

McCarthy, AJ; Stabler, RA; Taylor, PW (2018) Genome-Wide Identification by Transposon Insertion Sequencing of Escherichia coli K1 Genes Essential for in vitro Growth, Gastrointestinal Colonizing Capacity and Survival in Serum. Journal of bacteriology. ISSN 0021-9193 DOI: https://doi.org/10.1128/JB.00698-17

Downloaded from: http://researchonline.lshtm.ac.uk/4646167/

DOI: 10.1128/JB.00698-17

Usage Guidelines

 $Please \ refer \ to \ usage \ guidelines \ at \ http://researchonline.lshtm.ac.uk/policies.html \ or \ alternatively \ contact \ researchonline@lshtm.ac.uk.$

Available under license: http://creativecommons.org/licenses/by-nc-nd/2.5/

JB Accepted Manuscript Posted Online 16 January 2018 J. Bacteriol. doi:10.1128/JB.00698-17 Copyright © 2018 American Society for Microbiology. All Rights Reserved.

1	Genome-Wide Identification by Transposon Insertion Sequencing of Escherichia coli K1
2	Genes Essential for in vitro Growth, Gastrointestinal Colonizing Capacity and Survival in
3	Serum
4	
5	Alex J. McCarthy ^{1*} , Richard A. Stabler ² , Peter W. Taylor ¹
6	
7	1 School of Pharmacy, University College London, London, WC1N 1AX, UK
8	2 London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
9	
10	
11	*Correspondence to Peter W. Taylor, peter.taylor@ucl.ac.uk
12	
13	Short title: Essential E. coli K1 genes
14	
15	*Current address: Bacterial Infections and Immunity, Universitair Medisch Centrum Utrecht,
16	3584 CX Utrecht, The Netherlands
17	
18	Word count: Abstract 235; text 8008
19	
20	

g

21	ABSTRACT Escherichia coli K1 strains are major causative agents of invasive disease of the
22	new born. The age dependency of infection can be reproduced in the neonatal rat.
23	Colonization of the small intestine following oral administration of K1 bacteria leads rapidly
24	to invasion of the blood circulation; bacteria that avoid capture by the mesenteric lymphatic
25	system and evade antibacterial mechanisms in the blood may disseminate to cause organ-
26	specific infections such as meningitis. Some E. coli K1 surface constituents, in particular the
27	polysialic acid capsule, are known to contribute to invasive potential but a comprehensive
28	picture of the factors that determine the fully virulent phenotype has not so far emerged.
29	We constructed a library and constituent sub-libraries of ~775,000 Tn5 transposon mutants
30	of E. coli K1 strain A192PP and employed transposon-directed insertion site sequencing
31	(TraDIS) to identify genes required for fitness for infection in the two-day-old rat.
32	Transposon insertions were lacking in 357 genes following recovery on selective agar; these
33	genes were considered essential for growth in nutrient replete medium. Colonization of the
34	mid-section of the small intestine was facilitated by 167 E. coli K1 gene products. Restricted
35	bacterial translocation across epithelial barriers precluded TraDIS analysis of gut-to-blood
36	and blood-to-brain transits; 97 genes were required for survival in human serum. The study
37	revealed that a large number of bacterial genes, many not previously associated with
38	systemic <i>E. coli</i> K1 infection, are required to realise full invasive potential.
39	IMPORTANCE Escherichia coli K1 strains cause life-threatening infections in newborn
40	infants. They are acquired from the mother at birth and colonize the small intestine. from
41	where they invade the blood and central nervous system. It is difficult to obtain information
42	from acutely ill patients that shed light on physiological and bacterial factors determining
43	invasive disease. Key aspects of naturally occurring age-dependent human infection can be
-	- , - , - ,

44	reproduced in neonatal rats. Here, we employ transposon-directed insertion site sequencing
45	to identify genes essential for in vitro growth of E. coli K1 and genes that contribute to
46	colonization of susceptible rats. The presence of bottlenecks to invasion of the blood and
47	cerebrospinal compartments precluded insertion sequencing analysis but we identified
48	genes for survival in serum.
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
61	
01	
62	
	3

g

63 INTRODUCTION

64	Early-onset sepsis and associated septicemia and meningitis are major causes of morbidity
65	and mortality in the first weeks of life. In the developed world, encapsulated Escherichia coli
66	and Group B streptococci are responsible for the large majority of these infections (1-3).
67	Over 80% of <i>E. coli</i> blood and cerebrospinal fluid isolates from infected neonates express
68	the α ,2-8-linked polysialic acid (polySia) capsular K1 polysaccharide (4, 5), a polymer
69	facilitating evasion of neonatal immune defenses due to its structural similarity to the
70	polySia modulator of neuronal plasticity in the developing human embryo (6). Infections
71	arise due to colonization of the neonatal gastrointestinal (GI) tract by maternally derived E.
72	coli K1 at or soon after birth, from where the bacteria invade the systemic circulation to gain
73	entry into the central nervous system (CNS) (7, 8).
74	Essential features of the human infection can be reproduced in the neonatal rat,
75	enabling investigation of the pathogenesis of <i>E. coli</i> K1 neonatal invasive infections (9-11). In
76	susceptible two-day-old (P2) rat pups the protective mucus layer in the small intestine is
77	poorly developed but matures to full thickness over the P2-P9 period, coincident with the
78	development of resistance to invasive infection from GI-colonizing E. coli K1 (12). Thus, oral
79	administration of <i>E. coli</i> K1 initiates stable colonization of the small intestine in both P2 and
80	P9 pups but elicits lethal systemic infection only in younger animals (13). In the absence of
81	an effective mucus barrier at P2, the colonizing bacteria make contact with the apical
82	surface of enterocytes in the mid-region of the small intestine before translocation to the
83	submucosa by an incompletely defined transcellular pathway (12). They subsequently gain
84	access to the blood compartment by evading mesenteric lymphatic capture (10, 14). E. coli
85	K1 cells strongly express polySia in blood (15) and the capsule may protect the bacteria from
86	complement attack during this phase of the infection by facilitating binding of complement

9

Journal of Bacteriology

87	regulatory factor H to surface-bound C3b to prevent activation of the alternative pathway
88	(16, 17). Following hematogenous spread, the bacteria enter the CNS via the blood-
89	cerebrospinal barrier at the choroid plexus epithelium to colonize the meninges (15). Some
90	microorganisms that invade the CNS enter across the cerebral microvascular endothelium of
91	the arachnoid membrane (18), although the restricted distribution of <i>E. coli</i> K1 within the
92	CNS suggests this is not a primary route of entry for this pathogen.
93	Only a limited number of pathogenic bacteria have the capacity to invade the CNS
94	from a remote colonizing site and the large majority elaborate a protective capsule that
95	facilitates avoidance of host defenses during transit to the site of infection (19). Although
96	the polySia capsule is clearly necessary for neonatal pathogenesis of <i>E. coli</i> K1 (11), the large
97	majority of bacterial virulence factors that facilitate transit from GI tract to brain are
98	unknown. A number of potential virulence factors associated with neonatal bacterial
99	meningitis have been defined by phylogenetic analysis (20) and there is good evidence that
100	the genotoxin colibactin and the siderophore yersiniabactin contribute to the pathogenesis
101	of <i>E. coli</i> K1 in the experimental rat (21-23); however, a more detailed understanding of
102	virulence mechanisms of E. coli K1 invasive disease will present opportunities for new
103	modes of therapy for these devastating infections.
104	Transposon insertion sequencing (24, 25), a combination of traditional transposon
105	mutagenesis and massively parallel DNA sequencing, is a powerful tool for the genome-wide
106	enhanced genetic screening of large pools of mutants in a single experiment. It has recently
107	been used to determine the full complement of genes required for expression of the K1
108	capsule by an <i>E. coli</i> uropathogenic isolate (26). The technique can be used to detect
109	variations in genetic fitness of individual mutants undergoing selection in colonized and
110	infected hosts. There are a number of variations of this procedure but all rely on the

g

creation of a pool of insertion mutants in which every locus has been disrupted at multiple
sites; determination of the site of transposon insertion by sequencing of transposon
junctions within chromosomal DNA before and after applying selective pressure will identify
mutants attenuated under the selective condition (27). Thus, genes that confer fitness
during Klebsiella pneumoniae (28) and Acinetobacter baumannii (29) lung persistence,
systemic and mucosal survival of Pseudomonas aeruginosa (30), and spleen colonization in
the mouse of uropathogenic <i>E. coli</i> (31) have been identified by this approach. In this study,
we employ transposon-directed insertion site sequencing (TraDIS) (24) to interrogate a
library of ~775,000 Tn5 mutants or constituent sub-libraries of <i>E. coli</i> K1 strain A192PP for
genes essential for growth in vitro and GI colonization, invasion and systemic survival in
susceptible P2 rat pups. In addition, we identified "bottlenecks" (32) to systemic invasion
that restrict population diversity and limit the potential for transposon insertion site analysis
of infection in the GI-colonized neonatal rat.
RESULTS
Generation of a Tn5 mutant library and identification of essential genes. To provide
sufficient saturation density for the identification of <i>E. coli</i> K1 genes essential for growth <i>in</i>
vitro and of those conferring fitness in a range of defined environments, approximately 300
individual pools, each of 1-5 x 10^3 transposon mutants of <i>E. coli</i> A192PP, were constructed
and combined to form a library containing over 7.75 x 10^5 mutants. Linker PCR was

performed on randomly selected mutants to confirm that Tn5 had inserted into random genomic locations (Fig. S1). TraDIS was performed on pooled but uncultured mutants to identify Tn5 insertion sites within the 5.52 Mbp genome of A192PP (33). Sequences of indexed amplicons were determined and 2 x 10⁶ sequence reads containing Tn5 were

134

135	sites, and were distributed along the entire genome (Fig. 1A).
136	As the Tn5 library contained a high transposon insertion density, genes with no or
137	limited Tn5 insertion sites are likely to be essential for growth in nutrient-replete media
138	such as Luria-Bertani (LB) broth. We calculated insertion indices for each gene by
139	normalizing the number of insertions in each gene by gene length. Insertion index values for
140	two technical replicates were highly correlated (Spearman's rho = 0.9589) (Fig. 1B). A
141	density plot of insertion indices produced a bimodal distribution, with a narrow peak
142	representing genes with no or a limited number of Tn5 insertions and a broad peak
143	containing genes with a large number of Tn5 insertions (Fig. 1C); the former comprised
144	genes that confer lethality when mutated and the latter genes that can be mutated without
145	affecting bacterial viability. To identify genes significantly lacking Tn5 insertions and
146	therefore essential for in vitro growth, gamma distributions from the density plot were used
147	to determine \log_2 likelihood ratios. Examples of essential genes containing no or limited Tn5
148	insertions are shown in Fig. 1D. A total of 357 genes were predicted to be essential for the in
149	vitro growth of <i>E. coli</i> K1 A192PP and these are shown in Table S1, together with KEGG
150	(Kyoto Encyclopedia of Genes and Genomes) descriptors for genes involved in metabolic
151	pathways.
152	COG (Clusters of Orthologous Groups) was used to identify the functional category of
153	each gene essential for growth in vitro from the A192PP whole genome sequence (accession
154	number PRJEB9141). Genes involved in ribosomal structure (11% of total number of
155	essential genes) and protein biosynthesis (15%) featured prominently and were significantly
156	enriched in relation to their representation within the whole genome as were genes
157	encoding proteins for DNA replication (3%), cell wall (peptidoglycan, lipopolysaccharide)

mapped onto the E. coli K1 A192PP genome. Reads mapped to 237,860 unique Tn5 insertion

7

158

159	and export as well as ABC transporter genes were also well represented; the remaining
160	essential genes were involved in a wide variety of cellular catabolic and anabolic functions.
161	The list features 254 genes that were found by TraDIS (34) to be essential for growth in Luria
162	broth of an <i>E. coli</i> ST131 multi-drug resistant urinary tract isolate (from a total of 315
163	essential genes). In similar fashion, 253 genes determined as essential for growth of E. coli
164	K12 MG1655 in LB broth were also identified as essential in the current study (Table S1); the
165	K12 study employed a comprehensive set of precisely defined, in-frame single-gene deletion
166	mutants (35), not transposon insertion sequencing.
167	Maintaining Tn5 library diversity. The polySia capsule is a major determinant of virulence in
168	E. coli K1 and is central to the capacity of K1 clones to cause neonatal systemic infection (11,
169	36). PolySia biosynthesis imposes a substantial metabolic burden on producer strains (37).
170	As TraDIS and other transposon insertion sequencing procedures generally employ growth
171	in liquid medium for recovery and expansion of the output pool (38), we investigated the
172	impact of batch culture on the expression of the K1 capsule within the Tn5 library. The
173	complete Tn5 library was inoculated into LB broth, incubated for 8 h at 37 ⁰ C and the
174	proportion of encapsulated and non-encapsulated A192PP bacteria determined by
175	susceptibility to the <i>E. coli</i> K1-specific bacteriophage K1E within the population. Non-
176	encapsulated mutants initially comprised 4.66% of the bacterial population but by the end
177	of the incubation period this had risen to 98.24% (Fig. 3A). Growth rates in LB broth of <i>E. coli</i>
178	A192PP and a non-encapsulated mutant of A192PP randomly selected from the Tn5 library
179	did not differ significantly (Fig. S2A).

biosynthesis (6.25%) and membrane biogenesis (3%) (Fig. 2). Genes for protein secretion

201

180	The cultured Tn5 library was avirulent as determined by administration to P2
181	neonatal rat pups whereas GI colonization with 2-6 x 10 ⁶ CFU <i>E. coli</i> A192PP and the
182	uncultured Tn5 library were lethal. A similar colonizing inoculum of the cultured (8 h; 37 ⁰ C)
183	E. coli A192PP-Tn5 library had no impact on survival and all pups remained healthy over the
184	seven-day observation period (Fig. 3B), even though all animals remained heavily colonized
185	with K1 bacteria throughout the experiment (data not shown). Thus, culture of the library
186	prior to challenge resulted in loss of phenotypic diversity and virulence. The complete Tn5
187	library contained 2.81 x 10^5 unique Tn5 insertions, of which 750 (2.66% of the bacterial
188	population) possessed transposon insertions in genes determining capsule biosynthesis
189	(data not shown). The probability that cultured sub-libraries of more than 5 x 10^3 mutants
190	contained a non-capsulated mutant was calculated to be \geq 0.98 but only 0.55 for sub-
191	libraries of 1×10^3 . Low complexity libraries of 10^3 mutants maintained virulence in P2
192	neonatal rat pups after culture whereas more complex libraries did not (Fig. S3), due to the
193	absence of mutants lacking the capacity to express the polySia capsule within the inoculum.
194	To minimise bias, in all subsequent experiments libraries of sufficient complexity to contain
195	multiple numbers of non-encapsulated mutants were used; for experiments utilizing
196	neonatal rats the period between colonization initiation and tissue harvesting was kept to a
197	minimum and tissue homogenates were cultured directly on to selective agar plates with no
198	intervening liquid culture step.
199	Genes required for GI colonization. E. coli A192PP colonize the small intestine of neonatal
200	rats following oral administration of the bacterial bolus, with 10 ⁷ -10 ⁸ K1 bacteria/g intestinal

the blood compartment *via* the mesenteric lymphatic system occurs predominantly, and in

tissue persisting for at least one week (12, 13). Translocation of the neonatal pathogen to

Downloaded from http://jb.asm.org/ on January 19, 2018 by LONDON SCHOOL OF HYGIENE & TROPICAL MED

9

Journal of Bacteriology

203	all likelihood exclusively, across the epithelium of the mid-section of the small intestine
204	(MSI), even though the density of colonizing bacteria in this region of the GI tract is no
205	greater than that within neighbouring proximal (PSI) or distal (DSI) locations (12).
206	Few attempts have been made to determine the genes or gene products required by
207	E. coli K1 for colonization of the GI tract (39). To prevent loss of diversity of the E. coli K1
208	A192PP-Tn5 library, we minimized the period of colonization before sampling the E. coli K1
209	population of the MSI. The colonizing <i>E. coli</i> K1 population in proximal, middle and distal
210	regions of the small intestine did not expand beyond 4 h after initiation of colonization (Fig.
211	4A); GI tissues were therefore excised at this time point. To identify mutants with decreased
212	capacity to colonize the MSI, P2 rats were fed 1 x 10 ⁹ CFU of an <i>E. coli</i> K1 A192PP-Tn5 library
213	containing 2 x 10^5 mutants, the pups sacrificed after 4 h and <i>E. coli</i> K1 bacteria in the MSI
214	enumerated. The bacterial load of rats colonized with the Tn5 library was comparable to
215	that of rats colonized with the wildtype strain (data not shown). MSI tissues from four rats
216	were pooled, homogenized and cultured on LB agar containing kanamycin to ensure that
217	mutant frequency was not overestimated by inclusion of measurements of DNA from dead
218	bacteria; kan ^R colonies were then pooled, DNA extracted and the fitness of each mutant
219	determined by TraDIS. Input and output pools each comprised 2 x 10^5 CFU and the ratio of
220	input:MSI read counts were expressed as \log_2 fold change. A wide distribution of fitness
221	scores (40) were detected (Fig. 4B). The majority of transposon insertions did not have a
222	strong negative or positive effect on colonisation of the MSI. A total of 387 transposon
223	insertions, within 167 genes, had significantly decreased in normalized read counts between
224	input and output pools (negative log_2 fold change and <i>P</i> < 0.05; Table S2). Of the 387
225	insertion sites, 180 were not detectable in the output pool, demonstrating complete loss in
226	the output pool. Many of these transposon insertion sites occurred within the same gene

227

228	identified as lost during colonization. Transposon-interrupted genes were identified as
229	important for colonization of the MSI and were grouped into seven arbitrary categories: (i)
230	genes encoding surface structures, including pili, (ii) genes encoding secretory components,
231	(iii) genes involved in intermediary metabolism, (iv) stress response genes, (v) cytoplasmic
232	membrane (CM)-located genes, (vi) genes for iron acquisition and (vii) others and
233	hypothetical genes.
234	A high proportion of mutations associated with decreased MSI colonizing capacity
235	were located in genes affecting the biosynthesis of surface structures (Table S2). A few
236	genes were involved in lipopolysaccharide (LPS) biosynthesis (yrbH, yiaH) and OM proteins
237	(<i>ompG</i> , <i>ycbS</i>) but the majority affected the polySia capsule, with genes of the <i>neu</i> operon
238	(41), accounting for 194 of the 387 colonization-attenuated mutants. There is some
239	evidence that capsular polysaccharides may promote adhesion to biological and non-
240	biological surfaces during biofilm formation (37) but there has been little or no
241	consideration of a role for capsules as mediators of GI colonization.
242	A limited number of genes associated with type II and IV secretion were identified as
243	required for colonisation of the MSI; these multiprotein complexes translocate a wide range
244	of proteins and protein complexes across host membranes (42, 43) and are implicated in
245	adherence and intestinal colonization of enterohemorrhagic <i>E. coli</i> in farm animals (44).
246	Genes for assembly of pilus proteins, including some encoded by the tra locus, likely to be
247	located on plasmids, that initiate conjugation, were also linked to colonization; pili are
248	virulence factors that may mediate attachment to and infection of host cells (45).
249	Colonization by both commensals and pathogens is dependent on nutrient scavenging,
250	sensing chemical signals and regulation of gene expression as the bacteria adapt to a new

(Table S2). For example, within the neuC gene, 70 unique transposon insertion sites were

9

Journal of Bacteriology

251	and potentially hostile environment that in the case of <i>E. coli</i> K1 appears to rely on stress
252	response genes such has as yhiM (encodes a protein aiding survival at low pH) and the heat
253	shock protein genes <i>clpB</i> and <i>yrfH</i> , as well as DNA repair genes. A large number encoded
254	enzymes involved in the metabolism of sugars (e.g., gcd, rpiR, glgC), amino acids (dadX,
255	metB, tdcB), fatty acids (yafH, fixA), growth factors (bisC, yigB, thiF) and other secondary
256	metabolites (<i>yicP</i>). Transporters and permeases involved in central intermediary
257	metabolism also featured prominently: these included permeases of the major facilitator
258	superfamily (YjiZ), the hexose phosphate transport protein UhpT, the carnitine transporter
259	CaiT and a range of CM-located sugar transporters. Of note was the impact of mutation of
260	the <i>fucR</i> L-fucose operon activator on colonization; fucose is abundant in the GI tract and
261	the fucose-sensing system in enterohemorrhagic E. coli regulates colonization and controls
262	expression of virulence and metabolic genes (46). Availability of free iron is severely limited
263	in the GI tract and ingestion of iron predisposes to infection (47); the importance of iron
264	acquisition for <i>E. coli</i> K1 during GI colonization is reflected in the requirement for a number
265	of genes related to iron uptake (e.g., <i>feoB, fepA</i>).
266	Clealaning appaint and vigulance of single gaps mutants. To investigate the contribution

GI colonizing capacity and virulence of single gene mutants. To investigate the contribution 266 of the polySia capsule to colonization of the neonatal rat GI tract, we disrupted the neuC 267 gene of *E. coli* A192PP genes using bacteriophage λ Red recombinase to produce a capsule 268 269 free mutant as judged by resistance to E. coli K1-specific phage K1E. We also produced other single gene mutants in genes identified by the TraDIS GI screen: vasL (encoding a type IV 270 271 secretion system protein), yfeC (predicted to form part of a toxin/anti-toxin locus) and two genes with unknown function, yaeQ and A192PP_3010 (the latter is present in genomes of 272 other extra-intestinal E. coli pathogens, including IHE3034, UTI89, RS218, PMV-1 and S88). 273

Growth rates of these mutants, in particular the capsule-negative *neuC* mutant (Fig. S2B),
were indistinguishable from that of the *E. coli* A192PP parent in LB medium. All were
examined for their capacity to colonize the GI tract and cause lethal infection in P2 rat pups
(Fig. 4C and 4D).

278	The <i>E. coli</i> A192PP parent strain or single gene mutants (2-6x10 ⁶) were administered
279	orally to P2 rats; all members of a litter of 12 pups received the same strain. Pups were
280	sacrificed 24 h after initiation of colonization and <i>E. coli</i> K1 bacteria in the small intestine
281	(PSI, MSI and DSI) and colon enumerated. The capacity of all mutants to transit the upper
282	portion of the alimentary canal, pass through the stomach and colonize the small intestine
283	was markedly inferior to the wildtype strain (Fig. 4C). Reductions in colonization of the PSI,
284	MSI and DSI by the mutants, including <i>E. coli</i> A192PP∆ <i>neuC</i> :: <i>kan</i> , were significant, the only
285	exception being colonization of the DSI by A192PP∆ <i>yfeC</i> :: <i>kan</i> , with no significant difference
286	between parent and mutant. Interestingly, no increases in the numbers of viable
287	A192PP Δ neuC::kan, A192PP Δ vasL::kan, A192PP Δ 3010::kan and A192PP Δ yaeQ::kan
288	recovered from the colon were noted to compensate for reductions in colonization of the
289	small intestine. There was a significant increase in the colonic burden of viable
290	A192PP Δ <i>yfeC</i> :: <i>kan</i> bacteria compared to the parent strain. We have established (12) that <i>E</i> .
291	<i>coli</i> A192PP transits to the blood circulation <i>via</i> the mesenteric lymphatic system by
292	exploiting a vesicular pathway through the GI epithelium only at the MSI. As mutant
293	numbers colonizing this region of the small intestine were much reduced compared to the
294	parent strain, we determined the capacity of the single gene mutants to elicit lethal
295	systemic infection following GI colonization by oral administration of 2-6x10 ⁶ bacteria at P2
296	(Fig. 4D). Four of the five mutants (A192PP∆ <i>neuC::kan,</i> A192PP∆ <i>vasL::kan,</i>
297	A192PP∆ <i>3010::kan</i> and A192PP∆ <i>yfeC::kan</i>) displayed significantly reduced lethal potential

g

298	compared to the A192PP parent. Loss of capsule (A192PP $\Delta neuC$::kan) resulted in complete
299	loss of lethality over the seven day observation period. Administration of A192PP $\Delta vasL$::kan
300	elicited a lethal response in 41.6% of pups; 33.3% and 25% survived after receiving,
301	respectively, A192PP Δ <i>3010</i> :: <i>kan</i> and A192PP Δ <i>yfeC</i> :: <i>kan</i> at P2. For A192PP Δ <i>yaeQ</i> :: <i>kan</i> , 75%
302	of pups succumbed to lethal infection but did not reach levels of significance when
303	compared to the 100% lethality engendered by the A192PP parent (P >0.05). Overall, these
304	data indicate that the TraDIS screen efficiently identified genes important for MSI
305	colonization that impact on pathogenic potential.
306	A bottleneck to infection in the neonatal rat prevents identification of genes for
307	translocation across the gastrointestinal epithelium. Our initial intention was to exploit the
308	high degree of susceptibility of the P2 neonatal rat to systemic infection, sepsis and
309	meningitis following oral administration of an effective dose of <i>E. coli</i> A192PP in order to
310	determine all genes required to enable the neonatal pathogen to overcome previously
311	defined (12-15) physical and immunological barriers to invasion of the blood circulation and
312	dissemination to the meninges. However, earlier studies indicate that relatively few E. coli
313	K1 bacteria migrate from colonized sites within the GI tract to the blood (10), constraining
314	the genetic diversity of the translocated bacterial population and eliminating genotypes
315	from the translocated gene pool in a stochastic manner that does not reflect the fitness of
316	individual genes to contribute to genotypes with invasive potential (32). We therefore
317	determined if bottlenecks existed which would compromise the identification of mutants
318	with attenuated capacity to translocate from the GI tract to the blood compartment; if any
319	experimental bottlenecks are narrower than the complexity of the <i>E. coli</i> A192PP Tn5
320	library, many relevant transposon insertion mutants will be lost entirely by chance (38).

321

З	322	that could be used for TraDIS evaluation of populations colonizing the MSI (input pool) and
З	323	reaching the blood (output pool).
3	324	We constructed an <i>E. coli</i> A192PP Δ <i>lacZ</i> mutant by bacteriophage λ Red
З	325	recombineering and confirmed that there was no significant difference in lethal potential
З	826	between <i>E. coli</i> A192PP and the <i>lacZ</i> mutant (Fig. 5A). We then used mixtures of parent and
З	327	mutant to investigate the existence of bottlenecks that restrict translocation to the blood
3	828	compartment. A 1:1 mixture (total 2-4 x10 6 CFU) of <i>E. coli</i> A192PP and A192PP Δ <i>lacZ</i> was
3	829	administered orally to P2 rat pups, the animals sacrificed after 24 h and GI tissue
3	30	homogenates plated for quantification of each strain. The competitive index (CI), the ratio of
3	831	input A192PP: A192PP Δ <i>lacZ</i> to output A192PP: A192PP Δ <i>lacZ</i> , was calculated for excised PSI,
3	332	MSI, DSI, colon and mesenteric lymphatic tissue and for blood. CI values in the PSI, MSI, DSI
3	333	and colon were not significantly different from 1 (one-sample <i>t</i> -test), indicating that the
3	834	composition of the colonizing inoculum was maintained in each rat pup (Fig. 5B). However,
3	835	there was more heterogeneity in CI values of bacterial populations from the blood and in
3	36	five pups only one strain could be recovered from the blood (four animals parent strain
3	337	only, one animal A192PP Δ <i>lacZ</i> only). The highly restrictive bottleneck between GI epithelial
З	338	transport and entry into the blood circulation supports the argument that reduced virulence
З	39	of the complete, cultured library in comparison to less complex sub-libraries (Fig. S3) is at
З	840	least in part due to a reduced likelihood that a fully virulent mutant would randomly escape
З	841	capture by the mesenteric lymphatic system. The presence of significant bottlenecks
3	342	between the GI tract, blood circulation and brain was confirmed by determination of the
3	843	complexity of recovered Tn-5 library populations from these sources (Fig. 5C).

Further, the existence of a restrictive bottleneck would limit the complexity of the library

344	Identification of E. coli K1 A192PP genes required for survival in human serum. Systemic
345	infection in the neonatal rat is likely to be maintained only if E. coli A192PP bacteria survive
346	in the blood circulation. Due to limited exposure to antigens in utero coupled with deficits in
347	adaptive immunity, neonates depend on innate immunity for protection against infection.
348	The complement system provides front line innate defense against Gram-negative bacterial
349	infection and the polySia capsule in turn enables <i>E. coli</i> K1 to avoid successful complement-
350	mediated attack by host immune mechanisms. To obtain insights into <i>E. coli</i> K1
351	pathogenesis during the invasive phase of the infection, and in light of restrictions placed on
352	the neonatal rat model with regard to the use of TraDIS by the gut-to-blood bottleneck, we
353	used the <i>E. coli</i> A192PP Tn5 library to investigate genes essential for A192PP fitness in
354	pooled normal human serum, a reliable and plentiful source of all soluble components of
355	the three complement pathways (48).
356	E. coli A192PP is resistant to the bactericidal action of human serum (Fig. 6A). A
357	portion of the A192PP-Tn5 library containing 2×10^4 mutants (1 x 10^9 CFU) was incubated in
358	either 30% human serum or 30% heat-inactivated serum (final volume 375 μl) at 37 ^{o}C for 3
359	h. Kan ^R bacteria in the input and output pools (each 2 x 10^5) were collected, DNA extracted
360	from each pool and transposon insertion sites sequenced. A wide distribution of fitness
361	scores were detected (Fig. 6B). Mutation of 97 genes (negative log_2 -fold change and P< 0.05)
362	resulted in decreased survival in normal serum, but not in heat-inactivated serum (Fig. 6C $\&$
363	Table S3).
364	A high proportion of genes identified in the TraDIS screen as contributing to
365	resistance encoded cell surface constituents. It is well established that the polySia capsule
366	protects <i>E. coli</i> K1 from complement attack (16, 17) and three mutations in the <i>kps</i> capsule
367	gene cluster compromised serum survival. The central region of the cluster contains the neu

16

g

Journal of Bacteriology

368	genes that direct the biosynthesis, activation and polymerization of the N-acetylneuraminic
369	acid building block of polySia. <i>neuC</i> encodes the UDP <i>N</i> -acetylglucosamine 2-epimerase that
370	catalyzes the formation of <i>N</i> -acetylmannosamine (49) and the <i>O</i> -acetyltranferase <i>neuD</i>
371	acetylates monomeric neuraminic acid at carbon position 7 or 9 (50). KpsM is a component
372	of the multimeric ATP-binding cassette transporter involved in the translocation of the
373	polySia capsule through a transmembrane corridor to the cell surface (41, 51). Disruption of
374	the genes encoding these proteins will prevent polySia expression (41); interruption of rfaH,
375	identified in the TraDIS screen, will also prevent capsule expression but its loss will have a
376	more profound effect on the surface topography of <i>E. coli</i> A192PP, as this transcriptional
377	anti-terminator is required for the expression of operons that direct the synthesis, assembly
378	and export of LPS core components, pili and toxins in addition to the capsule (52, 53).
379	Indeed, survival in serum is dependent on anti-termination control by RfaH (54). Another
380	gene identified that impacts on capsule formation was <i>bipA</i> ; BipA is a tyrosine-
381	phosphorylated GTPase that regulates through the ribosome a variety of cell processes,
382	including some associated with virulence (55, 56). Other genes involved in LPS biosynthesis
383	and pilus formation were also identified: waaW is a UDP-galactose:(galactosyl) LPS alpha1,2-
384	galactosyltransferase involved in the synthesis of the R1 and R4 LPS core oligosaccharides
385	(57) and wzzE encodes a polysaccharide copolymerase that catalyzes the polymerization of
386	LPS O-antigen oligosaccharide repeat units into a mature polymer within the periplasmic
387	space in readiness for export to the cell surface (58). Both mutations will prevent
388	attachment of LPS O-side chains to the core oligosaccharide of LPS. The 16 genes that
389	specify pilus synthesis that were identified in the screen included the majority of genes of
390	the <i>tra</i> locus.

391	The TraDIS screen identified a range of proteins that are embedded in the OM (Fig.
392	6C), none of which had been previously implicated in complement resistance, and which
393	could influence the topography of the bacterial surface. Of the remaining genes with
394	assigned function, the majority were involved with cell metabolism and the stress response;
395	it is well established that metabolic processes are intimately associated with the
396	complement-mediated bacterial killing process (59, 60). To verify the screen, we
397	constructed four single gene mutants of <i>E. coli</i> A192PP by bacteriophage λ Red
398	recombineering. Genes with roles in LPS synthesis (<i>rfaH</i> and <i>waaW</i>), capsule synthesis
399	(neuC) and pilus assembly (traL) were mutated; none showed any reduction in growth rate
400	in LB broth. All displayed significant reductions in complement resistance following
401	incubation in pooled human serum (Fig. 6D). <i>E. coli</i> A192PP∆ <i>rfaH</i> was exquisitely susceptible
402	with no colonies detected after 30 min. The viability of A192PP Δ neuC was also
403	compromised with a threefold log reduction in viability over the 3 h incubation period.
404	Killing of A192PP Δ traL and A192PP Δ waaW was less marked but these mutations
405	significantly reduced viability. Complementation of the mutants with the functional gene
406	introduced on a pUC19 vector completely restored resistance in all cases (Fig. 6D). These
407	genes also contributed to lethality in the P2 neonatal rat (Fig. 6E). The lethal capacity of
408	A192PP Δ <i>neuC</i> , A192PP Δ <i>rfaH</i> and A192PP Δ <i>waaW</i> was completely attenuated in comparison
409	to <i>E. coli</i> A192PP; 42% of pups administered A192PP Δ traL succumbed to systemic infection
410	(all <i>P</i> < 0.01).
411	DISCUSSION

411 DISCUSSION

Systemic infection with meningeal involvement arises spontaneously after GI colonization of 412 neonatal rats with a high proportion of E. coli K1 isolates and the pathway to infection 413

mirrors to a large extent that of natural infections in the human host. In contrast to models
of bacterial infection that create an artificial pathogenesis bypassing some or all of the
barriers to infection by injection of a bacterial bolus directly into the blood circulation, the
neonatal rat model provides an opportunity to investigate in stepwise fashion the progress
of the pathogen as it transits from gut to blood to brain. TraDIS and other transposon
sequencing methods enable simultaneous and rapid determination of the fitness
contribution of every gene for a given condition and therefore have the potential to enable
the identification of genes that are essential for, or significantly contribute to, each step of
the infection process. However, stochastic loss will become evident if each mutant in the
input pool does not have an equal chance to overcome the physical, physiological and
immunological barriers presented by the host (61). This was clearly the case with epithelial
transit of <i>E. coli</i> A192PP, with evidence that on occasion systemic infection arose due to only
one viable bacterial cell entering the blood circulation (Fig. 5B), and complements other
studies showing single or low-cell-number bottlenecks in models of severe infection (62-64).
As translocation from MSI colonizing sites to the blood was not amenable to analysis by
TraDIS we determined genes essential for survival in the presence of complement, a major
component of the innate immune system that protects against extracellular systemic
pathogens (17).
The high density of transposon insertion into random genomic positions along the
entire E. coli A192PP chromosome, with minimal insertional bias (Fig. 1A), enabled the
identification of genes essential for growth in nutrient replete LB medium. Of the 357 E. coli
A192PP genes considered essential, orthologues of 254 (from 315) had been previously
identified using TraDIS in a multi-drug-resistant uropathogenic strain of E. coli ST131 grown

in LB (34) and 253 in an E. coli K12 strain (35), confirming the existence of a core set of

9

Journal of Bacteriology

essential genes in *E. coli*. As anticipated, a high proportion of these genes encoded enzymes
involved in a range of key metabolic functions such as carbohydrate, protein and nucleobase
metabolism, and the remainder were associated with essential functions such as transport,
cell organisation and biogenesis.

442 During characterization of the E. coli A192PP mutant library we examined the impact of culture in liquid medium on the expression of the polySia capsule, which places large 443 demands on cell energy expenditure, as lengthy incubation times before marker selection 444 445 may lower library complexity (38). Unexpectedly, we found that prolonged culture of the library enriched the proportion of non-encapsulated mutants (Fig. 3A). We anticipated that 446 447 loss of capsule would enable the non-encapsulated mutants to grow at a faster rate than 448 capsule-replete mutants and wildtype, and out-compete capsule-bearing library members. However, growth of a non-encapsulated mutant selected at random from the library was 449 virtually identical to, and not significantly different from, the *E. coli* A192PP parent strain 450 (Fig. S2A). There was also no difference in the climax populations of the strains at the end of 451 452 the logarithmic phase of growth. In similar fashion, the growth curve for a neuC single gene 453 mutant was identical to E. coli A192PP (Fig. S2B). neuC is involved in the synthesis of the N-454 acetylneuraminic acid monomeric unit of polySia, and as a consequence is unable to elaborate the capsule. It is clearly impractical to evaluate the growth kinetics of every 455 distinct non-encapsulated mutant in the Tn5 library but it currently appears that differences 456 in growth rate of individual library members cannot explain the highly reproducible 457 458 enrichment that we observed. Indeed, use of transposon insertion libraries is predicated on 459 the assumption that there are no significant differences in the growth rate of individual mutants. At present, the basis of the loss of mutants expressing capsule in TraDIS library 460 461 cultures cannot be readily explained.

462	A sub-library of 2 x 10^5 mutants was used to establish genes involved in GI
463	colonization. To minimize bias due to any outgrowth of non-encapsulated mutants on the GI
464	epithelium we harvested E. coli K1 from the MSI after 4 h, by which time maximal CFU had
465	been achieved; bacteria were plated directly on to solid medium to further avoid outgrowth.
466	Bias due to this restricted timeline is likely to be low as the majority of genes involved in
467	adhesion and complement resistance are expressed constitutively. TraDIS identified the
468	polySia capsule as a major determinant of GI colonization associated with <i>E. coli</i> K1. There is
469	little or no evidence from the literature that capsules of Gram-negative bacteria enhance GI
470	colonization; indeed, it has been reported that they interfere with adhesive interactions by
471	obstructing binding of underlying surface molecules to mucosal surfaces (65, 66). The single
472	gene mutant <i>E. coli</i> A192PP <i>AneuC</i> :: <i>kan</i> displayed a reduced capacity to colonize the MSI
473	(Fig. 4E), although it should be borne in mind that passage through the upper alimentary
474	canal and stomach may impact on the number of mutant bacteria gaining access to the
475	small intestine. In this context it should be noted that capsular exopolysaccharide protects
476	E. coli from the environmental stress of stomach acid (67).
477	Other cell surface structures that are likely to have an impact on adhesion and
478	colonization of the mucosal layer associated with the MSI were identified by TraDIS. Pili are
479	established mediators of adhesion of <i>E. coli</i> to the host epithelium, although a large
480	proportion of the evidence comes from enterotoxigenic and enteropathogenic strains (68,
481	69). LPS and OM protein encoding genes were also implicated, as were genes involved in the
482	stress response, reflecting ongoing adaptation to a new and hostile environment. The
483	involvement of genes encoding metabolic enzymes, including some for anaerobic
484	respiration, equates to increases in bacterial cell numbers in the anaerobic environment of
485	the small intestine and for iron acquisition genes this reflects the low availability of

9

Journal of Bacteriology

486

487	secretion systems were found with decreased frequency in the output pool. Members of
488	these gene categories were also identified by Martindale et al (39) as necessary for GI
489	colonization of E. coli K1 faecal isolate RS228 using signature-tagged mutagenesis; no genes
490	found in this study were identified in the current study, in spite of the close genetic
491	relatedness of the strains employed.
492	The intestinal lumen represents a potentially important portal of entry for pathogens
493	into the host through adhesion, invasion or disruption of the epithelial barrier (71). In
494	neonatal rats, E. coli K1 induces no detectable disruption of barrier integrity but exploits an
495	intracellular pathway to access the submucosa (12). Only small numbers of bacteria breech
496	the mesenteric lymphatic barrier in apparently random fashion (Fig. 5) and this precludes
497	analysis by TraDIS. To accumulate data on genes and gene products facilitating invasion and
498	survival/replication in the blood circulation, we examined essentiality for avoiding
499	complement-mediated bactericidal effects. Although not all E. coli K1 isolates from cases of
500	systemic infection are resistant to complement, resistance amongst K1 and K5 capsular
501	types is more frequently encountered that for other K types (72); E. coli O18:K1 strains (such
502	as A192) are in turn more often resistant than other O:K serotype combinations (73) due to
503	the capacity of the polySia capsule to prevent complement activation. It is assumed, but not
504	established, that the polySia capsule surrounding susceptible strains does not completely
505	mask either OM-located activators of complement or lipid domains on the outer surface of
506	the cell that are targets for OM intercalation of the C5b-9 membrane attack complex, the
507	entity responsible for bacterial killing (59). In addition, long and numerous LPS O-side chains
508	are necessary but not sufficient to enable the target cell to avoid complement killing (74)
509	and they are able to bind C1 inhibitor to arrest classical or lectin pathway activation at the

intestinal luminal iron (47, 70). Genes encoding some components of type II and type IV

9

Journal of Bacteriology

510

511	coli K1 is supported by the decreased frequency of key LPS and capsule genes in the output
512	pool along with a large number of OM-embedded proteins.
513	A small number of OM proteins, such as TraT and Iss, have been implicated as
514	determinants of complement resistance (74) but they have been introduced into low-
515	resistance backgrounds in high copy number; their role in the intrinsic resistance of clinical
516	isolates is unclear and no mechanisms have been invoked to account for increases in
517	resistance. The insertion of large numbers of protein molecules into the OM may
518	fortuitously alter the biophysical properties of the bilayer, reducing the surface area and
519	fluidity of lipid patches that are essential for binding and assembly of the C5b-9 membrane
520	attack complex. The identification by TraDIS of a range of OM proteins as putative
521	complement resistance determinants creates an opportunity to systematically investigate
522	their precise function through generation of single gene mutants and we intend to pursue
523	this line of investigation. We suggest that the architecture of the external surface of the OM,
524	together with other more external macromolecular structures such as polysaccharide
525	capsules, influences the capacity of the pore-generating C5b-9 complex to perturb the
526	integrity of the OM. Thus, the surface of susceptible strains contains a sufficient number of
527	exposed lipid domains to facilitate C5b-9 generation and penetration whereas the spatial
528	and temporal organization of the OM of resistant bacteria is dominated by supramolecular
529	protein assemblages to a degree where insufficient hydrophobic domains are available to
530	act as C5b-9 assembly and binding sites, and this state persists throughout the growth cycle.
531	The data we have generated in this study is compatible with this hypothesis. An array of
532	metabolic genes emerged as essential for maintenance of the complement resistant
533	phenotype (Fig. 6D) and may be indicative of repair processes invoked due to complement

early C1 stage (75). The importance of these structures for the complement resistance of E.

g

Journal of Bacteriology

534

535	membrane integrity and metabolic homeostasis (76, 77) and C5b-9 intercalation into the
536	OM has profound effects on cellular metabolic parameters (60).
537	TraDIS has also been employed by Schembri and coworkers to define the serum
538	resistome of a globally disseminated, multidrug resistant clone of <i>E. coli</i> ST131 (34). They
539	identified, and in most cases validated, 56 genes that contributed to the high level of
540	complement resistance displayed by this pathogen. In similar fashion to our study, genes
541	involved in the synthesis and expression of cell surface components were prominent. A
542	number of genes contributing to LPS biosynthesis such as those of the waa operon, the wzz
543	locus and <i>rfaH</i> , were common to both studies, as was the gene encoding the
544	intermembrane protein AcrA. Genes of the plasmid-encoded tra locus, which we
545	determined to be components of the E. coli A192PP serum resistome, were not present in E.
546	coli ST131 (34) but other OM-located proteins may fulfill a similar role in reducing the fluidic
547	properties of the bilayer. In contrast to the well-established role of the <i>E. coli</i> K1 polysialyl
548	polymer in prevention of complement activation, no capsule genes were identified as
549	components of the serum resistome of <i>E. coli</i> ST131, but different ST131 isolates express
550	different capsule types due to extensive mosaicism at the capsule locus (78) and these
551	uronic acid-containing polymers are unlikely to prevent complement activation (75). Thus,
552	the different strategies employed by the two strains to prevent successful complement
553	attack, together with differences in the bacterial surface composition and topography,
554	probably explain variations in the serum resistomes of these related pathogens.
555	In summary, we identified <i>E. coli</i> K1 genes required for growth in standard
556	laboratory liquid medium and for colonization of the GI tract of P2 neonatal rat pups. Both
557	data sets provide insights into the biology of K1 neuropathogens and could provide the basis

attack. Exposure of resistant E. coli to complement results in minor perturbation of

9

probably brain prevented TraDIS analysis of gene essentiality for crossing gut epithelial and choroid plexus borders but some indication of genes necessary for survival in blood were 561 562 obtained from output pool analyses after incubation of E. coli A192PP in human serum, a potent source of complement. 563 564 MATERIALS AND METHODS Ethics statement. Animal experiments were approved by the Ethical Committee of the UCL 565 566 School of Pharmacy and the United Kingdom Home Office and were conducted in 567 accordance with national legislation. Bacteria and culture conditions. E. coli strain A192PP was obtained by serial passage in P2 568 569 neonatal rats of E. coli A192 (serotype O18:K1) isolated from a patient with septicemia (79), 570 as described earlier (11). Carriage of the polysialyl K1 capsule was determined with phage K1E (80): colonies were streaked onto MH agar, 10 μ l of ~10⁹ PFU/ml phage suspension 571 572 dropped on each streak, the plates incubated overnight at 37°C and the proportion of encapsulated bacteria within cultures quantified by comparing the ratio of phage-573 574 susceptible and phage-resistant colonies. E. coli A192PP single gene mutants (Table 1) were constructed using bacteriophage λ Red recombination (81); the oligonucleotides employed 575 576 for construction of targeted mutants, for confirmation of targeted mutants and for 577 construction of complemented mutants are shown in Tables S3-S5. All were cultured in Luria-Bertani (LB) and on LB agar at 37°C; media were supplemented with either 100 µg/ml 578

for drug discovery programs for identification of selective antibacterial or colonization-

inhibiting agents. In our rodent model, the stochastic nature of invasion of blood and

579 ampicillin or 50 μ g/ml kanamycin as required.

580	Tn5 library construction. The EZ-Tn5 <kan-2> Tnp transposome (Epicentre Biotechnologies)</kan-2>
581	was introduced into E. coli A192PP by electroporation. Transformants were selected by
582	overnight growth on LB plates containing 50 μ g/ml kanamycin. Pools of 1-5 x 10 ³ colonies
583	were collected and frozen at -80°C in PBS containing 20% glycerol. Aliquots of individual
584	pools were combined to create larger populations of mutants of up to 7.75 x 10 ⁵ . Genomic
585	DNA was extracted from 1 ml cultures using the PurElute Bacterial Genomic Kit (Edge
586	Biosystems) following standard protocol.
587	Linker PCR of Tn5 insertion sites. Linker PCR was used to test individual transformant
588	colonies and to confirm individual random-insertion events. DNA (2.5 $\mu\text{g})$ was digested with
589	Alul restriction enzyme (Promega) and purified using MinElute PCR purification kit (QIAgen).
590	A linker, formed by annealing of oligonucleotides 254 ($^{5'}$ CGACTGGACCTGGA $^{3'}$) and 256
591	(^{5'} GATAAGCAGGGATCGGAACCTCCAGGTCCAGTCG ^{3'}), was ligated to purified fragments (50
592	ng) with Quick Ligation kit (NEB). Linker PCR was performed with linker- and transposon-
593	specific oligonucleotides (258 5^{\prime} GATAAGCAGGGATCGGAACC 3^{\prime} and
594	$5^{'}$ GCAATGTAACATCAGAGATTTTGAG $3^{'}$ respectively) using HotStart Taq Mastermix kit
595	(QIAgen) and thermocycling conditions of 95° C for 5 min, 35 cycles of 94° C for 45 s, 56° C for
596	1 min and 72°C for 1 min, and 72°C for 10 min. Resulting amplicons were separated on 1.5%
597	agarose gels at 100 V for 60 min.
598	Illumina sequencing. For sequencing of Tn5 insertion sites, approximately 2 μ g of genomic
599	DNA was degraded to \sim 500 bp fragments by ultrasonication using a Covaris instrument.
600	Fragments were end-repaired and A-tailed using the NEBNext DNA library preparation
601	reagent kit for Illumina sequencing (NEB). Adapters Ind_Ad_T
602	(ACACTCTTTCCCTACACGACGCTCTTCCGATC*T; where * indicates phosphorothionate) and

603	Ind_Ad_B (pGATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTC) were annealed and
604	ligated to DNA fragments. PCR was performed with transposon- and adapter- specific
605	primers Tn-FO
606	5^{\prime} TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCGGGGATCCTCTAGAGTCGACCTGC 3^{\prime} and
607	Adapt-RO
608	^{5'} GTCTCGTGGGGCTCGGAGATGTGTATAAGAGACAGACACTCTTTCCCTACACGACGCTCTTCCGATC ³
609	$\overset{'}{}$. Tn-FO and Adapt-RO contain a forward overhang and reverse overhang for indexing of
610	amplicons by Nextera index primers (Illumina). PCR was performed using HotStart Taq
611	Mastermix kit (QIAgen) and thermocycling conditions of 95°C for 5 min, 22 cycles of 94°C for
612	45 s, 56°C for 1 min and 72°C for 1 min, and 72°C for 10 min. Resulting amplicons were
613	separated on 1.5% agarose gels at 70 V for 90 min, and those between 150 and 700 bp
614	selected and purified using QIAquick Gel Extraction kit (QIAgen). Samples were indexed with
615	oligonucleotides from Nextera XT Index Kit (Illumina) using HotStart ReadyMix (Kapa
616	Biosystems) and thermocycling conditions of 95°C for 3 min, 8 cycles of 95°C for 30 s, 55°C
617	for 30 s and 72°C for 30 s, and 72°C for 5 min applied. Indexed amplicons were purified
618	using the AMPure XP system (Agencourt). The final concentration of samples was confirmed
619	using Qubit dsDNA BR assays (Thermofisher Scientific). Indexed amplicons were sequenced
620	on an Illumina Mi-Seq platform as 151-bp paired-end reads following manufacturer's
621	protocol (Illumina).
622	Bioinformatic and statistical analysis. Raw sequence reads that passed Trimmomatic quality
623	control filters (82) and contained the Tn5 transposon were mapped to the <i>E. coli</i> K1 A192PP
624	reference genome (14) using Bowtie (83), permitting zero mismatches and excluding reads

625 that did not map to a single site. The reference genome assembly contains ORFs located on

g

626

9

627	that are likely to map to plasmids and other mobile genetic elements. An in-house pipeline
628	based on the SAMtools (http://samtools.sourceforge.net) and BCFtools toolkits was utilised
629	on the alignment files to determine insertion sites and coverage. To identify essential and
630	non-essential genes, the insertion index was calculated for each gene by dividing the
631	number of unique insertions in the gene by gene length. Observed insertion index values
632	were fitted to a bimodal distribution with a gamma distribution (or an exponential
633	distribution for genes with no observed insertion sites) corresponding to essential and non-
634	essential genes. A log_2 likelihood, and corresponding <i>P</i> values, of each gene belonging to
635	essential or non-essential sets was calculated using R software. To compare the fitness of
636	individual mutants in input and output populations, reads were normalised and tested for
637	differential base means by calculating log_2 -fold changes and corresponding <i>P</i> values at a
638	false discovery rate of 0.1 using DESeq with R software. Raw read data for all transposon
639	insertions have been deposited in the European Nucleotide Archive (ENA); accession
640	numbers are as follows: ERR2235345 and ERR2235346 for identification of essential genes
641	for replicates 1 and 2; ERR2235567 for input population; ERR2235568 for output population
642	of rat MSI genes; ERR2235569 for output population of serum-exposed <i>E. coli</i> A192PP;
643	ERR2235570 for output population of bacteria exposed to heat-inactivated serum.
644	Colonisation and infection of neonatal rats. Timed-birth Wistar rat pup litters (usually <i>n</i> =
645	12) were purchased from Harlan UK, delivered at P2 and colonized on the same day. Pups
646	were retained throughout each experiment with the natural mothers in a single dedicated
647	cage under optimal conditions (19-21°C, 45-55% humidity, 15-20 changes of air/h, 12 h
648	light/dark cycle) and were returned to the mother immediately after colonization. Mothers

contigs that were mapped to the IHE3034 chromosome and ORFs located on other contigs

g

649	had unrestricted access to standard rat chow and water. The procedure has been described
650	in detail (84). In brief, all members of P2 rat pup litters were fed $20\mu l$ of mid-logarithmic-
651	phase <i>E. coli</i> (2-6 x 10^6 CFU unless otherwise stated) from an Eppendorf micropipette. GI
652	colonization was confirmed by culture of perianal swabs on MacConkey agar and
653	bacteremia detected by MacConkey agar culture of blood taken post mortem. Disease
654	progression was monitored by daily evaluation of symptoms of systemic infection and
655	neonates culled by decapitation and recorded as dead once a threshold had been reached:
656	pups were regularly examined for skin color, agility, agitation after abdominal pressure,
657	presence of a milk line, temperature, weight and behaviour in relation to the mother.
658	Neonates were culled immediately when abnormalities for three of these criteria were
659	evident. After sacrifice, GI tissues were excised aseptically without washing, colon
660	separated and the SI segmented into 2 cm portions representing proximal, middle and distal
661	small intestinal tissue. Tissues were then transferred to ice-cold phosphate-buffered saline,
662	and homogenized. Bacteria were quantified by serial dilution culture on MacConkey agar
663	supplemented with 25 μ g/ml kanamycin as appropriate. The presence of <i>E. coli</i> K1 was
664	confirmed with phage K1E: 20 lactose-fermenting colonies were streaked onto MH agar, 10
665	μ l of ~10 9 PFU/ml phage suspension dropped on each streak and the plates incubated
666	overnight. E. coli K1 bacteria were quantified by multiplying total CFU by the proportion of
667	K1E susceptible colonies. In all cases at least 19 colonies were susceptible to the K1 phage;
668	E. coli K1 was never found in samples from non-colonized pups.
669	Susceptibility to human serum. Serum was obtained from healthy volunteers and used
670	immediately. Bacteria were grown to late logarithmic phase in LB broth in an orbital

671 incubator (minimum 200 orbits/min), 500 μl culture removed, washed twice with gelatin-

9

Journal of Bacteriology

672	Veronal buffered saline plus magnesium and calcium ions (pH 7.35) (GVB $^{++}$), and suspende	ed
673	in an equal volume of GVB ⁺⁺ . Fresh human serum was diluted 1:3 in GVB ⁺⁺ and pre-warme	d
674	to 37°C. Bacterial suspensions and serum solutions were mixed 1:2 to give a final	
675	concentration of ${\sim}10^7$ CFU/ml and incubated at 37°C for 3 h in a total volume of 125 μl	
676	containing 22% serum. Surviving E. coli were quantified by serial dilution and overnight	
677	incubation on LB agar. Pre-warmed, heat-inactivated (56 $^{\circ}$ C, 30 min) serum served as	
678	control.	
679		
680	ACKNOWLEDGMENTS	
681	This work was supported by research grant MR/K018396/1 from the Medical Research	
682	Council. The National Institute for Health Research University College London Hospitals	
683	Biomedical Research Centre provided infrastructural support.	
684		
685		
686		
687		
688		
689		
690		
691		
692		
693		
694		
		3(

695 **REFERENCES**

696	1.	Simonsen KA, Anderson-Berry AL, Delair SF, Davies HD. 2014. Early-onset neonatal
697		sepsis. Clin Microb Rev 27:21-47.
698	2.	Bonacorsi S, Bingen E. 2005. Molecular epidemiology of Escherichia coli causing
699		neonatal meningitis. Int J Med Microbiol 295:373-381.
700	3.	Tsai MH, Lee CW, Chu SM, Lee IT, Lien R, Huang HR, Chiang MC, Fu RH, Hsu JF, Huang

701 YC. 2016. Infectious complications and morbidities after neonatal bloodstream

infections: an observational cohort study. Medicine (Baltimore) 95:e3078.

4. Robbins JB, McCracken GH, Gotschlich EC, Ørskov F, Ørskov I, Hanson LA. 1974.

Escherichia coli K1 capsular polysaccharide associated with neonatal meningitis. N
 Eng J Med 290:1216-1220.

5. Korhonen TK, Valtonen MV, Parkkinen J, Väisänen-Rhen V, Finne J, Ørskov F, Ørskov

707 I, Svenson SB, Mäkelä PH. 1985. Serotypes, hemolysin production, and receptor

708 recognition of *Escherichia coli* strains associated with neonatal sepsis and meningitis.

709 Infect Immun 48:486-491.

7106. Rutishauser U. 2008. Polysialic acid in the plasticity of the developing and adult

711 vertebrate nervous system. Nat Rev Neurosci 9:26-35.

712 7. Sarff LD, McCracken GH, Schiffer MS, Glode MP, Robbins JB, Ørskov I, Ørskov F.

713 1975. Epidemiology of *Escherichia coli* K1 in healthy and diseased newborns. Lancet

714 i:1099-1104.

715 8. Tunkel AR, Scheld WM. 1993. Pathogenesis and pathophysiology of bacterial
716 meningitis. Clin Microbiol Rev 6:118-136.

ല്

717

718	Escherichia coli meningitis: induction of bacteremia and meningitis in infant rats fed
719	E. coli K1. Infect Immun 16:75-80.
720	10. Pluschke G, Mercer A, Kusećek B, Pohl A, Achtman M. 1983. Induction of bacteremia
721	in newborn rats by Escherichia coli K1 is correlated with only certain O
722	(lipopolysaccharide) antigen types. Infect Immun 39:599-608.
723	11. Mushtaq N, Redpath MB, Luzio JP, Taylor PW. 2004. Prevention and cure of systemic
724	Escherichia coli K1 infection by modification of the bacterial phenotype. Antimicrob
725	Agents Chemother 48:1503-1508.
726	12. Birchenough GMH, Dalgakiran F, Witcomb LA, Johansson MEV, McCarthy AJ,
727	Hansson GC, Taylor PW. 2017. Postnatal development of the small intestinal mucosa
728	drives age-dependent regio-selective susceptibility to Escherichia coli K1 infection.
729	Sci Rep 7:83.
730	13. Birchenough GMH, Johansson MEV, Stabler RA, Dalgakiran F, Hansson GC, Wren BW,
731	Luzio JP, Taylor PW. 2013. Altered innate defenses in the neonatal gastrointestinal
732	tract in response to colonization by neuropathogenic Escherichia coli. Infect Immun
733	81:3264-3275.
734	14. Witcomb LA, Collins JW, McCarthy AJ, Frankel G, Taylor PW. 2015. Bioluminescent
735	imaging reveals novel patterns of colonization and invasion in systemic Escherichia
736	coli K1 experimental infection in the neonatal rat. Infect Immun 83:4528-4540.
737	15. Zelmer A, Bowen M, Jokilammi A, Finne J, Luzio JP, Taylor PW. 2008. Differential
738	expression of the polysialyl capsule during blood-to-brain transit of neuropathogenic
739	Escherichia coli K1. Microbiology 154:2522-2532.

9. Glode MP, Sutton A, Moxon ER, Robbins JB. 1977. Pathogenesis of neonatal

740

741	the alternative pathway of complement: regulation via a sialic acid/polyanion
742	binding site on factor H. Proc Natl Acad Sci USA 87:3982-3986.
743	17. Taylor PW. 1993. Non-immunoglobulin activators of the complement system, p 37-
744	68. In Sim RB (ed), Activators and Inhibitors of Complement. Kluwer Academic
745	Publishers, Dordrecht.
746	18. Nassif X, Bourdoulous S, Eugène E, Couraud PE. 2002. How do extracellular
747	pathogens cross the blood-brain barrier? Trends Microbiol 10:227-232.
748	19. Brouwer MC, Tunkel AR, van de Beek D. 2010. Epidemiology, diagnosis, and
749	antimicrobial treatment of acute bacterial meningitis. Clin Microbiol Rev 23:467-492.
750	20. Johnson JR, Oswald E, O'Bryan TT, Kuskowski MA, Spanjaard L. 2002. Phylogenetic
751	distribution of virulence-associated genes among Escherichia coli isolates associated
752	with neonatal bacterial meningitis in the Netherlands. J Infect Dis 185:774-784.
753	21. Payros D, Secher T, Boury M, Brehin C, Ménard S, Salvador-Cartier C, Cuevas-Ramos
754	G, Watrin C, Marcq I, Nougayrède JP, Dubois D, Bedu A, Garnier F, Clermont O,
755	Denamur E, Plaisancié P, Theodorou V, Fioramonti J, Olier M, Oswald E. 2014.
756	Maternally acquired genotoxic Escherichia coli alters offspring's intestinal
757	homeostasis. Gut Microbes 5:313-325.
758	22. McCarthy AJ, Martin P, Cloup E, Stabler RA, Oswald E, Taylor PW. 2015. The
759	genotoxin colibactin is a determinant of virulence in Escherichia coli K1 experimental
760	neonatal systemic infection. Infect Immun 83:3704-3711.
761	23. Garcie C, Tronnet S, Garénaux A, McCarthy AJ, Brachmann AO, Pénary M, Houle S,
762	Nougayrède JP, Piel J, Taylor PW, Dozois CM, Genevaux P, Oswald E, Martin P. 2016.
763	The bacterial stress-responsive Hsp90 chaperone is required for the production of

16. Meri S, Pangburn MK. 1990. Discrimination between activators and nonactivators of

Journal of Bacteriology

764

765	Infect Dis 214:916-924.
766	24. Langridge GC, Phan MD, Turner DJ, Perkins TT, Parts L, Haase J, Charles I, Maskell DJ,
767	Peters SE, Dougan G, Wain J, Parkhill J, Turner AK. 2009. Simultaneous assay of every
768	Salmonella Typhi gene using one million transposon mutants. Genome Res 19:2308-
769	2316.
770	25. van Opijnen T, Bodi KL, Camilli A. 2009. Tn-seq: high-throughput parallel sequencing
771	for fitness and genetic interaction studies in microorganisms. Nat Methods 6:767-
772	772.
773	26. Goh KGK, Phan MD, Forde BM, Chong TM, Yin WF, Chan KG, Ulett GC, Sweet MJ,
774	Beatson SA, Schembri MA. 2017. Genome-wide discovery of genes required for
775	capsule production by uropathogenic <i>Escherichia coli</i> . mBio 8:e01558-17.
776	27. van Opijnen T, Camilli A. 2013. Transposon insertion sequencing: a new tool for
777	systems-level analysis of microorganisms. Nat Rev Microbiol 11:435-442.
778	28. Bachman MA, Breen P, Deornellas V, Mu Q, Zhao L, Wu W, Cavalcoli JD, Mobley HL.
779	2015. Genome-wide identification of <i>Klebsiella pneumoniae</i> fitness genes during lung
780	infection. mBio 6:e00775.
781	29. Wang N, Ozer EA, Mandel MJ, Hauser AR. 2014. Genome-wide identification of
782	Acinetobacter baumannii genes necessary for persistence in the lung. mBio
783	5:e01163-14.
784	30. Skurnik D, Roux D, Aschard H, Cattoir V, Yoder-Himes D, Lory S, Pier GB. 2013. A
785	comprehensive analysis of in vitro and in vivo genetic fitness of Pseudomonas
786	aeruginosa using high-throughput sequencing of transposon libraries. PLoS Pathog
787	9:e1003582.

the genotoxin colibactin and the siderophore yersiniabactin by Escherichia coli. J

9

Journal of Bacteriology

788

789 wide detection of fitness genes in uropathogenic Escherichia coli during systemic 790 infection. PLoS Pathog 9:e1003788. 32. Abel S, Abel zur Wiesch P, Davis BM, Waldor MK. 2015. Analysis of bottlenecks in 791 792 experimental models of infection. PLoS Pathog 11:e1004823. 793 33. McCarthy AJ, Negus D, Martin P, Pechincha C, Oswald E, Stabler RA, Taylor PW. 2016. 794 Pathoadaptive mutations of Escherichia coli K1 in experimental neonatal systemic infection. PLoS One 11:e0166793. 795 796 34. Phan MD, Peters KM, Sarkar S, Lukowski SW, Allsopp LP, Gomes Moriel D, Achard 797 ME, Totsika M, Marshall VM, Upton M, Beatson SA, Schembri MA. 2013. The serum resistome of a globally disseminated multidrug resistant uropathogenic Escherichia 798 coli clone. PLoS Genet 9:e1003834. 799 800 35. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H. 2006. Construction of Escherichia coli K-12 in-frame, single-gene 801 802 knockout mutants: the Keio collection. Mol Syst Biol 2:2006.0008. 803 36. Gonzalez MD, Lichtensteiger CA, Vimr ER. 2001. Adaptation of signature-tagged 804 mutagenesis to Escherichia coli K1 and the infant-rat model of invasive disease. 805 FEMS Microbiol Lett 198:125-128. 37. Roberts IS. 1996. The biochemistry and genetics of capsular polysaccharide 806 production in bacteria. Ann Rev Microbiol 50:285-315. 807 808 38. Chao MC, Abel S, Davis BM, Waldor MK. 2016. The design and analysis of transposon 809 insertion sequencing experiments. Nat Rev Microbiol 14:119-128. 39. Martindale J, Stroud D, Moxon ER, Tang CM. 2000. Genetic analysis of Escherichia 810 811 coli K1 gastrointestinal colonization. Mol Microbiol 37:1293-1305.

31. Subashchandrabose S, Smith SN, Spurbeck RR, Kole MM, Mobley HL. 2013. Genome-

ല്

9

812

813	Genome Biol 11:R106.
814	41. Vimr ER, Steenbergen SM. 2006. Mobile contingency locus controlling Escherichia
815	coli K1 polysialic acid capsule acetylation. Mol Microbiol 60:828-837.
816	42. Fronzes R, Christie PJ, Waksman G. 2009. The structural biology of type IV secretion
817	systems. Nat Rev Microbiol 7:703-714.
818	43. Patrick M, Gray MD, Sandkvist M, Johnson TL. 2010. Type II Secretion in Escherichia
819	coli. EcoSal Plus 4: doi 10.1128/ecosalplus.4.3.4.
820	44. Ho TD, Davis BM, Ritchie JM, Waldor MK. 2008. Type 2 secretion promotes
821	enterohemorrhagic Escherichia coli adherence and intestinal colonization. Infect
822	Immun 76:1858-1865.
823	45. Kline KA, Dodson KW, Caparon MG, Hultgren SJ. 2010. A tale of two pili: assembly
824	and function of pili in bacteria. Trends Microbiol 18:224-232.
825	46. Pacheco AR, Curtis MM, Ritchie JM, Munera D, Waldor MK, Moreira CG, Sperandio V.
826	2012. Fucose sensing regulates bacterial intestinal colonization. Nature 492:113-117.
827	47. Weinberg ED. 2009. Iron availability and infection. Biochim Biophys Acta 1790:600-
828	605.
829	48. Serruto D, Rappuoli R, Scarselli M, Gros P, van Strijp JA. 2010. Molecular mechanisms
830	of complement evasion: learning from staphylococci and meningococci. Nat Rev
831	Microbiol 8:393-399.
832	49. Vann WF, Daines DA, Murkin AS, Tanner ME, Chaffin DO, Rubens CE, Vionnet J, Silver
833	RP. 2004. The NeuC protein of <i>Escherichia coli</i> K1 is a UDP <i>N</i> -acetylglucosamine 2-
834	epimerase. J Bacteriol 186:706-712.

40. Anders S, Huber W. 2010. Differential expression analysis for sequence count data.

g

83	35	50	. Steenbergen SM, Lee YC, Vann WF, Vionnet J, Wright LF, Vimr ER. 2006. Separate
83	36		pathways for O acetylation of polymeric and monomeric sialic acids and
83	37		identification of sialyl O-acetyl esterase in Escherichia coli K1. J Bacteriol 188:6195-
83	38		6206.
83	39	51	. Pigeon RP, Silver RP. 1997. Analysis of the G93E mutant allele of KpsM, the
84	10		membrane component of an ABC transporter involved in polysialic acid translocation
84	11		in Escherichia coli K1. FEMS Microbiol Lett 156:217-22.
84	12	52	. Bailey MJ, Hughes C, Koronakis V. 1997. RfaH and the <i>ops</i> element, components of a
84	13		novel system controlling bacterial transcription elongation. Mol Microbiol 26:845-
84	14		851.
84	15	53	. Hu K, Artsimovitch I. 2017. A screen for <i>rfaH</i> suppressors reveals a key role for a
84	16		connector region of termination factor Rho. mBio 8:e00753-17.
84	17	54	. Garrett SB, Garrison-Schilling KL, Cooke JT, Pettis GS. 2016. Capsular polysaccharide
84	18		production and serum survival of Vibrio vulnificus are dependent on antitermination
84	19		control by RfaH. FEBS Lett 590:4564-4572.
85	50	55	. Rowe S, Hodson N, Griffiths G, Roberts IS. 2000. Regulation of the <i>Escherichia coli</i> K5
85	51		capsule gene cluster: evidence for the roles of H-NS, BipA, and integration host
85	52		factor in regulation of group 2 capsule gene clusters in pathogenic E. coli. J Bacteriol
85	53		182:2741-2745.
85	54	56	. Krishnan K, Flower AM. 2008. Suppression of $\Delta bipA$ phenotypes in <i>Escherichia coli</i> by
85	55		abolishment of pseudouridylation at specific sites on the 23S rRNA. J Bacteriol
85	56		190:7675-7683.

857	57. Heinrichs DE, Yethon JA, Whitfield C. 1998. Molecular basis for structural diversity in
858	the core regions of the lipopolysaccharides of Escherichia coli and Salmonella
859	enterica. Mol Microbiol 30:221-232.
860	58. Kalynych S, Cherney M, Bostina M, Rouiller I, Cygler M. 2015. Quaternary structure
861	of WzzB and WzzE polysaccharide copolymerases. Protein Sci 24:58-69.
862	59. Taylor PW, Kroll HP. 1985. Effect of lethal doses of complement on the functional
863	integrity of target enterobacteria. Curr Top Microbiol Immunol 121:135-158.
864	60. Dankert JR, Esser AF. 1987. Bacterial killing by complement. C9-mediated killing in
865	the absence of C5b-8. Biochem J 244:393-399.
866	61. Eckert SE, Dziva F, Chaudhuri RR, Langridge GC, Turner DJ, Pickard DJ, Maskell DJ,
867	Thomson NR, Stevens MP. 2011. Retrospective application of transposon-directed
868	insertion site sequencing to a library of signature-tagged mini-Tn5Km2 mutants of
869	Escherichia coli O157:H7 screened in cattle. J Bacteriol 193:1771-1776.
870	62. Moxon ER, Murphy PA. 1978. Haemophilus influenzae bacteremia and meningitis
871	resulting from survival of a single organism. Proc Natl Acad Sci USA 75:1534-1536.
872	63. Barnes PD, Bergman MA, Mecsas J, Isberg RR. 2006. Yersinia pseudotuberculosis
873	disseminates directly from a replicating bacterial pool in the intestine. J Exp Med
874	203:1591-1601.
875	64. Kono M, Zafar MA, Zuniga M, Roche AM, Hamaguchi S, Weiser JN. 2016. Single cell
876	bottlenecks in the pathogenesis of Streptococcus pneumoniae. PLoS Pathog
877	12:e1005887.
878	65. Favre-Bonte S, Joly B, Forestier C. 1999. Consequences of reduction of Klebsiella
879	pneumoniae capsule expression on interactions of this bacterium with epithelial
880	cells. Infect Immun 67:554-561.

9

Journal of Bacteriology

881

882	Contrib Microbiol 12:55-66.
883	7. Mao Y, Doyle MP, Chen J. 2001. Insertion mutagenesis of <i>wca</i> reduces acid and heat
884	tolerance of enterohemorrhagic <i>Escherichia coli</i> O157:H7. J Bacteriol 183:3811-3815.
885	8. Mu XQ, Savarino SJ, Bullitt E. 2008. The three-dimensional structure of CFA/I
886	adhesion pili: traveler's diarrhea bacteria hang on by a spring. J Mol Biol 376:614-
887	620.
888	9. Cleary J, Lai LC, Shaw RK, Straatman-Iwanowska A, Donnenberg MS, Frankel G,
889	Knutton S. 2004. Enteropathogenic Escherichia coli (EPEC) adhesion to intestinal
890	epithelial cells: role of bundle-forming pili (BFP), EspA filaments and intimin.
891	Microbiology 150:527-538.
892	D. Cherayil BJ, Ellenbogen S, Shanmugam NN. 2011. Iron and intestinal immunity. Curr
893	Opin Gastroenterol 27:523-528.
894	1. Doran KS, Banerjee A, Disson O, Lecuit M. 2013. Concepts and mechanisms: crossing
895	host barriers. Cold Spring Harb Perspect Med 3:a10090.
896	2. Falkenhagen U, Zingler G, Naumann G. 1991. Serum resistance in different serotypes
897	of Escherichia coli. Zentralbl Bakteriol 275:216-222.
898	3. Pluschke G, Mayden J, Achtman M, Levine RP. 1983. Role of the capsule and the O
899	antigen in resistance of O18:K1 Escherichia coli to complement-mediated killing.
900	Infect Immun 42:907-913.
901	4. Taylor PW. 1995. Resistance of bacteria to complement, p 49-64. <i>In</i> Roth JA, Bolin
902	CA, Brogden KA, Minion FC, Wannemuehler MJ (ed), Virulence Mechanisms of
903	Bacterial Pathogens 2nd ed. ASM Press, Washington DC.

66. Taylor CM, Roberts IS. 2005. Capsular polysaccharides and their role in virulence.

g

Journal of Bacteriology

904	75. Rautemaa R, Meri S. 1999. Complement-resistance mechanisms of bacteria.
905	Microbes Infect 1:785-794.
906	76. Kroll HP, Bhakdi S, Taylor PW. 1983. Membrane changes induced by exposure of
907	Escherichia coli to human serum. Infect Immun 42:1055-1066.
908	77. Taylor PW, Kroll HP. 1984. Interaction of human complement proteins with serum-
909	sensitive and serum-resistant strains of Escherichia coli. Mol Immunol 21:609-620.
910	78. Alqasim A, Scheutz F, Zong Z, McNally A. 2014. Comparative genome analysis
911	identifies few traits unique to the Escherichia coli ST131 H30Rx clade and extensive
912	mosaicism at the capsule locus. BMC Genomics.15:830.
913	79. Achtman M, Mercer A, Kusecek B, Pohl A, Heuzenroeder M, Aaronson W, Sutton A,
914	Silver RP. 1983. Six widespread bacterial clones among Escherichia coli K1 isolates.
915	Infect Immun 39:315-335.
916	80. R J Gross, T Cheasty, B Rowe. 1977. Isolation of bacteriophages specific for the K1
917	polysaccharide antigen of <i>Escherichia coli</i> . J Clin Microbiol 6:548–550.
918	81. Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal genes in
919	Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640-6645.
920	82. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina
921	sequence data. Bioinformatics 30:2114-2120.
922	83. Langmead B, Trapnell C, Pop M, Salzberg SL. 2009. Ultrafast and memory-efficient
923	alignment of short DNA sequences to the human genome. Genome Biol 10:R25.
924	84. Dalgakiran F, Witcomb L, McCarthy A, Birchenough GMH, Taylor PW. 2014. Non-
925	invasive model of neuropathogenic Escherichia coli infection in the neonatal rat. J Vis
926	Exp 92:e52018.
927	

928 LEGENDS

929	FIG 1. A high-density transposon library for identification of genes essential for in vitro
930	growth of <i>E. coli</i> K1 A192PP. (A) Distribution of Tn5 insertions along the <i>E. coli</i> K1 A192PP
931	genome. The number of sequence reads mapped to each single genomic location are
932	plotted to show representation of the entire genome. (B) Insertion index values for two
933	biological replicates are strongly correlated. (C) Density plot showing the frequency of
934	insertion index values for all genes. A biomodal distribution is evident, with the left peak
935	representing "essential" genes in which Tn5 insertion is lethal for growth on selective Luria-
936	Bertani agar; the left peak represents "non-essential" genes into which Tn5 inserted without
937	induction of lethality. Green and red lines indicate gamma distributions used to estimate
938	likelihood ratios and <i>P</i> values. (D) Tn5 insertion site reads plotted to a 9 Kb region of the <i>E</i> .
939	coli A192PP genome. The height of each line on the y axis indicates the number of reads at
940	each Tn5 insertion site. The genes <i>lytB</i> and <i>dapB</i> possess no insertion sites, indicating they
941	are putative essential genes.
942	FIG 2. Essential E. coli A192PP genes in each selected KEGG (Kyoto Encyclopedia of Genes
943	and Genomes) functional orthologs (KO). Gene frequencies (light grey; expressed as % of

and Genomes) functional orthologs (KO). Gene frequencies (light grey; expressed as % of
essential coding DNA sequences [CDSs] for each category) are compared to their frequency
within the whole genome (dark grey). KO (x/y) where y is the number of CDSs in the whole
genome and x is the number of identified essential genes.

FIG 3. Culture of the *E. coli* K1 A192PP-Tn*5* library results in loss of population diversity and enrichment of non-encapsulated mutants. (A) Changes in the proportion of *E. coli* encapsulated and non-capsulated A192PP bacteria during culture of the *E. coli* A192PP-Tn*5* library in LB media at 37° C (200 orbits/min) (n = 3; ±1SD; Student's t, p < 0.01). CFU of Downloaded from http://jb.asm.org/ on January 19, 2018 by LONDON SCHOOL OF HYGIENE & TROPICAL MED

951

952	bacteria susceptible to the K1E bacteriophage. (B) Survival of P2 rats colonized with <i>E</i> .
953	<i>coli</i> K1 A192PP, the uncultured <i>E. coli</i> A192PP-Tn5 library and the cultured (LB broth; 8 h;
954	37° C) <i>E. coli</i> A192PP-Tn5 library. Pups (<i>n</i> = 12 for each group) were colonized with 2-4 x 10^{6}
955	CFU by the oral route. Log-rank [Mantel-Cox] to compare survival of the cultured library
956	with wildtype strain and the uncultured library: ns, non-significant, * $P < 0.05$, ** $P < 0.01$.
957	FIG 4. Identification using a high-density transposon library of genes promoting GI
958	colonization of <i>E. coli</i> A192PP in the neonatal rat. (A) Colonization of PSI, MSI, DSI and colon
959	after oral administration of 2-6x10 ⁶ CFU <i>E. coli</i> K1 A192PP to P2 pups. (B) Log_2 -fold change
960	and average Tn5 insertion site read abundance of each gene after MSI colonization of P2 rat
961	pups ($n = 4$) over a 4 h stabilization period expressed as MA-plot. An inoculum containing 2 x
962	10^4 unique <i>E. coli</i> K1 A192PP-Tn5 mutants was prepared and 1 x 10^9 CFU administered
963	orally. <i>E. coli</i> colonies (2×10^5) were recovered from the inoculum (input pool) and from MSI
964	homogenates (output pool) by culture on to LB agar containing 50 μ g/ml kanamycin. Red
965	data points represent Tn5 insertion sites determined as differentially expressed in the
966	output pool compared to the input pool using a negative binomial test with a false discovery
967	rate of 0.1. (C) Mutations in 167 genes significantly decreased fitness for colonization of the
968	MSI and encoded proteins with a range of functions. (D) Colonization of P2 rat intestine by
969	<i>E. coli</i> K1 A192PP and single gene mutants. Bacteria (2-4 x 10 ⁶) were administered orally to
970	P2 rats (<i>n</i> = 12/group). Pups were sacrificed and the <i>E. coli</i> K1 burden in intestinal sections
971	enumerated 24 h after initiation of colonization. Parent and mutant strain CFU values were
972	compared using Student's t-test: * $P < 0.05$, ** $P < 0.01$. (E) Survival of P2 rats colonized with
973	<i>E. coli</i> K1 A192PP and single gene mutants. Bacteria (2-4 x10 ⁶) were administered orally to

encapsulated and non-encapsulated bacteria were determined from the proportion of

P2 rats (n = 12/group). Log-rank [Mantel-Cox] test: ns, non-significant, * P < 0.05, ** P <
0.01.

976	FIG 5. Bottleneck to systemic infection in the neonatal rat. (A) Survival of rats colonized at
977	P2 by oral administration of <i>E. coli</i> K1 A192PP or A192PP Δ <i>lacZ::kan. n</i> = 12 pups for both
978	groups. Log-rank [Mantel-Cox] test: ns, non-significant, * P < 0.05, ** P < 0.01. (B)
979	Competitive indices of intestinal colonization and gut-to-blood transit of E. coli K1 A192PP
980	and A192PP∆ <i>lacZ::kan</i> . A 1:1 mixture of <i>E. coli</i> K1 A192PP and A192PP∆ <i>lacZ::kan</i> (total 2-4
981	x10 ⁶ CFU) was administered orally to P2 pups. After 24 h, ratios of A192PP and
982	A192PP <i>\acZ::kan</i> were enumerated in segmented GI tissues and in the blood as indicated
983	using selective media. Animals in which only <i>E. coli</i> K1 A192PP or A192PP∆ <i>lacZ::kan</i> were
984	detected in the blood are coloured red and blue respectively, indicating the existence of a
985	bottleneck to infection. (C) Loss of diversity of E. coli K1 A192PP-Tn5 populations recovered
986	from the blood (red) and brain (blue) following translocation from the GI tract (black).
097	FIG 6 Identification using a high-density transposon library of genes contributing to the
507	The or inclusion using a high density transposon instary of genes contributing to the
988	complement resistance of <i>E. coli</i> A192PP. (A) Survival of <i>E. coli</i> A192PP and <i>E. coli</i> K12 strain
989	MG1655 in 22% pooled human serum. The latter was used a serum susceptible control; $n =$
990	3, error bars represent range of values. (B) Log_2 -fold change and average Tn5 insertion site
991	read abundance of each gene after incubation of 1×10^6 CFU containing 2×10^4 unique <i>E</i> .
992	<i>coli</i> K1 A192PP-Tn5 mutants in 22% pooled human serum for 3 h at 37° C. Colonies (2 x 10^{5})
993	were obtained by culture of diluted aliquots on LB agar containing 50 μ g/ml kanamycin. The
994	inoculum served as the input pool. Red data points represent Tn5 insertion sites determined
995	as differentially expressed in the output pool compared to the input pool using a negative
996	binomial test with a false discovery rate of 0.1. (C) Survival of 1 x10 ⁶ <i>E. coli</i> K1 A192PP and

Downloaded from http://jb.asm.org/ on January 19, 2018 by LONDON SCHOOL OF HYGIENE & TROPICAL MED

997	single gene mutants in 22% normal human and heat-inactivated (56 $^\circ$ C; 30 min) serum. Final
998	volume of the reaction mixture was 1.5 ml; $n = 3$, error bars represent range of values.
999	Complementation with the functional gene restored resistance in all cases. (D) Survival of
1000	P2 rats colonized with <i>E. coli</i> K1 A192PP and single gene mutants. Bacteria (2-4 x10 ⁶) were
1001	administered orally to P2 rats (n = 12/group). Log-rank [Mantel-Cox] test: ns, non-significant,
1002	* <i>P</i> < 0.05, ** <i>P</i> < 0.01.
1003	
1000	
1004	
1005	
1006	
1007	
1008	
1009	
1010	
1011	
1012	
1013	
1014	
1015	
1016	
1017	
1018	
1019	
	44

1020 **TABLE 1.** Strains used in this study

Strain	Description
E. coli K1	
A192PP	018:K1:H7; virulent in neonatal rat model of infection
A192PP∆lacZ::kan	<i>lacZ</i> mutant of A192PP; Kan ^r
A192PP∆neuC::kan	<i>neuC</i> mutant of A192PP; Kan ^r
A192PP∆neuC::kan + pUC19.neuC	Complemented A192PP∆ <i>neuC::kan</i> ; Kan ^r Amp ^r
A192PP∆rfaH::kan	<i>rfaH</i> mutant of A192PP; Kan ^r
A192PP Δ rfaH::kan + pUC19 rfaH	Complemented A192PP∆ <i>rfaH</i> :: <i>kan</i> ; Kan ^r Amp ^r
A192PPAtraL::kan	traL mutant of A192PP: Kan ^r
A192PP∆traL::kan + pUC19.traL	Complemented A192PP∆ <i>traL</i> :: <i>kan</i> ; Kan ^r Amp ^r
A192PP∆vasL::kan	<i>vasL</i> mutant of A192PP; Kan ^r
A192PP∆waaW::kan	waaW mutant of A192PP; Kan ^r
A192PP∆waaW::kan + pUC19.waaW	Complemented A192PP∆ <i>waaW::kan</i> ; Kan ^r Amp ^r
A192PP∆yaeQ:kan	<i>yaeQ</i> mutant of A192PP; Kan ^r
A192PP∆0678:: <i>kan</i>	0678 mutant of A192PP; Kan ^r
A192PP∆3010:: <i>kan</i>	3010 mutant of A192PP; Kan ^r
E coli K12	
MG1655	F-lambda- <i>ilvG-rfb</i> -50 <i>rph</i> -1
MG1655∆lacZ::kan	<i>lacZ</i> mutant of MG1655; Kan ^r

1021

Downloaded from http://jb.asm.org/ on January 19, 2018 by LONDON SCHOOL OF HYGIENE & TROPICAL MED

20 10 0

lytB yaaF ?

dapB

carA

Downloaded from http://jb.asm.org/ on January 19, 2018 by LONDON SCHOOL OF HYGIENE & TROPICAL MED

0.25 _

0.05 -

carB

Α

6

7

g

g

Journal of Bacteriology

