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Abstract 

Purpose: To investigate the prevalence of non-orthogonal astigmatism among normal and 

keratoconic Brazilian and Chinese populations 

Methods: Topography data was obtained using the Pentacam High Resolution (HR) system 

® from 458 Brazilian (aged 35.6±15.8 years) and 505 Chinese eyes (aged 31.6±10.8 years) 

with no history of keratoconus or refractive surgery, and 314 Brazilian (aged 24.2±5.7 years) 

and 74 Chinese (aged 22.0±5.5 years) keratoconic eyes. Orthogonal values of optical flat and 

steep powers were determined by finding the angular positions of two perpendicular meridians 

that gave the maximum difference in power. Additionally, the angular positions of the 

meridians with the minimum and maximum optical powers were located while being 

unrestricted by the usual orthogonality assumption. Eyes were determined to have non-

orthogonal astigmatism if the angle between the two meridians with maximum and minimum 

optical power deviated by more than 5° from 90°. 

Results: Evidence of non-orthogonal astigmatism was found in 39% of the Brazilian 

keratoconic eyes, 26% of the Chinese keratoconic eyes, 29% of the Brazilian normal eyes and 

20% of the Chinese normal eyes.  

Conclusions: The large percentage of participants with non-orthogonal astigmatism in both 

normal and keratoconic eyes illustrates the need for the common orthogonality assumption to 

be reviewed when correcting for astigmatism. The prevalence of non-orthogonality should be 

considered by expanding the prescription system to consider the two power meridians, and 

their independent positions. 
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Introduction 

Astigmatism was first reported by Thomas Young in 1801 (1, 2), and corrected by cylindrical 

lenses by George Airy in 1872 (3). Astigmatism is an optical refractive error, which develops 

when the shape of the eye’s refractive components, primarily the cornea and crystalline lens, 

deviate from being rotationally symmetric. There is wide prevalence of astigmatism worldwide 

and estimates commonly exceed 30% of the population depending on the astigmatism power 

threshold adopted in each study (0.5 or 1.0 dioptre) (4-8). 

“Astigmatism axis” is the term used to describe the angular position of cornea’s meridian with 

the highest optical power. Its angle is measured in a counter-clockwise direction from a 

horizontal line at the level of the pupil centre as seen by an observer with direction 0° being 

on the right of the eye. Regular orthogonal astigmatism – where the angle between the 

meridians with the highest and lowest optical powers (flattest and steepest meridians, 

respectively) is 90° – is commonly assumed in normal eyes. Therefore, the current eye 

refractive prescription system is based on correcting astigmatism using orthogonal double 

power lenses known as toric or sphero-cylindrical lenses (9). 

Zernike polynomials and Fourier series are commonly used to provide a quantitative 

evaluation of corneal irregularity (10). However, while they have clear benefits in corneal 

topography analysis, they mask non-orthogonal astigmatism due to their reliance on 

orthogonal functions. Non-orthogonal astigmatism cannot be quantified distinctly by Zernike 

polynomials as it is usually included among high order aberration terms. However, irregular 

astigmatism can be quantified in polar coordinates at each corneal mire ring ‘𝑖’ by fitting 

corneal power map to the Fourier equation: 

𝐹𝑖(𝛼) = 𝐶0 + 𝐶1 cos(𝛼 − 𝛽1) + 𝐶2 cos 2(𝛼 − 𝛽2) + 𝐶3 cos 3(𝛼 − 𝛽3) Equation 1 

in which 𝐶3 represents irregular astigmatic component and 𝛼 is the angular position. In this 

equation, coefficients 𝐶0, 𝐶1 and 𝐶2 provide the spherical, the decentration and the regular 

orthogonal astigmatic components at the mire ring ‘𝑖’, while phase angles 𝛽1, 𝛽2, and 𝛽3 
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represent the decentration, the axis of regular orthogonal astigmatism and hypothetical axis 

of irregular astigmatism, respectively.  

Some corneal topographers provide an irregularity index which is the Fourier’s function 

coefficient 𝐶3 divided by the average corneal dioptric power. The index is dependent on the 

device’s hardware and the signal processing algorithm embedded in its software (11). For 

example, factors including the topographer resolution or the number of the mire rings and their 

positions could significantly affect the irregularity index and make it less useful when 

extrapolated to another videokeratographer (12). Further, there is no clinical information that 

can be directly taken from the irregularity index except by correlating it statistically to other 

measurable clinical data (13). Mathematically, Fourier series coefficient 𝛽3 is intended to 

provide information on the polar distribution of irregular astigmatism but not about the irregular 

astigmatism phase or the non-orthogonal astigmatism. In fact, the existing literature which 

evaluates corneal irregularity by Fourier series harmonic ignores the irregular astigmatism 

phase angle 𝛽3 and does not associate it with a specific physical meaning (11, 14, 15). While 

it is acknowledged that a quantitative degree of irregularity in refractive power exists in normal 

eyes and this knowledge have been simulated by mathematical modelling (16), no technique 

is available to locate the axes of irregular astigmatism. As a result, irregular astigmatism 

cannot be fully corrected by existing spectacle lenses and a degree of astigmatism will remain 

after correction. 

This study aims to explore the validity of the common orthogonality assumption in large 

populations of both normal and keratoconic eyes. Considering the variable sensitivity of 

different methods that map corneal refractive power (17, 18), the power maps generated in 

this study used axial curvature. For each cornea included in the study, analysis of the power 

map led to estimated orientations of the flattest and steepest meridians while adopting and 

ignoring the orthogonality assumption. The results not only estimated the percentage of eyes, 

for which the orthogonality assumption is not valid, but also quantified the effect of the 

assumption on the magnitude and direction of astigmatism. 
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Materials and Methods 

Participants 

This study was conducted according to the tenets of the Declaration of Helsinki. However, the 

institutional review board ruled that approval was not required for this record review study, 

each participant provided a signed consent form for the use of his data for research purposes 

before his details were anonymised. Due to the reported topographical and anatomical 

differences between Caucasian and Chinese populations (19-21), both Caucasian (from 

Brazil) and Chinese populations were considered in this study to investigate if results were 

attached to a certain population. The study included 772 Brazilians and 579 Chinese with or 

without keratoconus, Table 1. The participants were selected from referrals to Hospital de 

Olhos Santa Luzia, Maceio, Alagoas, Brazil, and the Eye Hospital, WenZhou Medical 

University, Wenzhou, China. The exclusion criteria included current ocular diseases, history 

of trauma or ocular surgery, intraocular pressure (IOP) above 21 mmHg as measured by 

Ocular Response Analyser (Reichert Technologies, Depew, USA), soft contact lens wear until 

less than 2 weeks before topography measurement and rigid, gas-permeable (RGP) contact 

lens wear until less than 4 weeks before topography measurement. An inclusion criterion for 

keratoconic participants was a clear presence of keratoconus with no previous ocular 

procedures, such as collagen cross-linking. One randomly selected eye of each participant 

was included in the study and scanned using the Pentacam HR Scheimpflug tomographer 

(OCULUS Optikgeräte GmbH, Wetzlar, Germany). Where a participant had a single 

keratoconic eye, this eye was selected. At least, three successive scans were taken for each 

participant with approximately time period of half a minute among them. The measurements 

continued until three scans with an instrument-generated quality factor of at least 95% and 

90% were obtained for the anterior and posterior surfaces, respectively. Scans that had an 

examination quality status identified as “OK” by the Pentacam Software were considered and 

analysed individually, however, the average of the outcomes of three successful scans for 
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each eye were considered in the result. Room lights were switched off during data acquisition. 

Participants were asked to sit in front of the instrument while its level was being adjusted to 

suit the participant’s eye. Participants were asked to put their chin on the chin rest and their 

forehead on the forehead rest. Fine alignment was carried out by the Pentacam joystick while 

participants were asked to fixate on a target at the centre of the instrument camera. Subjects 

were asked to blink and reposition themselves between each shot while the instrument was 

pulled back fully then realigned.  The clinical characteristics of the subjects as measured by 

the Pentacam HR system are presented in Table 2 where the topographical keratoconus 

classification (TKC) range was identified between level 1 and level 3 to 4 (3.5) among both 

Brazilian and Chinese participants. The frequency distribution of the level for keratoconic 

patents is presented in Figure 1. Non-extrapolated elevation data for both the anterior and 

posterior surfaces were exported in comma-separated values (CSV) format and analysed 

using a custom-built Matlab 2017 code (MathWorks, Natick, USA).  

 

Power maps 

Corneal axial curvatures were calculated for 360 meridians, with a one degree angular step, 

covering the measured area of the cornea. Centres of axial curvatures were assumed to lie 

on the corneal optical axis (22). As illustrated in Figure 2, the axial radius of curvature at any 

point is calculated as: 

𝑅 =
𝑥

cos (𝜋
2 − 𝛼)

 Equation 2 

Where 𝑥 is the distance from the corneal centre to the point of calculation and 𝛼 is the tangent 

angle at this point. This process was carried out for both corneal anterior and posterior 

surfaces and the corresponding radii of curvature, 𝑅𝑎𝑛𝑡𝑒𝑟𝑖𝑜𝑟 and 𝑅𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟, were used to 

calculate the corneal optical power 𝑃 using the Gaussian optics formula (23, 24): 
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𝑃 =
𝑛𝑐𝑜𝑟𝑛𝑒𝑎 − 𝑛𝑎𝑖𝑟

𝑅𝑎𝑛𝑡𝑒𝑟𝑖𝑜𝑟
+

𝑛𝑎𝑞𝑢𝑒𝑜𝑢𝑠 − 𝑛𝑐𝑜𝑟𝑛𝑒𝑎

𝑅𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟
−

𝑡𝑐

𝑛𝑐𝑜𝑟𝑛𝑒𝑎
×

𝑛𝑐𝑜𝑟𝑛𝑒𝑎 − 𝑛𝑎𝑖𝑟

𝑅𝑎𝑛𝑡𝑒𝑟𝑖𝑜𝑟
×

𝑛𝑎𝑞𝑢𝑒𝑜𝑢𝑠 − 𝑛𝑐𝑜𝑟𝑛𝑒𝑎

𝑅𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟
 Equation 3 

where the refractive indices of air, 𝑛𝑎𝑖𝑟, cornea, 𝑛𝑐𝑜𝑟𝑛𝑒𝑎, and aqueous, 𝑛𝑎𝑞𝑢𝑒𝑜𝑢𝑠, were set at 

1.0, 1.376 and 1.336, respectively, following Gullstrand’s relaxed eye model (25, 26), Figure 

3. The central corneal thickness, 𝑡𝑐, was measured by the Pentacam HR Scheimpflug system. 

 

Analysis of power maps 

The meridians with the flattest and steepest powers were located within the central pupil area 

of the cornea with a 3mm diameter (27) by first averaging the power along 180 meridians with 

an angular step of one degree. This leads to meridians M = [M0, M1, ……, M179] that correspond 

to angles Ө = [0°, 1°, ……, 179°] and have average refractive powers PM = [P0, P1, ……, P179], 

respectively. The commonly-used orthogonal optical power orientation can be calculated by 

first splitting the meridional averaged refractive powers into two perpendicular groups PMa (= 

[P0, P1, ……, P89]) and PMb (= [P90, P91, ……, P179]). The absolute optical power difference 

between the two groups can then be determined as: 

∆𝑃𝑀 = |𝑃𝑀𝑎 − 𝑃𝑀𝑏| Equation 4 

When the maximum value of ∆𝑃𝑀 is reached, the corresponding two orthogonal meridians, 

from the two groups PMa and PMb, are considered to represent the flattest and steepest (or 

steepest and flattest) orthogonal meridians in the cornea, Figure 4a. 

On the other hand, the non-orthogonal flattest and steepest power meridians are free from the 

condition of orthogonality and are located by simply finding the maximum and minimum values 

of PM (Figure 4b). In this case, the absolute optical power difference, ∆𝑃, the absolute angle 

separating the flattest and steepest meridians, ∆𝜃, and the absolute acute angle, 𝜑, between 

the two meridians are determined with Equation 5, Equation 6 and Equation 7, respectively. 

∆𝑃 = |𝑃𝑓𝑙𝑎𝑡 − 𝑃𝑠𝑡𝑒𝑒𝑝| Equation 5 
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∆𝜃 = |𝜃𝑓𝑙𝑎𝑡 − 𝜃𝑠𝑡𝑒𝑒𝑝| Equation 6 

 

Statistical analysis 

Statistical analysis was performed using Matlab Statistics and Machine Learning Toolbox (MathWorks, 

Natick, USA). The null hypothesis probability (p) at 95% at confidence level was calculated. Two 

sample t-test was used to investigate the significance between pairs of data sets to check whether the 

results represent independent records. The probability p is an element of the period [0,1] where values 

of p higher than 0.05 indicates the validity of the null hypothesis (28). 

 

Results 

The angular difference, 𝜑, between the main power meridians showed significant reductions 

when considering non-orthogonal astigmatism compared with the common orthogonal 

assumption – and this was true for both normal and keratoconic corneas, and for both 

populations (p=0), Table 3. However, the variations in optical difference between considering 

non-orthogonal and orthogonal astigmatism were not significant and remained below the 

clinically correctable astigmatic power in all groups except normal Chinese corneas (p=0.015). 

Further, while the variations in power difference were small in normal corneas (Brazilian group: 

0.07±0.1D, Chinese group: 0.08±0.08D), the effect was much smaller in keratoconic corneas 

(Brazilian group: 0.03±0.0D, Chinese group: 0.02±0.05D). 

Since the minimum astigmatic power that can be corrected clinically is 0.5D (29) and a 

significant part of the human population have uncorrected astigmatism of up to 1.0D with no 

notable effect on their visual acuity (8, 30, 31), 1.0D was considered in this study as the 

threshold that separated clinically astigmatic and non-astigmatic eyes. Applying this threshold 

to the analysis results of normal and keratoconic corneas, based on orthogonal and non-

𝜑 = { ∆𝜃, ∆𝜃 ≤ 90°
180°− ∆𝜃, ∆𝜃 > 90° 

Equation 7 
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orthogonal power axes, showed that more Chinese corneas would be considered astigmatic 

when their power axes were calculated non-orthogonally (p=0.028), Figure 5. Removing the 

orthogonality condition increased the percentage of astigmatic corneas in normal Chinese 

participants by 6% (p=0.028). Meanwhile, there was no significant corresponding effect in 

normal Brazilian eyes (0.0507) and keratoconic eyes of both Brazilian (p=0.899) and Chinese 

(p=1) populations. 

In order to evaluate the significance of this finding, the acute angle 𝜑 was plotted against the 

relevant absolute power difference ∆𝑃 for both Brazilian and Chinese populations in Figure 6 

and Figure 7. In these figures, the corneas were divided into three groups, no or mild 

astigmatic corneas (∆P ≤ 1D), regular astigmatic corneas (with 90° ≥ 𝜑 ≥ 85°, ∆P > 1D), and 

irregular astigmatic corneas (with 𝜑 < 85°, ∆P > 1D). According to this classification, 29% of 

normal Brazilian, 39% of keratoconic Brazilian, 20% of normal Chinese and 26% of 

keratoconic Chinese participants had non-orthogonal astigmatism with an optical power 

difference >1D between the main power meridians and an acute angle 𝜑 < 85°.  

 

In addition, 29% of normal Brazilian, 39% of keratoconic Brazilian, 20% of normal Chinese 

and 26% of keratoconic Chinese participants had non-orthogonal astigmatism with an optical 

power difference bigger than 1D between the main power meridians and an acute angle 𝜑 <

85°. On the other hand, regular astigmatism, with 𝜑 ≥ 85°, ∆P > 1D, was identified as 17% 

of normal Brazilian, 50% of keratoconic Brazilian, 10% of normal Chinese and 72% in 

keratoconic Chinese. 

 

Discussion 

The assumption of orthogonality between steep and flat meridians in corneal power maps has 

been a common feature in the analysis of astigmatism and in clinical techniques to determine 
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the eye’s visual acuity, although possible meridional non-orthogonality has been identified 

earlier (11, 14, 32-34). Optical power non-orthogonality was acknowledged in the literature as 

a contributing factor to high order aberrations and identified by indices that do not provide 

clinical parameters like refractive power or axis angle. Despite of being expressed 

quantitatively and statistically by a normalised Fourier series coefficient called the irregularity 

index, no expression of non-orthogonal astigmatism magnitude or axis angle has been 

presented. Moreover, the widespread use of Zernike and Fourier functions, which primarily 

consist of series of orthogonal sinusoidal terms, to characterise corneal irregularity leads to 

the consideration of non-orthogonal astigmatism as a high order aberration phenomenon that 

cannot be corrected by toric refractive lenses (11, 35). As a result, non-orthogonal 

astigmatism, where it exists, may be causing residual astigmatism, even among normal eyes. 

The plan in this study was to take a step back and identify the cornea’s flattest and steepest 

refractive power meridians without forcing them to be orthogonal as a better representation of 

astigmatism. 

Starting with the traditional orthogonal analysis, this study showed mean frequency 

percentages of astigmatism among normal Brazilian and Chinese participants of 44% and 

24%, respectively. Among keratoconic participants, the mean percentages were up to 89% in 

Brazilian participants and 97% in Chinese participants. Considering non-orthogonal analysis, 

by removing the restriction of orthogonality of optical power meridians, the clinical data showed 

non-significant increases in mean frequency percentages of astigmatism among normal 

Brazilian and Chinese participants of 2% (up to 46%, p=0.97) and 6% (up to 30%, p=0.29), 

respectively. In contrast, no corresponding changes were found in the keratoconic participants 

of both populations. This last observation was possibly caused by the mean frequency 

percentages in keratoconic eyes being already high with the orthogonality assumption. 

However, by using non-orthogonal analysis to determine the absolute acute angle 𝜑 between 

the flattest and steepest power meridians, the mean values of 𝜑 were below 90° by 16.4±13.1° 

among normal Brazilian participants (range = 0 - 59°), 19.4±13.5° in normal Chinese 
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participants (range = 0 - 58°), 7.5±8.2° in keratoconic Brazilian participants (range = 0 - 45°) 

and 4.6±4.8° in keratoconic Chinese participants (range = 0 - 23°). These results illustrate the 

non-orthogonality of the cornea’s main power meridians, especially in non-keratoconic eyes. 

Looking at Figures 6, 7 and considering the shape of the eye, and the fact that regular 

astigmatism is more common than irregular astigmatism, it is expected that very steep 

meridians are more likely to be more perpendicular to flat meridians than the less steep ones 

regardless of the instrument used. Furthermore, when there is a relatively low cylinder, there 

is more variability on the axis. Even though the study showed that the percentage of non-

orthogonal corneal astigmatism in keratoconic eyes was 6% to 10% higher than in normal 

eyes, the magnitude of the astigmatism among keratoconic populations (10.0D among 

Brazilian participants, 8.8D among Chinese participants) was more than double that in normal 

populations (3.8D among Brazilian participants, 2.3D in among Chinese participants). The 

small magnitude of astigmatism in normal eyes is a possible contributing factor for not 

identifying its non-orthogonality compared to keratoconic eyes where there is significantly 

larger astigmatism. It is also normal among all measurements that measuring large values is 

technically easier than measuring small values as the signal-to-noise-ratio of large values is 

higher. These results could have important implications on prescription systems to correct 

vision errors. The current system relies on three values; Sphere, Cylinder and Axis, which 

describe the spherical error (Sphere) and the two orthogonal powers: [P1= Sphere at angle 

Axis + 90°] and [P2 = Sphere + Cylinder at angle Axis]. The results of the present study 

illustrate the importance of considering the non-orthogonality of the main power meridians, 

possibly making it necessary to increase the prescription system figures to four; [P1@Axis1] 

and [P2@Axis2], where Axis1 and Axis2 represent the angles of the steepest and flattest 

meridians, respectively. This system would allow the angle between the power meridians to 

differ from 90o (36) in line with the topography findings presented herein. 
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Using the axial curvature method to map corneal power in this study was based on its 

effectiveness in representing the overall visual acuity due to considering the optical axis as a 

reference in power calculations and assuming that centres of axial curvature always lay on 

this axis (18, 37). Other mapping methods were excluded for different reasons; simulated 

keratometry (sim-k) for fitting a unique curvature to each power meridian (38, 39), the 

tangential curvature for its sensitivity to the digital noise associated with videokeratographers’ 

data and not being sensitive to optical axis position (22, 40), and the light ray tracing for its 

sensitivity to numerical errors near the centre of calculations at the optical axis where the 

corneal focal point is close to mathematical infinity (41). Because of their inherent 

assumptions, the simulated keratometry (sim-k) optical power method is probably least 

representative of corneal topography, while the tangential curvature method is more effective 

in assessing local areas of the cornea as in identifying the shape and the position of the cone 

in a keratoconic cornea but not in presenting an accurate global optical power estimate for the 

cornea. Lastly, both axial curvature and light ray tracing mapping methods are effective in 

representing the overall visual acuity as both consider the optical axis as a reference in the 

power calculations, however the latter method was not used since the numerical analysis 

errors associated with it are known to be condensed in the central optic zone, where 

topography data is most important (42). 

Notable limitations of the study include its reliance on corneal topography and power, and the 

lack of consideration of the crystalline lens. This omission was necessary as the crystalline 

lens shape could not be determined accurately by existing Pentacam HR or another 

videokeratography technology. The crystalline lens characteristics may contribute to the 

overall eye astigmatism through the lenticular astigmatism component. However, it is 

expected that the contribution of this component will be small relative to that of the cornea due 

to the dominance of corneal power in determining visual acuity (25, 43). It is also important to 

acknowledge the studies suggested that repeatability of Scheimpflug devices can be lower for 

the posterior corneal surface than for the anterior corneal surface (44-46), however 
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measurements taken with the Pentacam are reported to be repeatable and reproducible when 

they obtained with the high-resolution settings and analysed with caution (47). This is beside 

the fact that, The Penntacam HR, unlike the Placido-based systems, can provide 

measurements for the posterior surface of the cornea which reported to have a significant 

effect on astigmatism magnitude and axis (45, 48). 
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Table 1: Clinical data collected for normal and keratoconic eyes 

Hospital Hospital de Olhos Santa Luzia, 

Maceio, Alagoas, Brazil 

Eye Hospital, WenZhou Medical 

University, Wenzhou, China 

Clinical diagnosis Normal Keratoconic Normal Keratoconic 

Participants (eyes) 458 314 505 74 

Age (mean ± SD) years 35.6 ± 15.8 31.6 ± 10.8 24.2 ± 5.7 22.0 ± 5.5 

Age (min – max) years 10 – 87  10 – 72  17 – 48  11 – 41  
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Table 2: C
linical characteristics of norm

al and keratoconic eyes as m
easured by the Pentacam

 H
R

 system
  

 

 
Brazilian participants 

Chinese participants 

C
linical diagnosis 

N
orm

al 
K

eratoconic 
N

orm
al 

K
eratoconic 

 
𝑀

𝑒𝑎𝑛
±

𝑆𝐷 
𝑀

𝑖𝑛:𝑀
𝑎𝑥 

𝑀
𝑒𝑎𝑛

±
𝑆𝐷 

𝑀
𝑖𝑛:𝑀

𝑎𝑥 
𝑀

𝑒𝑎𝑛
±

𝑆𝐷 
𝑀

𝑖𝑛:𝑀
𝑎𝑥 

𝑀
𝑒𝑎𝑛

±
𝑆𝐷 

𝑀
𝑖𝑛:𝑀

𝑎𝑥 

M
inim

um
 corneal thickness (µm

) 
550±33 

492:660 
466±39 

307:568 
535±29 

453:620 
450±51 

328:580 

Flat curvature in the central 3 m
m

 zone K
1 (D

) 
42.6±1.4 

39.4:46.6 
44.7±3.1 

36.7:55.3 
42.8±1.4 

38.2:48.1 
47.0±5.0 

36.7:62.6 

S
teep curvature in the central 3 m

m
 zone K

2 (D
) 

43.8±1.5 
40.3:47.9 

48.4±3.7 
41.8:59.4 

43.9±1.6 
38.6:49.5 

51.2±6.5 
37.7:71.1 

M
ean curvature in the central 3 m

m
 zone K

m
 (D

) 
43.2±1.4 

39.9:46.8 
46.6±3.2 

39.4:57.0 
43.4±1.5 

38.4:48.6 
49.1±5.7 

37.2:65.6 

Index of surface variance in the central 8 m
m

 zone IS
V 

20±5.8 
8:46 

71±31 
17:155 

16±4.7 
7:59 

87±42 
14:186 

Index of vertical asym
m

etry in the central 8 m
m

 zone IVA
 

0.2±0.1 
0.0:0.4 

4.5±22.0 
0.1:155.0 

0.1±0.0 
0.0:0.4 

0.8±0.4 
0.1:2.2 

Keratoconus index in the central 8 m
m

 zone KI 
1.0±0.0 

1.0:1.1 
1.2±0.1 

0.9:1.8 
1.0±0.0 

0.9:1.1 
1.2±0.1 

0.9:1.6 

C
entral keratoconus index in the central 8 m

m
 zone C

KI 
1.0±0.0 

1.0:1.0 
1.0±0.1 

1.0:1.5 
1.0±0.0 

1.0:1.0 
1.1±0.1 

0.9:1.3 

Index of height asym
m

etry in the central 8 m
m

 zone IH
A

 
4.1±3.2 

0.1:15.5 
23.7±17.5 

0.3:70.9 
3.7±2.9 

0.0:18.6 
31.8±27.5 

0.2:160.4 

Index of height decentration in the central 8 m
m

 zone IH
D

 
0.0±0.0 

0.0:0.0 
0.9±5.8 

0.0:60.5 
0.0±0.0 

0.0:0.0 
0.1±0.1 

0.0:0.3 

Irregularity index - based on Fourier analysis 
0.03±0.01 

0.01:0.07 
0.04±0.01 

0.01:0.08 
0.02±0.01 

0.01:0.14 
0.04±0.02 

0.01:0.18 

Topographical keratoconus classification TK
C

 (level) 
N

A
 

N
A

 
2.1±0.7 

1:3.5 
N

A
 

N
A

 
2.6±0.8 

1:3.5 

Index of B
ad D

  
0.4±0.5 

-0.9:1.4 
7.0±3.3 

1.5:20.8 
1.0±0.6 

-0.8:3.0 
9.4±5.4 

0.4:24.6 
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Table 3: Acute angle and absolute power difference between steepest and flattest meridians 
determined for Brazilian and Chinese eyes using orthogonal and non-orthogonal analysis 

Analysis methods 

Brazilian participants Chinese participants 

Acute angle 𝜑 

 𝑀𝑒𝑎𝑛 ± 𝑆𝐷 (Degree) 

Abs power difference ∆𝑃 

𝑀𝑒𝑎𝑛 ± 𝑆𝐷 (Dioptre) 

Acute angle 𝜑 

𝑀𝑒𝑎𝑛 ± 𝑆𝐷 (Degree) 

Abs power difference ∆𝑃 

𝑀𝑒𝑎𝑛 ± 𝑆𝐷 (Dioptre) 

Normal Keratoconic Normal Keratoconic Normal Keratoconic Normal Keratoconic 

Orthogonal 90.0±0.0 1.1±0.8 3.3±2.3 90.0±0.0 0.8±0.5 4.8±2.6 

Non-orthogonal 

(range) 

73.7±13.1 

(31 : 90) 

82.5±8.2 

(45 : 90) 

1.2±0.7 

(0.1 : 4.7) 

3.4±2.2 

(0.3 : 11.8) 

70.6±13.5 

(32 : 90) 

85.4±4.8 

(67 : 90) 

0.9±0.5 

(0.1 : 3.4) 

4.8±2.6 

(0.7 : 10.7) 

Difference -16.4±13.1 -7.5±8.2 0.07±0.10 0.03±0.00 -19.4±13.5 -4.6±4.8 0.08±0.08 0.02±0.05 

Significance (p)  0.000 0.000 0.190 0.870 0.000 0.000 0.015 0.960 

 

 

 

 

Figure 1: Topographical keratoconus classification level for keratoconic patients as identified 
by the Pentacam HR (unclassified keratoconic cases were 0.14 of Brazilian participants and 

0.15 of Chinese participants). 
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Figure 2: Determination of corneal surface axial radius of curvature (r) in a certain meridional 
plane. In this method, the centre of curvature (c) is always restricted to lay on the cornea’s 

optical axis. 
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Figure 3: Optical power map for a left eye of a normal Chinese participant (female 26 years 
old) based on the axial curvature method. The map shows the orthogonal and non-

orthogonal power meridians. 

 



 

23 
 

 

Figure 4: Calculating the position of flattest and steepest power meridians – Pfo: power of 
flattest orthogonal meridian; Өfo: angular position of flattest orthogonal meridian, Pso: power 
of steepest orthogonal meridian, Өso: angular position of steepest orthogonal meridian, Pfno: 
power of flattest non-orthogonal meridian, Өfno: angular position of flattest non-orthogonal 

meridian, Psno: power of steepest non-orthogonal meridian, Өsno: angular position of steepest 
non-orthogonal meridian. 
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Figure 5: Astigmatism based on orthogonal and non-orthogonal power axes analysis among 
the four populations. 
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(A) 

 

(B) 

Figure 6: Acute angular difference between the cornea’s flattest and steepest power 
meridians plotted against the power difference for Brazilian normal (A) and keratoconic (B) 

participants. 
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(A) 

 

(B) 

Figure 7: Acute angular difference between the cornea’s flattest and steepest power 
meridians plotted against the power difference for Chinese normal (A) and keratoconic (B) 

participants. 

 


