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ABSTRACT 27 

Methodological development and clinical application of joint models of longitudinal and 28 

time-to-event outcomes have grown substantially over the past two decades. However, much of this 29 

research has concentrated on a single longitudinal outcome and a single event time outcome. In 30 

clinical and public health research, patients who are followed up over time may often experience 31 

multiple, recurrent, or a succession of clinical events. Models that utilise such multivariate event 32 

time outcomes are quite valuable in clinical decision-making. We comprehensively review the 33 

literature for implementation of joint models involving more than a single event time per subject. 34 

We consider the distributional and modelling assumptions, including the association structure, 35 

estimation approaches, software implementations, and clinical applications. Research into this area 36 

is proving highly promising, but to-date remains in its infancy. 37 

 38 

Keywords: Joint models; multivariate data; longitudinal data; time-to-event data; recurrent events 39 

40 
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1. INTRODUCTION 41 

In clinical studies, measurements are often recorded about subjects at each follow-up visit; 42 

these response data give rise to longitudinal data. Subsequently, times to one or more clinically 43 

significant events are also recorded. The longitudinal data might be censored by one of these clinical 44 

events; for example, if the event was death or treatment failure. A growing field of research has 45 

emerged that seeks to jointly model these two outcomes —so-called joint modelling. When the 46 

outcome processes are correlated, joint modelling has been empirically demonstrated to lead to 47 

improved efficiency and reduced bias [1–3], improved prediction [4], and be applicable to outcome 48 

surrogacy [5]. The literature is extensive, with comprehensive reviews given by Hogan and Laird [6], 49 

Tsiatis and Davidian [7], Diggle et al. [8], Sousa [9], Proust-Lima et al. [10], and Gould et al. [11]. 50 

The classical joint model, from which most research has spawned, involves a single 51 

continuous longitudinal outcome and a single right-censored event time. Notwithstanding this 52 

simplicity, the joint modelling methodology has been recently extended to generalize both 53 

submodels. For the longitudinal submodel, developments include the incorporation of multiple 54 

outcomes [12], binary [13], count [14], and ordinal [15] outcomes, and extensions of the classical 55 

error and random effects distribution assumptions [16]. For the time-to-event submodel, extensions 56 

have involved the modelling of interval- [17] and left-censored [18] data, discrete event times [19], 57 

competing risks [20], parametric models [21], spline models [22], and subject- and institutional-level 58 

frailty effects [23]. Commensurate with this methodological research, there has been an increase in 59 

use of joint models in a wide –range of clinical settings [23–26] and development of several 60 

mainstream statistical software packages [27–34]. 61 

Due to current trends towards personalized medicine, models that utilise all available 62 

information more efficiently are of considerable value. In health research, patients may often 63 

experience multiple, recurrent, or a succession of clinical events, thus potentially admitting more 64 

than one event time. In this article, we comprehensively review the methodological literature for 65 

joint models involving multivariate event time data. Although the primary focus is on the ubiquitous 66 

shared random effects models, we also describe the growing framework of joint latent class models. 67 

Our review encapsulates multiple events, recurrent events (either in the presence of a terminal 68 

event, or not) and succession of events data. Although competing risks data can also be considered 69 

as multivariate time-to-event data, we do not review these models here as each subject still only 70 

admits a single event time. Furthermore, competing risks joint models have been extensively 71 

reviewed elsewhere in the joint model literature [35]. 72 

2. LONGITUDINAL DATA SUBMODELS 73 



 4 

Let 𝑌𝑖𝑘(𝑡𝑖𝑗𝑘) denote the 𝑗-th observed value of the 𝑘-th longitudinal outcome for subject 𝑖, 74 

measured at time 𝑡𝑖𝑗𝑘 , for 𝑖 = 1, … , 𝑁, 𝑘 = 1, … , 𝐾, and 𝑗 = 1, … , 𝑛𝑖𝑘 . In some cases, only a single 75 

longitudinal outcome (i.e. 𝐾 = 1) is considered, which greatly simplifies the model. We will consider 76 

both univariate (𝐾 = 1) and multivariate (𝐾 > 1) longitudinal data in this review, depending on the 77 

methodology presented in each article, but exclusively reserve the subscript 𝑘 to denote 78 

multivariate cases. 79 

In the framework of joint models involving more than one event time, the corresponding 80 

longitudinal measurements have predominantly been continuous. However, some models have 81 

considered binary and count data (Table 1). As noted earlier, some models have also considered 82 

multiple longitudinal outcomes. For a full review of joint models involving multivariate longitudinal 83 

outcomes, see Hickey et al. [12]. Król et al. [36] also considered left-censored longitudinal 84 

measurements, which is pertinent to biomarker measurements that involved minimum detection 85 

thresholds. There are a plethora of modelling approaches for multivariate longitudinal data [37]. In 86 

most cases, a generalized linear mixed model (GLMM) [38] is specified. Namely, 87 

 ℎ𝑘{𝔼[𝑌𝑖𝑘(𝑡𝑖𝑗𝑘)]} =  𝜇𝑖𝑘(𝑡𝑖𝑗𝑘), (1) 

where ℎ𝑘(⋅) denotes a known one-to-one link function for the 𝑘-th outcome, 𝔼 is the expectation 88 

operator, and 𝜇𝑖𝑘(⋅) is the linear predictor: 89 

𝜇𝑖𝑘(𝑡𝑖𝑗𝑘) = 𝑋𝑖𝑘
(1)

(𝑡𝑖𝑗𝑘)
⊤

𝛽𝑘
(1)

+  𝑊1𝑖
(𝑘)

(𝑡𝑖𝑗𝑘), (2.1) 

where   

𝑊1𝑖
(𝑘)

(𝑡𝑖𝑗𝑘) =  𝑍𝑖𝑘(𝑡𝑖𝑗𝑘)
⊤

𝑏𝑖𝑘, (2.2) 

and 𝑋𝑖𝑘
(1)

(𝑡𝑖𝑗𝑘) and 𝑍𝑖𝑘(𝑡𝑖𝑗𝑘) are vectors of (possibly time-varying) covariates for subject 𝑖 associated 90 

with fixed and random effects respectively, which can vary by outcome, 𝛽𝑘
(1)

 is a vector of fixed 91 

effects parameters for the 𝑘-th outcome, and 𝑏𝑖𝑘 is a vector of subject-specific random effects for 92 

the 𝑘-th outcome. We denote the stacked vector of subject-specific random effects for all 𝐾 93 

outcomes by 𝑏𝑖 = (𝑏𝑖1
𝑇 , 𝑏𝑖2

𝑇 , … , 𝑏𝑖𝐾
𝑇 )

𝑇
. Some authors have considered including spline terms in 94 

𝑋𝑖𝑘
(1)

(𝑡𝑖𝑗𝑘) to capture complex functional forms between the outcome and measurement time 95 

[25,39]. On the other hand, Dantan et al. [40] specified a segmented GLMM with a random change-96 

point, which was intrinsically linked to the time-to-event submodel through one of the transition 97 

hazard functions. Random change-points were shown to be particularly useful for capturing changes 98 

in the longitudinal trajectory of the outcome following a clinical (pre-)diagnosis. 99 
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Generally, for continuous longitudinal outcomes, independent and identically distributed 100 

normal errors are assumed. However, extensions to robust skew-normal distributed errors have also 101 

been proposed [39]. Subject-specific random effects are generally modelled as being multivariate 102 

normally distributed, reducing to a normal distribution in the case of a random-intercepts only 103 

model. Different modelling approaches have also been considered. Notably, Huang et al. [41] 104 

adopted discrete independent probability distributions. Njagi et al. [14] considered over-dispersed 105 

data, and proposed conjugate Beta and Gamma random effects for binary and count outcomes 106 

respectively. Several authors who considered multivariate longitudinal outcomes have proposed 107 

capturing the cross-sectional association between repeated measures through a correlated errors 108 

structure rather than a correlated random effects structure, i.e. 𝑌𝑖𝑘(𝑡𝑖𝑗) =  𝜇𝑖𝑘(𝑡𝑖𝑗) + 𝜀𝑖𝑗𝑘 , with 109 

𝜀𝑖𝑗 . ∼ 𝑁𝐾(0, Σ) and 𝑏𝑖𝑘 ∼ 𝑁𝑣𝑘
(0, Ψ𝑘) [39,42–44]. This allows for separate estimation of correlation 110 

between repeated measures and between different longitudinal outcomes. 111 

In some cases, a semiparametric paradigm has been adopted. Within the Bayesian 112 

framework, Tang et al. [44] and Tang and Tang [39] assumed a Dirichlet process prior for the random 113 

effects, removing the need to assume a fixed parametric form, which is therefore robust to potential 114 

misspecification. Li et al. [45] suggested a time-dependent vector of random effects, which are 115 

independently and identically distributed according to an unknown multivariate distribution. The 116 

longitudinal submodels are also specified as marginal proportional rates models - namely, as (1) with 117 

ℎ𝑘(. ) given by the exponential link function, and linear link functions are also suggested [46]; the 118 

time-dependent fixed effects are absorbed into an unspecified smooth baseline function. 119 

Following Henderson et al. [47], an additional autocorrelation can be incorporated into the 120 

model by augmenting (2.2) to include a zero-mean stationary Gaussian process term. However, such 121 

models come with a substantially increased computational burden so it is not unexpected that very 122 

few methodological articles have considered this extension [48,49]. Zhang et al. [49], as well as 123 

considering correlation for 𝑊1𝑖
(𝑘)(𝑡) in (2.2), also allowed for correlation of errors within an outcome 124 

over time by letting 𝜀𝑖𝑘 = (𝜀𝑖1𝑘 , … , 𝜀𝑖𝑛𝑘)⊤ have zero-mean multivariate normal distribution with a u-125 

lag correlation function given by 126 

𝜌1𝑘(𝛼1𝑘, 𝑢) = exp{−𝛼1𝑘|𝑢|𝛿},     0 < 𝛿 ≤ 2. 127 

A summary of the longitudinal data submodels used in joint models involving multivariate 128 

time-to-event data is given in Table 1. 129 

3. TIME-TO-EVENT DATA SUBMODELS 130 
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Let 𝑇𝑖𝑔
∗  denote the 𝑔-th event time for the 𝑖-th subject (𝑖 = 1, … , 𝑛). Also, let 𝐶𝑖  be a 131 

censoring time for the subject such that we actually observe 𝑇𝑖𝑔 = min(𝑇𝑖𝑔
∗ , 𝐶𝑖). Typically, 132 

continuous event times are observed. Two exceptions were Huang et al. [41], who considered 133 

discrete event times, and Rouanet et al. [50] who allowed one of the semi-competing event times to 134 

be interval-censored. For each subject 𝑖, let the vector 𝑋𝑖
(2)

(𝑡), which may be time-varying, denote 135 

the observed covariate data, and 𝛽𝑔
(2)

 denote the coefficient parameters associated with these 136 

covariates for the 𝑔-th event time. Similarly, for models involving a third submodel (e.g. a joint 137 

model of longitudinal data, recurrent and terminal events), we will use the notation 𝑋𝑖
(3)

(𝑡) and 138 

𝛽(3), as appropriate. However, in practice, there will be an overlap between baseline measurements 139 

in 𝑋𝑖
(1)(𝑡), 𝑋𝑖

(2)
(𝑡), and 𝑋𝑖

(3)
(𝑡). Specification of the time-to-event model depends on the type of 140 

multivariate event time data and the association structure that gives rise to the joint model. These 141 

are described below and succinctly summarized in Tables 2 and 3. We will denote the association 142 

parameters by 𝛾𝑔, and any extra random effects terms by 𝜃𝑖. 143 

3.1 Multiple events 144 

Multiple (unordered) events occur when more than one event is observed, and interest lies 145 

with all of them. A joint model can be specified to capture the association between a longitudinal 146 

process and multiple failure times; for example, the time to cancer relapse in two separate organs.  147 

Chi and Ibrahim [42] derived a novel yet complex bivariate survival model from first 148 

principles of latent precursor events modelled by a Poisson process. The model accommodates both 149 

zero and non-zero cure fractions, and the survival distribution is given by  150 

𝑆(𝑡𝑖1 , 𝑡𝑖2|𝜃𝑖) = exp {−𝜃𝑖 [∫ 𝜆𝑖1(𝑢)𝐹1(𝑡𝑖1 − 𝑢)𝑑𝑢
𝑡𝑖1

0

+ ∫ 𝜆𝑖2(𝑢)𝐹2(𝑡𝑖2 − 𝑢)𝑑𝑢
𝑡𝑖2

0

]} , 151 

where 𝜃𝑖 is a subject-specific frailty term that follows a positive stable law distribution indexed by 152 

the parameter 𝜌, which accounts for the correlation between the pair of event times, and 𝐹1(𝑡) and 153 

𝐹2(𝑡) are distribution functions for the latent precursors, and later specified as exponential 154 

distributions. A current values parameterization was assumed to link the longitudinal and time-to-155 

event submodels through 156 

𝜆𝑖𝑔(𝑡) = exp {∑ 𝛾𝑔𝑘𝜇𝑖𝑘(𝑡) + 𝑋𝑖
(2)⊤

𝛽𝑔
(2)

𝐾

𝑘=1
} . 157 

It was noted that both the conditional and marginal survival function satisfies the proportional 158 

hazards property so long as the baseline covariates are modelled as per above, and 𝑋𝑖
(2)

 is 159 

independent of time. 160 
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Zhu et al. [43], Tang et al. [44], and Tang and Tang [39] used the more ubiquitous piecewise 161 

constant proportional hazards model for the baseline hazard function, with knots placed at times 162 

𝑣𝑔𝑞  {𝑞 = 1, … 𝑄} for the 𝑔-th time-to-event outcome, such that 0 =  𝑣𝑔0  <  𝑣𝑔1  <  …  <  𝑣𝑔𝑄, 163 

with 𝑣𝑔𝑄 being greater than max(𝑇1𝑔 , … , 𝑇𝑛𝑔); namely 164 

𝜆0𝑔(𝑡) =  ∑ 𝜉𝑞𝑔𝐼(𝑣𝑔,𝑞−1 < 𝑡 ≤ 𝑣𝑔𝑞),

𝑄

𝑞=1

 165 

where 𝐼(⋅) denotes the indicator function, and 𝜉𝑞𝑔 denotes the value of the event-specific hazard 166 

function in the interval (𝑣𝑔,𝑞−1, 𝑣𝑔𝑞] for event 𝑔. The separate event time and longitudinal 167 

submodels are subsequently linked through a current values parameterisation: 168 

𝜆𝑖𝑔(𝑡) = 𝜆0𝑔(𝑡) exp {∑ 𝛾𝑔𝑘𝜇𝑖𝑘(𝑡) + 𝑋𝑖
(2)⊤

𝛽𝑔
(2)

𝐾

𝑘=1
} . 169 

Huang et al. [41] adopted a discrete time hazard model of the form 170 

log (
𝑓𝑖𝑗𝑔

𝑆𝑖𝑗𝑔
) =  𝑋𝑖

(2)
(𝑡𝑗)

⊤
𝛽𝑔

(2)
+ 𝛾𝑔

(1)
𝜂𝑖𝑗 + 𝛾𝑔

(2)
𝜃𝑖 + 𝛾𝑔

(3)
𝜂𝑖𝑗𝑥𝑖

(3)
 , 171 

where 𝑓𝑖𝑗𝑔 = 𝑃[𝑇𝑖𝑔 = 𝑗], 𝑆𝑔𝑖𝑗 = 1 − ∑ 𝑓𝑖𝑗′𝑔
𝑗
𝑗′=1  for discrete times 𝑡𝑗  (𝑗 = 1, … , 𝐽), and 172 

{𝛾𝑔
(1)

, 𝛾𝑔
(2)

, 𝛾𝑔
(3)

} are a set of association parameters. The first discrete random effect, 𝜂𝑖𝑗, links the 173 

longitudinal submodel to the event process by a random effects parameterisation, which includes an 174 

interaction with one of the baseline covariates, 𝑥𝑖
(3)

. The second discrete random effect, 𝜃𝑖, captures 175 

additional association between the multivariate event times, beyond what is predicted by 𝜂𝑖𝑗. An 176 

additional discrete multivariate distributed random effect was included in the multivariate 177 

longitudinal outcome submodel only. 178 

3.2 Recurrent events 179 

Recurrent (ordered) events occur when the same non-terminal event can be observed 180 

multiple times over a follow-up period. Henderson et al. [47] first presented a joint model 181 

compatible with recurrent events data, but this was ultimately simplified to the case of a single 182 

event time (i.e. a time to a single terminal event). 183 

3.2.1 Without a terminal event. The simplest situation is when the recurrent events process 184 

is observed without a terminating process. For example, an epileptic patient can undergo multiple 185 

seizures in a day, and targeted treatments for epilepsy may be dependent on biomarker values [51]. 186 

A joint model of the recurrent events process and longitudinal outcomes data can capture this 187 

dependence. 188 
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Han et al. [51] adopted the general recurrent event model of Peña and Hollander [52] within 189 

a latent class framework, similar to that of Lin et al. [53], with the intensity function defined 190 

according to 191 

𝑟𝑖(𝑡) = 𝜃𝑖𝑟0𝑟(ℰ𝑖(𝑡))𝜌(𝑁𝑖(𝑡−), 𝑎𝑟)𝜓 (𝑋𝑖
(2)(𝑡)⊤𝛽(2)), 192 

where 𝜃𝑖 is a mean-one Gamma distributed frailty term, 𝑟0𝑟(𝑡) denotes the latent class-specific 193 

baseline intensity function (with 𝑟 = 1, … , 𝑅), ℰ𝑖(𝑡) is the ‘effective age’ of subject 𝑖 at time 𝑡, 194 

𝑁𝑖(𝑡−) is the effective number of accumulated events just prior to time 𝑡, 𝜌(⋅, 𝑎𝑟) is an event 195 

accumulation function parameterized by 𝑎𝑟, and 𝜓 (𝑋𝑖
(2)(𝑡)⊤𝛽(2)) is a function of the covariate 196 

linear predictor term, for example 𝜓(𝑥) = exp(𝑥), as in the aforementioned models. The ‘effective 197 

age’ is a predictable process that reflects the effect of interventions after each failure. In the 198 

simplest case, ℰ𝑖(𝑡) = 𝑡, corresponding to a ‘minimal repair’. At the other extreme, the ‘effective 199 

age’ may be reset to zero. The effective number of accumulated events is zero if a successful 200 

intervention is applied just prior to time 𝑡, else it equals the cumulative number of failures. The 201 

function 𝜌(⋅, 𝑎𝑟) captures the effect of recurrent events on the subject, which might be non-linear; 202 

for example, 𝜌(𝑛, 𝑎𝑟) = 𝑎𝑟
𝑛. The model specification is complete once a parametric distribution for 203 

𝑟0𝑟(𝑡) is specified, which can be generalized to multiple families. The association between the 204 

longitudinal and event time processes is captured entirely through the latent class, with the class 205 

membership probabilities modelled according to a multinomial distribution. Although latent class 206 

models are distinct from shared random effects models, they can be considered as semiparametric 207 

analogues. 208 

Njagi et al. [14] considered the Weibull-gamma-normal model for recurrent events. In short, 209 

this is a Weibull regression model conditional on independent random effects 𝑏𝑖 ~ 𝑁(0, 𝐷), as per 210 

the longitudinal submodel, and 𝜃𝑖𝑔 ~ Γ(𝑎, 𝑏), a frailty term such that the intensity function can be 211 

written as 212 

𝑟𝑖(𝑡𝑖𝑔) = 𝜆𝑔𝜌𝑔𝑡𝑖𝑔

𝜌𝑔−1
𝜃𝑖𝑔 exp {𝐿𝑖𝑔 − 𝜆𝑔𝑡𝑖𝑔

𝜌𝑔𝜃𝑖𝑔 exp{𝐿𝑖𝑔}}, 213 

where 𝐿𝑖𝑔 = 𝑋𝑖𝑔
(2)⊤

𝛽(2) + 𝛾𝑖𝑔
⊤ 𝑏𝑖, and 𝛾𝑖𝑔 is a vector of scale factors. The association between the 214 

event time and longitudinal submodel is captured through the shared random effects 𝑏𝑖, and the 215 

correlation between the recurrent events is captured by the 𝜃𝑖𝑔. It was noted by the authors that 216 

this model encompasses shared and correlated random effects parameterisations. In the example, 217 

the authors impose further conditions; namely, 𝜌𝑔 ≡ 𝜌, 𝛾𝑖𝑔 ≡ 𝛾, and 𝜃𝑖𝑔 ≡ 𝜃𝑖 ~ Γ(𝑎, 𝑎−1) for 218 

identifiability purposes. Efendi et al. [54] also adopted a version of this model. 219 
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Shen et al. [48] proposed modelling the recurrent events as per the model formulation in 220 

Henderson et al. [47], namely through the intensity function 221 

𝑟𝑖(𝑡) = 𝑟0(𝑡) exp {𝑋𝑖
(2)(𝑡)⊤𝛽(2) + 𝑊2𝑖(𝑡)}, 222 

where 𝑟0(𝑡) is a baseline intensity function at time 𝑡, and 𝑊2𝑖(𝑡) is a zero-mean latent process term. 223 

In general, 𝑊2𝑖(𝑡) = 𝑍𝑖
(2)(𝑡)𝑇𝑏𝑖 + 𝑉2𝑖(𝑡), where 𝑉2𝑖(𝑡) is a stationary Gaussian process. The model 224 

was simplified by specifying 𝑊2𝑖(𝑡) = 𝛾1𝑏𝑖 + 𝛾2𝑉1𝑖(𝑡), assuming 𝜇𝑖(𝑡) = 𝑋𝑖
(1)(𝑡)⊤𝛽(1) + 𝑏𝑖 +225 

𝑉1𝑖(𝑡) for the longitudinal submodel, with 𝑉1𝑖(𝑡) a second stationary Gaussian process. However, 226 

the model was ultimately reframed as a conditional rates function, namely 𝔼[𝑟𝑖(𝑡) | 𝑌𝑖], in order to 227 

exploit and extend an estimating equations methodology approach. 228 

Zhang et al. [49] proposed a recurrent events model with two non-absorbing states, each 229 

with separate intensity functions. Essentially, this model is a special case of the multi-state model 230 

(discussed below), known as the illness-recovery model. For states 𝑔 = 1,2, the intensity functions 231 

were defined as 232 

𝑟𝑖(𝑡) = 𝑟0𝑔 exp {𝑋𝑖
(2)(𝑡)𝑇𝛽𝑔

(2)
+ 𝑊2𝑖𝑔(𝑡)}, 233 

where the baseline intensity is constant, 𝑟0𝑔, and 𝑊2𝑖𝑔(𝑡) = 𝛾0𝑔𝜃𝑖 + 𝛾𝑔𝑊𝑖1(𝑡) a zero-mean 234 

Gaussian process with u-lag correlation function 235 

𝜌2(𝛼2, 𝑢) = exp{−𝛼2|𝑢|𝛿},      0 < 𝛿 ≤ 2, 236 

with 𝜃𝑖 a normally distributed subject-specific random effect, and 𝑊𝑖1(𝑡) ≡ 𝑊𝑖1
(𝑘)(𝑡) for all 𝑘. 237 

Li [55] proposed a joint model that assumed the same intensity model as per Liu et al. [56] 238 

(with 𝛾1 = 0; described below). However, the repeated binary measure was modelled using a 239 

discrete-time Markov model. A joint model was formed by factorizing the likelihood into a selection 240 

model [9], which lies outside the scope of this review. 241 

3.2.2 With a terminal event. A natural extension to the joint model of longitudinal outcome 242 

data and a recurrent events process is to consider the situation of a terminating event process; for 243 

example, time to death. In this scenario, a third type of submodel is required to capture this 244 

additional event time, which may also be associated with the longitudinal outcomes and the 245 

recurrent events process. 246 

Liu and Huang [57] and Liu et al. [56] considered a recurrent events submodel with a 247 

separate terminal event submodel. A random effects parameterization was used in both the 248 

recurrent events intensity function, 𝑟𝑖(𝑡), and the terminal event hazard function, 𝜆𝑖(𝑡): 249 
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𝑟𝑖(𝑡) =  𝑟0(𝑡) exp {𝑋𝑖
(2)(𝑡)𝑇𝛽(2) + 𝛾1𝑏𝑖0 + 𝜃𝑖} , 250 

𝜆𝑖(𝑡) =  𝜆0(𝑡) exp {𝑋𝑖
(3)(𝑡)𝑇𝛽(3) + 𝛾2𝑏𝑖0 + 𝛾3𝜃𝑖} . 251 

The standard model assumption of piecewise constant baseline hazards for 𝑟0(𝑡) and 𝜆0(𝑡) was 252 

assumed. In addition, the terminal event submodel has a random effect parameterization linking it 253 

to the recurrent events submodel, where random effect term, 𝜃𝑖, captures the correlation between 254 

recurrent events independent of 𝑏𝑖. Rizopoulos [38] described a similar model, but only briefly 255 

described the estimation procedure, and furthermore a clinical application was not provided to 256 

illustrate the model. Król et al. [36] also adopted this model, with some slight modifications. Firstly, 257 

the baseline intensity and hazard functions were approximated by cubic M-splines on 𝑄-knots; 258 

namely 259 

𝑟0(𝑡) =  ∑ 𝜉𝑟𝑞𝑀𝑞(𝑡)   and 

𝑄+2

𝑞=1

𝜆0(𝑡) =  ∑ 𝜉𝜆𝑞𝑀𝑞(𝑡),

𝑄+2

𝑞=1

 260 

where {𝜉𝑟𝑞; 𝑞 = 1, … , 𝑄 + 2} and {𝜉𝜆𝑞; 𝑞 = 1, … , 𝑄 + 2} are the spline coefficients for the baseline 261 

intensity and hazard functions, respectively, corresponding to M-spline basis functions, 𝑀𝑞(𝑡). 262 

Secondly, the association terms with the event time submodels and the longitudinal submodel were 263 

specified more flexibly as 𝛾1
⊤𝑓𝑟 (𝑏𝑖 , 𝛽(1), 𝑍𝑖(𝑡), 𝑋𝑖

(1)(𝑡)) and 𝛾2
⊤𝑓𝜆 (𝑏𝑖 , 𝛽(1), 𝑍𝑖(𝑡), 𝑋𝑖

(1)(𝑡)). For 264 

example, 𝑓𝑟(⋅) and 𝑓𝜆(⋅) might admit the current values or random effects parameterization. 265 

Kim et al. [58] also proposed a joint model for a longitudinal outcome and a recurrent events 266 

process with a terminal event process. The recurrent events process, modelled using a broad class of 267 

transformation models, was linked by extra random effect terms 𝜃𝑖, that are correlated with 𝑏𝑖,  268 

𝑟𝑖(𝑡) =  
𝑑

𝑑𝑡
𝐹𝑅 (∫ 𝑟0(𝑠)exp {𝑋𝑖

(2)(𝑠)𝑇𝛽(2) + 𝑍𝑖
(2)(𝑠)𝑇𝜃𝑖} 𝑑𝑠

𝑡

0

), 269 

with 𝜂𝑖 = (𝑏𝑖
𝑇 , 𝜃𝑖

𝑇)𝑇 jointly distributed, and 𝐹𝑅(⋅) a specified transformation function. The terminal 270 

event submodel—again modelled using a transformation model—was associated with the 271 

longitudinal and recurrent events submodels through a random effects parameterization with 272 

interaction with (possibly time-varying) subject-specific covariates: 273 

𝜆𝑖(𝑡) =  
𝑑

𝑑𝑡
𝐹𝑇 (∫ 𝜆0(𝑠)exp {𝑋𝑖

(3)(𝑠)𝑇𝛽(3) + 𝑍𝑖
(3)(𝑠)𝑇𝛾𝑇𝜂𝑖} 𝑑𝑠

𝑡

0

), 274 

with 𝐹𝑇(⋅) a separate specified transformation function. The authors explicitly used the logarithmic 275 

and Box-Cox transformation models for analysis in their data application. The baseline functions 276 

𝑟0(𝑡) and 𝜆0(𝑡) were modelled semiparametrically, with mass at each unique observed event time. 277 
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3.2.3 As a device for informative observation times. Joint models are usually based on the 278 

assumption of non-informative observation times for the repeated measurement process. This is 279 

generally reasonable for randomized control trials, but perhaps not so for observational data 280 

studies, where sicker patients (possibly indicated through their longitudinal measurement data) 281 

present more frequently to their physician, and whom are more likely to experience an event. 282 

Several models have been proposed to account for this potentially informative observational times 283 

protocol, which fall under the umbrella of joint models of longitudinal data and recurrent events, 284 

either with or without a separate terminal event process. In fact, the model by Liu et al. [56] was 285 

motivated by this situation, but the subject-specific shared random effects model is widely 286 

applicable to other data. This emerging field of joint modelling has its own substantive and rapidly 287 

growing literature, but clearly warrants a discussion here. In the interests of brevity, we do not 288 

review the entire literature on this particular joint model, and instead illustrate the ideas through 289 

the model proposed by Li et al. [45], which is representative of the model specification and 290 

estimation methodology in the literature. Readers should consult Li et al. [59], Han et al. [60], and 291 

references therein for more details on this model framework. 292 

Working within a semiparametric framework, a flexible proportional rates marginal model 293 

for the observation (recurrent events) process was specified by Li et al. [45]; namely 294 

𝐸 [𝑑𝑁𝑖(𝑡) | 𝑋𝑖
(3)

, 𝑏𝑖(𝑡)] = exp {𝑋𝑖
(3)⊤

𝛽(3) + 𝑏𝑖3(𝑡)} 𝑑𝑟0(𝑡), 295 

where 𝑑𝑟0(𝑡) is an unknown baseline rate function, and 𝑏𝑖(𝑡) = (𝑏𝑖1(𝑡), 𝑏𝑖2(𝑡), 𝑏𝑖3(𝑡))
𝑇

 is a vector 296 

of possibly correlated subject-specific time-dependent random effects with 3 components 297 

corresponding to the longitudinal measurements, terminal event and recurrent events, respectively. 298 

The terminal event was modelled as a semiparametric additive hazards model [45], namely, 299 

𝜆𝑖(𝑡) = 𝜆0(𝑡) + 𝑋𝑖
(2)⊤

𝛽(2) + 𝑏𝑖2(𝑡), 300 

with the baseline hazard 𝜆0(𝑡) left unspecified; however, parametric and semiparametric 301 

proportional hazards regression models could also be integrated into this framework [46,61]. 302 

Association between the submodels is induced through the joint distribution of 𝑏𝑖(𝑡). 303 

3.2.4 Multiple recurrent events. Musoro et al. [25] were motivated to unify both multiple 304 

and recurrent event types (Sections 3.1 and 3.2) into a single joint model. For 𝐺 multiple event 305 

outcomes, which can be recurrent, they specified an intensity model  306 

𝜆𝑖𝑔(𝑡) = 𝜆0𝑔(𝑡) exp {∑ 𝛾𝑔𝑘𝜇𝑖𝑘(𝑡) + 𝑋𝑖
(2)

𝛽𝑔
(2)

𝐾

𝑘=1
+ 𝜃𝑖𝑔 + 𝜓𝑖} , 307 
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where 𝜃𝑖𝑔 and 𝜓𝑖 are zero-mean independent Gaussian random effect terms that account for within 308 

and between event types, respectively. As above, 𝜆0𝑔(𝑡) was modelled semiparametrically. 309 

3.3 Succession of events 310 

A succession of events occurs when non-fatal events can precede an absorbing state event, 311 

e.g. death. The intermediate events provide information on the disease progression, and can be 312 

viewed as transitions from one state to another. Multistate models provide a framework for 313 

analysing this data [62]. Longitudinal measurements that are collected over time may have different 314 

associations with progression between separate health states. We also note that multistate models 315 

can also be viewed as an extension of the competing risks model framework, where interest 316 

continues after the first event. Joint models of longitudinal data and standard competing risks data 317 

are described elsewhere [35]. 318 

Multistate models have also been applied in what is essentially the univariate event time 319 

joint modelling framework. For example, Deslandes and Chevret [63] discretized the longitudinal 320 

outcome space to form states that were combined with the event. However, clinical events of 321 

interest—disease progression or death—were combined into a single composite event. Hu et al. [64] 322 

also considered a multistate model where the longitudinal outcome was discretized according to 323 

quartiles to form transition states, augmented with additional states defined by competing risks 324 

data. Neither of these two articles considered an actual succession of event times, and therefore are 325 

not discussed further. Le Cessie et al. [65] adopted a simple model where hazard functions for 326 

disease state transitions were estimated using separate Cox proportional hazards regression models. 327 

However, the joint model was effectively constructed through a type of pattern mixture model, in 328 

which the conditional responses per disease state were estimated using a generalized estimating 329 

equations framework, and the disease state probabilities were combined to estimate the marginal 330 

mean response over time. Pattern mixture models (and similarly, selection models) have their own 331 

dedicated literature in the model-based literature [9]. 332 

Ferrer et al. [66] proposed a Markovian multi-state transition submodel with proportional 333 

hazards, such that the transition intensity at time 𝑡 from state 𝑔 to ℎ is 334 

 𝜆𝑖𝑔ℎ(𝑡) = 𝜆0𝑔ℎ(𝑡) exp {𝑋𝑔ℎ𝑖
(2) ⊤

𝛽𝑔ℎ
(2)

+ 𝛾𝑔ℎ
⊤ 𝑓𝑔ℎ (𝑏𝑖 , 𝛽(1), 𝑍𝑖(𝑡), 𝑋𝑖

(1)(𝑡))} , (

(3) 

where the baseline intensity function 𝜆0𝑔ℎ(𝑡) can be specified as a Weibull, piecewise constant, or 335 

B-splines function, and 𝛾𝑔ℎ are transition-specific parameters corresponding to 𝑓𝑔ℎ(⋅)—a flexible 336 

association function that links the multistate submodel to the longitudinal data submodel by any 337 

function of the random effects. Special cases include the current values parameterization, the 338 
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random slopes parameterization, and a linear combination of both aforementioned 339 

parameterizations. 340 

Dantan et al. [40] proposed a multi-state model with transition between states specified as 341 

per (3), subject to the association structures 𝑓01(⋅) = 0, 𝑓12(⋅) a random effects parameterization, 342 

and 𝑓𝑔3(⋅) a current values parameterization, for 𝑔 = 0,1,2, and other transitions were discounted. 343 

In addition, the baseline hazards were defined by Weibull distributions for the non-absorbing 344 

transitions, and a piecewise constant function for all transitions to the absorbing (death) state. 345 

Dantan and colleagues also extended the model to incorporate left-truncation to account for 346 

subjects already in the disease state entering the study late. 347 

As noted earlier, competing risks data can be viewed as a special case of multistate models. 348 

In the context of multiple event times data, semi-competing risks model is of most interest. In this 349 

situation, a terminal event censors a non-terminal event, but not vice versa; hence, it is possible to 350 

observe more than one event time. Rouanet et al. [50] proposed two joint models for this data 351 

within a latent class framework. The first was a Markovian multi-state (or illness-death) model, as 352 

per above, with 353 

𝜆𝑔ℎ𝑟𝑖(𝑡) = 𝜆𝑔ℎ𝑟0(𝑡) exp {𝑋𝑔ℎ𝑖
(2) ⊤

𝛽𝑔ℎ𝑟
(2)

} , 354 

where 𝜆𝑔ℎ𝑟0(𝑡) is a baseline intensity function for the transition from states 𝑔 to ℎ in latent class 𝑟 355 

(modelled as either a Weibull function or using M-splines), and 𝛽𝑔ℎ𝑟
(2)

 are class and transition-specific 356 

parameters corresponding to baseline covariates 𝑋𝑔ℎ𝑖
(2)

. The second was a semi-Markovian model, 357 

where one specific transition (from illness to death) depends on the time spent in the illness state, 358 

i.e. 𝜆12𝑟𝑖(𝑡 − 𝑇𝑖1), as opposed to just the time elapsed. As per other latent class models, the 359 

association between the submodels is captured entirely through the latent classes, with class 360 

membership modelled separately. 361 

4. MODEL ESTIMATION 362 

Several different estimation approaches have been utilized to fit the models described 363 

above (Table 3). Loosely, these methods can be separated as either likelihood maximisation or 364 

Bayesian model fitting. 365 

Extending the original joint model developments of Wulfsohn and Tsiatis [67], the 366 

expectation-maximization algorithm has been used in some cases. In the case of Han et al. [51], the 367 

latent class membership, longitudinal data submodel random effects, and the time-to-event 368 

submodel frailty terms were treated as missing data. In the case of Kim et al. [58], only the random 369 
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effects were treated as missing data, and recursive formulae used to reduce the number of model 370 

parameters required for estimation. Król et al. [36] used penalized maximum likelihood estimation 371 

using the Marquardt algorithm, with the penalization performed to obtain smooth estimates of the 372 

baseline hazard and intensity functions. Rouanet et al. [50] also utilized the Marquardt algorithm, 373 

with the number of latent classes selected according to the Bayesian Information Criterion. Dantan 374 

et al. [40] reported using a Newton-Raphson-like algorithm. Huang et al. [41] used automatic 375 

differentiation—a numerical technique for simultaneously evaluating a function and its derivatives—376 

with a Newton-Raphson algorithm, which was purportedly faster than the EM algorithm. Njagi et al. 377 

[14] and Efendi et al. [54] used a partial marginalisation approach [68] whereby the conjugate 378 

random effects are analytically integrated out, and the normal random effects are numerically 379 

integrated using standard software. Efendi et al. [54] then exploited the ideas of Heagerty and Zeger 380 

[69] to establish marginal effects. Liu et al. [56] and Liu and Huang [57] reported using numerical 381 

likelihood maximisation via standard software. Standard errors of all these aforementioned model 382 

fits can be estimated from the inverse of the observed information matrix; however, Han et al. [51] 383 

reported using the bootstrap method. 384 

Zhang et al. [49] proposed a two-stage estimation strategy. In the first stage, the covariance 385 

parameters were estimated from the repeated measures marginal likelihood function, with the 386 

mean function estimated by a weighted moving average. In the second stage, the expected 387 

likelihood function for the time-to-event data were maximized by an EM algorithm, with Gibbs 388 

sampling implemented for the high-dimension numerical integration, and a Newton-Raphson step 389 

used for the M-step. Shen et al. [48] developed a two-stage conditional estimating equations 390 

approach for model fitting, followed by a bootstrap approach for standard error estimating. As a 391 

precursory step, the authors reframed the time-to-event submodel from an intensity function to a 392 

conditional rate function. For models that accounted for informative observation times, generalized 393 

estimating equations in a semiparametric framework was the standard approach , which yielded 394 

consistent estimators [45,46,61]. In these cases, theoretical results have been derived on the 395 

asymptotic normality, which is subsequently used to make inference on the estimated parameters. 396 

Bayesian estimation of standard univariate joint models has seen increased attention over 397 

recent years [28,30], especially as it is a natural tool for dynamic prediction and model averaging [4]. 398 

Moreover, there are multiple disadvantages to the ubiquitous frequentist estimation approach, 399 

including but not limited to, computational challenges—something one would expect to be 400 

particularly burdensome in a multivariate framework, the dependence on asymptotic 401 

approximations, and the complexity of model assessment and comparison. In joint models involving 402 

multivariate longitudinal data, Liu and Li [70] compared the performance of Bayesian approaches to 403 
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maximum likelihood approaches under different strengths of association, and demonstrated 404 

superiority of the Bayesian methods with respect to bias, root-mean square error, and coverage. Of 405 

the joint models involving multivariate event time data that were estimated using Bayesian statistics 406 

[25,39,42–44], Markov chain Monte Carlo (MCMC) methods were employed in all cases with default 407 

non-informative prior distributions chosen for the parameters. As noted earlier, Tang et al. [44] and 408 

Tang and Tang [39] also assumed a Dirichlet process prior for the random effects, removing the need 409 

to assume a fixed parametric form, which is therefore robust to potential misspecification. Tang and 410 

Tang [39] explored the sensitivity of results to prior distribution inputs, showing that good prior 411 

knowledge led to marginally improved estimation. The Gibbs sampling algorithm was used in all 412 

cases, with non-standard conditionals sampled using adaptive rejection or Metropolis-Hasting 413 

algorithms. Chi and Ibrahim [42] specifically noted that hierarchical centring [71], as well as some 414 

parameter transformations were used to facilitate convergence of the MCMC algorithms. The 415 

posterior conditional distributions for each parameter were derived analytically by all authors, 416 

except Musoro et al. [25], who exploited the automation provided by the OpenBUGS software. In all 417 

cases, assessment of convergence was made using general diagnostic methods; for example, 418 

examination of trace plots, autocorrelation plots, and the Gelman-Rubin statistics [72]. 419 

5. SOFTWARE 420 

The ability to fit the models discussed is severely limited by the availability of software 421 

packages or modifiable code. Several authors have made code available either in an appendix or 422 

online as a supplement or via an online code repository system (Table 3). However, many authors do 423 

not report what software was used, or make said code available. Only one article released their code 424 

in the form of a software package, namely Król et al. [36], which fits a joint model for a single 425 

longitudinal outcome, a recurrent events process, and a single terminal event, and which is available 426 

through the trivPenal() function in the R package frailtypack [73]. 427 

6. CLINICAL APPLICATIONS 428 

Development of novel methodology of joint models of longitudinal data and multivariate 429 

event times data have predominantly been motivated by real-world clinical datasets. Here, we 430 

summarize the applications that have led to the models discussed in this review. 431 

6.1 Multiple events 432 

Chi and Ibrahim [42] were interested in assessing whether four different quality of life 433 

measures (appetite, mood, coping, and physical wellbeing) were prognostic and predictive of breast 434 

cancer progression in a drug randomized controlled trial (RCT). The study monitored patients 435 

concerning two different failure times: death and cancer recurrence. A joint model was constructed 436 
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to model these 4 longitudinal outcomes and 2 event time outcomes. Tang et al. [44], Tang and Tang 437 

[39], and Zhu et al. [43] each proposed multiple event joint models as per above, motivated by the 438 

same objectives and breast cancer dataset described above, but with novel model innovations 439 

including semiparametric Bayesian random effects modelling, robust errors, different association 440 

structures, and event-time submodels. Musoro et al. [25] considered a case of multiple recurrent 441 

events, where each patient could become repeatedly infected with one of 9 different infections 442 

(including upper respiratory, fungal, and parasitic infections) following kidney transplantation 443 

surgery. The objective of the study was to evaluate the effect of 4 repeatedly measured immune 444 

system biomarkers (CD4+ T cells, CD8+ T cells, natural killer cells, and B cells) on the risk of each 445 

infection type in a single joint model of multiple recurrent events and multivariate longitudinal data. 446 

This particular clinical application also falls under the umbrella of multiple events and recurrent 447 

events (below). Huang et al. [41] analyzed data from a complex prevention trial, with an interest on 448 

whether different interventions were associated with times to initiation of alcohol use and tobacco 449 

use. It was hypothesized that a psychiatric distress latent variable, which is reflected in multiple 450 

repeatedly measured mental health items, affects substance initiation; hence, a joint model was 451 

constructed. 452 

6.2 Recurrent events 453 

Njagi et al. [14] and Efendi et al. [54] were interested in jointly modelling the recurrent time 454 

to re-hospitalization and a repeated measure of heart rate from the same dataset of patients with 455 

chronic heart failure who were discharged from hospital. Efendi et al. [54] modelled heart rate as a 456 

continuous outcome, whereas Njagi et al. [14] modelled it as a count response based on the number 457 

of times the heart rate was classified as ‘abnormal’. Han et al. [51] considered repeated times to 458 

seizure in an epilepsy cohort study. Serial blood measures were also recorded for 3 blood plasma 459 

lipids; however, based on clinical knowledge, a single longitudinal outcome was constructed from 2 460 

of the biomarkers by taking a ratio at each measurement time; —the lecithin–cholesterol ratio, with 461 

the third biomarker discounted, as this ratio was believed to be elevated during periods of the day 462 

when seizures occurred. Shen et al. [48] jointly modelled time to cocaine-use relapse, a recurrent 463 

events outcome, and a repeated measure of psychiatric symptoms used to assess stress and cocaine 464 

craving levels in patients enrolled in a clinical intervention study. The primary objective was to 465 

understand whether the randomly assigned intervention (contingency management or not) 466 

treatment affects either stress or drug relapse after adjustment for demographic variables. Zhang et 467 

al. [49] were interested in investigating the health effects of air quality on respiratory symptoms. 468 

Four measures of air quality were recorded daily, as were three symptoms recorded per subject 469 

(runny nose, cough, sore throat / general sickness). Each day, subjects could be in either a 470 
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symptomatic or asymptomatic state, which they transition between (i.e. an illness-recovery model). 471 

For each symptom in turn, a recurrent events joint model with the 4 longitudinal measures was 472 

fitted. 473 

Liu and Huang [57] hypothesized that repeatedly high CD4 cell counts in HIV positive 474 

patients are associated with low risk of opportunistic disease, which is a potentially recurring event. 475 

They further hypothesized that a higher CD4 cell count and lower rate of opportunistic disease are 476 

associated with better survival, which is a terminal event. The interplay between these three 477 

processes might, however, be motivated by different application-specific reasons. Similarly, Kim et 478 

al. [58] modelled the recurrent time to a coronary heart disease event and time to death with 479 

repeated measurements on systolic blood pressure in patients previously diagnosed with 480 

hypertension. Within the context of a clinical trial for metastatic colorectal cancer, Król et al [36] 481 

were interested in the predictive ability of tumour size (a possibly left-censored repeated 482 

measurement), and the recurrent appearance of new lesions and the terminal outcome death. 483 

Recurrent events are a particularly attractive modelling component for observational 484 

studies. Namely, when the follow-up protocol is not pre-specified or random, one might expect that 485 

the sickest subjects are those both more likely to experience the event of interest, as well as visit 486 

their physician more regularly where they will have biomarker measurements recorded. A recurrent 487 

events process can therefore be used to account for the correlation between observation times and 488 

repeated measures process. This was the case in Liu et al. [56], who considered recurrent times to 489 

hospital visits for diagnosis or treatment of heart failure alongside time to death, with repeated 490 

measurements on medical costs. Data from a skin cancer clinical trial was analyzed in a similar 491 

fashion by Li et al. [45], with the number of observed tumours at each observation time modelled as 492 

the longitudinal outcome. 493 

6.3 Succession of events 494 

Ferrer et al. [66] analyzed data from a multi-centre clinical trial treated with external beam 495 

radiotherapy for localized prostate cancer. Prostate-specific antigen (PSA) was repeatedly measured 496 

during follow-up. In addition, times of transitions between different disease states were recorded: 497 

radiotherapy cessation, local recurrence, distant recurrence, initiation of hormonal therapy, and 498 

death. The association between PSA and clinical relapse is well-known from univariate joint models; 499 

however, it is also of value to clinicians and patients to be able to distinguish between the different 500 

phases of disease progression as PSA may be differently correlated at each stage. 501 

Rouanet et al. [50] analyzed a cohort study of patients to model pre-dementia cognitive 502 

decline, as measured by a psychometric test score to assess verbal fluency, in the presence of semi-503 
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competing risks of dementia onset and death. That is, the risk of dementia is null after death has 504 

occurred, but death can occur after dementia. As the diagnosis of dementia cannot be precisely 505 

recorded due to intermittent assessment, it is interval-censored, thus known to have occurred 506 

between two follow-up appointments. It is important to account for that this interval is known as 507 

the risk of dementia may be underestimated otherwise. Using data from the same cohort study, 508 

Dantan et al. [40] also analyzed the dependency of cognitive ageing—repeatedly measured using a 509 

psychometric test used to assess cognitive ability—on the progression from healthy, pre-diagnosis, 510 

illness, and death states. A fundamental difference of the latter model compared to the former is 511 

that an interim ‘pre-diagnosis’ state was included, which was modelled by a segmented linear mixed 512 

model with a random change point. 513 

7. DISCUSSION 514 

The case for use of joint models has been made already [1,74,75]. Namely, when the 515 

longitudinal and event time processes are correlated they reduce the bias obtained from simpler 516 

methods, including separate models (e.g. separate LMMs, survival models, recurrent event models, 517 

and multistate models), or even the two-stage approach. There has been a myriad of extensions in 518 

the joint modelling framework over the past few years, including extensions to multivariate 519 

longitudinal data [12] and competing risks data [35]. Relatively fewer developments have been 520 

made pertaining joint models involving more than a single event time, which includes multiple 521 

events, recurrent events, and a succession of events. Yet, as shown, there are wide-ranging clinical 522 

applications for these models. In particular, motivation has stemmed from disease areas 523 

representing cancer, infection, cardiovascular disease, neurological disease, mental health, and 524 

respiratory disease. Moreover, data were derived from both randomized controlled trials and cohort 525 

studies. 526 

The review presented here contributes to this narrow but important topic in joint models by 527 

bringing together in a single place and juxtaposing the models and distributional assumptions, 528 

outcome types, estimation and software implementations alongside clinical applications. This is a 529 

research area of growing interest and clinical importance, and the extensions developed are 530 

necessary to appropriately analyze this complex data. However, we found that availability of 531 

mainstream statistical software to fit these models is severely limited, and this will ultimately pose 532 

problems, since the complexity of the models means that ad hoc programming is required. This is 533 

not unexpected as joint models are computationally difficult to fit; a problem that is exacerbated by 534 

the extension to joint models involving more than a single event time. In fact, Musoro and 535 

colleagues noted that their ambitious attempt to fit a model to 4 longitudinal outcomes and 9 536 
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recurrent event outcome types was precluded by computational time; development of approaches 537 

that reduce this computational burden are therefore of paramount importance. 538 

The extension of joint models to more than a single event time offers not only improved 539 

inference, but also opportunity for dynamic prediction. This has received growing interest in the 540 

classical joint model framework [4], but less so in the extension of multivariate event time data. Król 541 

et al. [36] developed dynamic prediction and predictive assessment tools for their recurrent events 542 

joint model. Others have also discussed prediction in the context of joint models involving 543 

multivariate event time data [14,50,66]. Dynamic prediction is easily encompassed in a Bayesian 544 

joint model framework. Despite this, the use of Bayesian methods for model fitting has been rather 545 

limited in the methodological developments of joint models involving multivariate event time data. 546 

Moreover, there is also limited research on the role of prior distribution selection. Research to-date 547 

has been predominantly technical, and more attention is required on the interpretability of these 548 

models in clinical applications. Moreover, the complexity of these models requires further 549 

development on diagnostics that will facilitate model selection, including the choice of association 550 

structure. 551 
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Table 1. Summary of longitudinal submodels. 

Article Ref. Multivariate Outcome types Model Error distribution Random effects distribution 

Multiple events       

Huang et al. (2001) [41] Yes Binary 

• Logistic regression model 
given the latent variable 

• Marginal log-odds model for 
the longitudinal latent process 

N/A 
Discrete independent probability 
distributions 

Chi & Ibrahim 
(2006) 

[42] Yes Continuous LMM MVN MVN 

Zhang et al. (2008) [49] Yes Continuous LMM 

MVN – stationary 
Gaussian process with 
exponential 
correlation 

MVN – stationary Gaussian process 
with exponential correlation 

Zhu et al. (2012) [43] Yes 
Continuous 
and/or discrete 

GLMM 
MVN for continuous 
outcomes 

MVN 

Tang et al. (2014) [44] Yes 
Continuous 
and/or discrete 

GLMM 
MVN for continuous 
outcomes 

Unspecified distribution modelled 
with a Dirichlet process prior (with 
MVN base distribution) 

Tang & Tang (2015) [39] Yes Continuous LMM + P-splines 
Multivariate skew-
normal 

Unspecified distribution modelled 
with a Dirichlet process prior (with 
MVN base distribution) 

Multiple events + 
recurrent events 

      

Musoro et al. 
(2015) 

[25] Yes Continuous LMM + thin-plate splines Normal 
MVN + normal for thin-plate spline 
effects 

Recurrent events       

Han et al. (2007) [51] No Continuous LMM Normal MVN 

Liu et al. (2008) [56] No Continuous LMM Normal Normal 

Liu & Huang (2009) [57] No Continuous LMM Normal Normal 

Kim et al. (2012) [58] No Continuous LMM Normal MVN 

Efendi et al. (2013) [54] No Continuous LMM Normal MVN 

Njagi et al. (2013) [14] No 
Continuous, 
binary or count 

• LMM for continuous 
outcomes 

• Probit for binary outcomes 

• Poisson for count outcomes 

Normal for 
continuous outcomes 

MVN 
 
Separate Beta or Gamma random 
effects for binary or count outcomes, 
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respectively 
Król et al. (2014) [36] No Continuous LMM Normal MVN 

Li et al. (2016) [45] No Continuous 
Marginal proportional means 
model 

N/A Multivariate – left unspecified 

Shen et al. (2016) [48] No Continuous LMM Normal MVN + stationary Gaussian process 
Succession of 
events 

      

Dantan et al. 
(2012) 

[40] No Continuous 
Segmented LMM with random 
change-point 

Normal MVN 

Ferrer et al. (2016) [66] No Continuous LMM Normal MVN 

Rouanet et al. 
(2016) 

[50] Yes* 
Continuous 
(normal and non-
normal) 

LMM* Normal MVN 

Abbreviations: LMM = linear mixed model, GLMM = generalized linear mixed model, MVN = multivariate normal, N/A = not applicable 

* The primary model was developed for a univariate continuous outcome, but the extension to multivariate non-Gaussian longitudinal outcomes through a latent variable 

process model with parametric monotonic link function was also detailed. 
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Table 2. Summary of time-to-event submodels. 

Article Ref. 
Multiple 
events 

Recurrent 
events 

Succession 
of events 

Model 
Random effects 

distribution& 

Huang et al. (2001) [41] ✓ X X Discrete-time hazard log-linear models Discrete probability 

Chi & Ibrahim (2006) [42] ✓ X X 
Novel time-to-event joint model with conditional and marginal 
proportional hazards structure, and capable of accommodating zero- and 
non-zero cure rate fractions  

Positive stable law§ 

Han et al. (2007) [51] X ✓ X General recurrent events model of Peña and Hollander [52] Gamma§ 

Liu et al. (2008) [56] X ✓ X 
Proportional hazards with piecewise constant baseline hazard and 
intensity functions 

Normal 

Zhang et al. (2008) [49] ✓ X X Constant baseline intensities Normal 

Liu & Huang (2009) [57] X ✓ X 
Proportional hazards with piecewise constant baseline hazard and 
intensity functions 

Normal 

Dantan et al. (2012) [40] X X ✓ 
Proportional transition intensity model with Weibull and piecewise 
constant baseline functions 

N/A 

Kim et al. (2012) [58] X ✓ X Transformation models Normal 

Zhu et al. (2012) [43] ✓ X X Proportional hazards with piecewise constant baseline hazard functions N/A 

Efendi et al. (2013) [54] X ✓ X Weibull-gamma-normal model Gamma§ 

Njagi et al. (2013) [14] X ✓ X Weibull-gamma-normal model Gamma§ 

Tang et al. (2014) [44] ✓ X X Proportional hazards with piecewise constant baseline hazard functions N/A 

Musoro et al. (2015) [25] ✓ ✓ X Proportional semiparametric intensity model  

Independent 
normal (two 
random effects 
present for within 
and between event 
types) 

Tang & Tang (2015) [39] ✓ X X Proportional hazards with piecewise constant baseline hazard functions N/A 

Ferrer et al. (2016) [66] X X ✓ 
A proportional hazards Markovian intensity model (with Weibull, 
piecewise constant, or B-spline baseline intensity function) 

N/A 

Król et al. (2016) [36] X ✓ X 
Proportional hazards with cubic M-spline baseline hazard and intensity 
functions 

Normal 

Li et al. (2016)$ [45] X ✓ X 
Terminal event: additive hazards with unspecified baseline hazard 
function 
Recurrent events: marginal proportional rates model 

Left unspecified 
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Rouanet et al. (2016) [50] X X ✓# 

Two models proposed: 
1. A proportional hazards Markovian intensity model (with Weibull or 

M-spline baseline intensity function) 
2. A semi-Markovian model where transition intensity to death from 

disease state depends on time with illness 

N/A 

Shen et al. (2016) [48] X ✓ X 
Proportional semiparametric intensity model, which was reframed as a 
conditional rate function for the purpose of estimation 

N/A* 

Abbreviations: N/A = not applicable 

* In principle, separate normal frailty terms can be included, as per Henderson et al. [47]. 

# This model was a semi-competing events model. 

& Random effects in the time-to-event submodels other than those shared with the longitudinal data submodel. 

§ Denotes distributions of frailties that act multiplicatively on the hazard. All other distributions correspond to random effects that act additively on the log-hazard scale.  

$ This methodological article is representative of a vast research literature on the use of marginal joint models with informative observation times, modelled according to 
some intensity function. In the interests of brevity, we only include a single article here. 
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Table 3. Summary of association structure, estimation method, and software implementation. 

Article Ref. Association structure* Estimation method 
Software implementation & 

availability 

Huang et al. (2001) [41] Current value of true latent variable + 
interaction terms with external covariates 

MLE: Newton-Raphson algorithm with automatic 
differentiation and iterative proportional fitting 

S-Plus: AD09 module available 
online to implement automatic 
differentiation and Newton-
Raphson algorithm1 

Chi & Ibrahim (2006) [42] Current value parameterization 
Bayesian MCMC: Gibbs sampling algorithm (with 
adaptive rejection algorithm and Metropolis 
algorithm) 

N/S 

Han et al. (2007) [51] Latent class membership MLE: EM algorithm N/S 

Liu et al. (2008) [56] 

Random effects parameterization 
 
Both recurrent and terminal time-to-event 
models additionally correlated through 
common frailty, which is independent of 
longitudinal process 

MLE: Gaussian quadrature tools in standard 
statistical packages 

SAS: code provided online 

Zhang et al. (2008) [49] Random effects parameterization 
MLE: two-stage approach with one component 
estimated using the EM algorithm 

N/S 

Liu & Huang (2009) [57] Random effects parameterization 
MLE: Gaussian quadrature tools in standard 
statistical packages 

SAS: code provided online2 

Dantan et al. (2012) [40]    

Kim et al. (2012) [58] 
Correlated random effects between 
longitudinal and recurrent events submodels, 
with time-dependent covariate vector 
interactions 

MLE: EM algorithm with a recursive formula 
proposed to reduce the number of parameters to 
be maximised 

R: code provided online 

Zhu et al. (2012) [43] Current value parameterization 
Bayesian MCMC: Gibbs sampling algorithm (with 
Metropolis-Hastings algorithm) 

N/S 

Efendi et al. (2013) [54] Random effects parametrization 

MLE: via partial marginalization [76]; i.e. where the 
conjugate random effects are analytically 
integrated out, followed by numerical integration 
of shared normal random effects 

SAS: code provided in the Appendix 

                                                           
1 Code reported as being available on two websites, but neither URL appears to still be available 
2 Code reported as being available on authors website, but URL no longer appears to be active. 
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Njagi et al. (2013) [14] Random effects parameterization 

MLE: via partial marginalization [68]; i.e. where the 
conjugate random effects are analytically 
integrated out, followed by numerical integration 
of shared normal random effects 

SAS: code provided in the Appendix 

Tang et al. (2014) [44] Current value parameterization 
Bayesian MCMC: Block Gibbs sampling algorithm 
(with Metropolis-Hastings algorithm) 

R and Matlab: code available on 
request from the authors 

Musoro et al. (2015) [25] Current value parameterization Bayesian MCMC: Gibbs sampling algorithm OpenBUGS: code not provided 

Tang & Tang (2015) [39] Current value parameterization 
Bayesian MCMC: Block Gibbs sampling algorithm 
(with Metropolis-Hastings algorithm) 

N/S 

Ferrer et al. (2016) [66] 
Current value parameterization, Time-
dependent slopes parameterization, both, or 
any other function of the random effects 

MLE: hybrid algorithm that begins with an EM 
algorithm and switches to a quasi-Newton 
algorithm if the convergence is not achieved 

R: code provided online and in 
Appendix 

Król et al. (2016) [36] 
Current value parameterization, Time-
dependent slopes parameterization, both, or 
any other function of the random effects 

MLE: penalized maximum likelihood estimation 
using the Marquardt algorithm 

R: implemented in the 
frailtypack package (v2.8) and 
code provided in the Appendix 

Li et al. (2016) [45] Correlated random effects Estimating equations N/S 

Rouanet et al. (2016) [50] Latent class membership MLE: Marquardt algorithm R: code provided online 

Shen et al. (2016) [48] 
Random effects parameterization, with 
separate coefficients for the time-
independent and –dependent random effects 

Two-stage conditional estimating equation 
approach 

N/S 

Abbreviations: MLE = maximum likelihood estimation, MCMC= Markov chain Monte Carlo, N/S = not specified 

* Association structure between the longitudinal data sub-model and the event time sub-model. 
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	,𝜌-1𝑘.,,𝛼-1𝑘.,𝑢.=,exp-,−,𝛼-1𝑘.,,𝑢.-𝛿..,     0<𝛿≤2..
	A summary of the longitudinal data submodels used in joint models involving multivariate time-to-event data is given in Table 1.
	3. TIME-TO-EVENT DATA SUBMODELS
	Let ,𝑇-𝑖𝑔-∗. denote the 𝑔-th event time for the 𝑖-th subject (𝑖=1, …, 𝑛). Also, let ,𝐶-𝑖. be a censoring time for the subject such that we actually observe ,𝑇-𝑖𝑔.=,min-,,𝑇-𝑖𝑔-∗.,,𝐶-𝑖.... Typically, continuous event times are observed....
	3.1 Multiple events
	Multiple (unordered) events occur when more than one event is observed, and interest lies with all of them. A joint model can be specified to capture the association between a longitudinal process and multiple failure times; for example, the time to c...
	Chi and Ibrahim [42] derived a novel yet complex bivariate survival model from first principles of latent precursor events modelled by a Poisson process. The model accommodates both zero and non-zero cure fractions, and the survival distribution is gi...
	𝑆,,𝑡-𝑖1.,,𝑡-𝑖2.-,𝜃-𝑖..=,exp-,−,𝜃-𝑖.,,0-,𝑡-𝑖1.-,𝜆-𝑖1.,𝑢.,𝐹-1.,,𝑡-𝑖1.−𝑢.𝑑𝑢.+,0-,𝑡-𝑖2.-,𝜆-𝑖2.,𝑢.,𝐹-2.,,𝑡-𝑖2.−𝑢.𝑑𝑢...,.
	where ,𝜃-𝑖. is a subject-specific frailty term that follows a positive stable law distribution indexed by the parameter 𝜌, which accounts for the correlation between the pair of event times, and ,𝐹-1.,𝑡. and ,𝐹-2.,𝑡. are distribution functions ...
	,𝜆-𝑖𝑔.,𝑡.=,exp-,,𝑘=1-𝐾-,𝛾-𝑔𝑘.,𝜇-𝑖𝑘.,𝑡.+,,𝑋-𝑖-(2).-⊤.,𝛽-𝑔-,2......
	It was noted that both the conditional and marginal survival function satisfies the proportional hazards property so long as the baseline covariates are modelled as per above, and ,𝑋-𝑖-(2). is independent of time.
	Zhu et al. [43], Tang et al. [44], and Tang and Tang [39] used the more ubiquitous piecewise constant proportional hazards model for the baseline hazard function, with knots placed at times ,𝑣-𝑔𝑞. {𝑞=1,…𝑄} for the 𝑔-th time-to-event outcome, suc...
	,𝜆-0𝑔.,𝑡.= ,𝑞=1-𝑄-,𝜉-𝑞𝑔.𝐼,,𝑣-𝑔,𝑞−1.<𝑡≤,𝑣-𝑔𝑞..,.
	where 𝐼(⋅) denotes the indicator function, and ,𝜉-𝑞𝑔. denotes the value of the event-specific hazard function in the interval (,𝑣-𝑔,𝑞−1., ,𝑣-𝑔𝑞.] for event 𝑔. The separate event time and longitudinal submodels are subsequently linked throug...
	,𝜆-𝑖𝑔.,𝑡.=,𝜆-0𝑔.,𝑡.,exp-,,𝑘=1-𝐾-,𝛾-𝑔𝑘.,𝜇-𝑖𝑘.,𝑡.+,,𝑋-𝑖-(2).-⊤.,𝛽-𝑔-,2......
	Huang et al. [41] adopted a discrete time hazard model of the form
	,log-,,,𝑓-𝑖𝑗𝑔.-,𝑆-𝑖𝑗𝑔....= ,𝑋-𝑖-,2..,,,𝑡-𝑗..-⊤.,𝛽-𝑔-,2..+,𝛾-𝑔-(1).,𝜂-𝑖𝑗.+,𝛾-𝑔-(2).,𝜃-𝑖.+,𝛾-𝑔-(3).,𝜂-𝑖𝑗.,𝑥-𝑖-(3). ,
	where ,𝑓-𝑖𝑗𝑔.=𝑃[,𝑇-𝑖𝑔.=𝑗], ,𝑆-𝑔𝑖𝑗.=1−,,𝑗-′.=1-𝑗-,𝑓-,𝑖𝑗-′.𝑔.. for discrete times ,𝑡-𝑗. (𝑗=1,…,𝐽), and ,,𝛾-𝑔-(1).,,𝛾-𝑔-(2).,,𝛾-𝑔-(3).. are a set of association parameters. The first discrete random effect, ,𝜂-𝑖𝑗., links t...
	3.2 Recurrent events
	Recurrent (ordered) events occur when the same non-terminal event can be observed multiple times over a follow-up period. Henderson et al. [47] first presented a joint model compatible with recurrent events data, but this was ultimately simplified to ...
	3.2.1 Without a terminal event. The simplest situation is when the recurrent events process is observed without a terminating process. For example, an epileptic patient can undergo multiple seizures in a day, and targeted treatments for epilepsy may b...
	Han et al. [51] adopted the general recurrent event model of Peña and Hollander [52] within a latent class framework, similar to that of Lin et al. [53], with the intensity function defined according to
	,𝑟-𝑖.,𝑡.=,𝜃-𝑖.,𝑟-0𝑟.,,ℰ-𝑖.(𝑡).𝜌,,𝑁-𝑖.,,𝑡-−.., ,𝑎-𝑟..𝜓,,𝑋-𝑖-,2..,,𝑡.-⊤.,𝛽-,2...,
	where ,𝜃-𝑖. is a mean-one Gamma distributed frailty term, ,𝑟-0𝑟.(𝑡) denotes the latent class-specific baseline intensity function (with 𝑟=1,…, 𝑅), ,ℰ-𝑖.(𝑡) is the ‘effective age’ of subject 𝑖 at time 𝑡, ,𝑁-𝑖.,,𝑡-−.. is the effective numb...
	Njagi et al. [14] considered the Weibull-gamma-normal model for recurrent events. In short, this is a Weibull regression model conditional on independent random effects ,𝑏-𝑖. ~ 𝑁(0, 𝐷), as per the longitudinal submodel, and ,𝜃-𝑖𝑔. ~ Γ,𝑎,𝑏., a...
	,𝑟-𝑖.(,𝑡-𝑖𝑔.)=,𝜆-𝑔.,𝜌-𝑔.,𝑡-𝑖𝑔-,𝜌-𝑔.−1.,𝜃-𝑖𝑔.,exp-,,𝐿-𝑖𝑔.−,𝜆-𝑔.,𝑡-𝑖𝑔-,𝜌-𝑔..,𝜃-𝑖𝑔.,exp-{,𝐿-𝑖𝑔.}...,
	where ,,,𝐿-𝑖𝑔.=𝑋-𝑖𝑔-,2..-⊤.,𝛽-,2..+ ,𝛾-𝑖𝑔-⊤.,𝑏-𝑖., and ,𝛾-𝑖𝑔. is a vector of scale factors. The association between the event time and longitudinal submodel is captured through the shared random effects ,𝑏-𝑖., and the correlation betw...
	Shen et al. [48] proposed modelling the recurrent events as per the model formulation in Henderson et al. [47], namely through the intensity function
	,𝑟-𝑖.,𝑡.=,𝑟-0.,𝑡.,exp-,,,𝑋-𝑖-,2..,𝑡.-⊤.,𝛽-,2..+,𝑊-2𝑖.(𝑡)..,
	where ,𝑟-0.,𝑡. is a baseline intensity function at time 𝑡, and ,𝑊-2𝑖.(𝑡) is a zero-mean latent process term. In general, ,,𝑊-2𝑖.,𝑡.=𝑍-𝑖-,2..,,𝑡.-𝑇.,𝑏-𝑖.+,𝑉-2𝑖.(𝑡), where ,𝑉-2𝑖.,𝑡. is a stationary Gaussian process. The model was si...
	Zhang et al. [49] proposed a recurrent events model with two non-absorbing states, each with separate intensity functions. Essentially, this model is a special case of the multi-state model (discussed below), known as the illness-recovery model. For s...
	,𝑟-𝑖.,𝑡.=,𝑟-0𝑔.,exp-,,𝑋-𝑖-,2..,,𝑡.-𝑇.,𝛽-𝑔-,2..+,𝑊-2𝑖𝑔.(𝑡)..,
	where the baseline intensity is constant, ,𝑟-0𝑔., and ,𝑊-2𝑖𝑔.,𝑡.=,𝛾-0𝑔.,𝜃-𝑖.+,𝛾-𝑔.,𝑊-𝑖1.(𝑡) a zero-mean Gaussian process with u-lag correlation function
	,𝜌-2.,,𝛼-2.,𝑢.=,exp-,−,𝛼-2.,,𝑢.-𝛿..,      0<𝛿≤2.,
	with ,𝜃-𝑖. a normally distributed subject-specific random effect, and ,𝑊-𝑖1.,𝑡.≡,𝑊-𝑖1-,𝑘..,𝑡. for all 𝑘.
	Li [55] proposed a joint model that assumed the same intensity model as per Liu et al. [56] (with ,𝛾-1.=0; described below). However, the repeated binary measure was modelled using a discrete-time Markov model. A joint model was formed by factorizing...
	3.2.2 With a terminal event. A natural extension to the joint model of longitudinal outcome data and a recurrent events process is to consider the situation of a terminating event process; for example, time to death. In this scenario, a third type of ...
	Liu and Huang [57] and Liu et al. [56] considered a recurrent events submodel with a separate terminal event submodel. A random effects parameterization was used in both the recurrent events intensity function, ,𝑟-𝑖.,𝑡., and the terminal event haza...
	,𝑟-𝑖.,𝑡.= ,𝑟-0.,𝑡.,exp-,,𝑋-𝑖-,2..,,𝑡.-𝑇.,𝛽-,2..+,𝛾-1.,𝑏-𝑖0.+,𝜃-𝑖..,.
	,𝜆-𝑖.,𝑡.= ,𝜆-0.,𝑡.,exp-,,𝑋-𝑖-,3..,,𝑡.-𝑇.,𝛽-,3..+,𝛾-2.,𝑏-𝑖0.+,𝛾-3.,𝜃-𝑖....
	The standard model assumption of piecewise constant baseline hazards for ,𝑟-0.,𝑡. and ,𝜆-0.,𝑡. was assumed. In addition, the terminal event submodel has a random effect parameterization linking it to the recurrent events submodel, where random eff...
	,,𝑟-0.,𝑡.= ,𝑞=1-𝑄+2-,𝜉-𝑟𝑞.,𝑀-𝑞.,𝑡.   and .𝜆-0.,𝑡.= ,𝑞=1-𝑄+2-,𝜉-𝜆𝑞.,𝑀-𝑞.,𝑡.,.
	where ,{𝜉-𝑟𝑞.;𝑞=1,…,𝑄+2} and ,{𝜉-𝜆𝑞.;𝑞=1,…,𝑄+2} are the spline coefficients for the baseline intensity and hazard functions, respectively, corresponding to M-spline basis functions, ,𝑀-𝑞.(𝑡). Secondly, the association terms with the event...
	Kim et al. [58] also proposed a joint model for a longitudinal outcome and a recurrent events process with a terminal event process. The recurrent events process, modelled using a broad class of transformation models, was linked by extra random effect...
	,𝑟-𝑖.,𝑡.= ,𝑑-𝑑𝑡.,𝐹-𝑅.,,0-𝑡-,,𝑟-0.,𝑠.exp-,,𝑋-𝑖-,2..,,𝑠.-𝑇.,𝛽-,2..+,𝑍-𝑖-,2..,,𝑠.-𝑇.,𝜃-𝑖..𝑑𝑠...,
	with ,𝜂-𝑖.=,,(,𝑏-𝑖-𝑇.,  𝜃-𝑖-𝑇.)-𝑇. jointly distributed, and ,𝐹-𝑅.(⋅) a specified transformation function. The terminal event submodel—again modelled using a transformation model—was associated with the longitudinal and recurrent events subm...
	,𝜆-𝑖.,𝑡.= ,𝑑-𝑑𝑡.,𝐹-𝑇.,,0-𝑡-,,𝜆-0.,𝑠.exp-,,𝑋-𝑖-,3..,,𝑠.-𝑇.,𝛽-,3..+,𝑍-𝑖-,3..,,𝑠.-𝑇.,,𝛾-𝑇.𝜂-𝑖..𝑑𝑠...,
	with ,𝐹-𝑇.(⋅) a separate specified transformation function. The authors explicitly used the logarithmic and Box-Cox transformation models for analysis in their data application. The baseline functions ,𝑟-0.,𝑡. and ,𝜆-0.,𝑡. were modelled semipara...
	3.2.3 As a device for informative observation times. Joint models are usually based on the assumption of non-informative observation times for the repeated measurement process. This is generally reasonable for randomized control trials, but perhaps no...
	Working within a semiparametric framework, a flexible proportional rates marginal model for the observation (recurrent events) process was specified by Li et al. [45]; namely
	𝐸,𝑑,𝑁-𝑖.,𝑡. | ,𝑋-𝑖-,3..,,𝑏-𝑖.(𝑡).=,exp-,,,𝑋-𝑖-,3..-⊤.,𝛽-,3..+,𝑏-𝑖3.,𝑡..𝑑,𝑟-0.,𝑡.,.
	where 𝑑,𝑟-0.,𝑡. is an unknown baseline rate function, and ,𝑏-𝑖.,𝑡.=,,,𝑏-𝑖1.,𝑡., ,𝑏-𝑖2.,𝑡., ,𝑏-𝑖3.,𝑡..-𝑇. is a vector of possibly correlated subject-specific time-dependent random effects with 3 components corresponding to the longitudi...
	,𝜆-𝑖.,𝑡.=,𝜆-0.,𝑡.+,,𝑋-𝑖-,2..-⊤.,𝛽-,2..+,𝑏-𝑖2.,𝑡.,
	with the baseline hazard ,𝜆-0.,𝑡. left unspecified; however, parametric and semiparametric proportional hazards regression models could also be integrated into this framework [46,61]. Association between the submodels is induced through the joint di...
	3.2.4 Multiple recurrent events. Musoro et al. [25] were motivated to unify both multiple and recurrent event types (Sections 3.1 and 3.2) into a single joint model. For 𝐺 multiple event outcomes, which can be recurrent, they specified an intensity m...
	,𝜆-𝑖𝑔.,𝑡.=,𝜆-0𝑔.,𝑡.,exp-,,𝑘=1-𝐾-,𝛾-𝑔𝑘.,𝜇-𝑖𝑘.,𝑡.+,𝑋-𝑖-,2..,𝛽-𝑔-,2...+,𝜃-𝑖𝑔.+,𝜓-𝑖..,.
	where ,𝜃-𝑖𝑔. and ,𝜓-𝑖. are zero-mean independent Gaussian random effect terms that account for within and between event types, respectively. As above, ,𝜆-0𝑔.,𝑡. was modelled semiparametrically.
	3.3 Succession of events
	A succession of events occurs when non-fatal events can precede an absorbing state event, e.g. death. The intermediate events provide information on the disease progression, and can be viewed as transitions from one state to another. Multistate models...
	Multistate models have also been applied in what is essentially the univariate event time joint modelling framework. For example, Deslandes and Chevret [63] discretized the longitudinal outcome space to form states that were combined with the event. H...
	Ferrer et al. [66] proposed a Markovian multi-state transition submodel with proportional hazards, such that the transition intensity at time 𝑡 from state 𝑔 to ℎ is
	where the baseline intensity function ,𝜆-0𝑔ℎ.,𝑡. can be specified as a Weibull, piecewise constant, or B-splines function, and ,𝛾-𝑔ℎ. are transition-specific parameters corresponding to ,𝑓-𝑔ℎ.(⋅)—a flexible association function that links the m...
	Dantan et al. [40] proposed a multi-state model with transition between states specified as per (3), subject to the association structures ,𝑓-01.,⋅.=0, ,𝑓-12.,⋅. a random effects parameterization, and ,𝑓-𝑔3.,⋅. a current values parameterization, f...
	As noted earlier, competing risks data can be viewed as a special case of multistate models. In the context of multiple event times data, semi-competing risks model is of most interest. In this situation, a terminal event censors a non-terminal event,...
	,𝜆-𝑔ℎ𝑟𝑖.,𝑡.=,𝜆-𝑔ℎ𝑟0.,𝑡.,exp-,,,𝑋-𝑔ℎ𝑖-,2..-⊤.,𝛽-𝑔ℎ𝑟-,2...,.
	where ,𝜆-𝑔ℎ𝑟0.,𝑡. is a baseline intensity function for the transition from states 𝑔 to ℎ in latent class 𝑟 (modelled as either a Weibull function or using M-splines), and ,𝛽-𝑔ℎ𝑟-,2.. are class and transition-specific parameters corresponding ...
	4. MODEL ESTIMATION
	Several different estimation approaches have been utilized to fit the models described above (Table 3). Loosely, these methods can be separated as either likelihood maximisation or Bayesian model fitting.
	Extending the original joint model developments of Wulfsohn and Tsiatis [67], the expectation-maximization algorithm has been used in some cases. In the case of Han et al. [51], the latent class membership, longitudinal data submodel random effects, a...
	Zhang et al. [49] proposed a two-stage estimation strategy. In the first stage, the covariance parameters were estimated from the repeated measures marginal likelihood function, with the mean function estimated by a weighted moving average. In the sec...
	Bayesian estimation of standard univariate joint models has seen increased attention over recent years [28,30], especially as it is a natural tool for dynamic prediction and model averaging [4]. Moreover, there are multiple disadvantages to the ubiqui...
	5. SOFTWARE
	The ability to fit the models discussed is severely limited by the availability of software packages or modifiable code. Several authors have made code available either in an appendix or online as a supplement or via an online code repository system (...
	6. CLINICAL APPLICATIONS
	Development of novel methodology of joint models of longitudinal data and multivariate event times data have predominantly been motivated by real-world clinical datasets. Here, we summarize the applications that have led to the models discussed in thi...
	6.1 Multiple events
	Chi and Ibrahim [42] were interested in assessing whether four different quality of life measures (appetite, mood, coping, and physical wellbeing) were prognostic and predictive of breast cancer progression in a drug randomized controlled trial (RCT)....
	6.2 Recurrent events
	Njagi et al. [14] and Efendi et al. [54] were interested in jointly modelling the recurrent time to re-hospitalization and a repeated measure of heart rate from the same dataset of patients with chronic heart failure who were discharged from hospital....
	Liu and Huang [57] hypothesized that repeatedly high CD4 cell counts in HIV positive patients are associated with low risk of opportunistic disease, which is a potentially recurring event. They further hypothesized that a higher CD4 cell count and low...
	Recurrent events are a particularly attractive modelling component for observational studies. Namely, when the follow-up protocol is not pre-specified or random, one might expect that the sickest subjects are those both more likely to experience the e...
	6.3 Succession of events
	Ferrer et al. [66] analyzed data from a multi-centre clinical trial treated with external beam radiotherapy for localized prostate cancer. Prostate-specific antigen (PSA) was repeatedly measured during follow-up. In addition, times of transitions betw...
	Rouanet et al. [50] analyzed a cohort study of patients to model pre-dementia cognitive decline, as measured by a psychometric test score to assess verbal fluency, in the presence of semi-competing risks of dementia onset and death. That is, the risk ...
	7. DISCUSSION
	The case for use of joint models has been made already [1,74,75]. Namely, when the longitudinal and event time processes are correlated they reduce the bias obtained from simpler methods, including separate models (e.g. separate LMMs, survival models,...
	The review presented here contributes to this narrow but important topic in joint models by bringing together in a single place and juxtaposing the models and distributional assumptions, outcome types, estimation and software implementations alongside...
	The extension of joint models to more than a single event time offers not only improved inference, but also opportunity for dynamic prediction. This has received growing interest in the classical joint model framework [4], but less so in the extension...
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