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Abstract

For the Borel model of the continuous-time Markov decision process, we introduce a wide
class of control strategies. In particular case, such strategies transform to the standard relaxed
strategies, intensively studied in the last decade. In another special case, if one restricts to
another special subclass of the general strategies, the model transforms to the semi-Markov
decision process. Further, we show that the relaxed strategies are not realizable. For the
constrained optimal control problem with total expected costs, we describe the sufficient class
of realizable strategies, the so called Poisson-related strategies. Finally, we show that, for
solving the formulated optimal control problems, one can use all the tools developed earlier
for the classical discrete-time Markov decision processes.
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1 Introduction

The theory of continuous-time jump Markov processes is a well developed area of Operational
Research, with plenty of fruitful applications: see, e.g., the recent monographs [11, 24]. In the
framework of Queueing Theory, the state of the controlled process X(·) can be the number of
customers in the system, and the actions can affect the service rate or the intensity of the input
stream of the customers. In any case, the controlled process X(·) is assumed to be piece-wise
constant, with values in a fixed Borel space X. After the initial state X(0) = x0 ∈ X, which can
be random, becomes known, the decision maker has to choose the control on the interval (0, T1],
up to the next jump moment T1.

1. If he/she applies a specific action a = φ(x0) ∈ A which can certainly depend on x0, then the
sojourn time Θ1 = T1 and the new state X(T1) = X1 are random:

P (Θ1 ≤ t|X(0) = x0) = 1− e−qx0 (φ(x0))t, (1)

where qx0(a) is the total jumps intensity, and, in case qx0(a) > 0, for x1 ̸= x0,

P (X1 = x1|X(0) = x0) =
q({x1}|x0, φ(x0))

qx0(φ(x0))
. (2)

Here and below, we assume for simplicity that the state space X is countable, A is a fixed
standard Borel space of actions, and we use the standard notation q({x1}|x0, a) for the jumps
intensity; qx0(a) = q(X \ {x0}|x0, a) = −q({x0}|x0, a). More general and formal definitions
are given in the next section. Here, we only underline that formulae (1) and (2) can be
combined together, if qx0(a) > 0:

P (Θ1 ≤ t, X1 = x1|X(0) = x0) =

∫
(0,t]

q({x1}|x0, φ(x0))e
−qx0 (φ(x0))sds. (3)
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2. The action a ∈ A, being similar to 1, can be randomized. Namely, the decision maker
can choose the probability space (Ξ,B(Ξ), p), where Ξ is a standard Borel space, and the
probability p(dξ|x0) can depend on x0. After that, the corresponding random element Ξ is
simulated taking value ξ, and the action φ(x0, ξ) is applied, where φ : X × Ξ → A is a
chosen measurable mapping. Usually, random elements are denoted by capital letters, the
lower case is for their realized values.

If only such actions are allowed, we deal with the so called exponential semi-Markov decision
process [25, Ch.7]. Clearly, formula (3) takes the form

P (Θ1 ≤ t, X1 = x1|X(0) = x0) =

∫
Ξ

(∫
(0,t]

q({x1}|x0, φ(x0, ξ))e
−qx0 (φ(x0,ξ))sds

)
p(dξ|x0).

(4)
Here again we assume that x1 ̸= x0 and qx0(a) > 0 for all possible actions a. Obviously,
if Ξ = {1} is a singleton, then we are in the framework of case 1. On another hand,
if, e.g., one plans to mix two actions a1 and a2 independently of x0, then Ξ = {1, 2},
p(1|x0) = p(2|x0) =

1
2 and φ(x0, i) = ai.

Of course, without loss of generality, here one can take Ξ = A and put φ(x0, a) = a, but in
more general situations the space Ξ can be different. Since any uncountable standard Borel
space is isomorphic to the segment [0, 1] [3, Co.7.16.1], one can always take Ξ = [0, 1], but
again it is convenient to keep the introduced notations.

3. More generally, one can apply different actions depending on time, e.g., according to a mea-
surable mapping φ : X× (0,∞) → A. The randomized version is defined by the measurable
mapping φ(x0, ξ, t) from X × Ξ × (0,∞) to A. If qx0(a) > 0, then expression (4) takes the
form

P (Θ1 ≤ t, X1 = x1|X(0) = x0) (5)

=

∫
Ξ

(∫
(0,t]

q({x1}|x0, φ(x0, ξ, s))e
−

∫
(0,s]

qx0 (φ(x0,ξ,u))duds

)
p(dξ|x0).

Note that the space (Ξ,B(Ξ), p) can be rather complicated, e.g., in case A = R, under a fixed
x0, the stochastic process φ defined on Ξ× (0,∞) can be a Brownian motion [22, p.3510].

In each of the described situations, after the initial state x0 becomes known, we have a (com-
plete) probability space (Ω̃, F̃ , P̃ ) and a measurable (w.r.t. (ω̃, t) ) process A(·) on Ω̃ × (0,∞)
with values in A. We will call such strategies realizable. In the previous examples, Ω̃ = Ξ,
P̃ (·) = p(·|x0), F̃ is the completion of B(Ξ), and A(·) = φ(x0, ·).

On the interval (t1, T2], after the values T1 = t1 and X1 = X(T1) = x1 become known, the
situation is similar. The only difference is that the actions can also depend on t1 and x1. And so
on.

First continuous-time Markov decision processes were introduced in the 50-60-ies [2, 15], where
only the deterministic strategies of the type 1 were considered. More general models were investi-
gated in the 70-ies [26, 28] within the class of deterministic past-dependent strategies. In all the
mentioned works, the strategies were realizable and the control process A(·) was well defined.

Starting from the 80-ies [18], the following new class of strategies came to the stage.

4. The decision maker chooses the time-dependent probability distribution π(·|x0, t) onA, which
can also depend on x0. The sojourn time and the new state have the following distribution
(again assuming that x1 ̸= x0 and qx0(a) > 0):

P (Θ1 ≤ t, X1 = x1|X(0) = x0) (6)

=

∫
(0,t]

∫
A

q({x1}|x0, a)π(da|x0, s)e
−

∫
0,s]

∫
A

qx0 (a)π(da|x0,u))duds.
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Let us compare the case of x0-independent stationary (time-independent) π(·) and formula
(4) with Ξ = A, x0-independent measure p, and φ(x0, a) = a, taking the form

P (Θ1 ≤ t, X1 = x1|X(0) = x0) =

∫
A

(∫
(0,t]

q({x1}|x0, a)e
−qx0 (a)sds

)
p(da).

In the latter case, the sojourn time Θ1 is not exponential if the p measure is not degenerate,
while, according to (6), Θ1 is exponential with parameter

∫
A
qx0(a)π(da).

Expression (6) means that ”randomizations” are applied independently at any time moment s ∈
(0,∞). To distinguish from the case 2, we call such π-strategies ”relaxed” rather than randomized.
They became very popular in the last decade: see, e.g., [10, 11, 12, 13, 20, 24] and the references
therein. In Section 3 we explain what it means that the strategy defined in terms of π can be
equivalently represented as a random process A(·). If such a measurable process exists, we say
that the strategy is realizable. The main result of the current article states that only the strategies
with degenerate kernels π are realizable.

Usually the solutions to constrained optimization problems and to Markov games are given
by relaxed strategies [11, Th.11.4], [12, Th.7.1], [13, Th.5.1], [20, Th.3.11], [24, Th.8.6,10.8,10.11].
Another sufficient class of strategies are ”mixtures” [12, Th.7.2], [13, Th.5.2], [20, Cor.3.14]. Intu-
itively, a mixture means that the decision maker flips a coin at the very beginning and afterwards
applies this or that deterministic (Markov or stationary) strategy. Such a way to control the
process is easy for implementation, but, formally speaking, it cannot be described as a relaxed
strategy and does not fit the definition of a strategy introduced in the cited works. Since the
relaxed strategies are not realizable if the π kernels are not degenerate (i.e., are different from the
Dirac measures), after obtaining a solution to an optimal control problem in terms of a π-strategy,
one has to explain how practitioners can use it.

In the case of discounted model, realizable solutions in the form of switching and randomized
strategies were constructed in [8, 9]. But if the discount factor α is zero, standard randomized
strategies are not sufficient for solving optimal control problems, as demonstrated in Section 4.

In Section 2, we describe the model and the wide class of control strategies including the
discussed cases 1-4 and their combinations, along with mixtures. In Section 3 we prove the main
results about the realizability of the strategies. Definition 3 seems natural to introduce the concept
of the realizability. Theorem 2 states that a strategy is realizable if and only if there is a random
process equivalently representing it. Thus, existence of a process satisfying all the assertions
of Definition 4 can be accepted as another natural definition of the realizability. Finally, for
the constrained models with the total expected cost, we present in Section 4 the sufficient class
of realizable strategies, that is, Poisson-related strategies, and show in Section 5 how the tools
developed for the discrete-time models can be used for solving continuous-time problems. Note
that we investigate the undiscounted Borel model with arbitrarily unbounded transition and cost
rates, with the possibility of explosion and with an arbitrary, not necessarily finite number of
constraints. All this makes the current article different from the similar works in the area.

The following notations are frequently used throughout this paper. N = {1, 2, . . .} is the
set of natural numbers; δx(·) is the Dirac measure concentrated at x, we call such distributions
degenerate; I{·} is the indicator function. B(E) is the Borel σ-algebra of the Borel space E, P(E)
is the Borel space of probability measures on E. (It is always clear which σ-algebra is fixed in E.)
The Borel σ-algebra B(P(E)) comes from the weak convergence of measures, after we fix a proper

topology in E. R+
△
= (0,∞), R0

+
△
= [0,∞), R̄ = [−∞,+∞], R̄+ = (0,∞], R̄0

+ = [0,∞]; in R+ and
R0

+, we consider the Borel σ-algebra, and Leb is the Lebesgue measure. The abbreviation w.r.t.

(resp. a.s.) stands for “with respect to” (resp. “almost surely”); for b ∈ R̄, b+ △
= max{b, 0} and

b−
△
= min{b, 0}. Measures introduced in the current article can take infinite values. Let (Ω,F)

be some measurable space. G1 ∨ G2 is the minimal σ-algebra containing the two given σ-algebras
G1 and G2 in Ω; F(X) is the σ-algebra generated by a measurable mapping X : Ω → X, where
(X,B) is another measurable space.
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2 Model description and preliminaries

The primitives of a continuous-time Markov decision process are the following elements.

(i) State and action spaces (X,B(X)) and (A,B(A)) (arbitrary standard Borel).

(ii) Transition rate q(dy|x, a) is a signed kernel on X given (x, a) ∈ X ×A taking nonnegative
values on ΓX \ {x}, where ΓX ∈ B(X). We assume that q is conservative in the sense that

q(X|x, a) = 0, i.e., qx(a)
△
= q(X\{x}|x, a) = −q({x}|x, a). We also assume that the transition

rate q is stable, that is, supa∈A qx(a) < ∞ for each x ∈ X.

(iii) Cost rates cjn(·) (j ∈ J ∪ {0}, n = 1, 2, . . .) are measurable functions on X ×A with values
in the extended real line [−∞,∞]; J ̸∋ 0 is an arbitrary set of indices. Index 0 corresponds
to the main objective, the given real numbers dj , j ∈ J are the maximal allowed values for
other objectives: see problem (15).

(iv) Initial distribution γ(·), a probability measure on X.

We need to introduce immediately the standard Borel space (Ξ,B(Ξ)), the source of the control
randomness which in fact is chosen by the decision maker, as described in Introduction. We

introduce the artificial isolated point (cemetery) ∆, put X∆
△
= X∪{∆}, Ξ∆ = Ξ∪{∆}, and define

q(Γ|∆, a)
△
= 0 for all Γ ∈ B(X∆), a ∈ A.

Given the above primitives, let us construct the underlying (measurable) sample space (Ω,F).

Having firstly defined the measurable space (Ω0,F0)
△
= (Ξ×(X×Ξ×R+)

∞,B(Ξ×(X×Ξ×R+)
∞)),

let us adjoin all the sequences of the form

(ξ0, x0, ξ1, θ1, x1, ξ2, . . . , θm−1, xm−1, ξm, ∞, ∆, ∆, ∞, ∆, ∆, . . . )

to Ω0, where m ≥ 1 is some integer, ξm ∈ Ξ, θl ∈ R+ , xl ∈ X, ξl ∈ Ξ for all nonnegative integers
l ≤ m− 1. After the corresponding modification of the σ-algebra F0, we obtain the basic sample
space (Ω,F).

Below,
ω = (ξ0, x0, ξ1, θ1, x1, ξ2, θ2, x2, . . .).

For n ∈ N, introduce the mapping Θn : Ω → R̄+ by Θn(ω) = θn; for n ∈ N ∪ {0}, the mappings
Xn : Ω → X∆ and Ξn : Ω → Ξ∆ are defined by Xn(ω) = xn and Ξn(ω) = ξn. As usual, the
argument ω will be often omitted. The increasing sequence of random variables Tn, n ∈ N ∪ {0}
is defined by Tn =

∑n
i=1 Θi; T∞ = limn→∞ Tn. Here, Θn (resp. Tn, Xn) can be understood as

the sojourn times (resp. the jump moments, the states of the process on the intervals [Tn, Tn+1)).
The realized values of Θn, Tn and Xn will be denoted as θn, tn and xn. We do not intend to
consider the process after T∞. The meaning of the ξn components will be described later; see also
Introduction. Finally, for n ∈ N ∪ {0},

Hn = (Ξ0, X0,Ξ1,Θ1, X1, . . . ,Ξn,Θn, Xn)

is the n-term (random) history and Hn = {(ξ0, x0, ξ1, θ1, x1, . . . , ξn, θn, xn)} is the space of all such
histories. The controlled process of our interest is

X(ω, t)
△
=
∑
n≥0

I{Tn ≤ t < Tn+1}Xn + I{T∞ ≤ t}∆.

Definition 1 A control strategy is defined as follows:

S = {Ξ, p0, ⟨pn, πn⟩, n = 1, 2, . . .},

where p0(dξ0) is a probability distribution on Ξ; for xn−1 ∈ X, pn(dξn|hn−1) is a stochastic kernel
on Ξ given Hn−1; πn(da|hn−1, ξn, u) is a stochastic kernel on A given Hn−1×Ξ×R+. If xn−1 = ∆,
then we assume that pn(dξn|hn−1) = δ∆(dξn); the kernels πn(da|hn−1,∆, u) are of no importance
and can be defined arbitrarily. The set of all control strategies is denoted as Π.
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Control on the interval (Tn−1, Tn] is based on the both kernels pn and πn which respectively
correspond to randomizations and relaxations. We underline, that the random element Ξn is
generated only once, at the jump epoch Tn−1. On the opposite, relaxations mean, roughly speaking,
that the actions are simulated at each time moment t = Tn−1 + u, continuously in time. For
example, the purely randomized Poisson-related strategies discussed in Sections 4 and 5 mean
that, at each jump epoch Tn−1, the decision maker plans in advance, at which discrete moments
in the future the actions will change. This plan may be not deterministic, but, once realized, it
does not change as time goes on; hence the kernels pn do not depend on u.

If the randomizations are absent, that is, the kernels πn do not depend on the ξ-components,
then we deal with a relaxed strategy. One can take Ξ = {ξ̃} as a singleton and simply omit the
ξn components; as a result we obtain the standard control strategy or policy {πn, n = 1, 2, . . .}
[10, 11, 12, 13, 18, 20, 24] which is called below as a π-strategy. On the other hand, if the relaxations
are absent, that is, all kernels πn are degenerate and concentrated at singletons

φn(ξ0, x0, ξ1, θ1, . . . , xn−1, ξn, u) ∈ A, (7)

then we deal with a randomized strategy denoted below as a ξ-strategy. If φn does not depend on ξ0
and u, and one is restricted to such control strategies, then in fact he(she) deals with a semi-Markov
decision process (cf. case 2 in Introduction). General control strategies will be sometimes called
π-ξ-strategies. The ξ0 component is responsible for the mixtures of strategies: if, for example, p0
is a combination of two Dirac measures, then in the future, depending on the realized value ξ0,
this or that control strategy will be used. Clearly, if functions φn in (7) do not depend on the
ξ-components, then the strategy is purely deterministic and can be equally regarded as a ξ- or
π-strategy. A deterministic strategy is called Markov if φn(·) = φM (xn−1, Tn−1 + u); it is called
stationary if φn(·) = φS(xn−1). A more detailed discussion of π-ξ-strategies can be found in [22].
Here, we only underline that on the interval (tn−1, Tn] ⊂ R+, n ∈ N, the jumps intensity is

λq
n(ΓX|hn−1, ξn, θ) =

∫
A

πn(da|hn−1, ξn, θ)q(ΓX \ {xn−1}|xn−1, a), (8)

where ΓX ∈ B(X), θ > 0 is the time elapsed after the realized jump epoch tn−1 and ξn is the
realization of the random element Ξn having the distribution pn(dξn|hn−1); hn−1 is the realized

history with tn−1 =
∑n−1

i=1 θi < ∞, xn−1 ∈ X. Along with the intensity λq
n, we need the following

integral

Λq
n(hn−1, ξn, θ) =

∫
(0,θ]∩R+

λq
n(X|hn−1, ξn, u)du. (9)

Now the joint distribution of (Θn, Xn) is defined by∫
ΓR∩R+

Gξ,q
n (ΓX, hn−1, ξn, θ)dθ + I{∞ ∈ ΓR}I{∆ ∈ ΓX}e−Λq

n(hn−1,ξn,∞), (10)

where ΓR ∈ B(R̄+), ΓX ∈ B(X∆), and

Gξ,q
n (ΓX, hn−1, ξn, θ) = λq

n(ΓX \ {∆}|hn−1, ξn, θ)e
−Λq

n(hn−1,ξn,θ). (11)

Under a fixed control strategy S, the probability measure PS
γ on (Ω,F), called strategical

measure, is build in the standard way. The distribution of H0 = (Ξ0, X0) is given by p0(dξ0)·γ(dx0)
and, for any n ∈ N, the stochastic kernel Gn on Ξ∆× R̄+×X∆ given Hn−1 is defined by formulae

Gn(Ξ∆ × {∞} ×X|hn−1) = Gn({∆} × R+ ×X∆|hn−1) = 0.

Gn({∆} × {∞} × {∆}|hn−1) = δxn−1({∆}); (12)

Gn(ΓΞ × {∞} × {∆}|hn−1) = δxn−1(X)

∫
ΓΞ

e−Λq
n(hn−1,ξn,∞)pn(dξn|hn−1);

Gn(ΓΞ × ΓR × ΓX|hn−1) = δxn−1(X)

∫
ΓΞ

∫
ΓR

Gξ,q
n (ΓX, hn−1, ξn, θ)dθ pn(dξn|hn−1),
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where ΓΞ ∈ B(Ξ), ΓR ∈ B(R+), ΓX ∈ B(X∆). It remains to apply the induction and Ionescu
Tulcea’s theorem [3, Prop.7.28] to obtain PS

γ . Expectation with respect to PS
γ is denoted as ES

γ .
After the history hn−1 with tn−1 < ∞ becomes known, the decision maker flips a coin resulting

in the Ξn = ξn component having distribution pn(dξn|hn−1). After that the stochastic kernel
πn(da|hn−1, ξn, u) gives rise to the jumps intensity λn(Γ|hn−1, ξn, θ) from the current state xn−1

to ΓX ∈ B(X). After that, the sojourn time θn ∈ R̄+ and the new state xn ∈ X∆ of the process
X(t) at the jump epoch tn = tn−1 + θn are realized according to the joint distribution given by
(10). And so on. If the standard Borel spaces (Ξn,B(Ξn)) are different then one should introduce
their direct product Ξ =

∏∞
n=1 Ξn.

Definition 2 Two strategies S1 and S2 are called indistinguishable if the space Ξ is the same,
p0(·) is the common distribution on Ξ, and for each n ∈ N the following assertions are valid.

(a) For PS1

γ -almost all Hn−1 (equivalently, for PS2

γ -almost all Hn−1), such that Tn−1 ̸= ∞,
p1n(·|Hn−1) = p2n(·|Hn−1).

(b) For almost all u ∈ R+, π
1
n(·|Hn−1,Ξn, u) = π2

n(·|Hn−1,Ξn, u) for PS1

γ -almost all Hn−1,Ξn

(equivalently, for PS2

γ -almost all Hn−1,Ξn) such that Tn−1 ̸= ∞.

For indistinguishable strategies, PS1

γ = PS2

γ . Moreover, the detailed occupation measures on
X×A

ηSn (ΓX × ΓA) = ES
γ

[∫
(Tn−1,Tn]∩R+

I{Xn−1 ∈ ΓX}πn(ΓA|Hn−1,Ξn, t− Tn−1)dt

]
, n = 1, 2, . . . ,

(13)
which will be used below to define the objective functionals, coincide for all n ∈ N, too.

The constructed mathematical model covers both the traditional continuous-time Markov de-
cision processes and exponential semi-Markov decision processes. It makes the base for the in-
vestigation of the controlled jump processes without switching between different models like in
[8].

For a given cost rate cjn(·) on X×A, the corresponding objective is defined as

W j(S) = ES
γ

[ ∞∑
n=1

∫
(Tn−1,Tn]∩R+

∫
A

πn(da|Hn−1,Ξn, t− Tn−1)c
j+
n (Xn−1, a)dt

]
(14)

+ES
γ

[ ∞∑
n=1

∫
(Tn−1,Tn]∩R+

∫
A

πn(da|Hn−1,Ξn, t− Tn−1)c
j−
n (Xn−1, a)dt

]
.

Here and below, ∞−∞ △
= +∞; all integrals and series are calculated separately for the positive

and negative parts. The constrained optimal control problem under study looks as follows:

W 0(S) → inf
S∈Π

subject to W j(S) ≤ dj , j ∈ J. (15)

In terms of the detailed occupation measures (13), this problem can be rewritten as

W 0(S) =
∞∑

n=1

∫
X×A

c0n(x, a)η
S
n (dx, da) → inf

S∈Π
(16)

subject to W j(S) =
∞∑

n=1

∫
X×A

cjn(x, a)η
S
n (dx, da) ≤ dj , j ∈ J.

In many works, the admissible sets of actions A(x) in the states x ∈ X were introduced
[10, 11, 12, 13, 18, 20, 24, 26, 27, 28]. In this connection, one can, e.g., put c0n(x, a) = +∞ in case
action a is not admissible in the state x.
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3 Realizable strategies

In this section, we present the main results. Intuitively, a strategy is realizable (or implementable)
if the actions A(t), to be applied at the time moments t ∈ R+, form a measurable random process.
A very simple example in [17, Ex.1.2.5] shows that for a relaxed strategy such a process does not
exist. Below, we prove that only randomized strategies are realizable. But firstly, let us discuss
informally the possible definition of the realizability.

The definition of a strategy is based on the knowledge of the spaces X and A only. We plan
to construct the definition of realizability, which will be independent of the transition rate and
cost rates, as well. Assume, a control strategy S = {Ξ, p0, ⟨pn, πn⟩, n ∈ N} is chosen and suppose
the pair (hn−1, ξn) ∈ Hn−1 × Ξ is fixed (realized) for a fixed n ∈ N, and tn−1 < ∞, xn−1 ∈ X.
The actions A(t) for t > tn−1 can certainly depend on n, hn−1 and ξn, as well as on the time
u = t − tn−1 elapsed after the last jump moment. Below, we omit n, hn−1 and ξn and formulate
the following natural requirements to the process A(·).

Definition 3 A control strategy S is called realizable for (hn−1, ξn) ∈ Hn−1 × Ξ (n ∈ N) on the
interval (tn−1, Tn] ̸= ∅ if there is a complete probability space (Ω̃, F̃ , P̃ ) and a measurable (with
respect to (u, ω̃) ) process A(·) on R+ × Ω̃ with values in A such that the following properties are
satisfied (as usual, the argument ω̃ ∈ Ω̃ will be often omitted):

(a) πn(ΓA|hn−1, ξn, u) coincides with P̃ (A(u) ∈ ΓA) for each ΓA ∈ B(A), for almost all u ∈ R+.

(b) For any measurable total transition rate q̂(·) on A, the random probability measure G̃ω̃ on
R̄+, depending on ω̃ ∈ Ω̃ and defined by

G̃ω̃(ΓR) =

∫
ΓR∩R+

q̂(A(θ, ω̃))e−
∫
(0,θ]

q̂(A(u,ω̃))dudθ,

+I{∞ ∈ ΓR}e−
∫
(0,∞)

q̂(A(u,ω̃))du, ΓR ∈ B(R̄+),

after taking expectation Ẽ with respect to P̃ , coincides with the probability measure (10) on
R̄+ at ΓX = X∆, qxn−1(a) = q̂(a).

A control strategy S is called realizable if it is realizable for each n ∈ N, on (Tn−1, Tn] ̸= ∅ for
PS
γ -almost all (Hn−1,Ξn). The probability space (Ω̃, F̃ , P̃ ) can be different for different n, hn−1,

ξn.

The requirement (Tn−1, Tn] ̸= ∅ is equivalent to Tn−1 < ∞. In all other cases, the length of
the interval (Tn−1, Tn] is a continuous positive random variable (with a possible atom at ∞), and
Xn−1 ∈ X PS

γ -a.s. As was mentioned, the A(·) process can depend on n, hn−1 and ξn, but at the
moment we do not require the measurability of An(hn−1, ξn, u, ω̃) in all the arguments.

Remark 1 If a strategy S is realizable, then any strategy S′, indistinguishable from it, is also
realizable.

Theorem 1 Suppose the pair (hn−1, ξn) ∈ Hn−1×Ξ is fixed for some n ∈ N, such that tn−1 < ∞.
Then the following statements are equivalent

• A control strategy S is realizable for (hn−1, ξn) on the interval (tn−1, Tn] ̸= ∅.

• For almost all u ∈ R+, πn(·|hn−1, ξn, u) = δφ(u)(·) is a Dirac measure, where φ(·) is an
A-valued measurable function on R+.

The proof is postponed to Appendix.

Corollary 1 (a) Suppose a control strategy S is realizable for (hn−1, ξn) ∈ Hn−1 × Ξ (n ∈ N)
on the interval (tn−1, Tn] ̸= ∅. Then the process A(·) is in fact non-random in the sense that
P̃ (A(u) = φ(u)) = 1 for almost all u ∈ R+, where the A-valued function φ(·) is non-random.
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(b) A control strategy S is realizable if and only if it is indistinguishable from a randomized
strategy S′, that is, a ξ-strategy defined by functions φn(·) (7), n ∈ N, and the components
p0(·), p1(·), . . . coming from the initial strategy S.

Proof. Item (a) immediately follows from Theorem 1.
(b) Suppose a control strategy S is realizable. For a fixed n ∈ N, the set

{(hn−1, ξn, u) ∈ Hn−1 ×Ξ× R+ : πn(·|hn−1, ξn, u) is a Dirac measure}

is measurable, because the kernel πn is measurable and the space of all Dirac measures on A is
measurable. (It is closed in the weak topology, if we introduce the proper separable and metrizable
topology in A generating the σ-algebra B(A).) Therefore, function φn(hn−1, ξn, u) from Theorem
1 can be extended to Hn−1 × Ξ × R+ in a measurable way. The obtained ξ-strategy S′ is the
desired one because, for each n ∈ N for almost all u ∈ R+, πn(·|Hn−1,Ξn, u) = δφ(Hn−1,Ξn,u)(·)
PS
γ -a.s.
Conversely, suppose the control strategy S is indistinguishable from a ξ-strategy S′ defined

by the functions φn(·) (7). For the ξ-strategy S′, one can take the common probability space
(Ω̃, F̃ , P̃ ) for all n ∈ N, hn−1 ∈ Hn−1, ξn ∈ Ξ, namely, the trivial space with Ω̃ = {ω̃} being a
singleton. Definition 3 holds true for the process A(u, ω̃) = φn(hn−1, ξn, u). The original strategy
S is realizable due to Remark 1. 2

According to the proof of Corollary 1(b), we see that the process

φ(t, ω) =
∞∑

n=1

I{Tn−1(ω) < t ≤ Tn(ω)}φn(Hn−1(ω),Ξn(ω), t− Tn−1(ω)) (17)

equivalently represents the ξ-strategy S, defined by the functions φn(·), in the sense that for all
n ∈ N, for PS

γ -almost all (Hn−1,Ξn) with Tn−1 < ∞, Xn−1 ∈ X, the following assertions are valid:

• for any measurable cost function c(·), the cost rate on (Tn−1, Tn] is c(Xn−1, φ(u)) and

• for any transition rate q̂(·), the joint distribution of (Θn, Xn) is defined by the transition
density q̂(dy|Xn−1, φ(Tn−1 + θ)).

Below, we fix an arbitrary element â ∈ A and put φ(t, ω) ≡ â for t ≥ T∞(ω).
This motivates the following definition. Up to the end of the current section, the space Ξ is

assumed to be arbitrarily fixed.

Definition 4 Suppose (Ω̃, F̃) is a standard Borel space and put Ω̂ = Ω× Ω̃, F̂ = F ⊗F̃ . Let P̂ be

a probability measure on Ω̂. A measurable random process A(t, ω̂) = A(t, (ω, ω̃)) on R+ × Ω̂ with
values in A is said to equivalently represent a strategy S if the following assertions are valid.

• Leb× P̂ -a.s., the process A(·) has the form

A(t, ω̂) = A(t, (ω, ω̃)) =
∞∑

n=1

I{Tn−1(ω) < t ≤ Tn(ω)}An(Hn−1(ω),Ξn(ω), t− Tn−1(ω), ω̃)

for t < T∞(ω), where An(·) is a measurable map from Hn−1×Ξ×R+×Ω̃ to A for all n ∈ N.
For t ≥ T∞(ω), A(t, (ω, ω̃)) ≡ â.

• The marginal measure P̂ (Γ× Ω̃) coincides with the measure PS
γ on Ω.

• For any non-negative measurable function c(·) on X×A, for all n ∈ N, the actual cost rate∫
A

I{Xn−1 ∈ X}c(Xn−1, a)πn(da|Hn−1,Ξn, u)

on (Tn−1, Tn] ̸= ∅ coincides with∫
Ω̃

I{Xn−1 ∈ X}c(Xn−1,A(Tn−1 + u, (ω, ω̃))P̂ (dω̃|ω)

PS
γ -a.s. for almost all u ∈ R+.
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• For any transition rate q̂(·), for each n ∈ N, the actual joint distribution (10) of (Θn, Xn)
given by

I{Xn−1 ∈ X}

{∫
ΓR∩R+

Gξ,q̂
n (ΓX, Hn−1,Ξn, θ)dθ + I{∞ ∈ ΓR}I{∆ ∈ ΓX}e−Λq̂

n(Hn−1,Ξn,∞)

}
coincides with∫

Ω̃

I{Xn−1 ∈ X}

{∫
ΓR∩R+

q̂(ΓX \ {∆, Xn−1}|Xn−1,A(Tn−1 + θ, (ω, ω̃)))

×e−
∫
(0,θ]

q̂Xn−1
(A(Tn−1+u,(ω,ω̃)))dudθ

+I{∞ ∈ ΓR}I{∆ ∈ ΓX}e−
∫
(0,∞)

q̂Xn−1
(A(Tn−1+u,(ω,ω̃)))du

}
P̂ (dω̃|ω)

PS
γ -a.s. Here ΓR ∈ B(R̄+), ΓX ∈ B(X∆).

Just for brevity, when we say that a process A(·) equivalently represents a strategy S, we

assume also that the space (Ω̃, F̃) and the probability measure P̂ on Ω̂ = Ω× Ω̃ are fixed.

Remark 2 According to the discussion of formula (17), if S is a ξ-strategy then, after we build the
process φ(·) and put Ω̃ = {ω̃}, P̂ (Γ × {ω̃}) = PS

γ (Γ) for Γ ∈ F , the process A(t, (ω, ω̃)) = φ(t, ω)
equivalently represents the strategy S.

Remark 3 If a process A(·) equivalently represents a strategy S, then it also equivalently repre-
sents any strategy indistinguishable from S.

Theorem 2 A control strategy S is realizable if and only if there exists a process A(·) which
equivalently represents S.

Proof. Suppose a control strategy S is realizable. By Corollary 1(b) and Remark 2, there exists
a process A(·) which equivalently represents the ξ-strategy S′ indistinguishable from S. That
process equivalently represents also the initial strategy S by Remark 3.

Suppose a process A(·) equivalently represents a strategy S and show that S is realizable. The
only difficulty is to construct the measure P̃ for a fixed (hn−1, ξn) ∈ Hn−1 × Ξ with tn−1 < ∞
(n ∈ N). Let Fn = σ(Hn−1,Ξn) and consider the restriction of the measure P̂ on (Fn ⊗ F̃).
After we disintegrate it, we obtain the Fn-measurable stochastic kernel on Ω̃ given ω ∈ Ω which
has the form P̃ (dω̃|Hn−1(ω),Ξn(ω)). Now, for PS

γ -almost all (Hn−1,Ξn) with Tn−1 < ∞, the
requirements (a) and (b) of Definition 3 hold true for the process An(Hn−1,Ξn, u, ω̃) and measure
P̃ (dω̃|Hn−1,Ξn). To check (a), it is sufficient to put c(x, a) = I{a ∈ ΓA}; for each hn−1, ξn, the
measure P̃ (dω̃|hn−1, ξn) can be completed if needed. 2

Let us look more attentively at the processes A(·) which equivalently represent this or that
control strategy under a fixed space Ξ. Collection of all such processes is denoted as ℵ. The space
Ω̃ may be different for different processes from ℵ.

First of all, the process φ(·) of the type (17) can be characterized in the following way. On the
space Ω, consider random measure

µ(ω, dt, d(x, ξ)) =

∞∑
n=1

δ(Tn(ω),(Xn(ω),Ξn+1(ω)))(dt, d(x, ξ))

and σ-algebras

F0 = σ(Ξ0, X0,Ξ1);

Ft = F0 ∨ σ(µ((0, s]×B) : s ≤ t, B ∈ B(X×Ξ)).

The associated σ-algebra on Ω× R0
+ is defined as

σ

(
Γ× {0} (Γ ∈ F0), Γ× (s,∞) (Γ ∈

∨
t<s

Ft, s > 0)

)
.
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Now a random process φ(·) on Ω × R+ has the form (17) if and only if it is predictable [16,
Lemma(3.3)]. Remember, we agreed to put φ(t, ω) ≡ â for t ≥ T∞(ω).

Theorem 3 (a) If the process A(·) equivalently represents a strategy S (i.e., A(·) ∈ ℵ), then
there exists a predictable process φ(·) on Ω× R+ such that

Leb× P̂ -a.s. A(t, (ω, ω̃)) = φ(t, ω),

and the process A′(t, (ω, ω̃′)) = φ(t, ω) also equivalently represents the strategy S. Here
Ω̃′ = {ω̃′} is a singleton and P̂ (Γ× {ω̃′}) = PS

γ (Γ) for Γ ∈ F .

(b) For each predictable process φ(·), there is a probability measure P̂ on Ω̂ = Ω×{ω̃} such that
the process A(t, (ω, ω̃)) = φ(t, ω) equivalently represents some strategy S (i.e., A(·) ∈ ℵ).

Proof. (a) According to Theorem 2, Corollary 1(b) and Remark 3, the A(·) process equivalently
represents the ξ-strategy S′ indistinguishable from S and defined by functions φn(·) (7), which
give rise to the process (17). According to the second part of the proof of Theorem 2 applied
to the strategy S′, for each n ∈ N, with PS′

γ -probability one, the requirements (a) and (b) of
Definition 3 hold true for (Hn−1,Ξn) with Tn−1 < ∞, for the process An(Hn−1,Ξn, u, ω̃) and
measure P̃ (dω̃|Hn−1,Ξn). By Corollary 1 (a), for almost all u ∈ R+

P̃ (An(Hn−1,Ξn, u, ω̃) = φn(Hn−1,Ξn, u)|Hn−1,Ξn) = 1. (18)

Note that we deal with the ξ-strategy S′, so that πn(·|hn−1, ξn, u) = δφn(hn−1,ξn,u)(·) for all n ∈ N,
(hn−1, ξn, u) ∈ Hn−1×Ξ×R+. Equality (18) holds PS′

γ -a.s. (and also PS
γ -a.s.). Hence Leb×P̂ -a.s.

A(t, (ω, ω̃)) = φ(t, ω).
According to Remark 2, the process A′(·) equivalently represents the strategy S′ as well as the

initial strategy S indistinguishable form S′. (See Remark 3.) Remember, PS
γ = PS′

γ .
(b) The process φ(·) has the form (17). Fix an arbitrary probability p0(·) on Ξ and arbitrary

stochastic kernels pn(·) on Ξ given Hn−1, n ∈ N, and consider the corresponding ξ-strategy S
defined by the maps φn(·). It remains to put P̂ (Γ× {ω̃}) = PS

γ (Γ) for Γ ∈ F and refer to Remark
2. 2

Definition 5 We say that two processes A1(·),A2(·) from ℵ belong to the same class if there exists
one ξ-strategy equivalently represented by both A1(·) and A2(·).

Theorem 4 The classes form a partition of ℵ, that is,

• each process from ℵ belongs to some class;

• two classes either coincide or do not overlap.

Proof. If A(·) ∈ ℵ then there is a ξ-strategy equivalently representable by A(·) due to Theorem 2,
Corollary 1(b) and Remark 3.

Suppose the process A(·) equivalently represents two ξ-strategies S1 and S2 defined by the
maps φ1

n(·) and φ2
n(·) (7). We will show that the strategies S1 and S2 are indistinguishable. By

Definition 4, PS1

γ = PS2

γ , and assertion (a) of Definition 2 follows, because the components p0(·),
pn(·) (n ∈ N) can be constructed starting from the strategical measure PS1

γ = PS2

γ . Let a non-
negative measurable function c(·) on A be such that c(a1) ̸= c(a2) if a1 ̸= a2. Such a function
exists because the standard Borel space A is isomorphic to the segment [0, 1] or its countable
subset [3, Cor.7.16.1]. Now again by Definition 4, for each n = 1, 2, . . ., on the set (Tn−1, Tn] ̸= ∅,
φ1
n(Hn−1,Ξn, u) = φ2

n(Hn−1,Ξn, u) PS1

γ -a.s. for almost all u ∈ R+. Hence the strategies S1 and
S2 are indistinguishable and the class associated with S1 coincides with the class associated with
S2. (See Remark 3.) 2

Now it is clear that there is 1-1 correspondence between the introduced equivalence classes of
the processes and the equivalence classes of indistinguishable realizable strategies. Indeed, in each
such class of strategies, say, Π′, there is at least one ξ-strategy by Corollary 1(b). The associated
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class of processes contains those and only those processes which equivalently represent all the
strategies from Π′: see Remark 3 and the proof of Theorem 4.

By Theorem 3, in each equivalence class of processes A(·) from ℵ, there is at least one canonical
process, i.e., such a process that Ω̃ = {ω̃} is a singleton and the process A(t, (ω, ω̃)) on Ω × R+

is predictable. This process equivalently represents every strategy from the corresponding class
of indistinguishable realizable strategies. (See Remark 3.) Therefore, canonical processes are
sufficient if we are looking for a set of processes which equivalently represent realizable strategies.

If Ξ = {ξ̃} is a singleton, then the argument ξ̃ can be omitted everywhere, and the model
transforms to the classical continuous-time Markov decision process [10, 11, 12, 13, 18, 20, 24]. In
this case, by Corollary 1(b), a strategy is realizable if and only if it is indistinguishable from a
randomized strategy which is defined by functions φn(hn−1, u) and is actually deterministic.

4 Sufficient classes of realizable strategies

As was proved in [22, Th.2], for any strategy S, there is a relaxed Markov strategy Sπ (i.e., all
the kernels πn(·|hn−1, ξn, u) look like πM

n (·|xn−1, u)) such that {ηSn}∞n=1 = {ηSπ

n }∞n=1. One can find
the explicit expression for that Sπ strategy in [22, p.3520]. Therefore, relaxed strategies form a
sufficient class for problem (16). But as was shown, they are usually non-realizable.

A simplest realizable strategy, below called Markov standard ξ-strategy, is defined by Ξ = A,

pn(dan|hn−1) = pMn (dan|xn−1), φ(hn−1, an, u) = an: the decision maker, at every jump epoch,
chooses the randomized action an depending on the current state and the jump number, and that
action remains constant up to the next one jump. If the kernels pMn (·) do not depend on n ∈ N,
then the standard ξ-strategy is called stationary. According to [22, Th.1], if qx(a) > 0 for all

x ∈ X, a ∈ A, then, for any S ∈ Π, there is a Markov standard ξ-strategy Sξ such that ηS
ξ

n ≥ ηSn
for all n ∈ N. One can find the explicit expression for that Sξ strategy in [22, p.3519]. Hence,
in this case, Markov standard ξ-strategies form a sufficient class for problem (16) with negative
cost rates cj . They are sufficient for arbitrary cost rates cj if qx(a) ≥ ε for some ε > 0 [22, Th.1].
Example 2 in [22] shows that, in case qx(a) > 0 and cjn(x, a) > 0, the infimum in (16) over all
strategies can be strictly smaller than the infimum over Markov standard ξ-strategies.

Note that the discounted cost model [8, 20] means, there is a positive rate α of the transitions
to a cemetery from each state x ∈ X. Thus, qx(a) ≥ α > 0, and the previous reasoning applies. In
this special case, the sufficiency of Markov standard ξ-strategies was established in [8], although
using different notations and constructions.

It is easy to understand, why the Markov standard ξ-strategies and even their history-dependent
modifications are not sufficient in case cj > 0, if we consider the following trivial model: X =
{1}, A = (0, 1], qx(a) = 0, c0(x, a) = a, J = ∅ (unconstrained case), γ({1}) = 1. For every
Markov standard ξ-strategy Sξ, when the action is fixed until the next one jump, i.e., fixed forever,
W 0(Sξ) = ∞. But, if, e.g., one applies action a1 = δ

2 on the interval (0, 1], action a2 = δ
4 on the

interval (1, 2], and so on, then, for such strategy S, which is again a special case of randomized,
hence realizable, we have W 0(S) = δ, and δ > 0 can be arbitrary. Similar examples in the theory
of discrete-time Markov decision processes are well known [21, §2.2.11]. Thus, it is reasonable to
consider ξ-strategies similar to the Markov standard ones, but where it is allowed to change actions
at some time moments between the jumps. To be more specific, after the (n − 1)-th jump of the
original process X(·) at the time moment Tn−1, we allow to choose different actions An

1 , A
n
2 , . . . on

the intervals (Tn−1, Tn−1+Tn
1 ], (Tn−1+Tn

1 , Tn−1+Tn
1 +Tn

2 ], . . . correspondingly. When considering
the process X(·) only at those moments Tn−1, Tn−1 + Tn

1 , Tn−1 + Tn
2 , . . ., one can talk about the

standard discrete-time Markov decision process with the corresponding actions An
1 , A

n
2 , . . .. Such

construction is presented in Section 5. The described idea, when the mentioned time moments
Tn
1 , T

n
2 , . . . form an independent of the past Poisson process, leads to the following definition.

Definition 6 A Poisson-related ξ-strategy SP = {Ξ, p0, ⟨pn, πn⟩, n = 1, 2, . . .} is defined by
{Ξ = (R × A)∞ = {(α1, τ1, α2, τ2, . . .)}, ε > 0, p̃n,k(da|xn−1), n ∈ N, k ∈ N}, where p̃n,k are
stochastic kernels on A given X, in the following way. For n = 1, 2, . . . the distribution pn of
Ξn = (An

1 , T
n
1 , A

n
2 , . . .) given Hn−1 is as follows:
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• for all k ≥ 1, pn(T
n
k ≤ t|hn−1) = 1 − e−εt; exponential random variables Tn

k are mutually
independent and independent of FTn−1 = F(Hn−1);

• for all k ≥ 1, pn(A
n
k ∈ ΓA|hn−1) = p̃n,k(ΓA|xn−1), and, given xn−1, the random elements

An
k are mutually independent and independent of (Ξ0, X1,Ξ1,Θ1, X1, . . . ,Ξn−1,Θn−1) and of

Tn
1 , T

n
2 , . . ..

Finally,
πn(da|hn−1, ξn, u) = δφn(hn−1,ξn,u)(da),

where

φn(hn−1, ξn, u) =
∞∑
k=1

I{τn1 + . . .+ τnk−1 < u ≤ τn1 + . . .+ τnk }αn
k .

As usual, (αn
1 , τ

n
1 , α

n
2 , . . .) = ξn ∈ Ξ denotes the realization of the random element

(An
1 , T

n
1 , A

n
2 , . . .) = Ξn. The ξ0 component plays no role and can be omitted. Note, the func-

tion φn does not depend on hn−1.
Such a strategy means that, after any jump of the controlled process X(·), the decision maker

simulates a Poisson process and applies different randomized actions during the different sojourn
times of that Poisson process. One can say that a Poisson-related ξ strategy is a randomized
switching strategy [8] at random time moments. According to [22, Th.5], for any control strategy

S ∈ Π, there is a Poisson-related ξ-strategy SP such that {ηSn}∞n=1 = {ηSP

n }∞n=1. One can find the
explicit expression of that SP strategy in [23, p.199-200] and also in [22, p.3527]. Now it is clear
that the class of Poisson-related ξ-strategies is sufficient for problem (16). The value of ε > 0 can be
chosen arbitrarily (but the kernels p̃n,k depend on ε). Remember, like every randomized strategy,
Poisson-related ξ-strategy is realizable. Note also that if ε = 0, then the notion of the Poisson-
related strategy transforms to the Markov standard ξ-strategy, because Tn

k ≡ ∞. Similarly, if all
the kernels p̃n,k(·) are identical and degenerate, then we actually deal with a stationary standard
ξ-strategy. As was mentioned, π-strategies form another sufficient class of strategies because, for
any control strategy S ∈ Π, there is a π-strategy Sπ such that {ηSn}∞n=1 = {ηSπ

n }∞n=1 [22, Th.2].
But π-strategies are usually not realizable.

5 Continuous and discrete-time models with the total ex-
pected cost

In this section, we accept that the cost rates cj do not depend on n, the jump number.
Since Poisson-related ξ-strategies are sufficient for problem (16), let us fix such a strategy SP

and, for each ω ∈ Ω, consider the sequence of realized essential time-moments, states and actions:

(t0 = 0, y0 = x0, b1 = α1
1), (t0 + τ11 , y1 = x0, b2 = α1

2), . . . , (t0 +
∑k0−1

i=1 τ1i , yk0−1 = x0, bk0 = α1
k0
),

(t1, yk0 = x1, bk0+1 = α2
1), (t1 + τ21 , yk0+1 = x1, bk0+2 = α2

2), . . . ,

(t1 +
∑k1−1

i=1 τ2i , yk0+k1−1 = x1, bk0+k1 = α2
k1
),

(t2, yk0+k1 = x2, bk0+k1+1 = α3
1), . . .

(19)

Here k0, k1, . . . ≥ 1 and τn0
△
= 0. The corresponding time moments are naturally ordered:

t1 ∈ (t0 +

k0−1∑
i=1

τ1i , t0 +

k0∑
i=1

τ1i ), t2 ∈ (t1 +

k1−1∑
i=1

τ2i , t1 +

k1∑
i=1

τ2i ), . . .

Recall that tn =
∑n

i=1 θi denote the realized jump moments, and τnk are the realized exponential
random variables, the components of ξn. If tn is the last jump moment (the state xn is absorbing)
then kn = ∞: the tail of the introduced sequence is

(tn, yk0+...+kn−1 = xn, bk0+...+kn−1+1 = αn+1
1 ),

(tn + τn+1
1 , yk0+...+kn−1+1 = xn, bk0+...+kn−1+2 = αn+1

2 ),

. . . . . .
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Using these sequences, the objective (14) can be represented as

W j(SP ) =
∞∑

m=0

ESP

γ [cj+(Ym, Bm+1)/(qYm(Bm+1) + ε)] (20)

+
∞∑

m=0

ESP

γ [cj−(Ym, Bm+1)/(qYm(Bm+1) + ε)].

To show this, note first that, for fixed n ∈ N and for Tn−1 < ∞,

ESp

γ

[∫
(Tn−1,Tn]∩R+

∫
A

πn(da|Hn−1,Ξn, t− Tn−1)c
j+(Xn−1, a)dt

]
(21)

= ESp

γ

K0+K1+...+Kn−1−1∑
m=K0+K1+...+Kn−2

cj+(Ym, Bm+1)T̂m−(K0+K1+...+Kn−2)+1

 ,

where K−1 = 0; for l = 1, 2, . . . ,Kn−1

T̂l =

{
Tn
l , if 1 ≤ j < Kn−1;

Θn − (Tn
1 + Tn

2 + . . .+ Tn
Kn−1−1), if j = Kn−1

= min{Tn
l , Θn − (Tn

1 + Tn
2 + . . .+ Tn

l−1)}

and Tn
0 = 0. As usual, the capital letters Kn−1, Ym, Bm+1, T

n
l ,Θn denote the random elements

whose realizations were denoted as kn−1, ym, bm+1, τ
n
l , θn. For l = 1, 2, . . . consider

ESp

γ

[
cj+(Yl+K0+K1+...+Kn−2−1, Bl+K0+K1+...+Kn−2)T̂lI{l ≤ Kn−1}|Gl

]
,

where Gl = F(Hn−1) ∨ F(An
1 , T

n
1 , . . . , A

n
l ). Note that Yl+K0+K1+...+Kn−2−1 = Xn−1,

Bl+K0+K1+...+Kn−2 = An
l and I{l ≤ Kn−1} = I{Θn ≥ Tn

1 + Tn
2 + . . .+ Tn

l−1}. For fixed values of
Xn−1 = xn−1, A

n
1 = αn

1 , T
n
1 = τn1 , . . ., A

n
l = αn

l , under the condition Θn ≥ τn1 +τn2 + . . .+τnl−1, the

random variables ∆Θ = Θn − (τn1 + τn2 + . . .+ τnl−1) and Tn
l have densities qxn−1(α

n
l )e

−qxn−1
(αn

l )z

(when z ≤ Tn
l and assuming qxn−1(α

n
l ) > 0) and εe−εz correspondingly. Therefore (also in the

case qxn−1
(αn

l ) = 0) the conditional expectation ESP

γ

[
T̂lI{l ≤ Kn−1}|Gl

]
equals the expectation

of the minimum of two independent exponential random variables:

ESP

γ

[
cj+(Yl+K0+K1+...+Kn−2−1, Bl+K0+K1+...+Kn−2)T̂lI{l ≤ Kn−1}|Gl

]
= cj+(Xn−1, A

n
l )

1

qXn−1(A
n
l ) + ε

,

and the expression (21) equals

ESp

γ

K0+K1+...+Kn−1−1∑
m=K0+K1+...+Kn−2

cj+(Ym, Bm+1)/(qXn−1(Bm+1) + ε)

 .

The desired formula (20) follows.
The sequence

Mω = (y0, b1, y1, b2, . . . , ym, bm+1, ym+1, . . .)

is in fact a trajectory of a discrete-time Markov decision process. Indeed, for any ym ∈ X,
bm+1 ∈ A, the value of ym+1 is the realization of the random element with distribution

Q(Γ|ym, bm+1) =
q(Γ \ {ym}|ym, bm+1) + εI{Γ ∋ ym}

qym(bm+1) + ε
, Γ ∈ B(X), m ∈ N.

This discrete-time Markov decision process is denoted as M, and the histories, strategical measures
etc, relevant to M, are usually equipped with the left upper index M.
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For each m ∈ N ∪ {0}, having in hand the history Mhm = (y0, b1, y1, . . . , bm, ym) in M, one
can recalculate the values of n ≥ 1 and k ≥ 1 such that

(t0 = 0, y0 = x0, b1 = α1
1), (t0 + τ11 , y1 = x0, b2 = α1

2), . . . , (t0 + τ1k0−1, yk0−1 = x0, bk0 = α1
k0
),

(t1, yk0 = x1, bk0+1 = α2
1), (t1 + τ21 , yk0+1 = x1, bk0+2 = α2

2), . . . ,

(t1 + τ2k1−1, yk0+k1−1 = x1, bk0+k1 = α2
k1
), (t2, yk0+k1 = x2, bk0+k1+1 = α3

1), . . . ,

(tn−1 + τnk−2, ym−1 = xn−1, bm = αn
k−1), (tn−1 + τnk−1, ym = xn−1) (if ym = ym−1; then k ≥ 2),

or

(t0 = 0, y0 = x0, b1 = α1
1), (t0 + τ11 , y1 = x0, b2 = α1

2), . . . , (t0 + τ1k0−1, yk0−1 = x0, bk0 = α1
k0
),

(t1, yk0 = x1, bk0+1 = α2
1), (t1 + τ21 , yk0+1 = x1, bk0+2 = α2

2), . . . ,

(t1 + τ2k1−1, yk0+k1−1 = x1, bk0+k1 = α2
k1
), (t2, yk0+k1 = x2, bk0+k1+1 = α3

1), . . . ,

(tn−1 + τnkn−1−1, ym−1 = xn−1, bm = αn
kn−1

), (tn, ym = xn) (if ym ̸= ym−1; then k = 1).

Figure 1: Two scenarios illustrating the construction and the connection between the histories
Mhm and the trajectories of the CTMDP:
(a) m = 6; Mh6 = (y0, b1, . . . , y6); n(

Mh6) = 4, k(Mh6) = 0;
(b) m = 4; Mh4 = (y0, b1, . . . , y4); n(

Mh4) = 3, k(Mh4) = 1.

To do this, one should simply remember that the value of n (counting the real jumps of the
controlled process X(·)) increases by 1 every time when the next value of ym is different from the
previous value ym−1. More detailed explanations are in [23].
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If we denote as n(Mhm) and k(Mhm) those values of n and k and apply the control strategy
MS in the M model defined by

Mpm+1(·|Mhm) = p̃n(Mhm),k(Mhm)(·|ym),

then the strategical measure P
MS

γ in M coincides with the measure PSP

γ on the space of trajec-

tories Mω, so that

W j(SP ) =
∞∑

m=0

E
MS

γ [cj(Ym, Bm+1)/(qYm
(Bm+1) + ε)], (22)

where E
MS

γ is the mathematical expectation w.r.t. P
MS

γ . These constructions are illustrated on
Figure 1.

Conversely, suppose a Markov control strategy MS in M, defined by Mpm+1(·|ym), is fixed
(m ∈ N ∪ {0}). According to [19, Lemma 2], for an arbitrary strategy in M, there is a Markov
strategy such that the objectives (22) coincide for any measurable function cj , so that we don’t
loose the generality being restricted to Markov strategies. Firstly, we construct the equivalent, in
the sense of (22), strategy in the original continuous-time model, which is a little more general
than Poisson-related, namely, history-dependent. That means, the space Ξ = (R × A)∞ is the
same, but the kernels p̃n,k may depend on hn−1, not only on xn−1. The histories hn in this case
look similarly to the case of a standard Poisson-related strategy. For any such history

hn−1 = (ξ0, x0, ξ1, θ1, x1, . . . , ξn−1, θn−1, xn−1), n = 1, 2, . . .

one can build the corresponding history Mhm inM, using the formulae (19), where the last element

is (tn−1 =
∑n−1

i=1 θi, ym = xn−1). The corresponding value of m is denoted as m(hn−1) ∈ N ∪ {0}.
It remains to put

p̃n,k(·|hn−1) =
Mpm(hn−1)+k(·|ym(hn−1)), k = 1, 2, . . .

to obtain the history-dependent Poisson-related strategy in the original continuous-time model

with the strategical measure coincident with P
MS

γ on the space of trajectories Mω. For that

history-dependent strategy, we take the (standard) Poisson-related strategy SP leading to the

same sequence of the detailed occupation measures {ηSP

n }∞n=1 (see Section 4). As a result, we
obtain equality (22) valid for any measurable function cj .

To summarise, for any Poisson-related strategy SP , there is a Markov strategy MS in M (and
conversely, for any Markov strategy MS in M, there is a Poisson-related strategy SP ) such that
equality (22) is valid. Therefore, solving problem (16) is equivalent to solving the discrete-time
problem

∞∑
m=0

E
MS

γ [c0(Ym, Bm+1)/(qYm(Bm+1) + ε)] → inf
MS are Markov in M

(23)

subject to
∞∑

m=0

E
MS

γ [cj(Ym, Bm+1)/(qYm(Bm+1) + ε)] ≤ dj , j ∈ J.

Remember also that, if the total transition rate qx(a) is strictly separated from zero (e.g., one is
dealing with the discounted cost model), then one can restrict himself with the Markov standard
ξ-strategies which are Poisson-related with ε = 0: see Section 4. All the reasoning in the current
section applies in this special case.

Now all the theory, developed for the discrete-time Markov decision processes, can be used for
solving problem (16). Without intention to provide an exhaustive survey, let us mention several
special cases.

1. If J = ∅ (the case of the unconstrained optimization) and c0(·) ≥ 0, then, under appropriate
compactness-continuity conditions, there is an optimal non-randomized stationary strategy
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in M [3, Cor.9.17.2]. That strategy gives rise to the optimal Poisson-related strategy with
the degenerate identical stochastic kernels p̃n,k, which in fact is a stationary Markov standard
ξ-strategy. The standard dynamic programming approach applies if J = ∅ [3, 7, 14]. Let
us remind that in general, stationary strategies are not sufficient for solving optimal control
problems [21, §2.2.11].

2. If J ̸= ∅ is finite then the convex analytic approach to problem (23) leads to the linear
program on the space of (total) occupation measures on X×A

µ
MS(Γ) =

∞∑
m=0

P
MS

γ ((Ym, Bm+1) ∈ Γ).

One can find the details in [4, 14]. For example, under appropriate conditions, if one succeeds
to find a solution to that linear program, then it is possible to construct the so called induced
(stationary randomized) strategy in M solving problem (23) [4, Th.5.2]. That strategy again
gives rise to the optimal Poisson-related strategy solving problem (16).

3. For the case of finite or countable state space X, many results about discounted, absorbing,
and transient constrained models can be found in [1]. See also [6].

4. The Borel discounted model with constraints was studied in [5, 19]. The weight function
technique was demonstrated in [5].

Application of the discrete-time methods to controlled continuous-time models, for instance the
policy iteration in the unconstrained case, appeared already in [15] for simple semi-Markov decision
processes. For a more general model, reducing to the discrete-time case was described in [27], again
in the framework of the unconstrained model and dynamic programming approach. Here, actions
in the discrete-time model were A-valued functions. For the multiple discounted objectives, such
a reduction was developed in [8, 9] using the concept of occupation measures. Here, actions in the
discrete-time model were just the original actions from A.

6 Conclusion

In the recent decades, many authors provided solutions to continuous-time Markov decision pro-
cesses in the form of (relaxed) π-strategies. As is known, such strategies are usually not realizable
on practice. On the other hand, simple realizable randomized strategies, corresponding to the case
Ξ = A and called Markov standard ξ-strategies in the current paper, are not sufficient for solving
optimal control problems. Even their history-dependent modifications are not sufficient. Moreover,
such strategies do not fit the definition of a strategy accepted in many articles and books.

In the current paper, following [22], we introduced the most wide class of π-ξ-strategies which
makes it possible to study the classical continuous-time Markov decision processes as well as the
exponential semi-Markov decision processes, working with one unified model. Figure 2 illustrates
the concepts of sufficiency and realizability: the second sufficient class of strategies, that is, Poisson-
related strategies, are realizable. Note that working in the space of π-strategies, or in the space
of Poisson-related strategies, or even in the general space of all π-ξ-strategies, leads to the same
optimal values of the objectives. The details can be found in [22], see also the end of Section 4.
The goal of the current paper was to investigate in depth the idea of realizability and emphasize
the class of Poisson-related strategies which is simultaneously realizable and sufficient. Moreover,
when looking for the best Poisson-related strategy, one can invoke all the methods developed for
discrete-time Markov decision processes. Note that the objective functionals are total undiscounted
losses, and absolutely no conditions were imposed on the cost and transition rates.

In the framework of games, realizable solutions look problematic. (See [24, Th.10.8, 10.11].)
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Figure 2: Overview of sufficient and realizable strategies.

7 Appendix

Lemma 1 Suppose (E, ρ) is a complete separable metric space and let the set Ed = {e1, e2, . . .} ⊆
E be dense in E. Let P be a probability measure on E. If, for all ei, k ∈ N, P

(
O
(
ei,

1
k

))
∈ {0, 1},

then P is a Dirac measure. Here O
(
ei,

1
k

)
=
{
e ∈ E : ρ(e, ei) <

1
k

}
is an open ball.

Proof. Collection of the balls
{
O
(
ei,

1
k

)
: i, k ∈ N

}
is a base of the topology in E generated by

the metric ρ. The formulated property of the P measure implies that P (B) ∈ {0, 1} for every open
set B ⊆ E. Hence P is a Dirac measure. 2

Proof of Theorem 1. We will show that the following statements are equivalent.

(a) A control strategy S is realizable for (hn−1, ξn) on the interval (tn−1, Tn] ̸= ∅.

(b) There is a complete probability space (Ω̃, F̃ , P̃ ) and a measurable (with respect to (u, ω̃) )
process A(·) on R+×Ω̃ with values inA such that, for almost all u ∈ R+, for each ΓA ∈ B(A),
P̃ (A(u) ∈ ΓA) = πn(ΓA|hn−1, ξn, u) and, for each θ ∈ R+, for every bounded measurable
function q̂(·) on A, the integral

∫
(0,θ]

q̂(A(u))du is degenerate (not random), that is, equals

a constant P̃ -a.s.

(c) For almost all u ∈ R+, πn(·|hn−1, ξn, u) = δφ(u)(·) is a Dirac measure, where φ(·) is an
A-valued measurable function on R+.

(d) There is a complete probability space (Ω̃, F̃ , P̃ ) and a measurable (with respect to (u, ω̃) )
process A(·) on R+ × Ω̃ with values in A such that
– for almost all u ∈ R+, for each ΓA ∈ B(A), P̃ (A(u) ∈ ΓA) = πn(ΓA|hn−1, ξn, u) and
– for each bounded measurable function q̂(·) onA, the integrals

∫
I1
q̂(A(u))du and

∫
I2
q̂(A(u))du

are independent for any bounded non-overlapping intervals I1, I2 ⊂ R+.

Let us show that (a) implies (b).
Suppose the total jump rate q̂(a) is an arbitrary measurable bounded function. Then, ac-

cording to item (a) of Definition 3, for almost all u ∈ R+, q̂(π, u) = Ẽ[q̂(A(u, ω̃))], where
q̂(π, u) =

∫
A
q̂(a)πn(da|hn−1, ξn, u). Therefore, according to item (b) of Definition 3, the cu-

mulative distribution function of the sojourn time Θn, given by∫
(0,θ]

Gξ,q̂
n (X, hn−1, ξn, u)du = 1− e−

∫
(0,θ]

q̂(π,u)du = 1− e
−Ẽ

[∫
(0,θ]

q̂(A(u,ω̃))du
]

for each θ < ∞,

17



must coincide with Ẽ
[
1− e−

∫
(0,θ]

q̂(A(u,ω̃))du
]
, that is, we have

e
−Ẽ

[∫
(0,θ]

q̂(A(u,ω̃))du
]
= Ẽ

[
e−

∫
(0,θ]

q̂(A(u,ω̃))du
]
.

Since function e−z is strictly convex, we conclude that, for each θ ∈ R+, the integral
∫
(0,θ]

q̂(A(u, ω̃))

×du is not random. Therefore, assertion (a) implies (b).
Let us prove that (b) implies (c).
Suppose πn(·|hn−1, ξn, s) is not a Dirac measure on a subset of a positive Lebesgue measure,

that is, on a subset of a finite interval (0, t̂] ⊂ R+ having a positive Lebesgue measure. The goal
is to show that assertion (b) is violated. We are going to apply Lemma 1 to E = A, where A has
been equipped with a compatible metric ρ. Below, O(a, ε) = {b ∈ A : ρ(a, b) < ε} is an open ball.
If for any em ∈ Ed, for any k ∈ N, the set

{
t ∈ (0, t̂] : πn(O(em, 1

k )|hn−1, ξn, t) ∈ (0, 1)
}
is null,

then the set{
t ∈ (0, t̂] : ∃ em ∈ Ed, ∃ k ∈ N : πn(O(em,

1

k
)|hn−1, ξn, t) ∈ (0, 1)

}
is also null as a countable union of null sets, and therefore, according to Lemma 1, for almost all
t ∈ (0, t̂], πn(·|hn−1, ξn, t) is a Dirac measure. From the obtained contradiction, we conclude that

there are êm ∈ Ed and k̂ ∈ N such that Leb(ΓR) > 0, where

ΓR =

{
t ∈ (0, t̂] : πn(O(êm,

1

k̂
)|hn−1, ξn, t) ∈ (0, 1)

}
. (24)

Now, suppose assertion (b) is valid.

Consider the function q̂(a) = I
{
a ∈ O(êm, 1

k̂
)
}

and the integrals V (t) =
∫
(0,t]

q̂(A(u))du for

t ∈ (0, t̂], which are non-random if assertion (b) is valid. To be more precise, for each rational
t ∈ (0, t̂], there is a number f(t) such that P̃ (V (t) = f(t)) = 1. Hence

P̃ (for all rational t ∈ (0, t̂] V (t) = f(t)) = 1.

Since for each ω̃ ∈ Ω̃ the function V (·) is absolutely continuous, we can extend the definition of
the function f to the whole interval (0, t̂] in such a way that it is also absolutely continuous: it is
sufficient to take an arbitrary ω̃ such that V (t) = f(t) for all rational t ∈ (0, t̂] and extend this
equality for the whole interval t ∈ (0, t̂]. As a result, P̃ (∀t ∈ (0, t̂] V (t) = f(t)) = 1. Therefore,
function f(·) is differentiable everywhere apart from a null set N and

P̃ (Ω̂) = 1, (25)

where

Ω̂ =

{
ω̃ ∈ Ω̃ : q̂(A(t)) = h(t) =

df

dt
for all t ∈ (0, t̂] \Nω̃

}
= {ω̃ ∈ Ω̃ : ∀t ∈ (0, t̂] V (t) = f(t)}.

Here Nω̃ := N
∪
{t : q̂(A(t, ω̃)) ̸= h(t)} and Leb(Nω̃) = 0 for all ω̃ ∈ Ω̃. Below, if necessary, we

extend the function h(·) with values in {0, 1} on the set ΓR ⊂ (0, t̂], defined in (24), in an arbitrary
way. (Remember, q̂(A(t)) ∈ {0, 1}.) For the set

Γ = {(t, ω̃) : t ∈ ΓR, q̂(A(t, ω̃)) = h(t)},

we have

Leb(Γω̃) = Leb({t : t ∈ ΓR, q̂(A(t, ω̃)) = h(t)}) = Leb(ΓR \Nω̃) = Leb(ΓR)

for all ω̃ ∈ Ω̃. Therefore, (25) implies that

Leb× P̃ (Γ) = Leb(ΓR) > 0. (26)
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On the other hand, according to (24), since for almost all t ∈ ΓR,

P̃ (q̂(A(t)) = 1) = P̃

(
A(t) ∈ O

(
êm,

1

k̂

))
= πn

(
O

(
êm,

1

k̂

)
|hn−1, ξn, t

)
∈ (0, 1),

and similarly P̃ (q̂(A(t)) = 0) ∈ (0, 1), we have inequality 0 < Leb × P̃ (Γ) < Leb(ΓR) because
h(·) ∈ {0, 1}. The obtained contradiction confirms that assertion (b) is violated.

We have proved that (b) implies (c).
If statement (c) holds, then one can take Ω̃ = {ω̃} as a singleton with the trivial σ-algebra and

the trivial probability P̃ (Ω̃) = 1. After we put A(s, ω̃) = φ(s), we see that statement (a) holds, as
well as statement (d). (Remember, any two random variables on the trivial probability space are
independent.)

Now suppose statement (d) is valid. For an arbitrary fixed bounded measurable function q̂ on
A and fixed θ ∈ R+, ∫

(0,θ]

q̂(A(u))du =

k∑
i=1

∫
(ti,ti+1]

q̂(A(u))du,

where ti =
(i−1)θ

k and k ∈ N is a fixed number. Since the integrals
∫
(ti,ti+1]

q̂(A(u))du are indepen-

dent from each other, the variance of
∫
(0,θ]

q̂(A(u))du with respect to P̃ satisfies equality

V ar

(∫
(0,θ]

q̂(A(u))du

)
=

k∑
i=1

V ar

(∫
(ti,ti+1]

q̂(A(u))du

)
.

However,

V ar

(∫
(ti,ti+1]

q̂(A(u))du

)
≤ Ẽ

(∫
(ti,ti+1]

q̂(A(u))du

)2
 ≤

(
sup
a∈A

|q̂(a)| θ
k

)2

,

so that

V ar

(∫
(0,θ]

q̂(A(u))du

)
≤

θ2 (supa∈A |q̂(a)|)2

k
.

Since this inequality is valid for each k ∈ N,

V ar

(∫
(0,θ]

q̂(A(u))du

)
= 0

and the integral
∫
(0,θ]

q̂(A(u))du is not random. Statement (b) holds true. The proof is competed.
2
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