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ABSTRACT 

 The human protein kinome comprises 535 proteins that, with the exception of ~50 

pseudokinases, control intracellular signaling networks by catalyzing the phosphorylation of 

multiple protein substrates. Whilst a major research focus of the last 30 years has been 

cancer-associated Tyr and Ser/Thr kinases, over 85% of the kinome has been identified to be 

dysregulated in at least one disease or developmental disorder. Despite this remarkable 

statistic, for the majority of protein kinases and pseudokinases there are currently no 

inhibitors progressing towards the clinic, and in most cases, details of their physiological and 

pathological mechanisms remain at least partially obscure. By curating and annotating data 

from the literature and major public databases of phosphorylation sites, kinases and disease 

associations, we generate an unbiased resource that highlights areas of unmet need within 

the kinome. We discuss strategies and challenges associated with characterising catalytic 

and non-catalytic outputs in cells, and describe successes and new frontiers that will support 

more comprehensive cancer-targeting and therapeutic evaluation in the future. 

 

 

INTRODUCTION 

 Protein kinases, which are nearly all members of the eukaryotic protein kinase (ePK) 

superfamily, represent a large and diverse family of enzymes that catalyze the context-

dependent transfer of the γ−phosphate of ATP onto specific protein substrates. Modulation of 

protein function by kinase-mediated phosphorylation of alcoholic amino acid side chains (Ser, 

Thr and Tyr) underpins much of biological signaling, and kinase dysregulation is frequently 

associated with disease. Consequently, this protein superfamily has been the subject of 

increasingly intensive scrutiny ever since the first protein kinase activity (phosphorylase 

kinase) was characterized by Krebs and Fischer in 1955 (1).   
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 The first comprehensive survey of the human kinase complement by Manning and 

colleagues identified and classified 518 protein kinases, by grouping them into evolutionary-

related families based on statistical sequence analysis (2). Since publication of this 

groundbreaking census, further kinome-wide appraisal has been undertaken from a variety of 

research angles (3-6). With recent estimates suggesting that phosphorylation occurs on 

~90% of proteins expressed in cultured human cells (7), the contemporary relevance of 

kinome-wide analysis remains extremely high. Furthermore, a recent wide-ranging protein 

phosphatase census confirms the presence of 189 distinct human protein phosphatase genes 

(8). Together, protein kinases and phosphatases constitute an important regulatory force in 

signaling whose unequivocal medical relevance has now led to decades of successful 

pharmacological intervention (9). Important recent data also reveals widespread Histidine 

phosphorylation in human cells, likely catalyzed by NME1 and 2 at chemically distinct 1 and 3 

positions of the imidazole ring to form chemically-labile phosphoramidate bonds (10-12). This 

development implies the need for further technological innovation in order to more 

comprehensively evaluate non-classical cellular phosphorylation, whilst providing a timely 

reminder of the need for an unbiased analysis of poorly studied members of the human 

kinome to be prioritized. This will be important to evaluate whether some of the newly 

annotated members of the kinome eg. NME3-9 are bona fide protein kinases or 

pseudokinases. 

 To support kinome analysis, several databases and on-line tools have been designed to 

take advantage of the significant developments in mass spectrometry-based technology and 

technical advances in kinase-substrate identification (13,14). Together, these now permit 

deeper knowledge of various aspects of kinase biology to be compiled and connected. 

However, a key issue for both expert and non-expert users of such databases is a general 

lack of kinase naming conformity, which does not permit easy comparative kinome analysis. 



 4 

Up-to-date information on kinome physiology, disease association and progress in therapeutic 

targeting can readily be obtained from public databases (Figure 1, Table 1, Supplementary 

Table 1). Such resources can also be mined to evaluate specialised ‘niche’ kinome data that 

might be important for rarer cancers, a recent example being the complex cellular landscape 

of mitosis-specific phospho-tyrosine (15). In this resource-based review we have curated 

major insights from these sources to provide a current, readily accessible, overview of 

important aspects of human kinome biology. 

 

KINOME BIOLOGY 

 The human kinome consists of 535 distinct protein kinases (Supplementary Table 1; 

KinBase: www.kinase.com). 479 kinases contain a recognized ePK catalytic domain, which 

can be further sub-classified based on primary sequence into seven major ePK families: TK, 

TKL, STE, CK1, AGC, CAMK and CMGC (2). 81 of the ePK superfamily represent sub-

branches of the kinome dendrogram that do not fit within the seven major groups and are 

classified as ‘Other’ (2). The RGC kinase family, included in Figure 1 and our datasets, has 

recently been re-classified as a sub-group within the ‘Other’ family (KinBase: 

www.kinase.com). The remaining 56 non-ePK kinases within the kinome possess an atypical 

protein kinase domain that has little sequence similarity to the main kinase superfamily, and 

their classification into distinct kinase sub-families is probably more appropriate (16). 

However, proteins within this Atypical group have verified, or are predicted to maintain, kinase 

activity based on biochemical experiments and/or structural analysis (2). Intriguingly, both the 

Atypical and Other kinase families have an over-representation of kinases shown to be 

essential in at least 6 of the 11 cell lines used across three genome-wide studies of essential 

genes (Figure 1) (17-19), in broad agreement with earlier unbiased pioneering studies 

comparing siRNA-based near kinome-wide knockdown across human cell lines (20). Finally, 
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some 52 kinase family members are believed to lack the appropriate catalytic machinery to 

efficiently phosphorylate standard substrates. These pseudokinases are distributed across all 

of the families of the kinome (Figure 1), suggesting that an absence of catalysis is not a 

formal barrier to the evolution of unique or irreplaceable biological roles, nor the acquisition of 

cancer-associated signaling functions. Moreover, the existence of pseudokinases within the 

kinomes of all eukaryotic organisms analyzed argues for increasingly nuanced evaluation 

procedures when the biological roles of kinase-dependent and independent functions of all 

kinome members are assessed experimentally.  

 Deep proteomic analysis of 23 different mammalian cell lines has revealed that cells often 

contain at least 300 different kinases (21-25). However, the overview of published data 

(Figure 1) illustrates that the major research focus has been on tyrosine kinases (TK) and a 

select few other kinases that are critical for promoting cell proliferation and survival. For 

example, the 12 principle kinase nodes within the EGFR/ERBB2-MAP kinase signaling 

network together with AKT family members account for almost 20% of the ~120,000 kinome 

publications. In contrast, half of the kinome still only accounts for only ~5% of research 

publications (Supplementary Table 1). The kinases that have been most studied nearly all 

have conserved, rate-limiting, roles in normal vertebrate cell biology and exhibit significant 

associations with diseases and/or developmental disorders, which has helped prioritize their 

pharmaceutical evaluation. Consequently, most have now been successfully targeted by 

chemical inhibitors that have secured FDA approval or reached an advanced stage of clinical 

trial.  

 The 90 tyrosine kinases are particularly well served by FDA approved inhibitors (Figure 1). 

However, many of these compounds exhibit very broad specificity, including frequent nM 

inhibitory potencies for ‘off-target’ kinases lying outside of the TK family (Figure 1; 

Supplementary Tables 1 & 2). Amongst the non-TK families, only BRAF, MEK1, MEK2, 
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CDK4/CDK6 and mTOR have (knowingly) had drugs specifically developed towards them that 

received FDA approval as of July 2017 (Table 1). An overt focus on the kinases known to play 

critical roles in cancer etiology suggests that it is likely that the development of drugs (or even 

specific tool compounds) for the majority of the kinome still lie at an early stage in 

development. Although this issue has been discussed previously (4), some 300 members of 

the kinome still do not have any inhibitors that have entered a clinical trial and >200 do not 

have any publicly available structural information available to assist in drug design (Figure 1, 

Supplementary Table 1). This is an important area of unmet need, because the availability of 

selective inhibitors has a significant impact on understanding the function of the target kinase. 

Integration of text mining, manually curated disease-gene association databases, cancer 

mutation data and genome-wide association studies reveals that >85% of the kinome is 

associated with at least one disease or developmental disorder which can arguably only be 

best addressed or validated by the use of selective inhibitors (Supplementary Table 1; 

http://diseases.jensenlab.org; (26,27)).  

 

ACTIVE KINASES AND PSEUDOKINASES 

 Protein kinase domains consist of a small N-terminal lobe that is predominantly responsible 

for co-ordinating ATP binding and a large C-terminal lobe that makes a major contribution to 

protein substrate binding and catalysis of phosphorylation (28). The mechanistic basis for the 

process of phosphorylation by kinases is described in detail elsewhere (29). Regulation of 

protein kinase activity occurs via multiple post-translational modifications (PTMs; most notably 

phosphorylation), auto-inhibition, binding to a regulatory partner, which can include both 

activator and inhibitor proteins and/or changes in expression (29,30). One or more of these 

mechanisms are employed by most kinases to promote or stabilize an active conformation 

and support ATP and substrate binding capabilities of the protein kinase domain (28).  
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 Non-enzymatic members of the human kinome, exemplified by the pseudokinases, have 

now emerged as important areas of fundamental research. ~50 human pseudokinases (31) 

have been catalogued and assigned to the pseudokinase group, consistently representing 

~10% of genes found in vertebrate kinomes (Supplementary Table 1) (2,32). Despite 

exhibiting low or zero levels of catalytic output when assayed biochemically, pseudokinases 

can sometimes still bind physiological concentrations of nucleotides and so retain the ability to 

act as molecular signaling switches functioning in cells through druggable ligand-induced 

transitions that are of particular interest for pharmaceutical-design approaches (33,34). 

Pseudokinases can also actively control the catalytic output of enzymes by either allosteric 

modulation, competition for substrate binding, re-localization of active partner enzymes, or via 

scaffolding and integration of distinct signaling pathways (32). Prominent examples are 

HER3/ERBB3, which is a major HER2 signaling partner in tumor cells, and a central 

modulator of cancer cell drug-resistance that acts as a scaffold to induce and maintain PtdIns-

3-kinase (PI3K) activity (35,36) and KSR1 and KSR2 in the EGFR-Ras-MAP kinase pathway 

which act as scaffolds to regulate the signaling activity, through allosteric interactions, of their 

respective catalytically-active RAF relatives (37,38). Data mining has confirmed that mutated 

or overexpressed pseudokinases are associated with many human diseases, including 

cancers (32,39). A major challenge in the future will be to harness the insights from the 

development of clinical kinase inhibitors to target the wide range of atypical conformations 

that define disease-associated variants of pseudokinases and signaling-active, but 

enzymatically inactive, canonical kinases.  

 The non-enzymatic mechanisms of pseudokinase regulation of kinase partner protein 

function are also exhibited by catalytically active kinases such as RAF and AURKA (40), and 

this should be borne in mind when seeking to understand responses to targeted therapies. 

For example, RAF inhibitors can in certain cellular contexts promote transactivation of RAF 
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dimers and explain paradoxical activation of RAF signaling in cells (41,42). It remains likely 

that non-enzymatic mechanisms of signaling are often unknowingly being drugged with 

clinical agents; a further key goal for the future will be to establish the contribution of inactive 

and non-enzyme mechanisms to signaling, and to target them more appropriately in patients. 

  

PROTEIN PHOSPHORYLATION 

 The expansion of the ‘basic’ cellular proteome configuration (43) through reversible multi-

site protein phosphorylation constitutes an enormous challenge for the rapidly maturing 

phospho-proteomics field. Almost 250,000 human Ser/Thr/Tyr phospho-sites have now been 

experimentally identified and curated from the available proteomic literature and in-house 

phospho-proteomic datasets by PhosphoSitePlus® (Figure 2; www.phosphosite.org; (44)). A 

typical cell might in fact contain twice this number of modified residues (7,45) and we are now 

in a strong position to interpret this information in terms of cell physiology. Advances in 

quantitative experimental strategies, sample methodologies and targeted mass spectrometric 

sensitivity mean that in a typical experiment >10,000 phospho-sites can routinely be identified 

from low milligram quantities of starting material (46). The most commonly used enrichment 

strategies use metal oxides such as TiO2, which are highly specific for most phosphopeptides 

(47). However, such approaches can result in relatively poor sampling of the phospho-

tyrosine (pTyr) pool; therefore, anti-pTyr antibody-based enrichment is typically employed to 

evaluate this less-abundant modification (47). Effective sampling of this subset is particularly 

important given the dominant role of tyrosine kinases in controlling early events in signaling 

that are frequently dysregulated in diseases such as cancer (48,49).  An important technical 

challenge will be the development of advanced analytical approaches to sample the extent 

and positional distribution of acid-labile, rare, sub-stoichiometric and combinatorial 

phosphorylation in human cells. For example, site-specific His phosphorylation in human cells 
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has only recently been recognized experimentally (12). Analogous to the importance of pTyr 

antibodies in the race to decode the biological role of pTyr, the availability of high-affinity 

monoclonal antibodies targeting 1 and 3-phosphorylated His (11) and improved mass 

spectrometry workflows (50) have significant potential to simplify this challenge. Further 

targeted and discovery-based proteomics approaches will also be critical to understand how 

combinations of PTMs together make up signaling codes and can be successfully targeted for 

therapeutic intervention. 

 5-20% of phospho-sites exhibit regulated changes in large scale experiments (51-53), 

whilst fewer than 2% (5330 phospho-sites) have known regulatory consequences for their 

target proteins (44). This primitive understanding about the functional consequences, or 

stoichiometry, of >98% of phosphorylation extends to challenging questions about whether 

low level ‘noise’ in signaling is unimportant for systems-level analysis because it is driven by 

inefficient protein kinase enzymology. This illustrates the scale of the challenge for generating 

broad mechanistic insight from phospho-proteomic datasets. Indeed, an important regulatory 

target of kinase activity is other protein kinases; 993 of the curated regulatory phospho-sites 

are found on kinases and there is a clear enrichment for pTyr in regulating enzyme activity 

(Figure 2). Details of known regulatory kinase phosphorylation sites are provided in 

Supplementary Table 1. Other major regulatory functions of phosphorylation are in 

modulation of localization, interactions and protein stability to influence the dynamics and 

context of protein function (Figure 2) and all are suitable for therapeutic manipulation (54-56). 

 

KINASE-SUBSTRATE RELATIONSHIPS 

 Figure 2 and Supplementary Table 3 curate 301 experimentally determined protein kinase 

consensus sequences highlighting the five broad categories of kinase recognition motifs 

utilizing combinations of acidic, basic, hydrophobic, Pro and pre-phosphorylated Ser or Thr 
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residues adjacent to the target residue (57,58). In general, many tyrosine kinases prefer 

adjacent acidic and hydrophobic residues whilst Ser/Thr kinases typically phosphorylate 

residues adjacent to basic motifs or Pro residues. However, it is important to note that not all 

substrates contain linear consensus sequences and instead rely on non-contiguous sequence 

being brought together during protein folding or after conformational changes (59). The extent 

to which different combinations of PTMs might change kinase or phosphatase substrate 

specificity is also unclear and concerted effort to understand the co-existence and 

combinatorial regulation of PTMs in cells remains a high priority for the kinome field (60,61).  

 Phospho-proteomic analysis will be a key driver of knowledge in this area. In order to 

support rapid ‘first pass’ analysis of phospho-proteomic datasets we have generated an 

instructive phospho-proteome profiler that provides an overview of potential kinase regulators 

of specific phospho-sites and highlights all known regulatory and disease associated sites 

within a submitted dataset (Supplementary File 1). For example, included within the phospho-

proteome profiler are 20,266 experimentally verified kinase-substrate relationships curated 

from major studies (44,58,62-65). Interestingly, 80% of kinases within the dataset 

phosphorylate ≤50 substrates and 90% of phospho-sites are targets of ≤6 kinases. Whilst 

some kinases, such as the dual specificity kinases MAP2K1/MAP2K2, are believed to have a 

very restricted substrate pool, in general these numbers are certainly significant 

underestimates of cellular kinase activity since <5% of known phospho-sites and <80% of 

kinases are included within the dataset. This reflects the sampling bias due to the focus of 

most studies on particular members of the kinome (highlighted in Figure 1). An example of 

how extensive the substrate pool could be for many kinases is seen with the very well-studied 

MAPK1 for which over 850 substrates have already been identified (Supplementary File 1). 

 To circumvent the paucity of coverage of kinase-substrate relationships, researchers have 

focused on predictive tools based on kinase consensus motifs and other contextual 
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information to infer putative kinase regulators of phospho-sites (65-75). Cellular context is 

particularly important when predicting signaling interactions, yet this is rarely included in 

database annotations with the notable exception of the PHOSIDA database (76). This is now 

starting to change and the latest iterations of predictive tools integrate dynamic changes in 

phospho-proteome or interactome data with kinase consensus motif information to improve 

predictions of likely kinase regulators (66,77). 

 Characterizing dynamic changes in kinome activity is necessary to understand network 

contributions to normal cell activity or rewiring in response to therapeutic interventions. The 

occupancy of phosphorylation often changes markedly and rapidly when unstimulated and 

stimulated cells are compared side-by-side (7,78). Whilst in vitro kinome profiling is 

extensively used for assessing drug specificity and sensitivity (79), the capacity for cellular 

kinome profiling remains much more challenging at the proteomic level. Most studies utilize 

combinations of gene expression profiling, gene set enrichment analysis, kinome-wide 

chemo-genetic screens, reverse phase protein arrays or kinase antibody arrays to infer 

changes in kinase activity and network responses. Recently developed proteomic approaches 

offer some interesting complementary alternatives. Quantotypic peptides have been identified 

that allow accurate quantitation of the relative protein expression levels of ~20% of the 

kinome (80). Broad-spectrum kinase inhibitors immobilized on beads can be used to enrich 

kinases from cell lysates for proteomic analysis and relative profiling of protein expression 

levels or drug sensitivity (81-86). This approach has been claimed to be sensitive to kinase 

activation state across at least 75% of kinome and tyrosine kinases mediating drug resistance 

in cancer have been identified using this method (87-90). However, whilst it is likely able to 

report the protein expression levels of many kinases, the ability to differentially enrich for 

active versus inactive kinases is likely to be highly context dependent and has not yet been 

formally verified beyond a small number of well-studied tyrosine kinases (91).  
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 Finally, the integration of proteomics and large scale kinase activity screening approaches 

with genomic and transcriptomic datasets is essential for systems-level understanding of 

kinome networks and their contributions to normal biology and diseases such as cancer (92-

94). The need for improved computational methods for integrating and deciphering the multi-

omic cancer datasets has been recognized by recent proteogenomics funding initiatives from 

the National Cancer Institute and others. Whilst the paucity of understanding of node 

regulation and biological consequences across kinome networks described above illustrates 

the scale of the challenge, multi-‘omics analysis and systems levels understanding will be 

critical for developing personalized medicine approaches. 

 

KINOME DISEASE ASSOCIATION 

 Over 450 kinases have been implicated in the development or progression of diseases 

(26). Notably, 448 of these have been linked to various genetic and signaling cancer 

hallmarks, whilst 230 potentially play a role in the development of other diseases and 

developmental disorders (Supplementary Table 1). Examples where gain or loss of kinase 

function might underlie ‘non-cancer’ diseases include PINK1 and LRRK2, which function in 

mitophagy pathways associated with Parkinson’s disease (95). DYRK1A catalytic activity is 

required for neuronal development and overexpression is associated with Down’s syndrome 

whilst haplo-insufficiency causes microcephaly (96). Truncating and missense mutations of 

TTN cause cardiomyopathy (97), whilst deletion of the FAM20C gene (the bona-fide ‘casein 

kinase’ responsible for generating the phosphorylated secretome) results in bone dysplasia 

due to loss of phosphorylation of extracellular proteins required for biomineralization (98). 

However, the causal role of the majority of kinases in specific diseases is unclear even when 

considering the roles of human kinases in cancer, where most attention has been focused. 

For example, whilst the Sanger Cancer Gene Census (CGC) identified the kinase domain as 
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the most frequently encoded domain in ‘cancer genes’ (99), the CGC database currently 

identifies only 58 kinases where mutations are causally associated with cancer. 

 The role of mutations or copy number changes as drivers or passengers in disease can be 

hard to discern particularly when mutated at low frequency. The advent of widespread cancer 

genome sequencing has provided large datasets that, together with statistical analysis that 

accounts for mutational heterogeneity, means cancer drivers can be more accurately 

identified (100,101). MutSigCV analysis measures whether the observed mutation frequency 

for a given gene differs from background rates for the cancer type and the local sequence 

context (100). These data together with measurements of copy number alterations (CNA) are 

collated on The Cancer Genome Atlas (TCGA; http://cancergenome.nih.gov/) and the kinome 

subset is curated in Supplementary Table 4.  

 122 kinases out of a total pool of 3341 genes exhibit significant mutation rates (q≤0.1, 

Benjamini-Hochberg; MutSigCV) and/or copy number changes (≥5% patients) in at least one 

of the 25 TCGA cancer datasets studied. Tyrosine kinases and TKL family members are over-

represented amongst the significantly mutated subset comprising 67 kinases that contribute 

half of all of the observations across the tumor types (Figure 3; Supplementary Table 4). 

Importantly, due to the incomplete understanding of kinome biology, we have not been able to 

comprehensively discriminate between gain or loss of function mutations or silent mutations 

and therefore present the gross rates rather than values adjusted for known functional effects.  

 A selection of the most mutated or copy number altered kinases are depicted in Figure 3. 

The heterogeneous mutational/CNA landscape across tumor types becomes apparent with, 

for example, kidney cancers (KIRC and KIRP) harboring very few mutations whereas lung 

adenocarcinoma (LUAD) exhibits high rates of mutation and copy number variations. With the 

exception of a few well-known oncogenes such as BRAF, KIT, EGFR and FLT3, kinases are 

typically significantly mutated at low frequencies. However, tumors can contain combinations 
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from a selection of up to 58 different kinases exhibiting significant rates of mutation compared 

to background. Notably, important kinase effectors of oncogenic pathways such as AKT2, 

MAP2K1, MAPK1 and MAPK3 are rarely mutated above background levels despite central 

rate-limiting roles in proliferation and apoptosis, illustrating the focus of most perturbations on 

kinases initiating network responses. 

 The role of copy number alterations as cancer drivers or passengers is even more 

challenging to ascertain. Confounding factors include the focal nature of the amplicon and 

heterogeneity of the amplification ie not all regions of the tumour are amplified (102). This 

means that amplification as biomarkers for patient selection are not binary like point 

mutations. A bona fide example of cancer driving amplification is observed with ERBB2, 

which contributes to an aggressive phenotype in breast cancer (103). However, there are 11 

other kinases that show equivalent or greater levels of amplification in the BRCA dataset that 

have not been evaluated for their contribution to breast cancer. Similarly, MAP3K13, PRKCI 

and PTK2 show high frequencies of amplification in a broad cross-section of cancers that 

most likely reflects their genomic positions adjacent to frequently amplified oncogenes such 

as MYC and PIK3CA rather than a direct cancer role. Despite these challenges, potentially 

intriguing patterns of copy number change are observed. For example, the specific 

amplifications of WNK1 in testicular cancer (TGCT) and PIM1 in uveal melanoma (UVM) are 

observed against backgrounds of exceptionally low rates of genetic alterations (Figure 3). 

These are analogous to the patterns of mutation seen with driver oncogenes such as FLT3 in 

acute myeloid leukemia (LAML; (104)), and may indicate a specific driver contribution in these 

cancer types. 

 To summarize, whilst 122 kinases exhibit significant rates of mutation and 78 kinases 

exhibit appreciable levels of copy number alterations (≥5% of patients) in at least one of the 

broad cross-section of cancer types in our dataset, only a subset of these are likely to reflect 
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a direct ‘driver’ contribution. The lack of certainty even when considering something as 

intensively studied as human cancer signaling, most likely reflects the relentless focus on only 

a subset of commonly mutated or studied kinases and the general lack of understanding of 

the full consequences of gain or loss of canonical functions of a kinase. The challenge here is 

exemplified by recent studies that showed that kinase-dead BRAF and loss of function 

mutations in PKC are both oncogenic (105,106). Although we may well have identified many 

of the major kinase players in human primary cancers, in order to fully develop personalized 

medicine approaches the contributory role of all kinases in patient sub-populations will have 

to be fully characterized. This will include improved focus on kinases that currently lack good 

chemical biology tools, and on validating and modulating protein kinases that drive metastatic 

programming. Similarly, there are many key regulators of kinase biology (eg. KRAS, PTEN, 

PIK3CB, GNAQ, NF1) that represent challenging but important contemporary targets or 

biomarkers for therapeutic development. The importance of targeting dysregulated or mutated 

protein kinases in diseases with the highest levels of human morbidity such as heart disease, 

chronic obstructive pulmonary disorder, acute infection and dementia should also not be 

forgotten.  

 

 

KINOME THERAPEUTICS 

 Although kinases are targets for ~15% of the compounds collated in ChEMBL v.21, they 

currently represent fewer than 5% of the almost 1600 drugs that have received FDA approval 

to date (3,107,108). Interestingly, 235 kinases are established primary targets of inhibitors 

that have entered Phase 1 clinical trials. A further 127 kinases are known targets of 

experimental compounds that broadly satisfy Lipinski’s principles, that some, but not all 

kinase-directed small molecules obey ((109); Supplementary Table 2). The first protein kinase 
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inhibitor to be approved for treatment was the ROCK inhibitor Fasudil in 1995 in Japan and 

China; however, it was a further 4 years before the mechanistically unique mMTORC1 

complex inhibitor sirolimus, also known as rapamycin (110), became the first kinase inhibitor 

to receive FDA approval. Since 1999, and spurred-on by the breakthrough efficacy of imatinib 

in chronic myeloid leukemia (CML) and then gastro-intestinal stromal tumor (GIST) patients, a 

further 35 small molecule kinase inhibitors have received FDA approval as of August 2017 

(Figure 4). The majority target tyrosine kinases and are prescribed for cancer therapeutics, 

although oral dual JAK1/2 inhibitors bucked this trend, following approval of ruxolitinib for 

myelofibrosis in 2015 and tofacitinib for rheumatoid arthritis in 2016 (111). A second group of 

agents targeting kinases are represented by humanised monoclonal antibodies, which target 

the extracellular domains of receptor tyrosine kinases to prevent ligand binding and/or 

promote antibody-dependent immune cell-mediated toxicity (112). Antibody-mediated 

approaches to kinome therapeutics are likely to define the continuing marriage of technology 

with biologics, encompassing combination antibody therapies with small molecule kinase 

inhibitors (113). The final group of current kinome therapeutics comprise the ligands and 

ligand modulators. The only member of this group that does not target a receptor tyrosine 

kinase is linaclotide, a peptide ligand of the pseudokinase-containing guanylate cyclase 

GUCY2C, which is used to treat irritable bowel syndrome (114). Ligand modulators 

exclusively consist of VEGF antagonists that oppose the angiogenesis promoting activity of 

the VEGFR pathway (115). These RNA-aptamer and protein-based antagonists of VEGF 

have successfully been used since 2004 for treating cancer and ocular vascular disease. 

 An important feature of many chemical inhibitors of kinases is their relative lack of single 

kinase selectivity. 170 members of the kinome have sub-100 nM sensitivity to at least one 

FDA approved drug (Figures 1, 4, 5 and Supplementary Table 2), and this is particularly 

evident with respect to the SRC family kinase inhibitors dasatinib, bosutinib and nintedanib 
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that possess an inhibitory spectrum far beyond their ‘target; kinases (Figure 5). One reason 

for this lack of selectivity is that the ATP-binding site is highly conserved between kinases and 

therefore can represent a promiscuous target especially for ATP-competitive Type I inhibitors 

(comprising many FDA approved small molecule kinase inhibitors) that bind the active kinase. 

These ‘off-target’ effects are not limited to protein kinases, and include interesting targets 

such as bromodomain and extra-terminal domain (BET) family proteins (116), the haem 

biosynthetic enzyme ferrochelatase (86,117) and a variety of other ATP-binding proteins 

(86,118). In contrast, although Type II inhibitors (eg. imatinib, sorafenib, regorafenib) that 

stabilize the inactive kinase conformation are still somewhat promiscuous as a class (119), 

the potential to select for fewer ‘inactive’ conformations amongst their intracellular targets 

does exist (3). Improvements in medicinal chemistry, understanding of structure-activity 

relationships and selectivity screening mean that much more selective ATP-competitive 

kinase inhibitors are being developed. These include approved EGFR tyrosine kinase 

inhibitors and many more drugs in clinical development. The highest levels of cellular 

specificity are observed with Type III inhibitors that target signaling via allosteric mechanisms 

(120). Examples of Type III inhibitors include the MEK1/2 inhibitors trametinib, cobimetinib 

and selumetinib (granted FDA orphan drug designation in 2016 for treatment of advanced 

thyroid cancer) (121). The availability of allosteric and catalytic site kinase inhibitors presents 

the opportunity for dual hit inhibition where the distinct modes of drug action are thought to 

enhance target coverage and reduce the emergence of drug resistance. A successful 

application of this strategy has been seen with BCR-ABL inhibitor nilotinib in combination with 

the allosteric inhibitor ABL001 where stereotypical drug resistance in the BCR-ABL target 

failed to emerge in pre-clinical leukemia models (122). The potential benefits of allosteric 

inhibitors means that their discovery and development should remain a major focus for 

research efforts. 
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 The extent of specificity amongst the kinase inhibitors obviously has implications for 

treatment and personalized medicine. Many tyrosine kinase inhibitors potentially have broad 

specificity at clinical doses (Figure 5), which means that multiple kinase nodes within an 

oncogenic pathway may be beneficially targeted through intentional ‘polypharmacology’ (123). 

However, the ability to inhibit the desired, disease driving, kinase target optimally without 

being limited by toxicity due to polypharmacology is very important.  A case in point is that 

many kinase inhibitors exhibit cardiotoxicity through induction of long QT syndrome (124). 

The publicly available data to assess target specificity of chemical inhibitors is not 

comprehensive. For example, nine of the inhibitors have available test data against fewer 

than twenty kinases (Supplementary Table 2). Consequently, some of the drugs that appear 

to be selective may target a wider range of kinase conformations than indicated (Figure 5), 

especially given that structurally-distinct kinase and pseudokinase families are usually absent 

from screening platforms, despite their potentially druggable links to various cancer 

phenotypes.  

 

ACQUIRED RESISTANCE AND ADAPTIVE KINOME REPROGRAMMING. 

 Despite the successes in small molecule kinase inhibitor development, resistance to 

therapy frequently occurs and most patients eventually relapse. The mechanisms by which 

tumors can acquire resistance to kinase inhibitors is complex. Two broad mechanisms are 

responsible for the development of resistance following response to therapy: an adaptive 

phase where signaling pathways can be remodeled to mitigate the effects of kinase inhibition 

and a longer-term process where mutations or gene copy number alterations may be 

acquired that confer a selective advantage by resisting the effects of the treatment. The 

relative contribution of these mechanisms to resistance varies greatly between different 

kinase drug targets. 
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 Adaptive resistance makes use of existing homeostatic feed-forward and feedback loops to 

rapidly rewire networks around the inhibited node. Negative feedback typically results in 

down-regulation of the signaling pathway, however inhibitors can result in re-activation of a 

pathway via relief of negative feedback. This has been seen in the PI3K-AKT-mTOR pathway 

where the mTORC1 inhibitor rapamycin caused increased AKT signaling in myeloma cells 

through loss of feedback from MTOR (125). Similarly, AKT inhibition results in pathway 

reactivation within hours, in this case via induced expression of receptor tyrosine kinases 

(RTKs) such as ERBB3 and IGF1R and INSR (126,127). The rapid transcriptional up-

regulation of SGK1 (128,129) and/or SGK3 (130,131) in tumors suggests a central node of 

resistance in experimental models challenged with PI3K or AKT inhibitors. This is due to the 

ability of SGK family members, which encode similar substrate phosphorylation consensus 

specificity to AKT, to functionally replace this kinase in cells. The EGFR-RAS-RAF-MEK-ERK 

pathway is dysregulated in many cancers and inhibitors have been approved for many of 

these protein kinase nodes (Figure 4). However, the presence of feedback loops can lead to 

complex, and undesirable phenotypes in cells. Vemurafenib specifically inhibits the oncogenic 

V600E mutant form of BRAF (132). Rapid adaptation occurs within hours of vemurafenib 

treatment via loss of ERK (MAPK1/MAPK3)-dependent negative feedback that results in the 

restoration of RTK signaling and promotes the generation of inhibitor-resistant RAF dimers 

(133). A similar relief of feedback resistance mechanism that is dependent upon CRAF occurs 

in RAS mutant tumours when MEK (MAP2K1/MAP2K2) or ERK is inhibited (134). MEK 

inhibition also induces rapid rewiring of kinome networks via loss of ERK-dependent c-MYC 

expression resulting in increased expression of multiple RTKs and their ligands (90). 

Together, these responses are important for allowing the development of a sub-population of 

cells, sometimes called drug-resistant persistors (135) to survive the initial therapeutic assault 

before re-emerging and being reinforced by acquired resistance mechanisms. 
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 Acquired resistance typically takes time to emerge via the acquisition of new mutations. 

The mechanism most classically apparent upon genome analysis is via mutations that 

interfere with inhibitor binding, typically inducing occlusion of the drug, loss of a favorable 

physiochemical interaction, or a change in an enzymatic property in the target. One of the first 

examples was revealed in the blood and bone marrow of CML patients treated with the ABL 

tyrosine kinase inhibitor imatinib (136,137). Importantly, BCR-ABL signaling was re-activated 

in patients that acquired a mutation resulting in a single amino acid substitution of a critical 

threonine residue in the ABL kinase domain (T315I) required for imatinib binding. Moreover, 

similar observations were made in experimental models of imatinib resistance, providing a 

convenient cell-based model for the evaluation of additional mutations (138) and establishing 

one of a suite of experimental cell and mass spectrometry-based approaches for the analysis 

of new allosteric BCR-ABL inhibitors developed to overcome drug-resistant CML (122,139). 

For the EGFR inhibitors gefitinib and erlotinib, resistance in lung cancer is associated with a 

T790M point mutation of the gatekeeper residue that markedly increases EGFR affinity for 

ATP, thereby competitively blocking the binding of type I EGFR inhibitors (140). To overcome 

this, irreversible (covalent) EGFR tyrosine kinase inhibitors such as osimertinib (and others in 

clinical development) were designed that are active against the mutated gatekeeper residue 

whilst exhibiting reduced potency towards wild type EGFR (141). However, resistance to 

these third generation EGFR inhibitors has already been documented, in some cases due to 

mutation of the critical covalent cysteine target (142,143). Alternative resistance mechanisms 

to EGFR therapies include genetic amplification of other RTKs such as MET (144), and the 

acquisition of activating mutations in downstream components that result in a bypass of the 

need for EGFR-mediated signaling (145).  

 An even greater variety of acquired resistance mechanisms have been characterized for 

BRAF and MEK inhibitors. In both cases, acquired resistance to these drugs results in 
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reactivation, that in most cases is due to RAF dimer mediated activation of ERK and indicates 

the critical dependence on MAP kinase signaling for tumor maintenance. Resistance 

mechanisms involving switching of signaling to parallel nodes (146,147), the emergence of 

gain-of-function mutations (148,149), de novo expression of other activators (150) and the 

emergence of activating mutations or amplifications of upstream and downstream 

components including BRAF, MEK and RTKs have all been identified in patients (151-157). 

Given the importance of ERK signaling and the rapid development of resistance within 

months of initiating treatment, new strategies involve more extensive personalized monitoring 

of biomarkers/genetic signatures of resistance to tailor therapy (158-160), the development of 

drugs that also limit oncogenic feedback mechanisms (161), and the concurrent targeting of 

multiple nodes within the same pathway to try to reduce the capacity of the system to survive 

via adaptive and acquired routes (162-165). Technological innovations in detecting cellular 

drug target binding, including the use of biophysical (166,167) and fluorescent drug tracking 

approaches (168) will increasingly be adopted to help evaluate target engagement and drug 

resistance. Finally, the existence and availability of curated, chemically diverse sets of cell 

permeable small molecules (169), perhaps most notably demonstrated by pioneering, open-

access approaches to resource sharing to build a comprehensive kinase chemogenomic set 

(KCGS) (170-172) might permit small-scale research findings to be more rapidly translated 

into defined patient populations. Finally, and most crucially, the availability of collaborative 

datasets and validated chemical material firmly places control over drug-repurposing and 

refinement efforts for the human kinome within the reach of worldwide research communities.  

 

DISCUSSION 

 We have presented a comprehensive overview of the human protein kinome highlighting 

the current state of knowledge, drug development and disease associations, and have made 
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this data freely available for each human kinase. It is striking that over half of the kinome 

remains very poorly understood despite this protein family being one of the most intensively 

studied over the last 50 years. Whilst generic features of kinase structure and biology can be 

extrapolated to many less well-studied kinase family members, the specific contributions of 

most kinases to cell biology and disease remain to be discovered. Similarly, the increasingly 

widespread use of phospho-proteomic analysis over the last 15 years has generated 

~250,000 phospho-sites in human cells, yet <7% of these sites have a known kinase ‘writer’ 

and/or a known biological consequence for a phosphorylated protein substrate. This means 

that our ability to interpret complex datasets in the biological sense, and to understand 

information flow in kinase-regulated networks in order to develop mechanistic understanding 

is still at a preliminary stage. Endeavors in the next few years are likely to yield much more 

comprehensive information on regulatory phospho-sites, kinase-substrate relationships and 

the context-dependence of interactions. Effective assays of cellular kinome activity will also 

be necessary to more efficiently infer likely network activity from phospho-proteomic datasets. 

Proteogenomic data from technological drivers such as genomics, transcriptomics, mass 

spectrometry, chemical proteomics and high-level mapping of intracellular substrates and 

complexes needs to be more effective integrated so that more rapid traction can be made 

towards a whole kinome-level understanding of signaling. 

 Kinase dysregulation in disease is very well established and has been a major focus of 

biopharma efforts for decades. However, we are struck by the lack of concordance in major 

research reviews, articles and databases for assignment of a driver role to many individual 

kinases, even in intensively studied areas such as cancer. This likely reflects the significant 

context-dependence of kinase activity and illustrates the challenge for effective therapeutic 

intervention in individual patients. The excellent progress in developing kinase modulators for 

the clinic has significantly improved the outcomes for many patients. The new frontier in 
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finding effective drug combinations and dosing regimens for enhanced efficacy, whilst at the 

same time offsetting the emergence of resistance will benefit from the large number of -omic 

technologies and personalized treatment approaches that will be exploited over the coming 

years. 
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KinBASE
KinaseNET
ProKinO

http://www.kinase.com/
http://www.kinasenet.ca/
http://vulcan.cs.uga.edu/prokino

Kinome ontology/overview

Phosphorylation/kinase-substrate resources
GPS 3.0
HPRD
Phospho.ELM
PHOSIDA
PhoshoNET
PhosphoNetworks
PhosphoSitePlus
RegPhos 2.0

http://gps.biocuckoo.org/
http://www.hprd.org/
http://phospho.elm.eu.org/
http://141.61.102.18/phosida/index.aspx
http://www.phosphonet.ca/
http://www.phosphonetworks.org/
https://www.phosphosite.org
http://140.138.144.141/~RegPhos/index.php

canSAR 3.0
ChEMBL
Drugbank
DrugKiNET
Kinase SARfari
International Centre
for Kinase Profiling

http://cansar.icr.ac.uk
https://www.ebi.ac.uk/chembldb/
https://www.drugbank.ca/
http://www.drugkinet.ca/
https://www.ebi.ac.uk/chembl/sarfari/kinasesarfari

Kinase drug sensitivity and affinity measurements

COSMIC
DECIPHER
DISEASES
TCGA
UniProtKB

http://cancer.sanger.ac.uk/cosmic
http://diseases.jensenlab.org
https://decipher.sanger.ac.uk/
https://cancergenome.nih.gov/
http://www.uniprot.org/uniprot/

Disease associations

http://www.kinase-screen.mrc.ac.uk/

Table 1. Kinase databases and resources
Links to currently available web resources relevant to kinome and kinase
biology.
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FIGURE LEGENDS 

Figure 1. An overview of the protein kinome knowledge base. 

The activity, cellular requirement, disease association, availability of protein structures and 

drugs and research publications associated with each of the 535 members of the human 

protein kinome are displayed. Details and citations for sources of data are described in 

Supplementary Table 1.  

 

Figure 2. Phosphorylation and kinase consensus motifs 

Almost 250,000 phospho-sites have been experimentally detected within the human 

proteome although less than 3% have a known functional effect on the target protein (data 

curated from www.phosphosite.org; (44)). Curation of 301 experimentally determined kinases 

consensus motifs (Supplementary Table 2; (57,58)) highlight the differences in adjacent 

charged, bulky and hydrophobic residue requirements for tyrosine versus serine/threonine 

phosphorylation. Motifs are indicated if they represent ≥30% of the types of amino acids 

observed in that position on the substrates phosphorylated by the indicated kinase. Amino 

acids are indicated if they were specifically observed ≥20% of the time (small letter) or ≥50% 

of the time (large letter). 

 

Figure 3. Mutation and copy number alteration frequencies of kinases in selected human 

cancers 

Tyrosine kinases and Tyrosine kinase like (TKL) family members disproportionately exhibit 

copy number alterations (CNA) representing amplifications (dark blue) or deletions (light blue) 

and/or significant mutation rates (red) compared to other major kinome families. Circle size 

indicates the % of patients exhibiting CNA or mutations. Values at the bottom of the table 

indicate the number of kinases showing ≥5% CNA and/or significant mutation rates 
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(MutSigCV v0.9, q≤0.1; False Discovery Rate, Benjamini-Hochberg procedure (100)) in at 

least one TCGA cancer type. The bubble plot highlights a subset of cancer relevant kinases 

including many of the most mutated and/or copy number altered kinases within the kinome. 

The results here are in part based upon data generated by the TCGA Research Network: 

http://cancergenome.nih.gov/ and available via http://firebrowse.org/. 

 

Figure 4. FDA approved kinome therapeutics 

Generic names of kinase inhibitors or modulators, the year of FDA approval for therapeutic 

use and their major kinase targets are described. The majority of chemical inhibitors are 

thought to be relatively promiscuous at therapeutic doses, permitting the same drugs to be 

used in distinct kinase-driven disease indications, but enhancing the risk of ‘off-target’ effects 

such as kinase (or non-kinase)-associated cell cytotoxicity. 

 

Figure 5. Kinome responses to FDA approved chemical inhibitors of kinases 

The selectivity and potency of approved kinase inhibitors is highly variable. The IC50 and KD 

values indicated represent the lowest experimentally determined value that is publicly 

available and are biased towards well-studied canonical kinases. No single protocol, enzyme 

source or substrate has been used to generate these values and therefore they should be 

only used as an approximation of potency or selectivity, especially as the set concentration of 

competing ATP is usually orders of magnitude lower than that found in human cells. See 

Supplementary Table 2 for data. Kinome drug sensitivities were plotted using TREEspot v5.0 

and reprinted with permission from KINOMEscan®, a division of DiscoveRx Corporation. 
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SRC family and others
tyrosine kinases and others
EGFR, ERBB2
BCR-ABL, DDR1
MTOR
MTOR
PDGFR, KIT, VEGFR
VEGFR, MET, RET, KIT
ALK, ROS1, MET, LCK, etc
EGFR
JAKs, TYK2
EGFR, VEGFR
BRAF mutant, RAF1

VEGFR, PDGFR
RTKs, SRC family kinases etc
VEGFR, TIE2, KIT, RET, etc
JAK2, JAK3
EGFR, ERBB2, ERBB4
tyrosine kinases and others
BRAF, RAF1
BTK, EGFR
MAP2K1, MAP2K2
BCR-ABL, LYN, FYN
ALK, INSR, IGF1R
tyrosine kinases and others
ALK
MAP2K1
mutant EGFR
CDK4, CDK6

Midostaurin 2017 FLT3, KIT

VEGFR, PDGFR, KIT, etc

Approved Target(s) mAb inhibitors
Trastuzumab
Panitumumab
Cetuximab
Pertuzumab
Ramucirumab
Necitumumab

1998
2006
2009
2012
2014
2015

anti-ERBB2
anti-EGFR
anti-EGFR
anti-ERBB2
anti-KDR
anti-EGFR

Olaratumab 2016 anti-PDGFR
Agonists
Insulin

Becaplermin
Palifermin
Mecasermin
Linaclotide

1920s, 1982
1997
2004
2005
2012

INSR
PDGFR
FGFR2
IGF1R

GUCY2C
Ligand modulators

Bevacizumab
Pegaptanib
Ranibizumab

2004
2004
2006

anti-VEGF
anti-VEGF
anti-VEGF

Approved

Approved

Approved

Target(s)

Target(s)

Target(s)

Aflibercept 2011 anti-VEGF

Figure 4



VemurafenibVandetanib

TofacitinibSunitinibSorafenibRuxolitinib Trametinib

PonatinibPazopanibPalbociclibOsimertinib

Nintedanib

Regorafenib

LenvatinibLapatinibImatinib

Ibrutinib Icotinib

Nilotinib

ErlotinibDasatinib

DabrafenibCrizotinib

Gefitinib

Cabozantinib

Bafetinib BosutinibAxitinib

Ceritinib Cobimetinib

AlectinibAfatinib

AGC

CMGC
CAMK

TK

CK1
STE
TKL

OTHER

≤10 nM
10-50 nM
50-250 nM
250-1250 nM
≥1250 nM

IC50/KD

Figure 5



KinBASE
KinaseNET
ProKinO

http://www.kinase.com/
http://www.kinasenet.ca/
http://vulcan.cs.uga.edu/prokino

Kinome ontology/overview

Phosphorylation/kinase-substrate resources
GPS 3.0
HPRD
Phospho.ELM
PHOSIDA
PhoshoNET
PhosphoNetworks
PhosphoSitePlus
RegPhos 2.0

http://gps.biocuckoo.org/
http://www.hprd.org/
http://phospho.elm.eu.org/
http://141.61.102.18/phosida/index.aspx
http://www.phosphonet.ca/
http://www.phosphonetworks.org/
https://www.phosphosite.org
http://140.138.144.141/~RegPhos/index.php

canSAR 3.0
ChEMBL
Drugbank
DrugKiNET
Kinase SARfari
International Centre
for Kinase Profiling

http://cansar.icr.ac.uk
https://www.ebi.ac.uk/chembldb/
https://www.drugbank.ca/
http://www.drugkinet.ca/
https://www.ebi.ac.uk/chembl/sarfari/kinasesarfari

Kinase drug sensitivity and affinity measurements

COSMIC
DECIPHER
DISEASES
TCGA
UniProtKB

http://cancer.sanger.ac.uk/cosmic
http://diseases.jensenlab.org
https://decipher.sanger.ac.uk/
https://cancergenome.nih.gov/
http://www.uniprot.org/uniprot/

Disease associations

http://www.kinase-screen.mrc.ac.uk/

Table 1. Kinase databases and resources
Links to currently available web resources relevant to kinome and kinase
biology.


