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Abstract 

Hepatocellular carcinoma (HCC) has poor prognosis due to the advanced disease 

stages by the time it is diagnosed, high recurrence rates and metastasis. In the 

present study, we investigated the effects of metformin (a safe anti-diabetic drug) 

and curcumin (a turmeric polyphenol extracted from rhizome of Curcuma longa 

Linn.) on proliferation, apoptosis, invasion, metastasis, and angiogenesis of HCC in 

vitro and in vivo. It was found that co-treatment of metformin and curcumin could not 

only induce tumor cells into apoptosis through activating the mitochondria pathways, 

but also suppress the invasion, metastasis of HCC cells and angiogenesis of 

HUVECs. These effects were associated with downregulation of the expression of 

MMP2/9, VEGF, and VEGFR-2, up-regulation of PTEN, P53 and suppression of 

PI3K/Akt/mTOR/NF-κB and EGFR/STAT3 signaling. Co-administration of metformin 

and curcumin significantly inhibited HCC tumor growth than administration with 

metformin or curcumin alone in a xenograft mouse model. Thus, metformin and 

curcumin in combination showed a better anti-tumor effects in hepatoma cells than 

either metformin or curcumin presence alone and might represent an effective 

therapeutic strategy for HCC treatment. 

 

1 INTRODUCTION 

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality, 

ranking the fifth most prevalent cancer in the world.[1] Despite significant advances 

in diagnosis and treatment of HCC, the prognosis of HCC remains poor, largely due 

to the advanced stages by the time it is diagnosed, high recurrence rates and 

metastasis.[2] The side effects of chemotherapy agents and drug resistance also 

remain major concerns of the treatment options.[3] Therefore, new chemotherapeutic 

strategies focus on the potential agents with fewer side effects to inhibit growth of 

existing tumors and prevent cancer cells invasion, metastasis, and angiogenesis.[4] 

 

Conventional chemotherapy remains ineffective in curing HCC due to its high 

hepatotoxicity. Natural dietary phytochemicals could be potential options of cancer 

therapy for reducing adverse side effects and improving the anti-cancer 

effectiveness.[5] Curcumin is a turmeric polyphenol extracted from rhizome of 
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Curcuma longa Linn. Curcumin has pleiotropic pharmacological effects, good 

tolerance and low toxicity[6] and has been reported to have anti-tumor effects in 

numerous cancers, including HCC.[7] 

 

Metformin is a well-tolerated anti-diabetic drug and has been reported to reduce the 

risk of various cancers including HCC.[8] Recently, clinical evaluation of metformin 

for its chemo-preventive and antineoplastic effects has bypassed the traditional 

phase I assessment and directly moved to phase II/III trials in several cancers due to 

its excellent safety record in diabetic patients.[9] Incombination with sorafenib, 

metformin has been shown to more effectively inhibit cell growth, migration, and 

invasion of HCC cells than monotherapy with sorefenib alone.[10] 

 

In the present study, we investigated the effects of metformin in combination with 

curcumin on the proliferation, apoptosis, invasion, metastasis, and angiogenesis of 

HCC. 

 

2 MATERIALS AND METHODS 

2.1 Cell culture and drugs 

Metformin and curcumin were purchased from Sigma-Aldrich (St. Louis, MO). They 

were dissolved in PBS and dimethylsulfoxide (DMSO) with the final concentration of 

500 and 50 mM, respectively. The human HCC cell lines HepG2, PLC/PRF/5, and 

human umbilical vein endothelial cells (HUVECs) were purchased from ATCC 

(Rockville, MD). The human immortalized normal liver cell line L-02 was purchased 

from the China Cell Bank (Shanghai, China). The human normal gastric epithelial 

cell line GES-1 was purchased from Boshun Joint Experiment Center (Shanghai, 

China). HepG2, PLC/PRF/5, L-02, and HUVEC cells were cultured in Dulbecco's 

modified Eagle medium (DMEM, Gibco, Grand Island, NY) and GES-1 cells in RPMI-

1640 medium (Gibco) supplemented with 10% (v/v) heat-inactivated fetal bovine 

serum (FBS, Gibco), 100 units/mL penicillin and 100 µg/mL streptomycin (Solarbio 

technology co., LTD. China) in a humidified 5% CO2 incubator at 37°C. 

 

2.2 Cell proliferation assay 

Cell proliferation was measured by 3-(4, 5-Dimethylthiazol-2-yl)-2, 5- 

diphenyltetrazolium bromide (MTT, Solarbio) assay and cell counting kit-8 (CCK-8, 

DOJINDO, Kyushu, Japan) assay. For MTT assay, after treatment of the cells with or 

without metformin and/or curcumin, 10% of MTT solution was added and the 

absorbance was measured at 570 nm using Thermo Multiskan GO microplate reader 

(Thermo-1510, CA). CCK-8 assay was performed according to the manufacturer's 

instructions. Briefly, after treatment of the cells with drugs, 10% of CCK-8 solution 

was added and the absorbance was measured at 450 nm. The absorbance of 

untreated cells was considered as 100% cell viability. 
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2.3 Colony formation assay 

After treatment of the cells with metformin and/or curcumin, cells were cultured in 

drug-free medium for approximate 14 days. The cells were fixed with cold methanol-

glacial acetic acid and stained with crystal violet. Total number of colonies that 

contained more than 50 cells was counted. 

 

2.4 Hoechst 33342 staining assay 

After treatment of the cells with metformin and/or curcumin and fixed with cold 

methanol-glacial acetic acid, the cells were stained with Hoechst 33342 (10 µg/mL) 

for 20 min and visualized with fluorescence microscope (excitation, 340 nm; 

emission, 460 nm NIKON, Ti-U, Tokyo, Japan). 

 

2.5 Annexin V-FITC/PI staining assay 

After treatment of the cells with metformin and/or curcumin, cells apoptosis was 

measured by quantitatively determining cell surface phosphatidylserine in apoptotic 

cells using Annexin V-FITC/PI apoptosis detection kit (4A Biotech, China) and 

analyzed by a FACScan flow cytometry (Becton Dickinson, Franklin Lakes, NJ), with 

emission filters of 525 and 575 nm, respectively. 

 

2.6 Cell cycle analysis 

After treatment of the cells with metformin and curcumin, cells were harvested and 

introduced with propidium iodide (PI) for 15 min before analyzed using FACScan 

flowcytometry. Cell cycle distribution was analyzed using the Modifit's program 

(Becton Dickinson). 

 

2.7 Mitochondrial membrane potential (ΔΨm) assay 

Mitochondrial membrane potential was determined by measuring the potential-

dependent accumulation of 5,5′,6,6′-tetrachloro-1,1′3,3′-tetraethyl-

benzimidazolylcarbocyanine iodide (JC-1) using the mitochondrial membrane sensor 

kit (Beyotime, China). After treatment of the cells with metformin and/or curcumin, 

cells were washed and incubated with JC-1 staining solution according to the 

manufacturer's instruction before they were harvested and analyzed by flow 

cytometry. 

 

2.8 Western blot analysis 
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Proteins were separated by sodium dodecyl sulphate polyacrylamide gel 

electrophoresis (SDS-PAGE) and transferred onto a polyvinylidene fluoride (PVDF) 

membrane (Millipore, Billerica, MD). The membranes were washed, blocked with 

TBST buffer (20 mM Tris-buffered saline and 0.1% Tween-20) containing 5% (w/v) 

non-fat dry milk overnight before incubated with antibodies against human PI3K 

(#4255), Akt (#9272), p-Akt (#2965), mTOR (#2972), p-mTOR (#2971), p53 (#9282), 

PTEN (#9559), Bcl-2 (#2872), Bax (#2772), cleaved-PARP (#9541), MMP2 (#4022), 

MMP9 (#3852), VEGFR-2 (#2479), EGFR (#2232), p-EGFR (#2235), p-STAT3 

(#9145), NF-κB (#4764) (all from Cell Signaling Technology, CST, Boston, MA), 

VEGF (22341-1-AP, Proteintech, Wuhan, China) and anti-β-actin (ZF-0313, ZS Bio. 

Beijing, China). All primary antibodies were diluted by 1:1000 in primary antibody 

diluents. The secondary antibodies used were either goat anti-mouse or goat anti-

rabbit IgG (PIERCE, 1:10000 in TBST), depending on the primary antibody used. 

Antibody bindings were detected by enhanced chemiluminescence reagent 

(Millipore) and quantified by densitometry using a ChemiDoc XRS + molecular 

imager (Bio-Rad, Hercules, CA). 

 

2.9 Wound scratch assay 

The cell monolayer was scratched to a cell-free approximate 1 mm wound-like gap in 

6 well plates using a sterile pipette. After treatment with metformin and curcumin, cell 

images in the scratch area were captured under the inverted microscope at 100× 

magnification (NIKON ECLTPSE, Tokyo, Japan). Cell migration was quantified by 

measuring the width of the cell-free zone (distance between the edges of the injured 

monolayer). 

 

2.10 Transwell cell migration and matrigel invasion assays 

Cell migration and invasion were measured using transwell chambers. For the 

migration assay, cells suspended in serum-free medium were delivered into the 

upper compartment of transwell chamber and treated with metformin and/or 

curcumin. Complete culture medium containing 10% FBS was added to the lower 

compartment as a chemoattractant. After treatment, the cells remained on the upper 

surface of the membrane were removed with cotton swabs. Migrated cells to the 

bottom side of the membrane were fixed by cold methanol-glacial acetic acid and 

stained with crystal violet, and counted. For the invasion assay, the transwell 

membrane was first coated with matrigel (BD Biosciences, Bedford, MA), and the 

rest of procedures were the same as that described above in the migration assay. 

 

2.11 Gelatin zymography protease assay 

MMP2 and MMP9 activity in conditional medium was measured by gelatin 

zymography protease assays as previously described.[11] Briefly, after cell 

treatment, the supernatant in the culture wells was collected and applied to 

electrophoresis on SDS-polyacrylamide gel electrophoresis (PAGE) copolymerized 
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with gelatin as a substrate. Following electrophoresis, the gels were rinsed and 

incubated in activation buffer (50 mM Tris, 10 mM CaCl2, 1 µM ZnCl2, 200 mM NaCl, 

pH 7.4) for 16 h before stained with 0.1% Coomassie brilliant blue R-250 and 

destained in acetic acid. Non-staining regions of the gel corresponding to MMP2 and 

MMP9 were quantified by densitometry using ChemiDoc XRS + image analyzer (Bio-

Rad). 

 

2.12 In vitro angiogenesis assay 

The tube formation assay was performed using HUVECs cultured on matrigel. 

HUVECs (3 × 104 cells/well) were seeded onto 3-D matrigel with or without 

metformin and/or curcumin for 6 h. The morphogenesis of capillary-like tubes was 

visualized in a bright field with a microscope (NIKON ECLTPSE). The tube formation 

was defined by counting the branch points of the formed tubes and average numbers 

of branch points for each group were calculated. 

 

2.13 In vivo antitumor activity assay 

Female Balb/c-nu mice (Animal Centre of China Academy of Medical Sciences, 

Beijing, China) were housed under pathogen-free conditions. All experimental 

procedures conformed to the animal experiment guidelines of the Animal Care and 

Welfare Committee of Shandong University. HepG2 xenografts were established by 

inoculating 2.0 × 106 HepG2 cells s.c in nude mice. The experiments began when 

the xenografts volume reached approximately 1.0 cm3 in nude mice. The tumor were 

extracted and cut into 1 mm3 fragments (about 20 mg/fragment) under a sterile 

condition. One fragment was transplanted s.c. into the right flank by trocar in each 

nude mouse.[12] When the tumor volume reached approximate 100 mm3, the mice 

were randomly divided into four groups (n = 7) and were daily administrated by i.p. 

injection with vehicle [PEG400: ethanol: dextrose 5% in water (D5W) = 4:1:5, to 

dissolve curcumin], oral administration of metformin (150 mg/kg), i.p. injection with 

curcumin (60 mg/kg), oral administration of metformin (150 mg/kg) plus i.p. injection 

with curcumin (60 mg/kg) for 21 consecutive days. The tumor size and animal body 

weights were measured every 3 days. Tumor volume (V) is calculated as 

V = W2 × L/2, where W is width (short axis) and L is length (long axis). At the end of 

the experiment, the mice were sacrificed and the tumors were removed and 

weighed. Effect of metformin and curcumin on tumor growth was expressed as 

percentage to that in the vehicle group. 

 

2.14 Statistical analysis 

All experiments were performed at least three times. Data are expressed as 

mean ± SD and analyzed by one-way analysis of variance (ANOVA). Statistical 

analysis was performed using the SPSS/Win 13.0 software (SPSS, Inc., Chicago, 

IL). P value <0.05 is considered statistically significant. 



6 
 

 

3 RESULTS 

3.1 Metformin and curcumin together induces stronger inhibition of HCC cells growth 

in vitro and in vivo 

The presence of metformin and curcumin both showed to cause dose-dependent 

inhibition of HepG2 and PLC/PRF/5 cells proliferation. The IC50 values of metformin 

were 53.72 ± 3.40, 23.46 ± 3.45, 8.52 ± 0.93 (mM) and that of curcumin were 

22.15 ± 0.51, 15.94 ± 2.06, 9.15 ± 0.20 (µM) for 24, 48, and 72 h, respectively on 

HepG2 cells (Figures 1A and 1B, Table 1). The IC50 values of metformin were 

63.62 ± 2.99, 24.68 ± 0.55, 9.97 ± 0.13 (mM) and that of curcumin were 26.87 ± 2.46, 

16.33 ± 0.61, 9.31 ± 0.95 (µM) for 24, 48, and 72 h, respectively on PLC/PRF/5 cells 

(Figures 2A and 2B, Table 1). 

The synergistic effects of metformin and curcumin on HepG2 and PLC/PRF/5 cell 

growth were confirmed by CCK-8 assay (Figures 1E and 2D) and colony-formation 

assay (Figures 1F, 1G and 2E, 2F). The combined treatment of metformin and 

curcumin showed to induce a weak cytotoxicity (<20%) on human normal 

hepatocytes (L-02), human umbilical vein endothelial cells (HUVECs), and human 

normal gastric epithelial cells (GES-1) (Figure 1C). 

Administration of metformin and curcumin in a mice xenograft model showed to 

induce significant inhibition of HepG2 tumor growth in mice (Figure 3). In comparison 

with the vehicle control group, mice in the combined treatment group showed 

58.33% reduction of tumor growth, while oral administration of metformin at 

150 mg/kg and i.p. injection with curcumin at 60 mg/kg resulted in 24.10 and 31.85% 

tumor reduction, respectively (Table 3). The tumor suppression effect of metformin in 

combination with curcumin was also manifested by a slower increase of the tumor 

volume. No significant differences in the animal weight of body, or other adverse 

effects were observed among the treated and control groups. 

3.2 Metformin and cucumin in combination enhances cell apoptosis in HCC cells 

through regulation of the mitochondrial-associated apoptosis pathway 

Decreased apoptotic activity is one of the most important features of HCC.[15] To 

investigate effects of a combined treatment of metformin and curcumin on HepG2 or 

PLC/PRF/5 cell apoptosis, we first examined the cell morphology in cell response to 

the treatment. Treatment of HepG2 and PLC/PRF/5 cells with metformin and 

curcumin followed by nucleus staining with Hoechst 33342 showed increased 

number of cells with reduced nuclear size, chromatin condensation, nuclear 

fragmentation, and appearance of apoptotic bodies, characteristics of apoptosis in 

comparison to the cells treated with metformin or curcumin alone (Figures 4A and 

5A). 

Annexin V cell surface staining also showed significant increase of Annexin V 

positive cells following treatment with the combination therapy in comparison to 

monotherapy. As illustrated in Figures 4B and 5B, the presence of 10 mM metformin 

significantly enhanced the apoptotic effects of curcumin at 5 or 10 µM from 
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10.81 ± 0.55% to 25.04 ± 1.32% or from 13.84 ± 0.48% to 36.23 ± 2.43% in HepG2 

cells, and from 6.90 ± 0.62% to 17.00 ± 1.30% or from 11.15 ± 0.36% to 

26.02 ± 2.91% in PLC/PRF/5 cells, respectively. These results indicated that the 

presence of metformin increased apoptosis of HepG2 and PLC/PRF/5 cells induced 

by curcumin. 

As mitochondrion is an important organelle in apoptosis initiation in response to 

stress, we assessed the mitochondrial function by measuring mitochondrial 

transmembrane potential (ΔΨm) using JC-1 staining in cells response to metformin 

and curcumin. Metformin presence further enhanced the reduction in mitochondrial 

membrane potential by curcumin in HepG2 cells (Figure 4D). Combination treatment 

of metformin with curcumin also increased the expression of Bax (pro-apoptotic 

member), with concurrent suppression of Bcl-2 (anti-apoptotic member) and up-

regulation of cleaved PARP. The Bax to Bcl-2 ratio was seen to be increased by 

combination treatment compared with curcumin alone in both HepG2 cells and 

xenografts (Figures 4C and 4E). These results indicate that the combined treatment 

of metformin and curcumin evoked mitochondrial dysfunction-related apoptosis in 

HepG2 cells. It is noted that the combined treatment of metformin and curcumin also 

induced G2/M phase arrest concomitant with a decrease in G0/G1 and S phase in 

HepG2 and PLC/PRF/5 cells (Figures 4F and 5C). 

 

3.3 Combined treatment with metformin and curcumin inhibited migration and 

invasion of HCC cells by reducing MMP2 and MMP9 expression and activity 

In comparison to untreated cells, the presence of metformin at 2.5 and 5 mM and 

curcumin at 2.5 and 5 µM had no significant effect on HepG2 cell proliferation (Figure 

6E). Therefore, these concentrations of metformin and curcumin were used in 

subsequent experiments as the maximum non-cytotoxic concentrations of the drugs. 

In the wound healing assay, co-presence of metformin and curcumin in the culture 

resulted in slower closure of the gaps than the presence of metformin or curcumin 

alone. The inhibition of migration by curcumin (2.5, 5 µM) was further increased by 

the presence of metformin (5 mM) from 12.69 ± 0.34% to 39.44 ± 2.10%, from 

23.92 ± 4.56% to 52.12 ± 2.08% at 12 h, from 15.03 ± 0.76% to 49.25 ± 2.94%, from 

28.30 ± 3.04% to 63.27 ± 3.34% at 24 h, respectively (Figure 6A). In the cell motility 

assay, HepG2 and PLC/PRF/5 cells in the vehicle control group displayed high 

invasive and migrated ability. The activity of invasion and migration of HepG2 and 

PLC/PRF/5 cells was markedly suppressed by exposure to metformin and curcumin. 

Metformin (5 mM) enhanced the inhibition rate of migration induced by curcumin from 

23.94 ± 0.72% to 67.92 ± 1.54% (2.5 µM), from 57.80 ± 2.20% to 79.83 ± 2.58% 

(5 µM) (Figure 6C), and potentiated the inhibition rate of invasion from 34.79 ± 4.46% 

to 77.09 ± 5.76% (2.5 µM), from 56.57 ± 3.92% to 88.13 ± 4.25% (5 µM) (Figure 6D), 

respectively on HepG2 cells. The same results were confirmed by PLC/PRF/5 cells. 

The presence of 5 mM metformin significantly enhanced the inhibitory effect of 

migration of curcumin at 2.5 or 5 µM from 11.20 ± 2.41% to 47.70 ± 1.69%, or from 

38.21 ± 2.15% to 65.51 ± 5.49% (Figure 5D), and potentiated the inhibitory effect of 

invasion of curcumin at 2.5 or 5 µM from 19.03 ± 3.45% to 51.97 ± 1.64%, or from 
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41.44 ± 4.24% to 73.91 ± 1.55% (Figure 5E), respectively on PLC/PRF/5 cells. These 

results further confirm that a combined treatment with metformin and curcumin 

inhibits migration and invasion of HepG2 or PLC/PRF/5 cells. 

To test whether MMP2 and MMP9 (well-known pro-proliferation/metastasis 

proteins)[16] were involved in metformin and curcumin-mediated cell migration and 

invasion, gelatin zymography was performed. As shown in Figure 6G, the activity of 

MMP9 and MMP2 was suppressed by co-presence of metformin with curcumin. Co-

presence of metformin and curcumin also showed to inhibit the expression of active 

MMP9 and MMP2 in HepG2 cells (Figure 6H) and xenografts (Figure 6F). These 

indicate that one of the possible mechanisms responsible for the inhibitory effects of 

metformin and curcumin on the migration and invasion of HepG2 cells is related to 

down-regulation of MMP9 and MMP2 expression and activity. 

3.4 Combined treatment with metformin and curcumin suppresses migration and 

capillary tube formation of HUVECs 

At non-toxic concentrations, metformin (10 mM) and curcumin (5, 10 µM) caused 

significant reduction in the number and the continuity of HUVEC capillary-like 

structures in a dose-dependent manner in vitro (Figures 1C and 6I). Moreover, co-

presence of metformin and curcumin significantly inhibited the HUVEC cell migration 

in comparison to the presence of curcumin alone (P < 0.01) (Figure 6B). These data 

indicated that curcumin in combination with metformin has stronger effect on 

inhibition of endothelial cell migration and tubule formation in angiogenesis. 

 

3.5 Combined treatment of metformin and curcumin downregulates 

PTEN/PI3K/Akt/mTOR/NF-κB and EGFR/VEGF/VEGFR-2/STAT3 signaling in 

HepG2 cells 

Activation of the PI3K/Akt/mTOR signaling pathway is known to be involved in 

regulating tumor cell invasion and metastasis in response to various growth factors 

in HCC.[17] As shown in Figure 7A–C, metformin could significantly decrease the 

expression of PI3K and phospho-Akt. Curcumin could dramatically inhibit the 

expression of phospho-mTOR and increase the expression of PTEN. Interestingly, a 

synergistic down-regulation of PI3K, phospho-Akt, and phospho-mTOR was 

observed with combined treatment, especially at the combination of 10 mM 

metformin with 10 µM curcumin. Co-presence of metformin and curcumin 

significantly increased the expression of PTEN and p53 compared to the untreated 

cells. NF-κB is a common transcription factor that is related to many signal 

transduction pathways in cell proliferation, metastasis, and angiogenesis.[18] 

Treatment of HepG2 cells with metformin reduced the presence of NF-κB in the 

nucleus and combination treatment of metformin and curcumin together induced 

stronger inhibition effect (Figure 7D). These results indicated that metformin could 

inhibit PI3K, phospho-Akt, and NF-κB and curcumin could suppress the phospho-

mTOR and activate the PTEN. Metformin in combination with curcumin 

synergistically inhibits PTEN/PI3K/Akt/mTOR signaling and also suppresses NF-κB 

nuclear translocation, which confirmed in HepG2 xenografts (Figures 7G and 7H). 
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To further elucidate the underlying molecular mechanism of metformin and curcumin 

on angiogenesis, the expressions of EGFR/VEGF/VEGFR-2/STAT3 were also 

determined upon cell treatment. Co-treatment of HepG2 cells with metformin and 

curcumin led to dose-dependent decreases of VEGF, VEGFR-2, EGFR, and p-

EGFR protein levels (Figures 7E and 7F). Curcumin treatment significantly inhibited 

the expression of phospho-STAT3 and co-presence of metformin and curcumin 

induced a synergic inhibition on phospho-STAT3 activation (Figure 7F). Furthermore, 

the expression of VEGF in HepG2 xenografts was dramatically inhibited by this 

combination treatment (Figure 7I). These indicates that metformin in combination 

with curcumin inhibits VEGF expression, an effect that is possibly associated with 

inhibition of STAT3. 

 

4 DISCUSSION 

Over the past years, preclinical and clinical evidence has accumulated that 

pharmacological inhibition of single targets will induce clinically relevant responses 

only in a minority of cancer patients and most patients eventually relapsed after 

treatment.[19] This might be due to intrinsic resistance of cancer cells,[20] as well as 

feedback mechanisms and redundancy among signaling pathways, alleviating the 

drug effect,[19] which crucially contributed to the high mortality of liver cancer.[21] In 

order to improve survival rate, the therapeutic strategies based on the combination of 

two types of drugs by regulating one or more mechanisms of carcinogenesis are 

attractive.[22] This study demonstrated that co-presence of metformin and curcumin 

induced stronger activation of HCC cell apoptosis and stronger inhibition of tumor 

cell growth and metastasis in vitro and in vivo than either metformin or curcumin 

alone. 

 

The challenge of conventional chemotherapy in hepatic cancer is unavoidable 

toxicity to normal human cells especially hepatic epithelial cells. The present data 

showed that metformin and curcumin in combination produced higher cytotoxicity to 

HCC including HepG2 cells or PLC/PRF/5 cells than to non-tumor cells including 

normal liver cells (L-02), human umbilical vein endothelial cells (HUVECs) and 

normal gastric epithelial cells (GES-1). Co-administration of 150 mg/kg metformin 

and 60 mg/kg curcumin per mice, which was equivalent to about 645 and 225 mg 

dose in a 60 kg human, respectively, significantly suppressed HCC growth in mice 

without any obvious side effects. The low cytoxcicity and strong anti-cancer effect is 

an indication of potentially effective use of these two drugs in combination for HCC 

treatment. However, we will do further evaluation on the synergistic effects of this 

combination therapy against hepatoma using other liver cancer animal models such 

as orthotopic HCC mouse model or spontaneous mouse liver cancer, etc. 

 

Many chemotherapeutic agents have been shown to induce cell apoptosis.[23] 

Apoptosis can be activated through extrinsic or intrinsic signaling pathways.[24] Bax 

and Bcl-2 are important regulators of the mitochondrial-associated intrinsic apoptosis 



10 
 

signaling pathway. They reduce the mitochondrial membrane potential to cause 

outer mitochondrial membrane permeabilization leading to mitochondrial release of 

caspase-activating cytochrome C in apoptosis activation.[25] It is know that Bax and 

Bc1-2 can be activated by tumor suppresser p53 in apoptosis.[26] The apoptosis 

evoked by metformin and curcumin is shown in this study to be associated with 

activation of p53, increased Bax/Bcl-2 ratio and increased cleavage of PARP, 

suggesting the apoptosis-induction of metformin and curumin is involved in activation 

of mitochondrial-associated intrinsic apoptosis signaling. 

 

PI3K/Akt/mTOR signaling plays an important role in the regulation of tumor growth, 

apoptosis, metabolism, angiogenesis, invasion, and metastasis.[17, 27] PI3K/Akt 

activation can stimulate anti-apoptotic proteins (such as Bcl-2) and also inhibit some 

pro-apoptotic proteins (such as Bax, caspase, and p53), preventing the release of 

apoptosis-stimulating factors from mitochondria.[28] PTEN, a tumor suppressor 

gene, is a negative regulator of the PI3K/Akt signaling. PTEN suppression is 

associated with increased metastasis, aggressive tumor growth, and poor prognosis 

of HCC.[29] In this study, metformin could inhibit PI3K and phospho-Akt, and 

curcumin could suppress the phospho-mTOR and activate the PTEN. The presence 

of metformin with curcumin could synergistically down-regulate the expressions of 

PI3K, p-AKT, and p-mTOR and up-regulate the expression of PTEN. These 

discoveries are in keeping with the tumor cell growth inhibitory effect of metformin 

and curcumin shown in vitro and in vivo. 

 

Activation of PI3K/Akt singaling has been reported to enhance MMP2 and MMP9 

expression in HCC through activation of NF-κB[30] and promote HCC cell invasion 

and metastasis.[31] MMPs, particularly MMP2 and MMP9, have long been 

associated with high metastatic potential of HCC.[16] In this study, we found that the 

presence of metformin and curcumin reduced Akt phosphorylation, inhibited NF-kB 

nuclear translocation and decreased MMP2 and MMP9 expression and activity in 

HepG2 cells. These findings indicate that the strong inhibitory effect of metformin 

and curcumin in combination on HCC cell migration and invasion is associated with 

activation of the PI3 K/Akt/NF-κB/MMP2/9 signaling. 

 

Angiogenesis plays a critical role in tumor growth, invasion and metastasis by 

providing essential growth required nutrients and oxygen.[32] Vascular endothelial 

growth factor (VEGF) is a key angiogenesis promoter[33] and can also be used as a 

tumor marker.[34] A number of studies have shown that VEGF expression is 

elevated in HCC vascular endothelial cells in comparison to that in normal 

tissues.[35] HCC patients with high VEGF expression had a higher recurrence rate 

and poorer prognosis than those with low VEGF expression.[36] VEGFR-2 is the 

primary receptor of VEGF in its proangiogenic activity.[37] PI3K/Akt/NF-κB pathway 

can regulate the invasion of carcinoma cells, featured with the up-regulation of 

VEGF, suggesting the critical role of VEGF as the downstream target of 
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PI3K/Akt/NF-κB in mediating cancer invasion and metastasis.[38, 39] STAT3 

phosphorylation plays a critical role in the proliferation and survival of various tumor 

cells and constitutive STAT3 activity up-regulates VEGF expression and tumor 

angiogenesis.[40] EGFR, an important STAT3-related factor, is associated with the 

proliferation activity, stage, carcinoma differentiation, invasiveness, and recurrence 

and it is proposed to play an important role in carcinogenesis and HCC 

progression.[41] 

 

5 CONCLUSION 

In conclusion, metformin and curcumin in combination induces cell apoptosis and 

inhibits tumor growth of HCC through at least two or three mechanisms (Figure 8). It 

enhances the expression of Bax/Bcl-2 ratio by activation of cellular p53 thus 

promotes cell apoptosis. It suppress the nuclear translocation of NF-κB, leading to 

inhibition of MMP2/9 expression and also to suppression of the expression and 

activity of pro-angiogenic factor VEGF and VEGFR-2 which may also involves 

EGFR/STAT3 activation. Metfomin and curcumin in combination also down- 

regulates the expression of PI3K, p-Akt, and p-mTOR and increases the expression 

of PTEN, resulting in suppression of PTEN/PI3K/Akt/mTOR signaling in cell 

proliferation. A combined therapy of metformin with curcumin might therefore be an 

effective therapeutic strategy for HCC treatment. 
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Figure legends 

Fig 1. Effect of metformin and curcumin, alone and in combination, on HepG2 cell 

proliferations in vitro. Presence of metformin (A), curcumin (B) or in combination (D) 

for 24, 48, 72 h on HepG2 cell proliferation was determined by MTT assay. The 

cytotoxicity effect of combination treatment of metformin and curcumin on HepG2 

cells was also evaluated by CCK-8 assay (E). Effects on the colony formation in 

HepG2 cells were determined for 24 h (F) and for 48 h (G), colonies greater than 50 

cells were counting under the dissecting microscope. The cytotoxicity of the 

treatment on human normal hepatocytes (L-02), human umbilical vein endothelial 

cells (HUVECs) and human normal gastric epithelial cells (GES-1) for 24 h was 

investigated by MTT assay (C). Data are presented as the mean ± SD from three 

independent experiments. *P < 0.05 and **P < 0.01 versus vehicle group, #P < 0.05 

and ##P < 0.01 

Fig 2. Effect of metformin and curcumin, alone and in combination, on PLC/PRF/5 

cell proliferations in vitro. Presence of metformin (A), curcumin (B), or in combination 

(C) on PLC/PRF/5 cell proliferation for 24, 48, 72 h was determined by MTT asssay. 

The cytotoxicity effect of combination treatment of metformin and curcumin on 

PLC/PRF/5 cells was also evaluated by CCK-8 assay (D). Effects on the colony 

formation in PLC/PRF/5 cells were determined for 24 h (E) and for 48 h (F), colonies 

greater than 50 cells were counting under the dissecting microscope. Data are 

presented as the mean ± SD from three independent experiments. *P < 0.05 and 

**P < 0.01 versus vehicle group, #P < 0.05 and ##P < 0.01 versus curcumin alone 

group 

Fig 3. Effects of metformin and curcumin, alone and in combination, on HepG2 cells 

growth in vivo mouse xenografts. HepG2 cells were injected s.c. into the right 

anterior flank of nude mice as described in “Materials and methods.” Mice were 

treated every day with i.p. curcumin, oral administration of metformin or both agents 

for 21 consecutive days. Images of mice and subcutaneous tumors derived from the 

HepG2 xenografts are shown in A and B and tumor weights were shown in C. The 

body weights (D) and tumor volumes (E) were measured every 3 days. Data are 

presented as mean ± SD (n = 7). *P < 0.05 and **P < 0.01 versus vehicle group, 

#P < 0.05 versus curcumin alone group 

Fig 4. Effects of metformin and curcumin, alone and in combination, on HepG2 cell 

apoptosis. HepG2 cells were treated with or without metformin and/or curcumin for 

48 h. A: The cells were fixed and stained with DNA-binding fluorochrome Hoechst 

33342 for 15 min before visualized with fluorescence microscope (346/460 nm, 

200×). Arrows indicate characteristic apoptotic cells. Scale bar = 20 µm. After 

treatment, annexin-V cell surface binding was analyzed by flow cytometry. Q1-LL, 

LR, UR, and UL represent normal cells, early apoptotic cells, late apoptotic cells and 

necrotic cells, respectively. The percentages of apoptotic cells (both early and late) 

in three separate experiments were shown (B). D: After treatment, HepG2 cells were 

stained for JC-1 and analyzed by flow cytometry. The mitochondrial transmembrane 

potential (ΔΨm) was measured by detecting the potential-dependent accumulation of 

JC-1. F: Cell cycle distribution was analyzed by flow cytometry following PI staining. 
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The expressions of cleaved-PARP, Bcl-2, and Bax in the cells (C) and the 

expressions of Bcl-2 and Bax in HepG2 xenografts (E) were determined by Western 

blotting. The protein bands were quantified by densitometry scanning and 

normalization to β-actin. Data are presented as mean ± SD from three independent 

experiments. *P < 0.05 and **P < 0.01 versus vehicle group, #P < 0.05 and 

##P < 0.01 versus curcumin alone group 

Fig 5. Effects of metformin and curcumin, alone and in combination, on PLC/PRF/5 

cell apoptosis, invasion, and migration. A: PLC/PRF/5 cells were fixed and stained 

with DNA-binding fluorochrome Hoechst 33342 for 15 min before visualized with 

fluorescence microscope (346/460 nm, 200×). Arrows indicate characteristic 

apoptotic cells. Scale bar = 20 µm. After treatment, annexin-V cell surface binding 

was analyzed by flow cytometry. Q1-LL, LR, UR, and UL represent normal cells, 

early apoptotic cells, late apoptotic cells, and necrotic cells, respectively. The 

percentages of apoptotic cells (both early and late) in three separate experiments 

were shown (B). Cell cycle distribution was analyzed by flow cytometry following PI 

staining (C). Migration or invasion of PLC/PRF/5 cells to the bottom side of transwell 

membrane non-coated (D) or coated with Matrigel (E) after incubation with metformin 

and curcumin for 24 h were counted by staining with crystal violet. Data are 

expressed as a percentage to that in the control wells and are presented as 

mean ± SD from three independent experiments. *P < 0.05 and **P < 0.01 versus 

vehicle group, #P < 0.05 and ##P < 0.01 versus curcumin alone group 

Fig 6. Effect of metformin and curcumin, alone and in combination, on HUVEC tubule 

formation and HepG2 cell invasion and migration. Sub-cytotoxic concentrations of 

metformin and curcumin in HepG2 cells were determined using MTT assay (E). 

Migration of HepG2 (A) and HUVECs (B) in response to metformin and curcumin 

treatment was determined by wound scratch assay at 0, 12, and 24 h under 

microscope using an ocular grid (100×). The cell migration ability was quantified by 

measuring the distance of the scratch front. Migration or invasion of HepG2 cells to 

the bottom side of transwell membrane non-coated (C) or Matrigel-coated (D) after 

incubation with metformin and curcumin for 24 h were counted by staining with 

crystal violet. Data are expressed as a percentage to that in the control wells and are 

presented as mean ± SD from three independent experiments. Activity of MMP2 and 

MMP9 in HepG2 cells was estimated by gelatin zymography analysis after treatment 

with metformin and curcumin for 24 h (G). The expression of MMP2 and MMP9 in 

HepG2 cells (H) or in xenografts (F) was measured by Western blotting. Effects of 

metformin (10 mM) and curcumin (5,10 µM) on HUVEC tube formation on Matrigel 

after 6 h were recorded in bright filed with a fluorescence microscope (100×) (I). Data 

are presented as the mean ± SD from three independent experiments. *P < 0.05 and 

**P < 0.01 versus vehicle group, #P < 0.05 and ##P < 0.01 versus curcumin alone 

group 

Fig 7. Effect of metformin and curcumin, alone and in combination, on 

PTEN/PI3K/Akt/mTOR/NF-κB and VEGF/VEGFR-2/EGFR/STAT3 signaling in 

HepG2 cells and xenografts. The cellular expression of PI3K, Akt, p-Akt, mTOR, and 

p-mTOR after treatment with metformin and curcumin in HepG2 cells (A,B) and 

xenografts (G,H) were measured by Western blotting. Co-treatment with metformin 
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and curcumin significantly increased the expression of PTEN and p53 (C,H), 

reduced the expression of NF-κB in the nucleus and cytoplasm (D), and decreased 

the expressions of VEGF, VEGFR2, EGFR, p-EGFR, and p-STAT3 (E,F,I). Data are 

presented as mean ± SD from three independent experiments. *P < 0.05 and 

**P < 0.01 versus vehicle group, #P < 0.05 and ##P < 0.01 versus curcumin alone 

group. β-actin was used as a loading control 

Fig 8. It was found in this study that co-presence of metformin and curcumin strongly 

inhibited the expression of VEGF, VEGFR-2, EGFR, and p-EGFR. Metformin 

treatment inhibited NF-κB nuclear translocation and curcumin treatment significantly 

inhibited the expression of phospho-STAT3. Furthermore, co-presence of metformin 

and curcumin induced a synergic inhibition effect. The present data suggest that the 

anti-angiogenic activity of metformin and curcumin in HepG2 cells may be mediated, 

at least in part, by preventing STAT3 activation, subsequent decreasing VEGF 

expression. Impeding Akt activity likewise reduces NF-κB levels, subsequently 

dropping VEGF production and obstructing angiogenesis. Considering all the 

evidence, our results indicated that metformin and curcumin treatment inhibited 

tumor angiogenesis and metastasis of HCC through PI3K/Akt/NF-κB and 

VEGF/VEGFR-2/EGFR/STAT3 pathway. 
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Table 1 The IC50 of metformin or curcumin on hepatoma cell lines 

 

 

 

 

 

Table 2 Combination index (CI) of metformin combined with curcumin on hepatoma 

cell lines 
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Table 3. The inhibitory effect of metformin and curcumin on HepG2 xenografts in 

nude mice (means ± SD, n = 7) 

 


