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Abstract 13 

Zircon grains with the evidence of crystal-plastic deformation are often found in deformed 14 

terrestrial and lunar rocks. In this study we present microstructural data of plastically-deformed 15 

zircon crystals that were analyzed in a kinematic context of the respective shear zone. The aims 16 

are to describe how orientation of zircon grains in a simple shear affects the zircon deformation 17 

mechanisms.  18 

Careful microstructural analyses of zircon crystals in-situ with scanning electron backscatter 19 

diffraction (EBSD) mapping show strong geometric relationships between orientations of: (i) the 20 
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<c> of plastically-deformed zircon crystals, (ii) the misorientation axes of plastically-deformed 21 

zircon crystals and (iii) the XYZ directions of the kinematic framework of a sample. All 22 

plastically-deformed zircon crystals have <c> parallel to the XY (foliation plane); crystals with 23 

<c> oriented at a higher angle than ca. 15° to the XY plane are undeformed or fractured. 24 

Furthermore, zircons that have <c> aligned parallel or normal to X direction (stretching lineation) 25 

within the XY plane develop misorientation and rotation axes parallel to [001] and form the 26 

<100>{010} slip system and twist boundaries parallel to {001}. Zircons with the <c> aligned at 27 

45� with respect to X within XY plane can develop two misorientation axes, in ideal case parallel 28 

to [001] and [100], and form a combination of tilt and twist low-angle boundaries. These 29 

relationships describe the strong geometric control of the macroscopic kinematic rotation axis on 30 

the slip systems in zircon, regardless of the grain size and shape. It suggest a tool for constraining 31 

an orientation of the plastically deformed zircon with respect to a bulk kinematic rotation axis of 32 

the deformation event.  33 

Relationships between zircon deformation mechanisms and macroscopic kinematic frame 34 

have important implications for zircon geochronology: if the deformation events result in zircon 35 

distortion and rejuvenation of zircon isotopic system, they may be dated. Our microstructural 36 

study suggests a criteria for the reliable sample selection for such isotopic dating.  37 

 38 

Introduction 39 

Crystal-plastic deformation in zircon has been documented for different geological settings: 40 

syn-magmatic deformation (Reddy et al., 2009; Timms and Reddy, 2009), deformation related to 41 

ductile shear zones formation (Timms et al., 2006, 2011; Reddy et al., 2006, 2007; Timms and 42 
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Reddy, 2009; Flowers et al., 2010; Kaczmarek et al., 2011; Piazolo et al., 2012; MacDonald et al., 43 

2013; Kovaleva et al., 2014), deformation related to the seismic activity (Austrheim and Corfu, 44 

2009; Kovaleva et al., 2015), impact-related lattice distortion (Leroux et al., 1999; Moser et al., 45 

2009, 2011; Nemchin et al., 2009; Timms et al., 2012; Grange et al., 2013). Most often crystal-46 

plastic deformation of zircon is documented in the ductile shear zones and is thus believed to be 47 

genetically connected with the deformation event (e.g. Kaczmarek et al., 2011; Piazolo et al., 48 

2012; Kovaleva et al., 2014).  49 

Microstructural analyses of naturally-deformed crystals show that misorientation axes 50 

associated with low-angle boundaries have a certain geometric relationship with the macroscopic 51 

kinematic rotation axis. Geometric control of the kinematic framework of the shear zone on the 52 

activity of crystal slip systems has been described for calcite (Bestmann and Prior, 2002; Reddy 53 

and Buchan, 2005), quartz (Menegon et al., 2011) and sillimanite (Piazolo and Jaconelli, 2013). 54 

For the simple shear deformation, it has been demonstrated that the rotation axes in plastically-55 

deformed crystals of calcite and sillimanite are parallel to the kinematic rotation axis of the sample 56 

(Reddy and Buchan, 2005; Piazolo and Jaconelli, 2013). The assumption that zircon should 57 

behave similar to that was inherited by the model of Kaczmarek et al. (2011) describing plastic 58 

deformation of zircon in a simple shear framework. However, the misorientation axes of zircons in 59 

their sample lie in different orientations and are independent of the deformation framework, which 60 

is explained by a post-deformation rigid body rotation of zircon crystals. Thus it was not possible 61 

to reconstruct the initial orientation of grains with respect to the kinematic rotation axes, neither to 62 

find the corresponding relationships. Kovaleva et al. (2014) have demonstrated crystal-plastically 63 

deformed zircon grains with <c> parallel to the stretching lineation and with <100>{010} active 64 



4 
 

slip systems, and suggested that this crystal-plastic deformation mechanism was induced by the 65 

specific orientation of the zircons crystals in the shear zone. 66 

In our study we present plastically-deformed zircons from the high-strained rock and 67 

confirm that the slip systems geometry is strongly controlled by the orientation of zircon crystals 68 

in the simple shear. We describe the zircon deformation evolution in a shear zone, explain its 69 

mechanisms, and emphasize the importance of studying crystals in situ, taking into account their 70 

orientation to the XYZ framework. Such studies allow to constrain a genetic link of the 71 

deformation microstructures in zircon with the deformation event; and have the implications for 72 

mineral isotopic geochronology. Plastically-deformed zircon grains could be available for direct 73 

dating of the corresponding deformation event. 74 

 75 

Sampling locality and sample description 76 

Sampling took place in the Western Tauern Window, Eastern Alps (Zillertal, Tyrol, 77 

Austria). In the Tauern Window, continental and oceanic rocks of the Penninic and sub-Penninic 78 

nappe sequences are exposed, which represent the footwall of the Austroalpine nappe stack. 79 

Nappe stacking and predominant final metamorphism are related to the closure of the Alpine 80 

Neotethys and subsequent continental collision in late Cretaceous-Tertiary (Miller et al., 2007). 81 

Samples were collected from the “Zillertaler Kern” lobe of the “Zentralgneis” formation (see 82 

Selverstone et al., 1991 and reference therein). 83 

The magmatic protholiths of the "Zentralgneis" formation are uppermost Devonian to lower 84 

Permian in age. Three magmatic “pulses” of potassium-rich and calc-alkaline granites, felsic and 85 
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intermediate volcanites and tonalitic/granodioritic plutonites can be distinguished (Veselá et al., 86 

2011). The granitoids intruded into pre-Carboniferous, partly poly-metamorphic basement rocks 87 

consisting of various schists, para- and orthogneisses, amphibolites and meta-ophiolites. In the 88 

Zillertal section Variscan amphibolite facies regional metamorphism has been overprinted at 89 

greenschist- to amphibolite-facies metamorphic conditions of 0.5-0.7 GPa and 550-600� C at ca. 90 

30 Ma and re-equilibrated the rocks (Selverstone, 1991; Pennacchioni and Mancktelow, 2007). 91 

Metamorphic (re)crystallization was accompanied by the formation of ductile extensional shear 92 

zones that represent a pure strike slip systems (Pennacchioni and Mancktelow, 2007). The 93 

sampled shear zone (Fig. 1A) formed during this latter tectono-metamorphic event and the rocks 94 

were deformed under greenschist- to amphibolite-facies metamorphism under a simple shear with 95 

a minimum of pure shear component.  96 

We have sampled the ~1 m thick ductile shear zone (47°01’18.129"N/11°50’26.709"E), 97 

which is exposed on the NE slope of the Zemmbach river side valley and represents strongly 98 

foliated quartz-biotite orthogneiss that hosts two adjacent deformed dykes, a leucocratic aplitic 99 

dyke and a highly-deformed melanocratic, presumably meta-lamprophyric dyke in the core of the 100 

shear zone (Fig. 1A), which was sampled. Analyzed rock contains indicators of the well-101 

developed kinematic framework including foliation, stretching lineation, sigma-clasts and folding 102 

of compositional layering (Fig. 1B); the folds axis coincides with the stretching lineation. 103 

Foliation plane is used here as the kinematic reference plane (Bestmann and Prior, 2002). The 104 

sample is chlorite-rich (>50% modal content) due to intense retrogression of biotite; it is 105 

composed of mafic layers consisting of chlorite, biotite and titanite, alternating with the fine-106 

grained plagioclase-quartz layers with an average thickness of 1-6 mm; the compositional layering 107 
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is isoclinally folded (Fig. 1B). The accessory minerals are calcite, pyrite, zircon, rutile and titanite. 108 

Zircon is present as small (10-30 µm) euhedral crystals (Figs. 2, 3) with degraded CL-zonation, 109 

with the 1:1 to 1:3 aspect ratio, and are mostly hosted by biotite or chlorite.  110 

 111 

Methodology and data representation 112 

Sample preparation 113 

Thin sections were cut at an acute angle of about 45° to the stretching lineation, in order to 114 

fully document all relevant deformation microstructures in plastically-deformed zircons. I.e. 115 

sample cut parallel to the lineation may not reveal microstructures and subgrain walls that are 116 

normal to the kinematic rotation axis of the sample, and thus it would become impossible to 117 

document the corresponding geometric relationships. More specific, if we assume that the 118 

suggestion given in Kaczmarek et al. (2011) that the rotation axis in the deformed zircon grain is 119 

parallel to the kinematic rotation axis of the sample, there should be twist subgrain walls that are 120 

by definition normal to the rotation axis. These walls will be not revealed by a classical sample cut 121 

normal to the kinematic rotation axis. Therefore, the samples were cut normal to the XY plane but 122 

at 45° to the XZ plane.  123 

Zircons were examined in-situ using polished thin sections, mechanically prepared with 0.25 124 

µm diamond paste and subsequently chemically polished with alkaline colloidal silica solution 125 

(Köstrosol 3530; pH 9.2-10) on an active rotary head polishing machine for 4 hours.  126 

 127 

Electron Backscatter Diffraction (EBSD) analysis and Forescattered electron (FSE) imaging 128 



7 
 

Zircon crystals were examined for potential crystal-plastic deformation structures using 129 

orientation contrast images (Trimby and Prior, 1999; Prior et al., 1999). These were taken using a 130 

forescatter-electron detector (FSD) mounted on the EBSD-tube of an FEI Quanta 3D FEG 131 

instrument (Center of Earth Sciences, University of Vienna, Austria), which is equipped with a 132 

Schottky field emission electron source. Electron beam conditions were 15 kV accelerating 133 

voltage, 2.5-4 nA probe current using the analytic mode. Stage settings were at 70° tilt and 14-16 134 

mm working distance. After identification of the potentially deformed crystals, EBSD orientation 135 

mapping was applied to selected zircon crystals. The FEI Quanta 3D FEG instrument is equipped 136 

with an EDAX Pegasus Apex 4 system consisting of a Digiview IV EBSD camera and an Apollo 137 

XV silicon drift detector for EDX analysis. EDX intensities and EBSD data were collected 138 

contemporaneously using the OIM data collection software v6.21. An EBSD camera binning of 139 

4x4 was used at exposure times of 50 - 130 milliseconds. As zircon yielded a significantly higher 140 

EBSD signal intensity than the matrix phases (used for the background calibration), the EBSD 141 

camera exposure time was significantly reduced after background collection in order to avoid 142 

signal oversaturation during zircon analysis. Therefore, the matrix phases collected at these 143 

settings yielded a very weak pattern contrast. Hough parameters were set to a binned pattern size 144 

of 9x9 pixels, a Theta step size of 1° and a Rho-fraction of 74-86%. After applying a 9x9 145 

convolution mask 3 - 15 bands with a minimum pattern contrast of 200 and at a minimum peak 146 

distance of 3-10 pixels in Hough space were used for indexing. At the given settings indexing 147 

rates were between 6 and 24 points per second. Orientation maps were obtained from the beam 148 

scanning in hexagonal grid mode at step sizes of 0.1 – 0.16 micrometer. 149 
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The raw indexing for zircon phase shows a very good quality of more than 99.99%. In some 150 

cases, after EBSD data collection, the maps were recalculated based on chemical composition of 151 

phases with the OIM v6.21 software. 152 

 153 

EBSD data representation 154 

The EBSD data are represented in the sample reference frame as false color-coded 155 

cumulative misorientation maps, with colors showing the relative angular misorientation of each 156 

data point with respect to a user-selected single reference point within the crystal (indicated by a 157 

white star marker; Fig. 2). Another mode is so-called “local misorientation” EBSD maps (Fig. 158 

3A), where each pixel is color-coded according to the mean misorientation of the respective data 159 

point relative to its neighboring points. The orientations of the crystallographic axes are plotted as 160 

lower hemisphere equal area projections and are color-coded according to the corresponding 161 

EBSD map (Figs. 2, 3B). Cumulative EBSD maps and pole figures were produced using the 162 

EDAX OIM v6.2.1 Analysis software, whereas the local misorientation EBSD maps together with 163 

the visualizing of misorientation axis orientation and density contours in the inverse pole figures 164 

were generated with the MTEX toolbox for MATLAB (Bachmann et al., 2010, 2011; Mainprice et 165 

al., 2011). Presented misorientation axes were calculated with a threshold starting from 1° of 166 

misorientation, however for the small misorientations of 1-2� large error is possible (Prior et al., 167 

1999; Reddy and Buchan, 2005; Reddy et al., 2007). By the term “misorientation axis” we imply 168 

the crystallographic direction around which two subgrains of the same grain are rotated with 169 

respect to each other.  By the term “rotation axis” we mean the least dispersed crystallographic 170 

axis of the deformed grain in the pole figure, around which all the other grain’s axes are rotating. 171 
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 172 

Weighed Burgers Vector (WBV) calculations 173 

We also gained insight into geometrically necessary dislocation densities using Weighted 174 

Burgers Vector (WBV) calculations (Wheeler et al., 2009; 2012). WBV quantifies the total 175 

Burgers vector for all the dislocations passing through the user-selected rectangular region in the 176 

EBSD map (the “integral form”, according to Wheeler et al., 2009). This can be expressed in 177 

terms of lattice vectors and then divided by the sample region area to measure dislocation density 178 

including Burgers vector direction. The three numbers, listed for each selected subarea, are the a, 179 

b and c components of WBV, measured in (µm)-2. Rectangular areas with three WBV components 180 

were calculated over the EBSD maps with the MATLAB toolbox CrystalScape 1.3 based on the 181 

method described in Wheeler et al. (2009, 2012). For this goal the maps were transformed to a 182 

rectangular grid and the Euler angles were recalculated accordingly with the Channel software 183 

(method described in Kovaleva et al., 2015). However, for the better visual representation, the 184 

rectangular areas were superimposed on top of hexagonal “local misorientation” EBSD map.  185 

A non-homogeneous distribution of WBV values in analyzed zircon grain (Fig. 3A) 186 

indicates that the plastic deformation in zircon crystal was a post-growth process, and it was 187 

caused by directed external differential stress (e.g. MacDonald et al., 2013). 188 

 189 

Microstructural and crystallographic zircon data  190 

Zircons in the sample are mostly decoupled from the host matrix, which is indicated by 191 

normal and reverse drag of the surrounding biotite and by the open voids parallel to the grains 192 
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faces (see Kovaleva et al., 2014). Decoupling allows the inhomogeneous distribution of stress 193 

within the grains hosted by a rheologically softer material (e.g. see numerical modelling by 194 

Schmid and Podladchikov, 2005) and may lead to their crystal-plastic deformation (Kenkmann, 195 

2000; Kovaleva et al., 2014). Microstructural data for the zircons from a sampled meta-196 

lamprophyre demonstrate that some of the grains are crystal-plastically deformed (Figs. 2, 3; see 197 

also Kovaleva et al., 2014, Figs. 4, 5 and 9 there); the amount of plastically deformed grains varies 198 

from 27 to 38% of all zircon grains in the sample.  199 

Finite deformation pattern of the deformed zircon grains is characterized by the presence of 200 

the strain-free subgrains separated by low-angle boundaries and rotated with respect to each other; 201 

total misorientation of the subgrains with respect to each other ranges from 3 to 10° (Fig. 2, 3A). 202 

Low-angle boundaries traces represent a continues network of step- or zigzag-shaped lines; 203 

subgrains represent angular, irregular-shaped domains from 1 to 10 µm in size and with ragged 204 

boundaries (Figs. 2, 3A).  205 

Zircons in the analyzed sample generally do not indicate crystallographic preferred 206 

orientation and oriented rather randomly (Fig. 4). However, some of the grains that are elongate 207 

and sit in the flanks of the compositional folds (e.g. grains 03 and 04, locations marked in Fig. 1B) 208 

demonstrate crystallographic preferred orientation. C-axes of those grains are parallel to the fold 209 

axes and to the stretching lineation, which may indicate the syn-deformation rigid body rotation of 210 

zircon grains in the areas of the highest differential stress (e.g. Jeffery, 1922; Mancktelow et al., 211 

2002). Zircon grains that are not crystal-plastically deformed have <c> at an angle ≥15° to the 212 

foliation plane (Fig. 4, open circles). All plastically-deformed crystals from this sample have <c> 213 

roughly aligned in the foliation plane (Figs. 2, 3B, 4, solid circles; foliation is subhorizontal). 214 
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Crystallographic orientations of <c> of the plastically-deformed zircons 03 and 04 coincide with 215 

the orientation of the stretching lineation (Figs. 2A, 3B); grain 15 is oriented with <c> at 216 

approximately 45° to the lineation (Fig. 2B); grain 24 has <c> oriented at approximately 90° to the 217 

lineation (Fig. 2C).  218 

Presented crystal-plastically deformed zircons have misorientation axes clustering around 219 

[001] crystallographic direction (Figs. 2, 3A inset). Grain 15 has additional strong cluster of 220 

misorientation axes around [100] (Fig. 2B). Misorientation axes of the grain 24, besides strong 221 

clustering around [001], are dispersed in the pole figure forming a few smaller maxima. Grains 03, 222 

24 and 04 reveal rotation of the crystallographic axes around the [001] direction in the pole figures 223 

(Figs. 2A-B, 3B). Crystallographic axes in grain 15 are dispersed in a star shape (so-called 224 

“asterism” of crystallographic axes, Moser et al., 2009). 225 

 226 

Discussion 227 

Analyses of the active slip systems  228 

Presence of the low-angle boundaries gives an opportunity to determine active slip system(s) 229 

of dislocations that may be associated with the certain low angle boundary. Low-angle boundaries 230 

are the result of crystal recovery, when geometrically necessary dislocations that are formed to 231 

accommodate lattice strain assemble together by dislocation creep and form dislocation walls. The 232 

geometry of low-angle boundaries, therefore, reflect the slip systems geometry that can be 233 

reconstructed (e.g. Reddy et al., 2007; Kaczmarek et al., 2011; Timms et al., 2012). However, we 234 

should emphasize that it is not always possible to unequivocally determine what slip system is 235 
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related to a subgrain boundary, providing only two-dimensional analysis. Therefore, we suggest 236 

slip systems that are consistent with a specific boundary. 237 

Grain 03 accommodates a lot of strain by developing a dense network of low-angle 238 

boundaries that cause the total misorientation of subgrains of about 10° with respect to each other 239 

(Fig. 2A). The traces of low-angle boundaries form zigzag lines with a complicated geometry. We 240 

suggest that there are several slip systems operating and changing each other along the low-angle 241 

boundaries. All these slip systems have rotation axes around [001] (Fig. 2A, pole figure), which is 242 

the most frequent and energetically-preferable rotation axis in zircon (e.g. Leroux et al., 1999; 243 

Reddy et al., 2007; Kovaleva et al., 2014). According to their complicated geometry, subgrain 244 

boundaries in this grain probably represent both tilt and twist walls (see, for example, analyses of 245 

subgrain boundary traces in Reddy et al., 2007). 246 

In grain 15 low-angle boundaries are stretching in two general directions and likely occupy 247 

planes (100) and (010) (Fig. 2B, “LAB-1” and “LAB-2” accordingly), and misorientation axes are 248 

directed parallel to [001] and <100> crystallographic directions. This imply several possibilities 249 

for active slip systems: 250 

a. If the rotation axis for low-angle boundary 1 is [001], then it is a tilt 251 

boundary and the slip system should be [100](010).  252 

b. If the rotation axis for low-angle boundary 1 is [100], it’s a twist boundary. 253 

c. If the rotation axis for low-angle boundary 1 is [010], it’s a tilt boundary 254 

with the slip system [100](001). 255 

d. If the rotation axis for the low-angle boundary 2 is [001], it’s a tilt boundary 256 

with the slip system [010](100). 257 
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e. If the rotation axis for the low-angle boundary 2 is [010], it’s a twist 258 

boundary. 259 

f. If the rotation axis for the low-angle boundary 2 is [100], it’s a tilt boundary 260 

with the slip system [010](001). 261 

Taking into account that low-angle boundary traces in grain 15 do not follow straight lines 262 

and rather represent zigzags, the low-angle boundary network most likely represents a system if 263 

interconnected tilt and twist walls with the slip geometries <100>{010} and <100>{001}. 264 

Asterism of the crystallographic axes also evidence that there are several slip systems operating at 265 

the same time (Moser et al., 2009). 266 

In grain 24 (Fig. 2C) one of the low-angle boundaries (“LAB-1”) is parallel to (100) 267 

crystallographic plane. Misorientation axis parallel to [001] implies slip system [100]{010} 268 

operating in this crystal. The other low-angle boundary, tracing in the lower part of the grain from 269 

left to right, has a complicated geometry and most likely represents a result of combination of 270 

several slip systems. Minor clusters of misorientation axes around high Miller-indices directions 271 

(Fig. 2C) are either a result of analytical error due to low misorientation angles (e.g. Prior, 1999; 272 

Reddy and Buchan, 2005); or evidence of minor slips activating to accommodate strain and to 273 

connect main tilt and twist walls that have rotation around [001]. The latter is also supported by a 274 

minor asterism of crystallographic axes in the pole figure (Fig. 2C). 275 

In grain 04, traces of low-angle boundary 1 (Fig. 3A, “LAB-1”) are parallel to (100) plane 276 

(Fig. 3B). Misorientation axes in this grain are coinciding with rotation axis and are parallel to 277 

[001] (Fig. 3A, inset). Such geometry implies a tilt boundary correlated with the [100]{010} slip 278 

system. Low-angle boundary 2 (Fig. 3A, “LAB-2”) seems to be parallel to the (110) plane, which 279 
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implies a tilt boundary with the slip system <-110>{110}. The conclusion is supported by the 280 

Weighted Burgers Vector (WBV) calculations (Wheeler et al., 2009, 2012).  281 

WBV is measured in [µm-2] and expressed as three numbers, a, b and c, which are the 282 

components of summary Burgers vector across the user-selected selected rectangular area. In the 283 

Figure 3A several selected areas with corresponding WBVs values are presented. In the lower left 284 

portion of the crystal the WBV values are low (Fig. 3A, gray rectangles), that means that the 285 

dislocation density is low and the analyzed domain is strain-free. In the lower right portion WBV 286 

is dominated by a component (dotted rectangle) which implies dislocations with [100] slip 287 

direction (slip system <100>{010}). WBV analysis across low-angle boundary 1 (“LAB-1”) 288 

shows domination of b component (dashed rectangles) that implies dislocations with slip along 289 

[010] direction (slip system <010>{100}). WBV analyses across low-angle boundary 2 (“LAB-290 

2”) shows high values for a and b components, implying slip system <-110>{110} with slip along 291 

[-110] plane (Fig. 3). 292 

In naturally-deformed crystals it is difficult to find pure edge or screw dislocations. Almost 293 

all dislocations have both screw and edge components to them and thus are called mixed 294 

dislocations (Poirier, 1985). Mixed dislocations make up most of the dislocations encountered in 295 

natural samples and they build networks of low-angle boundaries. To summarize our data, 296 

subgrain walls in analyzed zircons appear as zigzag lines that reflects an interplay between tilt 297 

dislocations with the slip systems <100>{010} and <-110>{110} and rotation axis [001] and the 298 

twist dislocations with the rotation axis [001]. In one case we also observed the possible presence 299 

of tilt dislocations with the slip system <100>{001} and rotation axis [010]. In order to 300 

accommodate external strain generated in a shear zone, zircon grains develop low-angle boundary 301 
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network with switching of the glide directions. Rotation axis [001] and slip systems <100>{010} 302 

and <100>{001} are the most frequently observed in plastically-deformed zircons (e.g. Leroux, 303 

1999; Reddy et al., 2007; Kovaleva et al., 2014, 2015), and <-110>{110} can be regarded as a 304 

newly described slip system (Fig. 3B, “LAB-2”). 305 

Slip along <100>{010} with rotation around [001] is the most energetically preferable 306 

geometry of a zircon and is easily activated when zircon has a specific orientation: normal or 307 

parallel to the kinematic rotation axis of a shear zone (Figs. 4; 5, cases i and iii). Along the <c> 308 

zircon atomic structure consists of chains of alternating edge-sharing SiO4 tetrahedra and ZrO8 309 

dodecahedra that are joined laterally by edge-sharing dodecahedra (Robinson et al., 1971; Finch 310 

and Hanchar, 2003). In order to develop a slip in the zircon crystal lattice it is easier to break the 311 

bonds between SiO4 tetrahedra and ZrO8 dodecahedra along <100>, than between the strongly 312 

bonded ZrO8 dodecahedra along [001]. However, if long axis of zircon has a complicated 313 

orientation with respect to the kinematic rotation axis, like in case of grain 15 (Fig. 2B) which <c> 314 

is oriented at 45° to it, crystal lattice develops two orthogonal misorientation axes in order to 315 

accommodate the strain (Figs. 4; 5, case ii). 316 

Selective plastic deformation of zircon grains that are aligned within XY plane (Fig. 4) 317 

could be explained with the critical resolver shear stress (CRSS) that is more easily reached along 318 

the specific planes, if their orientation is favorable (Hobbs, 1985). The preferable slip along [100] 319 

or [001] planes in zircon crystallographic structure is facilitated by the specific crystallographic 320 

orientation with respect to a local stress field.  321 

 322 

Geometric regularities derived from the observations of natural samples 323 



16 
 

In the conditions of the simple-shear, kinematic rotation axis is assumed to be orthogonal to 324 

X-Z plane of the sample, parallel to foliation plane and normal to lineation direction (Reddy and 325 

Buchan, 2005). Schematic sketch revealing the character or zircon deformation in a shear zone is 326 

presented in Fig. 5. 327 

The following regularities can be derived from the presented zircons deformed in a simple 328 

shear, regardless of their crystal shape and aspect ratio: 329 

a. Zircon crystals are only plastically-deformed if their <c> aligned in the XY 330 

(foliation) plane (Fig. 4, solid circles). Zircon crystals with c-axis oblique to the XY (foliation) 331 

plane (>15�) either not deformed or fractured (Fig. 4, open circles). 332 

b. Zircon crystals aligned to XY with <c> parallel or normal to X (stretching 333 

lineation), i.e. normal or parallel to the kinematic rotation axis, mostly develop misorientation and 334 

rotation axes [001] (Fig. 4, grains 03, 04, 24, and closely oriented).  335 

c. Zircon crystals with <c> aligned in XY at 45° to X develop two misorientation axes 336 

(Fig. 4), which in case of grain 15 are [100] and [001].  337 

d. Strain in plastically-deformed zircons is accommodated by formation of a continues 338 

network of low-angle boundaries, which are the result of combination of tilt and twist dislocations 339 

with <100>{010},  <100>{001}, <-110>{110}, etc. slip geometry. 340 

The reconstruction of the kinematic rotation axis of a deformation event that formed a shear 341 

zone is important for understanding the tectonic evolution of geological units in the Earth’s crust. 342 

Based on natural data we have demonstrated a strong kinematic control on the geometry of the 343 

dominant slip systems in deformed zircon minerals.  344 
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Using the derived regularities (a)-(c) it is possible to make the reconstruction of a 345 

macroscopic tectonic frame that was causing zircon crystal-plastic deformation, and vice versa, 346 

the crystallographic orientation of zircon grain within. This gives an opportunity to attribute 347 

crystal-plastic deformation of zircon to a specific metamorphic/deformation event and thus, 348 

possibly, to derive the timing and P-T conditions of the latter, even for the detrital and inherited 349 

grains. Because different lattice distortion patterns in zircon are usually restricted to a specific 350 

stress-strain conditions (e.g. Kovaleva et al., 2014), therefore, they may represent a certain 351 

snapshot of the potentially complex deformation history. For example, lattice distortion pattern in 352 

analyzed grains (interconnected network of low-angle boundaries that separate strain-free 353 

subgrains) is attributed to an upper-greenschist to amphibolite facies of metamorphism. Thus, 354 

using these patterns, we can judge about the peak metamorphic conditions of the respective shear 355 

zone. The fact that some of zircon crystals indicate crystal preferred orientation points to the rigid 356 

body rotation prior crystal-plastic deformation, which reflects some earlier stages of rock-357 

forming/deformation process.  358 

 359 

Implications for zircon geochronology and further research trends 360 

Our observations have important implications for zircon geochronology. It has been shown 361 

by a number of authors that crystal-plastic deformation can dramatically affect the content of trace 362 

elements in the domains of subjected zircon lattice and, therefore, can cause isotopic system 363 

resetting (e.g. Flowers et al., 2010; MacDonald el al., 2013; Moser et al., 2009, 2011; Piazolo et 364 

al., 2012; Reddy et al., 2006, 2007, 2009; Reddy and Timms, 2010; Timms and Reddy, 2009; 365 

Timms et al., 2011, 2012). With the help of plastically-deformed zircon it is possible to resolve the 366 



18 
 

ages of such deformation events as shearing, seismic activity and meteorite impacts in terrestrial 367 

and even lunar rocks (e.g. Austrheim and Corfu, 2009; Moser et al., 2009, 2011; Nemchin et al., 368 

2009). Based on our study, we suggest the following criteria of sample selection for the zircon 369 

mineral dating. In accordance with our regularity (a), crystals, aligned with the foliation plane of a 370 

shear zone are likely to be plastically-deformed, and thus might be (partially)rejuvenated; crystals 371 

that are at a high angle to foliation plane are unlikely to be deformed, and thus are not rejuvenated 372 

and preserve older ages. These crystal-orientation systematics potentially allow determining the 373 

age of the deformation event using in situ dating of zircons that are aligned in the foliation plane. 374 

On the other hand, if the goal is the mineral isotopic dating of the undistorted age (e.g. age of 375 

zircon crystallization), one should strictly avoid zircon grains that are aligned in the foliation 376 

plane, in order to exclude any possible age disturbances. The detailed and careful isotopic study in 377 

order to test this speculative suggestion is still waiting for its time. 378 
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 503 

Figure captions 504 

Figure 1. A. Field photograph of the sampled outcrop: sample of the meta-lamprophyric 505 

dyke hosted by granitic gneiss and adjacent to the deformed aplitic dyke, highly deformed and 506 

strained. B. Thin section photographs, foliation, compositional layering and folds are clearly 507 

visible. Numbers indicate positions of the in-situ studied zircon grains, presented in this paper.  508 
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Figure 2. Deformed zircon crystals: microstructural data. Left column: cumulative EBSD 509 

maps, misorientation of every pixel is shown with respect to the user-selected reference point, 510 

marked as a white star; middle column: misorientation axes distribution plots, numbers are 511 

crystallographic directions; right column: pole figures with lower hemisphere projections of zircon 512 

crystallographic directions, color coded as corresponding EBSD map, labels indicate main 513 

crystallographic axes, black lines are reconstruction of the subgrain boundary planes. Foliation 514 

plane in figures is subhorizontal, stretching lineation is oriented at about 45° to the image plane 515 

(see description in the text). Direction of the lineation is highlighted by a red circle. 516 

Figure 3. A. Local misorientation map of the deformed grain 04, with the superimposed 517 

Weighed Burgers Vector (WBV) components for the highlighted rectangular subareas. Gray 518 

rectangles show the areas with WBV that is comparatively low. Dotted and dashed rectangles 519 

show areas with WBV dominated by a or b components accordingly, black rectangles show areas 520 

with WBV with mixed components. In the lower right inset distribution of the misorientation axes 521 

for grain 04 is shown. B. Reconstruction of the low-angle boundaries and slip systems of the grain 522 

04. Thick lines outside the circle indicate the direction of the low angle boundary traces; solid 523 

lines – reconstruction of low angle boundary planes; dashed lines – reconstruction of slip plane for 524 

the low-angle boundaries pointed in A. In black are the elements that correspond to the low angle 525 

boundary 1 (“LAB-1”), in gray – to low angle boundary 2 (“LAB-2”). Small circle highlights 526 

rotation and misorientation axis. 527 

Figure 4. The pole figure with <c> (c-axis) positions of analyzed zircon grains from the 528 

studied sample. Labels in angle brackets indicate misorientation axes for the corresponding grains. 529 

Gray dashed line shows direction of foliation, gray dashed circle shows direction of lineation. 530 

Solid black circles correspond to <c> directions of grains that are plastically-deformed, empty 531 
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circles – to undeformed or fractured zircon grains. From the pole figure is clear that the <c> of all 532 

plastically deformed grains are roughly aligned with the foliation plane. 533 

Figure 5. Schematic sketch showing zircon deformation evolution that strongly depends on 534 

its orientation in the macroscopic kinematic frame. Cases (i), (ii) and (iii) indicate plastic 535 

deformation; (i) <c> is parallel to the macroscopic kinematic rotation axis, misorientation axis is 536 

parallel to [001]. (ii): grain with <c> at an angle 45° to the kinematic rotation axis develops two 537 

rotation axes, ideally [001] and [100]. (iii) <c> is normal to the kinematic rotation axis, rotation 538 

axis is parallel to [001]. (iv) – grains with c-axes at a high angle to the foliation develop fractures 539 

or are not deformed.  540 












	Article File
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5

