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SUMMARY 32 

 

Purpose: Longitudinal data arises when repeated measurements are taken on the same 34 

individuals over time. Inference about between group differences of within-subject change 

is usually of interest. This statistical primer for cardiothoracic and vascular surgeons aims to 36 

provide a short and practical introduction of biostatistical methods on how to analyse 

repeated measures data. 38 

 

Methods: Several methodological approaches for analysing repeated measures will be 40 

introduced, ranging from simple approaches to advanced regression modelling. Design 

considerations of studies involving repeated measures are discussed and the methods 42 

illustrated with a dataset measuring coronary sinus potassium in dogs after occlusion. 

 44 

Conclusion: Cardiothoracic and vascular surgeons should be aware of the myriad of 

approaches available to them for analysing repeated measures data, including the relative 46 

merits and disadvantages of each. It is important to present effective graphical displays of 

the data, and to avoid arbitrary cross-sectional statistical comparisons. 48 

 

Key words: statistics; repeated measurements; serial measurements; longitudinal data 50 

 

  52 
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INTRODUCTION 

Repeated measures data—also known as longitudinal data and serial measures 54 

data—are routinely analysed in many studies [1]. The data can be collected both 

prospectively and retrospectively, allowing for changes over time and its variability within 56 

individuals to be distinguished; for example, echocardiographic measurements recorded at 

different follow-up times after allograft implantation, or Interleukin-6 measured in rats at 58 

pre-specified times following cardiopulmonary bypass. The guidelines for reporting 

mortality and morbidity after cardiac valve interventions also propose the use of 60 

longitudinal data analysis for repeated measurement data in patient undergoing 

cardiovascular surgery [2]. 62 

The focus of this Statistical Primer will be on measurements repeatedly recorded 

over time, although repeated measures can occur in other circumstances, for example when 64 

the conditions are changed (e.g. treatment) and the same patients are measured under 

each experimental condition. Unlike measurements taken on different patients, repeated 66 

measures data, however, are not independent. In other words, repeated observations on 

the same individual will be more similar to each other than to observations on other 68 

individuals. This necessitates statistical methodology that can account for this dependency. 

 70 

DESIGN CONSIDERATIONS 

Balanced versus unbalanced data 72 

When subjects are measured at a fixed number of time points that are common to 

all subjects, then the data are said to be balanced. For example, rats might be tested at 74 

times 0, 2-hours, 6-hours, 12-hours, and 24-hours. In some designed studies, these 

measurements may be mistimed, e.g. in human studies where patients are delayed 76 

returning to clinic for scheduled follow-up appointments. In some observational studies, i.e. 

naturalistic cohort studies, measurement times will often vary between subjects and can 78 

vary substantially in the number of measurements recorded. Moreover, the patients may 

have different durations of follow-up observation for various reasons, and may be censored 80 

due to terminal events. This would be classed as unbalanced data, and precludes the use of 

certain statistical methodologies. For balanced and unbalanced measurements, the datasets 82 

are often stored in so-called ‘wide format’ (Table S1a) and ‘long format’ (Table S1b), 

respectively.  84 
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Missing data 

Missing data are not uncommon in longitudinal outcome studies. For example, if a 86 

patient fails to attend a scheduled appointment, then measurements cannot be taken, and 

the observation is deemed missing or incomplete. Approaches to handling missing data 88 

include complete-case analysis, i.e. deleting patients with one or more missing 

measurement values; last observation carried forward (LOCF) or interpolation methods; and 90 

other imputation techniques. Assumptions about the mechanism leading to missing data 

dictates the appropriateness of different techniques; however, in general it is widely 92 

accepted that simple techniques such as complete-case analysis and LCOF lead to serious 

bias, and therefore should be avoided. Alternative methods are discussed elsewhere [3]. 94 

 

METHODOLOGY 96 

Two-stage methods 

For balanced data, the comparison of treatments might be done by performing 98 

separate statistical tests at each time point (Figure 2A). However, this approach is 

inappropriate as it often fails to address relevant research questions and is subject to 100 

statistical deficiencies such as ignoring that observations on a given subject are likely to be 

correlated, and multiple testing [4]. Additionally, the accompanying presentation is 102 

frequently inadequate [5], as illustrated in the example shown in Figure 2A. One alternative 

approach is to reduce the data for each subject to a single meaningful statistic, which are 104 

then analysed using standard methods for independent groups, e.g. the independent 

samples t-test [4]. The choice of statistic will depend on the data and the study question, in 106 

particular whether the data display a growth-like pattern or a peaked-like pattern; see Table 

S2 for examples. Even when not used for the primary analysis, such reduced data summary 108 

statistics can be useful, yet it must still be recognised that there might be some information 

loss with this approach. 110 

Repeated measures analysis of variance (RM-ANOVA) 

RM-ANOVA can only be applied for balanced data [6]. When there is also a between 112 

group variable (e.g. treatment) the standard RM-ANOVA decomposes the total variation 

into (i) between subject variation due to treatment effect; (ii) time effect; (iii) time-and-114 

treatment effect; and (iv) the residual error variation. This can be leveraged to test different 

hypotheses, respectively: (a) an overall treatment effect; (b) differences in outcomes over 116 
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time; (c) a different effect of treatment over time. The latter derives from the interaction 

between time and treatment, which if zero would imply effects are parallel through all time 118 

points. In addition to the usual assumption imposed on ANOVA, RM-ANOVA depends on the 

assumption of sphericity. Effectively, this can be considered as being equivalent to equal 120 

variability of measurements at each time (i.e. homogeneity) and equal correlations between 

any pair of time points (e.g. corr(𝑦tim𝑒1
, 𝑦time2

) ≈ ⋯ ≈ corr(𝑦time1
, 𝑦time3

) for 122 

measurements 𝑦 recorded at times 1, 2, 3, …). This assumption is restrictive for longitudinal 

data, since measurements taken closely together are often more correlated than those 124 

taken at larger time intervals [7]. Violation of this assumption typically results in an inflated 

type I error rate and can bias the interaction effect [7]. If used, it is essential that this 126 

assumption is checked and reported. Typically, this is achieved through Mauchly’s epsilon 

test; however, this test is known to have low power. When sphericity is violated, there are 128 

several corrections to the degrees of freedom of the F-test that can be used [8], including 

Greenhouse-Geisser and Huynh-Feldt methods. 130 

Linear mixed models (LMMs) 

Linear mixed models are extensions of more conventional linear models. Let 𝑌𝑖𝑗 132 

denote the observed outcome measured on subject 𝑖 (𝑖 = 1, … , 𝑛) at time 𝑡𝑖𝑗 (𝑗 = 1, … , 𝑛𝑖), 

where 𝑛𝑖 is the number of measurements for subject 𝑖. By pooling the data, one can fit a 134 

linear regression model 

𝑌𝑖𝑗 = 𝛽0 + 𝛽1𝑡𝑖𝑗 + 𝜀𝑖𝑗 , 136 

where 𝜀𝑖𝑗 is a measurement error term (or residual), which allows for the outcome to 

randomly vary above or below the mean value for each time point. Here, 𝛽1 represents the 138 

population slope (Figure 1A, black line): the constant effect on the outcome corresponding 

to a one-unit increase in time. LMMs can also be fitted to unbalanced datasets with 140 

irregularly spaced time points (Figure 1B), hence each measurement time (𝑡𝑖𝑗) being 

allowed to be different between subjects in model above. Linear mixed models are 142 

predicated on the idea that each subject has their own mean response profile which 

deviates randomly from the average (overall) trajectory [9]. That is, for each subject 𝑖, we 144 

extend the model above by including a random intercept 𝑏0𝑖 and a random slope 𝑏1𝑖: 

𝑌𝑖𝑗 = (𝛽0 + 𝑏0𝑖) + (𝛽1 + 𝑏1𝑖)𝑡𝑖𝑗 + 𝜀𝑖𝑗 , 146 
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where (𝑏0𝑖 , 𝑏1𝑖) are called  subject-specific random effects, and assumed to follow a zero-

mean multivariate normal distribution and be correlated. An intuitive graphical 148 

representation of this is shown in Figure 1A. Here, 𝛽0 and 𝛽1, averaged across all subjects, 

have the same interpretation, i.e. fixed population-level intercept and slope effects, as for 150 

the simple linear regression model. The combination of fixed and random effects is why we 

refer to this model as a mixed effects model, which are also sometimes referred to as multi-152 

level models, random-effects models, random growth-curve models, etc. As well as allowing 

for subject-specific trajectories, the random effects also ensures that observations within-154 

subjects are more correlated than observations between-subjects, with the case presented 

here allowing for heterogeneity over time. In the above we assumed time was measured 156 

continuously and linearly; however, we might relax this assumption by treating time as 

measured categorically (providing the data are balanced) or through spline functions, which 158 

allow for smooth regression curves that capture nonlinearity [10]. In such cases, we can 

include additional higher-order random effects; the linear model was presented here for 160 

purposes of demonstration. LMMs can also include other adjustment covariates, including 

time-varying covariates. In particular, one might want to adjust for the baseline 162 

measurement of 𝑌 rather than treat it as an outcome at the baseline time point, i.e. before 

treatment intervention [11]. 164 

 

EXAMPLE 166 

As an example, we consider data from Grizzle and Allen [12], who describe a 

laboratory experiment that collected serial measurements of coronary sinus potassium 168 

(CSP) (mEq/L) from four groups of dogs. The groups were: 

• Control group: N=9 untreated dogs with coronary occlusion. 170 

• ECD (3-weeks) group: N=10 dogs given extrinsic cardiac denervation (ECD) 3-weeks 

prior to coronary occlusion 172 

• ECD (0-weeks) group: N=8 dogs treated similarly to above, but given ECD 

immediately prior to coronary occlusion. 174 

• Sympathectomy group: N=9 dogs treated with bilateral thoracic sympathectomy and 

stellectomy three weeks prior to coronary occlusion. 176 
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The response variable was recorded at times 1, 3, 5, 7, 9, 11, and 13 minutes. Before we 

analyse the data, we inspect the data graphically (Figure 2B), where we observe a growth-178 

like trend and substantial between-subject heterogeneity. 

If the primary scientific objective was to describe changes in CSP over the 12-minute 180 

follow-up period and determine whether the pattern of change differed between groups, 

then we could fit a linear mixed model including treatment effect and time as a continuous 182 

covariate with an interaction term to capture non-parallel growth trends. Despite Figure 2B 

indicating some non-linearity towards the end of the study follow-up, we note that we’ve 184 

made a strong assumption of linearity in this example. Fitting this model (Table 2) indicates 

that there is a significant increase in CSP during follow-up in the control group (i.e. a 186 

significant effect for time; 0.08 [95% CI: 0.05 to 0.12]), and no discernible difference from 

this trend in group ECD (0-weeks) (i.e. non-significant interaction term with time; -0.02 [95% 188 

CI: -0.08 to 0.03]). The ECD (3-weeks) group interaction term is significant (P<0.001), and 

despite not reaching significance, there was a tendency for CSP to be reduced over time in 190 

sympathectomy group (-0.05; 95% CI: -0.10 to 0.00). Moreover, both terms are negative, 

which is consistent with Figure 2B where the time course for these two groups are relatively 192 

flat. We could formally test this using appropriate contrasts. One could also perform post 

hoc tests to establish treatment effect differences at each measurement time (Figure 2A), 194 

but one would need to correct for multiple comparisons (not implemented here). Neither 

group admitted a significant main treatment effect relative to the control group. Code to fit 196 

this model using the R statistical software package are shown in the Appendix. 

Since the data are consistent with a linear growth-like pattern, one might consider 198 

comparing a summary statistic approach. For example, a comparison of the slopes (see 

Table S2) would reveal whether there was a significant difference in the rate of change in 200 

CSP between groups. A Kruskal-Wallis test applied to the 4-groups of slopes suggests a 

significant difference (Table 2, Figure 2C), with the median slopes (first, third quartiles) 202 

being 0.098 (0.086, 0.104), -0.003 (-0.012, -0.002), 0.054 (0.024, 0.125), and -0.009 (-0.021 

to 0.089) in the control, ECD (3-weeks), ECD (0-weeks), and sympathectomy groups, 204 

respectively. 

 206 

DISCUSSION 



 8 

Despite RM-ANOVA being a common choice for analysing repeated measures in the 208 

EJCTS and ICVTS, there are many alternative approaches. Linear mixed models represent the 

most sophisticated of the models discussed, and are more amenable to real-world clinical 210 

data as opposed to highly controlled experimental study designs. Hence, there have been 

calls for some time to abandon less versatile methods [7]. The integration of these model 212 

fitting methods into routine statistical software therefore removes a major barrier to 

applied researchers. Moreover, one can extend mixed models to incorporate more flexible 214 

correlation structures [13], non-continuous outcomes (e.g. binary), and non-linear 

outcomes [14], In some cases, there might be multivariate longitudinal data (multiple 216 

repeated measures outcomes), which may even be correlated with a time-to-event 

outcome, giving rise to so-called joint models [9,15]. On the other hand, two-stage 218 

approaches offer a simpler—both mathematically and intuitively—approach that can 

provide insight into data profiles and complement more rigorous modelling approaches. We 220 

only addressed a subset of the methodological tools available. Other such methods have not 

been discussed here, including generalised estimating equations, MANOVA [7], generalised 222 

least squares [10], and empirical Bayes [8]. 

Despite repeated measures data being routinely collected at follow-up, particularly 224 

in long-term observational studies, the situation of only analysing baseline (preoperative) 

and a single postoperative value—typically the last follow-up measurement—remains 226 

commonplace in the EJCTS and ICVTS, even though this may not be the most appropriate 

method. Whatever the choice of methodology employed, it is essential that the data, study 228 

design, methods, supporting assumptions, and any post hoc analyses are well described and 

justified to facilitate reproducibility, to provide opportunity for readers to critique the 230 

analysis [16], and to avoid misinterpretation due to overlapping terminology [8]. Graphs are 

a highly effective way of summarising and presenting repeated measures data; however, it 232 

is essential that they are presented on common axes scales, appropriately summarised and 

described (e.g. defining any error bars) [4]. Nonetheless, figures such as those shown in 234 

Figure 2A should be avoided. It is important to consider distributional assumptions (e.g. 

normality in the RM-ANOVA) or that the growth-curve is approximately linear if calculating 236 

it as a summary measure. When these assumptions are violated, transformations or 

alternative models might be considered. In addition, we recommend more thought is given 238 

to sample size determination during study design [17]. 
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FIGURE LEGENDS 298 

 

Figure 1. Panel A: a graphical representation of a linear mixed effects model. The mean 300 

trajectories of two hypothetical patients (A and B; coloured lines) and the mean trajectory 

averaged over the complete sample of patients (black line) are shown. Panel B: longitudinal 302 

study dataset exploring the long-term profile of rate of left ventricular mass regression with 

time after aortic valve replacement with a stentless or a homograft valve. Smoothed lines 304 

represent average profiles stratified by valve type, estimated using the LOESS method. Data 

originally analysed in Lim et al. [19]. 306 

 

Figure 2. Panel A: a so-called ‘dynamite plot’ showing the mean (height of bars) longitudinal 308 

measurement values for different treatment groups at each measurement time, together 

with the standard deviation (SD; error bar: ± 1 SD). Kruskal Wallis rank-sum tests comparing 310 

the outcome between the four treatment groups: # = P<0.1, * = P<0.05, ** = P<0.01, *** = 

P<0.001. Panel B: serial measurements of coronary sinus potassium (CSP) (mEq/L) from four 312 

groups of dogs. Each translucent line represents a single dog, whilst line colours denote 

treatment group. Mean profiles (bold lines) are overlaid to summarise the average group 314 

trajectories. Panel C: a graphical display of the summary statistic slopes method, estimated 

by fitting separate linear regression lines to each dog (cf. Panel A) and extracting the 316 

estimated slopes. The slopes for each treatment group are summarised here as boxplots. 
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Table 1. Methodologies for analysing repeated measures data, their advantages and disadvantages, and some software options. 318 

Method Advantages Disadvantages Software 

Two-stage 
methods 

• Analysis is based on familiar univariate 
analysis methods 

• Data summary methods may facilitate 
interpretation, e.g. AUC and rate of 
change are well-understood concepts in 
biomedicine research 

• Multiple summary methods can be used 

• Can be difficult to specify the correct 
summary statistic in advance 

• Reduced data summary statistics are 
relatively less efficient 

• Reduced data summary statistics can lose 
information or fail to capture features of 
the time course 

• Summary methods not readily 
implemented in statistical software, but 
the summary measures are generally 
rudimentary to calculate 

• Missing data can result in sample bias 

• Standard tests for independent groups 
(e.g. t-test, ANOVA, Mann-Whitney U-test, 
Kruskal-Wallis test) are standard in all 
statistics software packages 

• Summary statistics can be calculated ‘by 
hand’ or using a simple programme 
written in a spreadsheet or statistics 
package 

RM-
ANOVA 

• Includes the data at all time points 

• Simple to implement, and conceptually an 
extension of the ubiquitous ANOVA 

• Requires complete data on each subject 

• Depends on restrictive sphericity 
assumption, which is highly questionable 
for longitudinal data 

• Cannot handle mistimed / unbalanced 
measurements 

• Results provide limited information on 
how the groups differ, often requiring post 
hoc analyses 

• SPSS: ‘General Linear Model: Repeated 
Measures’ 

• SAS: PROC GLM 

• R: aov, Anova (in the car1 package), 
ezANOVA (in the ez2 package) 

• Stata: anova 

LMMs • Includes the data at all time points 

• Missing data can be straightforwardly 
handled if missing (completely) at random 

• Allows flexible modelling of the time effect 

• Implementation and complexity of fitting 
is relatively more difficult 

• Assumptions can be harder to assess 

• SPSS: ‘Mixed Models’ 

• SAS: PROC MIXED 

• R: lme (nlme3 package) or lmer (lme44 
package) 

                                                      
1 Fox J, Weisberg S (2011). An R Companion to Applied Regression, Second Edition. Thousand Oaks CA: Sage. 
2 Lawrence MA (2016). ez: Easy Analysis and Visualization of Factorial Experiments. R package version 4.4-0. https://CRAN.R-project.org/package=ez 
3 Pinheiro JC, Bates DM (2000). Mixed-Effects Models in S and S-PLUS. New York: Springer Verlag. 
4 Bates D, Maechler M, Bolker B, Walker S (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67(1), 1-48. 
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• Permits unbalanced data with greatly 
different numbers of measurements per 
subject 

• Allows for time-varying covariates 

• Permits estimation of individual trends 

• Can be augmented with more complex 
covariance structures that captures more 
features of the correlation patterns, and 
hierarchically 

• Stata: xtmixed 
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Table 2. Results from analysis of laboratory experiment longitudinal data. 320 

Linear mixed effects modela 

 Estimate SE 95% CI P 

Intercept 4.05 0.17 (3.72 to 4.37) <0.001 

Group     

    ECD (3-weeks) -0.44 0.23 (-0.90 to 0.03) 0.064 

    ECD (0-weeks) -0.33 0.24 (-0.82 to 0.17) 0.19 

    Sympathectomy -0.32 0.23 (-0.80 to 0.15) 0.18 

Time (mins) 0.08 0.02 (0.05 to 0.12) <0.001 

Time * ECD (3-weeks) -0.09 0.03 (-0.14 to -0.04) <0.001 

Time * ECD (0-weeks) -0.02 0.03 (-0.08 to 0.03) 0.43 

Time * Sympathectomy -0.05 0.03 (-0.10 to 0.00) 0.054 

Summary statistic (Kruskal-Wallis rank-sum tests) 

 df 𝝌𝟐 P 

Slope 3 8.53 0.036 

Final value 3 11.14 0.011 

Notation: CSP–coronary sinus potassium; SE–standard error; CI–confidence interval; ECD–

extrinsic cardiac denervation; df–degrees of freedom; 𝜒2–chi-square statistic. 322 

a Fitted by restricted maximum likelihood. 
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