM, Ridgely RC (2009): New insights into the brain, braincase, and ear region of tyrannosaurs (Dinosauria, Theropoda), with implications for sensory organization and behavior. Anat Rec 292:1266-1296.

Wroe S, Milne N (2007): Convergence and remarkably consistent constraint in the evolution of carnivore skull shape. Evolution 61: 1251-1260.

Yamaguchi N, Cooper A, Werdelin L, Macdonald DW (2004): Evolution of the mane and group-living in the lion (Panthera leo): a review. J Zool 263:329-342.

Yamaguchi N, Kitchener A, Gilissen E, Macdonald D (2009): Brain size of the lion (Panthera leo) and the tiger (P. tigris): implications for intrageneric phylogeny, intraspecific differences and the effects of captivity. Biol J Linn Soc 98: 85-93.

	Slope	lower limit	upper limit	r^{2}	$r^{2} p$	336 intercept
Minimum	0.517	0.448	0.596	0.932	0.000	-1.6937
Minimum $_{\text {phylogenetic }}$	0.903	0.646	1.261	0.647	0.000	-0.045
Maximum	0.514	0.447	0.591	0.935	0.000	$-1.6 \nexists 38$
Maximum	phylogenetic	0.896	0.642	1.249	0.650	0.000
-0.047						

Table 1. $\log _{10}$ transformed data for the 17 felid species used in this study. ${ }^{1}$ denotes data from Finarelli and Flynn [2009]. LACMP: Natural History Museum of Los Angeles County, AMNH: American Museum of Natural History, NMS: National Museums of Scotland. Body masses for AMNH specimens are average for species from Cuff et al. [2015] as no specimen specific masses were available.

Species	Specimen no.	Body mass	Brain mass min.	Brain mass max.
Panthera atrox	LACMP23-555	2.32	-0.480	-0.450
Panthera tigris	AMNH 45519	2.21	-0.544	-0.514
Panthera leo	NMS.2.2015.128	2.12	-0.635	-0.605
Puma concolor	AMNH 6677	1.73	-0.842	-0.812
Panthera pardus	AMNH 113745	1.72	-0.779	-0.749
Panthera onca ${ }^{1}$		1.54	-0.827	-0.827
Acinonyx jubatus $^{\text {AMNH VPCA 2502 }}$	1.40	-0.936	-0.906	
Neofelis nebulosa $^{\text {AMNH 22919 }}$	1.18	-1.24	-1.21	
Aynx lynx 1		1.09	-1.17	-1.17
Caracal aurata	AMNH 51996	1.05	-1.24	-1.21
Leopardus pardalis 1		1.03	-1.20	-1.20
Caracal serval				

Table 2. Results of Reduced Major Axis analyses of log brain mass against log body mass. Upper and lower limits represent 95% confidence intervals, whilst the " $r^{2} p$ " shows the statistical significance of the correlation between brain mass and body mass.

Table 3. Measure of relative cephalic flexure across felids. Cerebrum and cerebellum lengths correspond to total lateral length of both, "exposed" cerebellum length is the length of the cerebellum not overlapped by cerebrum. All lengths in m. Species marked with an asterisk (*) are from [Radinsky, 1975].

Species	Cerebrum and cerebellum length	"Exposed" cerebellum length	Proportion "exposed"
Dinobastis sp.* $^{\text {smilodon fatalis* }}$	0.0979	0.0095	0.097
Pseudaelurus*	0.0923	0.0124	0.134
Neofelis nebulosi	0.0677	0.0165	0.243
Panthera tigris	0.0999	0.0168	0.235
Panthera pardus	0.0918	0.0104	0.104
Panthera atrox	0.0984	0.0160	0.175
Panthera leo	0.0905	0.0183	0.186
Pardofelis marmorata	0.0550	0.0053	0.059
Carcal aurata	0.0671	0.0093	0.142
Leopardus wiedii	0.0517	0.0065	0.139
Lynx rufus	0.0655	0.0106	0.125
Acinonyx jubatus	0.0697	0.0080	0.163
Puma concolor	0.0855	0.0131	0.115
Prionailurus viverrina	0.0623	0.0108	0.154
Felis silvestris	0.0499	0.0100	0.174
Proailurus*	0.0641	0.0141	0.200

Figure 1. Endocranial reconstruction of P. atrox in A, left lateral; B, right lateral; C, dorsal; and D, ventral views. Anterior is toward the left in A, C, D and toward the right in B. The endocast is rendered in blue, the inner ear in red, and the cranial nerves in yellow.; CN II optic nerve; CN_{1-3}, trigeminal nerve (ophthalmic, maxillary and mandibular branches); CN VII facial nerve; CN VIII vestibulocochlear nerve; CN IX, glossopharyngeal nerve; CN X, vagus nerve; CN XII, hypoglossal nerve; hy, hypophysis/pituitary; ob, olfactory bulb; ocx, olfactory cortex; pf, paraflocculus; v, vermis. Scale bar $=20 \mathrm{~mm}$. Endocranial orientation in A and B linked to the likely "alert" head posture.

Figure 2. Endocranial reconstruction of P. leo persica in A, left lateral; B, right lateral; C, dorsal; and D, ventral views. Anterior is toward the left in A, C, D and toward the right in B. The endocast is rendered in blue, the inner ear in red, and the cranial nerves in yellow.; CN II optic nerve; CN_{1-3}, trigeminal nerve (ophthalmic, maxillary and mandibular branches); CN VII facial nerve; CN VIII vestibulocochlear nerve; CN IX, glossopharyngeal nerve; CN X, vagus nerve; CN XII, hypoglossal nerve; hy, hypophysis/pituitary; ob, olfactory bulb; ocx, olfactory cortex; pf, paraflocculus; v, vermis. Scale bar $=20 \mathrm{~mm}$. Endocranial orientation in A and B linked to the likely "alert" head posture.

Figure 3. Brain anatomy through Felidae. Proailurus, Pseudaelurus, Dinobastis and Smilodon are all modified from Radinsky[1975]. Phylogeny modified from Piras et al.[2013], total length 27Ma. All scale bars $=2 \mathrm{~cm}$.

