

City, University of London Institutional Repository

Citation: Howe, J. M. and Mereani, F. (2018). Detecting Cross-Site Scripting Attacks
Using Machine Learning. Advances in Intelligent Systems and Computing, 723, doi:
10.1007/978-3-319-74690-6_20

This is the accepted version of the paper.

This version of the publication may differ from the final published
version.

Permanent repository link: http://openaccess.city.ac.uk/18949/

Link to published version: http://dx.doi.org/10.1007/978-3-319-74690-6_20

Copyright and reuse: City Research Online aims to make research
outputs of City, University of London available to a wider audience.
Copyright and Moral Rights remain with the author(s) and/or copyright
holders. URLs from City Research Online may be freely distributed and
linked to.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/146489426?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Detecting Cross-Site Scripting Attacks using
Machine Learning

Fawaz A. Mereani1,2 and Jacob M. Howe1

1 Department of Computer Science,
City, University of London
London, United Kingdom

fawaz.mereani@city.ac.uk, j.m.howe@city.ac.uk
2 Umm Al-Qura University, Makkah, Saudi Arabia

Abstract. Cross-site scripting (XSS) is one of the most frequently oc-
curring types of attacks on web applications, hence is of importance in
information security. XSS is where the attacker injects malicious code,
typically JavaScript, into the web application in order to be executed
in the user’s browser. Identifying that a script is malicious is an im-
portant part of the defence of a web application. This paper investigates
using SVM, k-NN and Random Forests to detect and limit these attacks,
whether known or unknown, by building classifiers for JavaScript code.
It demonstrated that using an interesting feature set combining language
syntax and behavioural features results in classifiers that give high ac-
curacy and precision on large real world data sets without restricting
attention only to obfuscation.

Keywords: Cross-Site Scripting, System Security, Supervised learning,
Classifiers, Features selection

1 Introduction

Web applications are used everywhere and involve sensitive and personal data.
This makes them a target for malware exploiting vulnerabilities to obtain unau-
thorized data stored on the computer. Such attacks include SQL injection, cross-
site scripting (XSS) and more. XSS can affect the victim by stealing cookies,
modifying a web page, capturing clipboard contents, keylogging, port scanning,
dynamic downloads and other attacks [17]. Therefore, the safety of web appli-
cations is a very important task for developers. The lack of verification of the
client input or the environment is the most common security weakness in web
applications [18] and such weaknesses are repeatedly discovered and exploited
on both client side and server side. SQL injection and XSS remain in the top ten
vulnerabilities listed in the Open Web Application Security Project (OWASP)
[14]. This paper investigates the use of machine learning techniques to build
classifiers to allow the detection of XSS in JavaScript. The current research fo-
cuses on stored or persistent XSS, where a malicious script is injected into a
web application and stored in the database. Then on every visit to the page, the

2 F.A. Mereani, J.M. Howe

script will be executed on the user’s browser. Such an attack might target blogs,
forums, comments or profiles [7, 11, 24].

Work on detecting and protecting against XSS attacks can be broadly cat-
egorised into three kinds. Firstly, static analyses which review the source code
without execution; whilst such approaches can give formal guarantees that cer-
tain vulnerabilities do not occur, they may also be slow or fail to give a result
at all. Secondly, dynamic analyses which attempt to determine what the script
does at execution time. Modifying the interpreter [16] or checking the syntactic
structure [19] are strategies of this analysis. However, it is hard to modify a
language’s interpreter; vulnerabilities that are caused by the interaction of mul-
tiple modules [3] are, therefore, hard to prevent. Thirdly, machine learning can
use knowledge of available scripts to build classifiers to predict aspects of the
behaviour of new scripts [4]. The advantages of using machine learning are: first,
once a classifier has been built it can quickly predict whether or not a script is
malicious; second, it does not need a sandbox to analyse the script; third, the
classifier has predictive capabilities to detect new malicious JavaScript. In this
work, machine learning is used to detect stored XSS with high accuracy and
precision. Scripts may well be obfuscated; importantly, the aim is to classify all
scripts, whether obfuscated or not. The design space for such an approach is
large, with choices of how to build classifiers, and an even larger choice of how
to abstract concrete code into a collection of features that the machine learning
algorithms will work on. The contributions of this work are as follows:

– a new selection of program features, drawn from program syntax and pro-
gram behaviours, is given for the learning algorithms to work on

– the collection of a balanced dataset of scripts from multiple sources giving
good coverage of both malicious and benign scripts

– the use of support vector machines (SVM), k-nearest neighbour (k-NN), and
Random Forests as learning algorithms to give classifiers; this is the first
evaluation of Random Forests on XSS problems

– the evaluation of the resulting classifiers on training and real world data.

The rest of this paper is organised as follows: Section 2 gives an overview of rele-
vant aspects of JavaScript and JavaScript obfuscation. Section 3 discusses related
work on machine learning and XSS. Section 4 details the dataset collection and
features selection. Section 5 gives the experimental data on the performance of
the classifiers, and includes discussion of the results. Further discussion, direction
of future work and conclusions are given in section 6.

2 Background

2.1 JavaScript

JavaScript is a language commonly used in the development of web pages to
make them more dynamic and interactive. It is client-side which allows the source
code to be executed in the web browser rather than on the server. This allows

Detecting Cross-Site Scripting 3

functions to run after loading the web page without the need to communicate
with the server, for example, producing an error alert before sending information
to the server. Scripts can be inserted within the HTML or can be referenced in
a separate .js file. JavaScript is a good choice for attackers to carry out their
attacks and to spread them over the Internet, because the majority of websites
use JavaScript and it is supported by all web browsers. Hence, it is the target of
many XSS, SQL injection and passive download attacks [22].

2.2 Obfuscation

The goal of obfuscation is to modify the code to make it hard to read or un-
derstand. For example, by changing the names of variables or functions, or by
using operators to compound terms to give program constructs. Both benign
and malicious scripts can use obfuscation techniques with different purposes for
each one. Benign obfuscation aims to protect privacy or intellectual rights, while
malicious obfuscation works on disguising malicious intentions and evading the
static inspection checks. Multiple obfuscation methods can be applied by attack-
ers to best hide malicious scripts [25]. A simple example of malicious JavaScript
obfuscation by using URL Encoded is:

%3Cs c r ipt%3E%0D%0Aal e r t%28document . c o oki e%29%3B%0D%0A
%3C%2Fs c r ipt%3E

The original script after deobfuscated is as follows:

< script > alert(document.cookie);< /script >

This paper considers JavaScript that may or may not be obfuscated and aims
to classify scripts as either malicious or benign in either case.

3 Related Work

A number of approaches have been taken to dealing with XSS. The standard
approach for the web application developer is to use sanitization and escaping
to prevent untrusted content being interpreted as code [24, 23]. Alternatively
parser-level isolation can confine user input data during the lifetime of the web
application [12]. Note that this isn’t detection of XSS, rather prevention of its
execution through good coding practice. This is preferred to blacklists which
are viewed as easy to circumvent [24]. Another technique to defend against XSS
vulnerability is to use randomized namespace prefixes with primitive markup
language elements to make it hard for the attacker to use these elements [20].
Previous methods aim to remove malicious elements from untrusted data, how-
ever, as with blacklists some XSS vectors can easily bypass many powerful filters.
In [8] rules are generated to allow control of communications, with a web proxy
blocking communication with untrusted sites. Combinations of static and dy-
namic techniques use taint analysis to prevent sensitive data being sent to a
third party by monitoring the flow of data in the browser [21].

4 F.A. Mereani, J.M. Howe

Machine learning techniques have been applied to detecting XSS attacks [10]
and are attractive because they can adapt to changes and variations in mali-
cious scripts [9]. Likarish et al. [10] evaluated Naive Bayes, ADTree, SVM, and
RIPPER classifiers in detecting obfuscation of scripts (as a proxy for malicious),
using features that track the number of times symbols appears in benign and
malicious scripts. The classifiers were evaluated using 10-fold cross validation
giving precision of 0.92. It should be noted that the test set of obfuscated scripts
is small. The approach of Likarish et al. was expanded by Nunan et al. [13],
where features were categorized into three groups: (1) obfuscation based, (2)
suspicious patterns and (3) HTML/JavaScript schemes. Naive Bayes and Sup-
port Vector Machine classifiers were used to classify scripts as XSS or non-XSS.
Three datasets were used, malicious (obfuscated) scripts from XSSed.com and
benign scripts from Dmoz and ClueWeb09. The classifiers were evaluated using
accuracy to give 98.58% with Dmoz dataset, and 99.89% with the ClueWeb09
dataset. This approach has high accuracy, but depends on a single source for
malicious scripts and again focuses on obfuscated scripts. Another study analyz-
ing malicious scripts and feature extraction was conducted by Wang et al. [22]
where the main idea of feature extraction is that some functions are of limited
use in the benign scripts, but are used much more in malicious scripts, such as
the DOM-modifying functions, the eval function, the escape function. This tech-
nique gives accuracy of up to 94.38%. However, again the technique concentrates
only on obfuscated scripts and on DOM-modifying functions. The work of [2]
also aims to distinguish between obfuscated and non-obfuscated scripts. Their
method gives high precision results up to 100% though again the number of ma-
licious scripts used was small. Komiya et al. [9] used machine learning techniques
to classify user input to detect malicious web code. Feature extraction depended
on two methods, blank separation, and tokenizing. The idea of the first method
is that input contains many terms separated by spaces, a count of each term
is used for calculation of feature weight. It should be noted that in a malicious
script terms might be separated by characters other than spaces, which would
lead to an incorrect feature weight. The second method is based on the idea that
malicious code contains tokens that describe the features of malicious web code,
with a count of each term used to calculate feature weights. Using this feature
extraction technique with SVM gave accuracy of up to 98.95%.

4 Methodology

4.1 Datasets

This paper concentrates on malicious and benign scripts that can be sent to Web
applications via HTTP requests. The attacker can use obfuscated scripts, as well
as scripts written in the normal manner. To create balanced datasets JavaScript
was collected from a number of trusted sources including both obfuscated and
non-obfuscated scripts and scripts of with a variety of lengths. Two datasets
were gathered. The first data set was collected for training and the second for
testing. There is some overlap in the sources of the scripts, but not in the scripts

Detecting Cross-Site Scripting 5

Table 1. Structural Features

Features Group Terms

Punctuation &,%, /, \, +, ’, ?, !, ;, #, =, [,], $, (,), ∧
*, , , -, <, >, @, , :, {, }, ~, ., space, |, ¦, ”

Punctuation Combinations ><, ′ ” ><, [], ==, &#

themselves. The benign scripts were obtained from a number of developer and
university sites.

For the training set, malicious scripts were obtained from developer sites
[15, 1, 6], a selection from XSSed, the largest online archive of XSS vulnerable
websites [5] and additional scripts were collected by crawling sites known to be
untrustworthy. The test set was drawn entirely from the XSSed archive. Again
there is no overlap between sets. The first (training) dataset contains 2000 of
each of malicious and benign scripts. The second (test) dataset contains 13,000
each of malicious and benign scripts. Data was prepared for the classification
experiments by removing duplicates to get unique scripts, removing extra blank
spaces and unnecessary new lines, and lowercasing all letters.

4.2 Selecting Features

There is a large design space for selecting suitable features of JavaScript in order
to start classifying scripts. Features in this work are categorized into two groups,
1) structural, and 2) behavioural. In total, 59 features are considered.

Structural Features The structural features are the complete set of non-
alphanumeric characters that can occur in JavaScript. These may occur in any
script, but if the attacker is using techniques to trick the protection on Web
applications this can change the range of characters used in a script. This applies
whether or not the script is obfuscated. To give a simple example, a malicious
script might add spaces or unnecessary symbols between commands or tags,
such as < \ sc ri pt >. A benign script would not do this. As another example
consider a cookie access separated into two parts and the use of the + sign to
recombine the entire command again, document +′ .′ + cookie. Also included
in the structural features are combinations of characters that might be used in
constructing malicious scripts. There are 33 non-alphanumeric characters, and 5
further combinations of these are considered. The features might be measured in
a variety of ways. In the current work the measure is a 0/1 value indicating that
the feature does not or does occur in the script. As will be demonstrated later
this surprisingly simple measure works very well. Table 1 gives the structural
features (where space indicates the blank space character).

Behavioural Features These are a selection of the commands and functions
that can be used in JavaScript. The attacker may use them suspiciously and

6 F.A. Mereani, J.M. Howe

Table 2. Behavioural Features

Features Description

Readability Is the script readable - the number of alphabetical characters.

Objects document, window, iframe, location, This.

Events Onload, Onerror.

Methods createelement, String.fromCharCode, Search.

Tags DIV, IMG, <script.

Attributes SRC, Href, Cookie.

Reserve Var .

Functions eval().

Protocol HTTP.

External File .js file.

differently from the benign developer. That is, the benign developer does not
need to hide the intent of their code, whilst on the contrary, the attacker will
use a range of commands to create the malicious script. For example, using the
eval function frequently, using de-obfuscated functions in the script, or includ-
ing a malicious script within an image tag. The insight is that combinations of
occurrences of commands indicate suspicious activity. There are 21 of these con-
sider in this work. As for the structural features, behavioural features might be
measured in many ways. The current work again uses a 0/1 value indicating that
the feature does not or does occur in the script. Table 2 gives the behavioural
features selected for their potential use in malicious scripts.

4.3 Classifiers

The feature data is used as input for supervised learning algorithms. In this
work, support vector machines (SVM), k-nearest neighbour (k-NN), and Ran-
dom Forests are used, although other classifiers might also be used. Two varia-
tions on SVMs are used, with a linear kernal and with a polynomial kernal. A
number of parameters used with SVMs were tuned during the training phase:
BoxConstraint to control the maximum penalty of misclassification, and Outlier-
Fraction to determine the expected proportion of outliers in the training data.
For the k-NN classifier parameter k, the number of neighbours was tuned. For
the Random Forest classifier the number of trees in the forest was tuned.

5 Results

5.1 Experiments

MatLab R2016b was used for the experimentation. The experiments focused on
the performance of SVM, k-NN, and Random Forest classifiers using the datasets
and features described in section 4. For the first set of results the training dataset
was divided at random into five folds, with training on four of the five folds,

Detecting Cross-Site Scripting 7

Table 3. SVM (Linear Kernel) Evaluation

Folds Accuracy Precision Sensitivity Specificity

1st 94.93% 93.98% 96.37% 93.40%

2nd 94.75% 93.19% 95.69% 93.92%

3rd 95.06% 94.66% 95.03% 95.08%

4th 94.14% 93.14% 96.63% 93.34%

5th 94.81% 93.25% 96.25% 93.45%

Average 94.74% 93.64% 95.99% 93.84%

Table 4. SVM (Polynomial Kernel) Evaluation

Folds Accuracy Precision Sensitivity Specificity

1st 96.87% 96.10% 97.95% 95.70%

2nd 96.81% 96.20% 97.09% 96.55%

3rd 97.43% 98.04% 96.66% 98.14%

4th 96.87% 96.25% 97.47% 63.25%

5th 97.31% 96.75% 97.85% 96.78%

Average 97.06% 96.67% 97.40% 96.68%

Table 5. k-NN Classifier Evaluation

Folds Accuracy Precision Sensitivity Specificity

1st 97.00% 96.34% 97.96% 95.95%

2nd 96.50% 96.20% 96.45% 96.53%

3rd 97.43% 97.65% 97.02% 97.82%

4th 97.75% 97.38% 98.11% 97.38%

5th 96.93% 96.37% 97.47% 96.41%

Average 97.12% 96.79% 97.40% 96.82%

and testing on the remaining fold. This five fold testing then gives five training
experiments. The SVM with linear kernel was tuned to set the BoxConstraint
parameter to 7. The polynomial kernel was tuned by setting the OutlierFraction
parameter to 0.10. k-NN was tuned by setting NumNeighbors parameter to 1
(since some malicious scripts might be singletons). Random Forest was tuned
by setting the number of tree to 40. The results are described with Precision
(often called Detection Rate in a security context), Accuracy, Sensitivity and
Specificity. Table 3 shows results with test data for SVM with linear kernel,
Table 4 shows the results for SVM with polynomial kernel, Table 5 shows the
results for k-NN, and Table 6 shows the results for Random Forest.

To test real world attacks, models for SVM with both linear and polynomial
kernel, k-NN, and Random Forest were built by training classifiers using the
whole training dataset. Then the testing dataset that contains new malicious
and benign scripts was used for testing the classifiers’ performance. In Table 8
the results of this test are given and in Table 7 the confusion matrices giving the
raw data are presented.

8 F.A. Mereani, J.M. Howe

Table 6. Random Forest Classifier Evaluation

Folds Accuracy Precision Sensitivity Specificity

1st 96.43% 95.28% 97.93% 94.83%

2nd 96.75% 95.54% 97.59% 96.00%

3rd 97.81% 97.65% 97.78% 97.83%

4th 97.68% 97.00% 98.35% 97.03%

5th 97.43% 97.00% 97.85% 97.02%

Average 97.22% 96.47% 97.90% 96.54%

Table 7. Confusion Matrix with Testing Data

Linear Polynomial k-NN Random Forest
Malicious Benign Malicious Benign Malicious Benign Malicious Benign

Malicious 12783 217 12960 40 12985 15 12980 20

Benign 739 12261 62 12938 50 12950 110 12890

5.2 Discussion

The experiments give two sets of data. The first uses a training set of scripts cho-
sen to give coverage of a variety of styles of scripts – obfuscated or not, varying
length. The five fold evaluation shows good performance for the classifiers, with
(as expected) SVM with a polynomial kernal giving stronger results than for
SVM with linear kernal. The second set of data is designed to give a real-world
evaluation of the classifiers learnt from the entire training set. As can be ob-
served in Table 8 the SVM, k-NN, and Random Forest classifiers can distinguish
between malicious and benign scripts with high accuracy and detection rate.
k-NN performs marginally better than SVM and Random Forest, with accuracy
of 99.75% and precision 99.88%. The confusion matrices of Table 7 show the
small numbers of false positives and failed detections, 15 of the former and 50
of the latter for the k-NN classifier. These results suggest that classifier based
techniques can be a powerful tool for detecting XSS attacks.

Table 8. Evaluation with Testing Data

Linear Polynomial k-NN Random Forest

Accuracy Rate 96.32% 99.60% 99.75% 99.50%

Precision Rate 98.33% 99.69% 99.88% 99.84%

Sensitivity (TPR) 94.53% 99.22% 99.61% 99.15%

Specificity (TNR) 98.26% 99.69% 99.88% 99.84%

6 Conclusion

This paper has demonstrated that SVM, k-NN, and Random Forest can be used
to build classifiers for XSS coded in JavaScript giving high accuracy (up to

Detecting Cross-Site Scripting 9

99.75%) and precision (up to 99.88%) when applied to a large real world data
set. This shows that these classifiers can be added as a security layer either in a
browser or (as intended) on a server. The training data was designed to give fair
coverage of scripts, including scripts of a variety of lengths and both obfuscated
and non-obfuscated scripts. The data is labeled as malicious or benign, rather
than using obfuscation as a proxy for maliciousness. Whilst SVM, k-NN, and
Random Forest have been used in the experiments, it is expected that other
classification methods would also work well.

A systematic direct comparison with previous studies is not possible, how-
ever, the new classifiers give performance statistics that stand up well. The
current study works with a larger and more diverse suite of scripts than many of
these previous studies, and is the first study to use Random Forests as a classifier
for XSS. The key to building successful classifiers is the choice of feature set and
how the features are measured. With a large design space there is motivation to
investigate a wide range of approaches to feature selection. The features chosen
in this paper fall into two categories: firstly the complete set of symbols used in
the JavaScript language, and secondly aspects of the scripts that are associated
with malicious code. This allows the classifiers to find patterns based on the
shape of the program (symbols) and the constructs used (behavioural features).
One particularly interesting aspect of this work is that, in contrast to other
studies, a binary measure has been used for all features. This has given higher
accuracy and precision than earlier experiments using weighted measures. This
hints that it may be possible to extract rules from the classifiers that describe
malicious scripts. Another interesting aspect is the value of k used in the final ex-
periments is 1. This suggests that malicious scripts might well be singletons that
stand apart from clusters of benign scripts. Future work is to investigate these
aspects, as well as to use the same features with a Neural Network classifier.

References

1. Examples of malicious javascript. https://aw-snap.info/articles/js-examples.php
(2014). Accessed: 16/12/2016

2. Aebersold, S., Kryszczuk, K., Paganoni, S., Tellenbach, B., Trowbridge, T.: Detect-
ing Obfuscated JavaScripts using Machine Learning. In: International Conference
on Internet Monitoring and Protection. IARIA Press (2016)

3. Balzarotti, D., Cova, M., Felmetsger, V., Vigna, G.: Multi-module vulnerability
analysis of web-based applications. In: Computer and Communications Security,
pp. 25–35. ACM Press (2007)

4. Domingos, P.: A few useful things to know about machine learning. Communica-
tions of the ACM 55(10), 78–87 (2012)

5. Fernandez, K., Pagkalos, D.: XSS (Cross-Site Scripting) information and vulnerable
websites archive. XSSed.com. Accessed 14/06/2017

6. Karnad, K.: XSS payloads you may need as a pen-tester. https://www.linkedin.
com/pulse/20140812222156-79939846-xss-vectors-you-may-need-as-a-pen-tester
(2014). Accessed: 25/12/2016

7. Kirda, E., Jovanovic, N., Kruegel, C., Vigna, G.: Client-side cross-site scripting
protection. Computers & Security 28(7), 592–604 (2009)

10 F.A. Mereani, J.M. Howe

8. Kirda, E., Kruegel, C., Vigna, G., Jovanovic, N.: Noxes: a client-side solution for
mitigating cross-site scripting attacks. In: Symposium on Applied Computing, pp.
330–337. ACM Press (2006)

9. Komiya, R., Paik, I., Hisada, M.: Classification of malicious web code by machine
learning. In: Awareness Science & Technology (iCAST), pp. 406–411. IEEE (2011)

10. Likarish, P., Jung, E., Jo, I.: Obfuscated malicious Javascript detection using clas-
sification techniques. In: Malicious and Unwanted Software (MALWARE), pp.
47–54. IEEE (2009)

11. Malviya, V.K., Saurav, S., Gupta, A.: On Security Issues in Web Applications
through Cross Site Scripting (XSS). In: Asia-Pacific Software Engineering Confer-
ence, vol. 1, pp. 583–588. IEEE (2013)

12. Nadji, Y., Saxena, P., Song, D.: Document Structure Integrity: A Robust Basis
for Cross-site Scripting Defense. In: Network and Distributed System Security
Symposium. Internet Society (2009)

13. Nunan, A.E., Souto, E., dos Santos, E.M., Feitosa, E.: Automatic classification of
cross-site scripting in web pages using document-based and url-based features. In:
Computers and Communications, pp. 702–707. IEEE (2012)

14. OWASP Top 10 - 2017 rc1 (2017). https://www.owasp.org. Accessed: 7/6/2017
15. Payloads, X.: XSS payloads you may need as a pen-tester. http://www.

xss-payloads.com/payloads.html. Accessed: 14/10/2016
16. Pietraszek, T., Berghe, C.V.: Defending against injection attacks through context-

sensitive string evaluation. In: Recent Advances in Intrusion Detection, Lecture
Notes in Computer Science, vol. 3858, pp. 124–145. Springer (2005)

17. Raman, P.: JaSPIn: JavaScript based Anomaly Detection of Cross-site scripting
attacks. Ph.D. thesis, Carleton University, Ottawa (2008)

18. Rocha, T.S., Souto, E.: ETSSDetector: a tool to automatically detect Cross-Site
Scripting vulnerabilities. In: Network Computing and Applications, pp. 306–309.
IEEE (2014)

19. Su, Z., Wassermann, G.: The essence of command injection attacks in web appli-
cations. ACM SIGPLAN Notices 41(1), 372–382 (2006)

20. Van Gundy, M., Chen, H.: Noncespaces: Using randomization to defeat cross-site
scripting attacks. Computers & Security 31(4), 612–628 (2012)

21. Vogt, P., Nentwich, F., Jovanovic, N., Kirda, E., Kruegel, C., Vigna, G.: Cross site
scripting prevention with dynamic data tainting and static analysis. In: Network
and Distributed System Security Symposium, p. 12. Internet Society (2007)

22. Wang, W.H., Yin-Jun, L.V., Chen, H.B., Fang, Z.L.: A Static Malicious Javascript
Detection using SVM. In: International Conference on Computer Science and
Electronics Engineering, vol. 40, pp. 21–30. Atlantis Press (2013)

23. Weinberger, J., Saxena, P., Akhawe, D., Finifter, M., Shin, R., Song, D.: A System-
atic Analysis of XSS Sanitization in Web Application Frameworks. In: European
Symposium on Research in Computer Security, Lecture Notes in Computer Science,
vol. 6879, pp. 150–171. Springer (2011)

24. Williams, J., Manico, J., Mattatall, N.: Cross-site Scripting (XSS). https://www.
owasp.org/index.php/Cross-site Scripting (XSS). Accessed: 22/7/2016

25. Xu, W., Zhang, F., Zhu, S.: JStill: mostly static detection of obfuscated malicious
JavaScript code. In: Data and application security and privacy, pp. 117–128. ACM
Press (2013)

