
EXTENDING THE DOUBLE RAMIFICATION CYCLE USING JACOBIANS

DAVID HOLMES, JESSE LEO KASS, AND NICOLA PAGANI

ABSTRACT. We prove that the extension of the double ramification cycle defined by the
first-named author (using modifications of the stack of stable curves) coincides with that
defined by the last-two named authors (using an extended Brill–Noether locus on suitable
compactified universal Jacobians). In particular, in the untwisted case we deduce that both
of these extensions coincide with that constructed by Li and Graber–Vakil using a virtual
fundamental class on a space of rubber maps.

1. INTRODUCTION

Let g and n be fixed natural numbers with g,n ≥ 1. Given a fixed nontrivial vector of
integers (k;a1, . . . , an) such that k(2 − 2g) + ∑ai = 0, the (uncompactified, twisted) double
ramification cycle DR ⊂ Mg,n is defined to be the closed locus of the moduli spaceMg,n of
smooth n-pointed curves of genus g that consists of those pointed curves (C,p1, . . . , pn)

such that the line bundle ω−⊗k
C (a1p1 + . . . anpn) is trivial. There are several approaches to

extending DR to a Chow class onMg,n and then computing this class.

Here we focus on approaches that use the universal Jacobian. Let J 0g,n be the universal
Jacobian parameterizing smooth n-pointed curves of genus g together with a line bundle
of degree zero. The morphism σ∶Mg,n → J

0
g,n defined by

(1) σ([C,p1, . . . , pn]) = [C,p1, . . . , pn,ω
−⊗k
C (a1p1 + . . . + anpn)]

is a section of the forgetful morphism J 0g,n → Mg,n and the double ramification cycle
equals σ−1(E), for E the closed locus of J 0g,n that corresponds to the trivial line bundle.

A natural generalization of this approach over Mg,n runs as follows. This time we
consider the multdegree zero universal Jacobian J 0g,n (also known in the literature as the
generalized Jacobian), defined as the moduli stack parameterizing stable n-pointed curves
of arithmetic genus g together with a line bundle with trivial multidegree (i.e. with de-
gree zero on every irreducible component of every fiber). The stack J 0g,n still contains the
closed locus E that parameterizes trivial line bundles and comes with a forgetful mor-
phism p to Mg,n, but Rule (1) in general fails to define a morphism and only defines a
rational map σ∶Mg,n ⇢ J

0
g,n.

Holmes proposed a way to resolve the indeterminacy of σ by modifying the source
Mg,n. In [Hol17, Corollary 4.6] he constructs a “minimal” morphism (see Section 2.1)
of normal Deligne–Mumford stacks π◊∶M◊

g,n → Mg,n such that π◊−1(Mg,n) is dense in
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M
◊
g,n and the rational map σ ○ π◊ extends (uniquely) to a morphism σ0∶M

◊
g,n → J

0
g,n.

Whilst π◊ is (in general) not proper, Holmes observed that the scheme-theoretic pull-
back σ−10 (E) is proper, so it makes sense to consider the pushforward π◊∗(σ∗0[E]), which
we will denote by [DR◊]. When k = 0 he then proved the equality of Chow classes
[DR◊] = [DRLGV], where the right hand side is the extension of the double ramification
cycle toMg,n due to Li [Li01, Li02] and Graber–Vakil [GV05]. This latter extension is ob-
tained as the pushforward of a certain virtual class defined on a moduli stackMg,n(P1, a)∼
of rubber maps to P1, and its class has been computed in terms of standard tautological
classes by Janda, Pandharipande, Pixton and Zvonkine, proving an earlier conjecture by
Pixton, see [JPPZ17].

Kass and Pagani proposed another way of resolving the indeterminacy of the rational
map σ by modifying the target J 0g,n. In [KP17b, Section 4] they constructed, for each
nondegenerateφ in a certain stability vector space V0g,n, a compactified universal Jacobian
J g,n(φ) parameterizing φ-stable rank 1 torsion-free sheaves on stable pointed curves.
They propose extending E to J g,n(φ) as a Brill–Noether class w(φ) (a class wrd with d =

r = 0). This produces infinitely many extensions [DR(φ)], one for each nondegenerate
φ ∈ V0g,n, by pulling back w(φ) along the correspondence induced by the rational map
σ(φ)∶Mg,n ⇢ J g,n(φ). See Section 2.2 for more details.

The main result of this paper is

Theorem. (Theorem 5) If φ ∈ V0g,n is nondegenerate and such that the inclusion J 0g,n ⊆ J g,n(φ)

holds, we have [DR(φ)] = [DR◊].

Recall that when k = 0, we know by [Hol17] that [DR◊] = [DRLGV], so all three exten-
sions of DR coincide. We prove this result in Section 3 by first showing the equality

(2) ([DR◊] =) π◊∗(σ∗0[E]) = p∗([Σ] ⋅ [E])

(for E the zero section and Σ the Zariski closure of the image of σ) and then by proving
that, when φ satisfies the hypotheses of the Theorem, the Brill–Noether class w(φ) coin-
cides with the class [E]. Equation (2) gives a geometric description of the double ramifi-
cation cycle onMg,n analogous to the equality DR = σ−1(E) onMg,n, see Remark 13.

In Section 4 we observe that our main result may give another way of computing the
double ramification cycle. Indeed for φ ∈ V0g,n nondegenerate and such that the univer-
sal line bundle ω−⊗k

C (a1p1 + . . . + anpn) is φ-stable, the class [DR(φ)] is computed, by
applying cohomology and base change combined with the Grothendieck–Riemann–Roch
formula applied to the universal curve, as the Euler class of a certain coherent sheaf on
Mg,n. When k = 0, computing [DRLGV] becomes then a matter of keeping track of how
[DR(φ)] gets modified each time a stability hyperplane of V0g,n is crossed. Carrying out
the same programme for general k could give a geometric interpretation of a cycle that
Pixton defined by naturally extending the formula for [DRLGV] to k ≠ 0.

Throughout we work over the field C of complex numbers.
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2. BACKGROUND

2.1. Review of Holmes’ work on extending the Abel–Jacobi section. Here we recall the
definition of the universal σ-extending stackM◊

g,n overMg,n; note that this space depends
on the vector (k;a1, . . . , an).

Definition 1. We call a morphism t∶T → Mg,n from a normal Deligne–Mumford stack
σ-extending if t−1Mg,n is dense in T , and if the induced rational map σT ∶T ⇢ J

0
g,n extends

(necessarily uniquely) to a morphism T → J
0
g,n. We define the universal σ-extending stack

M
◊
g,n to be the terminal object in the category of σ-extending morphisms toMg,n.

The existence of a terminal object π◊∶M◊
g,n → Mg,n was established in [Hol17, Theo-

rem 3.15], where π◊ was also shown to be representable by algebraic spaces, separated
and birational (more precisely, an isomorphism over the locus of compact type curves).
Furthermore, M◊

g,n is naturally equipped with a log structure making it log étale over
Mg,n (the latter comes with a natural log structure, called basic log structure, from [Kat00]).

From Definition 1 we deduce the existence of a morphism σ0∶M
◊
g,n → J

0
g,n extending

the rational section σ∶Mg,n ⇢ J
0
g,n. Writing E for the schematic image of e in J 0g,n, it was

shown in [Hol17, Section 5] that the closed subscheme σ−10 (E) ofM◊
g,n is proper overMg,n.

Now the class σ∗0[E] is by definition a Chow class on σ−10 (E) (c.f. [Ful84, Chapter 6]).
Since the latter is proper over Mg,n, we can then push this class forward to Mg,n. We
define

[DR◊] = π◊∗ (σ∗0[E]) .

From [Hol17, Theorem 1.3] we obtain when k = 0 the equality of Chow classes

(3) [DR◊] = [DRLGV].
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2.2. Review of Kass–Pagani’s work on φ-stability. We first review the definition of the
stability space V0g,n from [KP17b, Definition 3.2] and the notion of degenerate elements
therein. An elementφ ∈ V0g,n is an assignment, for every stablen-pointed curve (C,p1, . . . , pn)
of genus g and every irreducible component C ′ ⊆ C, of a real number φ(C,p1, . . . , pn)C ′

such that
∑
C ′⊆C

φ(C,p1, . . . , pn)C ′ = 0

and such that,

(1) if α∶ (C,p1, . . . , pn) → (C ′, p ′1, . . . , p
′
n) is a homeomorphism of pointed curves, the

bijection that α induces on the irreducible components of C and of C ′ identifies
φ(C,p1, . . . , pn) with φ(C ′, p ′1, . . . , p

′
n);

(2) informally, the assignment φ is compatible with degenerations of pointed curves.

The notion ofφ-(semi)stability was introduced in [KP17b, Definition 4.1, Definition 4.2]:

Definition 2. Given φ ∈ V0g,n we say that a family F of rank 1 torsion-free sheaves of
degree 0 on a family of stable curves is φ-(semi)stable if the inequality

(4) ∣degC0
(F) − ∑

C ′⊆C0

φ(C,p1, . . . , pn)C ′ +
δC0

(F)

2
∣ <

#(C0 ∩C
c
0) − δC0

(F)

2
(resp. ≤).

holds for every stable n-pointed curve (C,p1, . . . , pn) of genus g, and for every subcurve
(i.e. a union of irreducible components) ∅ ⊊ C0 ⊊ C. Here δC0

(F) denotes the number of
nodes p ∈ C0 ∩Cc0 such that the stalk of F at p fails to be locally free.

A stability parameter φ ∈ V0g,n is nondegenerate when there is no F, no (C,p1, . . . , pn) and
no ∅ ⊊ C0 ⊊ C as above where equality occurs in Equation (4).

For all φ ∈ V0g,n there exists a moduli stack J g,n(φ) of φ-semistable sheaves on sta-
ble curves, which comes with a forgetful map p toMg,n. When φ is nondegenerate, by
[KP17b, Corollary 4.4] the stack J g,n(φ) is Deligne–Mumford and C-smooth, and the
morphism p is representable, proper and flat.

2.3. Compactified universal Jacobians containing J 0g,n. For some stability parameters
φ ∈ V0g,n the corresponding compactified universal Jacobian J g,n(φ) contains the multide-
gree zero universal Jacobian J 0g,n:

Definition 3. A nondegenerate stability parameterφ ∈ V0g,n is a small perturbation of 0when
the inclusion J 0g,n ⊆ J g,n(φ) holds.

Following Definition 2 we explicitly characterize the small perturbations of 0 in V0g,n.

Corollary 4. A nondegenerate φ ∈ V0g,n is a small perturbation of 0 if and only if for every stable
n-pointed curve (C,p1, . . . , pn) of genus g and every subcurve ∅ ⊊ C0 ⊊ C, the inequality

(5) ∣ ∑
C ′⊆C0

φ(C,p1, . . . , pn)C ′∣ <
#C0 ∩Cc0

2
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holds.

Proof. This follows from Definition 2 after observing that φ is a nondegenerate small per-
turbation of 0 if and only if the trivial line bundle is φ-stable. �

By [KP17b, Section 5] the degenerate locus of V0g,n is a locally finite hyperplane arrange-
ment (because we are assuming n ≥ 1 throughout). By applying Corollary 4, we deduce
that the nondegenerate small perturbations of 0 form a nonempty open subset of V0g,n.

2.4. Extensions of the double ramification cycle as a pullback ofw00. First we extend the
Brill–Noether locus W0

0 defined inside J 0g,n, as a Chow class w00 on J g,n(φ). Because we
are assuming n ≥ 1, by combining [KP17b, Corollary 4.3] and [KP17a, Lemma 3.35] we
deduce the existence of a tautological family Ftau of rank 1 torsion-free sheaves on the total
space of the universal curve q̃∶ J g,n(φ) ×Mg,n

Cg,n → J g,n(φ). We define the Brill–Noether
class w(φ) as

(6) w(φ) =w00(φ) ∶= cg(−Rq̃∗(Ftau(φ))).

We will later see in Lemma 6 that the class w(φ) is supported on the Brill–Noether locus

(7) W(φ) =W0
0(φ) ∶= {(C,p1, . . . , pn, F) ∶ h

0(C,F) > 0} ⊂ J g,n(φ).

Then, for each nondegenerate φ ∈ V0g,n we define the double ramification cycle to be the
pullback ofw(φ) via the correspondence induced by the rational map σ∶Mg,n ⇢ J g,n(φ).
More explicitly

(8) [DR(φ)] ∶= σ∗(w(φ)) = p∗ ([Σ(φ)] ⋅w(φ)) ,

where Σ(φ) is the closure in J g,n(φ) of the image of the section σ and p is the forgetful
morphism.

3. MAIN RESULT

When φ is a nondegenerate small perturbation of 0 the approaches of Holmes and of
Kass–Pagani can be directly compared. This will produce the main result of this paper.

Theorem 5. For φ ∈ V0g,n a nondegenerate small perturbation of 0, we have the equality of classes
[DR(φ)] = [DR◊].

Before proving the main result we prove some preparatory lemmas.

Lemma 6. For φ ∈ V0g,n nondegenerate, the class w(φ) is supported on the locus W(φ). If we
additionally assume thatW(φ) is irreducible, then w(φ) = [W(φ)].

Proof. This follows from a description ofw(φ) as a degeneracy class together with general
results about determinental subschemes (as developed in e.g. [Ful84, Section 14.4]). Fix
a 2-term complex d∶ E0 → E1 of vector bundles that represents Rq̃∗(Ftau). (Such a complex
can be constructed in an elementary manner using a fixed divisorH on J g,n(φ)×Mg,n

Cg,n
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that is sufficiently q̃-relatively ample. The sheaf Ftau(φ) fits into a short exact sequence
0 → Ftau(φ) → Ftau(φ) ⊗ O(H) → Ftau(φ) ⊗ OH(H) → 0. The (nonderived) direct image
q̃∗Ftau(φ)⊗O(H) → q̃∗Ftau(φ)⊗OH(H) is a complex with the desired properties.) We have
w(φ) = cg(E1 − E0) by definition (the 2-term complex represents the derived pushforward
appearing in Equation (6)), and this Chern class equals the degeneracy class of d (or rather
its image in the Chow group of J g,n(φ)) by [Ful84, Theorem 14.4(a)].

Since the complex d∶ E0 → E1 represents Rq̃∗(Ftau), it computes the cohomology of
Ftau, and this property persists after making an arbitrary base change T → J g,n by a k-
morphism out of a k-scheme T . Taking T → J g,n(φ) to be the inclusion of a closed point
(C,p1, . . . , pn, F), we see that h0(C,F) ≠ 0 if and only the maximal minors of d vanish.
In other words, the top degeneracy subscheme D(φ) of d∶ E0 → E1 has support equal to
W(φ). Being the degeneracy Chow class, w(φ) is supported on D(φ) by construction.

To complete the proof, we assumeW(φ) is irreducible and then provew(φ) = [W(φ)].
The closure of {(C,p1, . . . , pn,OC)∶C is smooth} is an irreducible component of W(φ), so
by assumption, it must equal W(φ). An elementary computation shows that this locus
has the expected codimension of g, so we conclude by [Ful84, Theorem 14.4(c)] thatD(φ)

is Cohen–Macaulay with fundamental class equal to w(φ). Furthermore, the fiber of
D(φ) over a point ofMg,n ⊂ Mg,n is a single reduced point (by e.g. [ACGH85, Proposi-
tion 4.4] as the fiber is a Brill–Noether locus). Taking the point to be the generic point, we
conclude thatD(φ) is generically reduced and hence, by the Cohen–Macaulay condition,
reduced. SinceD(φ) andW(φ) have the same support, we must haveD(φ) =W(φ) and
w(φ) = [W(φ)]. �

Remark 7. For φ ∈ V0g,n the Brill–Noether locusW(φ) can fail to be irreducible. Arguing as
in the proof of Lemma 6, the closure of {(C,p1, . . . , pn,OC)∶C is smooth} is an irreducible
component ofW(φ) of the expected dimension. We claim that for each boundary divisor
∆i,S ⊂ Mg,n, there exists a nondegenerate φ ∈ V0g,n such that W(φ) contains the preimage
of ∆i,S in J g,n(φ). Because this preimage has codimension 1 and is supported on the
boundary, we deduce thatW(φ) fails to be irreducible for this φ.

We now prove the claim. By applying [KP17b, Proposition 3.10] we deduce that, for
each boundary divisor ∆i,S ⊆Mg,n and for each t ∈ Z, there exists a nondegenerate φ such
that, on a pointed curve (C,p1, . . . , pn) that represents a point in the interior of ∆i,S, all
line bundles of bidegree (t,−t) are φ-stable. Taking t ≥ i + 1, we argue that a bidegree
(t,−t) line bundle L admits a nonzero global section as follows. The restriction L∣C1

ad-
mits a nonzero section vanishing at the node by the Riemann–Roch formula (as C1 the
component of C of genus i). Prolonging this section to zero on the component C2 of C
genus g − i, we produce a nonzero global section of L on C.

We continue with more preparatory lemmas.

Lemma 8. For φ ∈ V0g,n a nondegenerate small perturbation of 0 ∈ V0g,n, we haveW(φ) ⊆ J
0
g,n.

Proof. Let (C,p1, . . . , pn, F) be inW(φ). Assume that the multidegree of F is different from
0 and consider s ∈ H0(C,F). We aim to prove that s = 0.
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Because the total degree of F is 0 and the multidegree of F is non-trivial, the section
s vanishes identically on some irreducible component of C. Let C0 ≠ C be the (possibly
empty) complement of the support of s. Because the number of zeroes of a nonzero sec-
tion is a lower bound on the degree of the corresponding sheaf, we deduce the inequality

(9) degC0
F ≥#C0 ∩Cc0.

On the other hand, if C0 is nonempty, Inequality (4) for F (the φ-stability inequality for F)
on (C,p1, . . . , pn) and C0 ⊊ C reads

(10) ∣degC0
F +

δC0
(F)

2
− ∑
C ′⊆C0

φ(C,p1, . . . , pn)C ′∣ <
#C0 ∩Cc0 − δC0

(F)

2

Combining (10) with Corollary 4 produces

(11) degC0
F <#C0 ∩Cc0 − δC0

(F).

Since it is not possible for (9) and (11) to be simultaneously true (because δC0
(F) is a

natural number), we deduce that C0 = ∅ or, equivalently, that s = 0 on C. �

The following is probably a well-known fact, but we provide a proof for the sake of
completeness.

Lemma 9. A line bundle L of multidegree zero on a nodal curve C has a nonzero global section if
and only if L is isomorphic to OC.

Proof. The interesting part is the only if. Let s be a nonzero global section and C0 the
(nonempty) support of s. Consider the short exact sequence

(12) 0→ OC0

⋅s∣C0
ÐÐ→ L∣C0

→ Coker→ 0.

defining the sheaf Coker. Taking Euler characteristics in (12), we deduce χ(Coker) = 0 and
since Coker is supported on points, we deduce that Coker is trivial. Because s vanishes
identically on Cc0, we deduce that C0 = C and that multiplication by s gives an isomor-
phism OC → L. �

The following is an immediate consequence of the three lemmas we have proved so far.

Corollary 10. For φ ∈ V0g,n a nondegenerate small perturbation of 0, we have w(φ) = [E].

Proof. By Lemmas 8 and 9 we deduce W(φ) = E. Because E is irreducible, the claim is
obtained by applying Lemma 6. �

We set up some notation which we will need in the proof of Theorem 5. Recall from
Section 2.1 that the Abel–Jacobi section σ is only a rational map, and M◊

g,n → Mg,n is
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defined so that the pullback of σ toM◊
g,n extends. These morphisms fit into the following

pullback square defining J ◊
g,n:

(13) J
◊
g,n

π̃◊ //

p◊

��

J
0
g,n

p

��

M
◊
g,n

π◊ //

e◊

XX

σ◊

::

Mg,n.

σ

FF

e

XX

Denote by E the scheme-theoretic image of e and similarly with E◊ and Σ◊. Denote by Σ
the Zariski closure of the scheme-theoretic image of σ (on the largest open stack ofMg,n

where it extends to a well-defined morphism).

Lemma 11. The restriction of π̃◊ to Σ◊ is the normalization Σ◊ → Σ.

Proof. Let Σ̃ be the normalization of Σ. Note that π◊ is an isomorphism overMg,n, so σ◊

and σ ○ π◊ coincide there. SinceMg,n is schematically dense inM◊
g,n we see that the map

Σ◊ → J 0g,n factors through Σ. Hence by the normality ofM◊
g,n and the universal property

of the normalization we get a map Σ◊ → Σ̃.

Conversely, the projection map t∶ Σ̃ → Mg,n is σ-extending as in Definition 1; in other
words, Σ̃ is normal and the rational map σ∶ Σ̃ ⇢ J 0g,n evidently extends to a morphism.
By the universal property ofM◊

g,n we obtain a map Σ̃ → M◊
g,n, and this map factors via

the closed immersion Σ◊ →M◊
g,n becauseMg,n is schematically dense in Σ̃ and the spaces

coincide overMg,n.

We thus have maps Σ◊ → Σ̃ and Σ̃ → Σ◊. Moreover, both spaces are separated over
Mg,n, and the maps are mutual inverses over the schematically dense openMg,n, hence
they are mutual inverses everywhere. �

Lemma 12. The schematic intersection of the sections Σ◊ and E◊ in J ◊
g,n is proper overMg,n.

Proof. As a consequence of Lemma 11, the restriction of π̃◊ induces an isomorphism from
the scheme-theoretic intersection of the sections Σ◊ and E◊ in J ◊

g,n to the fiber product over
J
0
g,n of E and of the normalization of Σ. The claim follows from the fact that E is proper

overMg,n. �

We are now ready for the proof of the main result.

Proof. (of Theorem 5) To prove the theorem we pushforward the Chow class [Σ◊] ⋅ [E◊]
along morphisms that are, in general, not proper. However, this class is supported on
a proper cycle (as shown in Lemma 12), so this can be justified by choosing compatible
compactifications of the various spaces involved, possibly after blowing up the bound-
aries to avoid extra intersections (apply [Har13, Exercise II.7.12]) and then observing that
the resulting cycles are independent of the chosen compactifications.
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The push–pull formula applied to π̃◊, together with the fact that [E◊] = π̃◊∗[E] and
Lemma 11, produces the equality of classes

(14) π̃◊∗([Σ◊] ⋅ [E◊]) = [Σ] ⋅ [E].

Taking the pushforward along p of the left hand side of (14) we obtain

(15) p∗ ○ π̃
◊
∗([Σ◊] ⋅ [E◊]) = π

◊
∗ (p◊∗ ([Σ◊] ⋅ [E◊])) = π◊∗(σ◊∗[E◊]) = π

◊
∗(σ∗0[E]) = [DR◊].

The first equality is functoriality of the pushforward, the second equality is the push–
pull formula for the section σ◊, the third equality follows from σ0 ∶= π̃◊ ○ σ◊ and the last
equality is Formula (3).

Taking the pushforward along p of the right hand side of (14) we obtain

(16) p∗([Σ] ⋅ [E]) = p∗([Σ(φ)] ⋅ [E]) = p∗([Σ(φ)] ⋅w(φ)) = [DR(φ)]

where φ is a nondegenerate small perturbation of 0, p∶ J g,n(φ) → Mg,n is the forgetful
morphism and Σ(φ) is the closure in J g,n(φ) of Σ ⊂ J

0
g,n. The first equality follows from

the fact that E is closed in J g,n(φ). The second equality is Corollary 10. The last equality
is the definition of [DR(φ)], see Formula (8).

By combining Equations (14), (15) and (16) we conclude

[DR(φ)] = [DR◊].

�

Remark 13. As an interesting by-product of the proof of Theorem 5 we have also obtained
a simple description of [DR◊] (and hence when k = 0 of the Li–Graber–Vakil extension of
the double ramification cycle) as

(17) [DR◊] = p∗([Σ] ⋅ [E]) = e∗([Σ]

for p∶ J 0g,n →Mg,n the natural forgetful morphism. By the definition of pullback along the
rational map σ, the classes of (17) can also be described as σ∗([E]).

4. CONSEQUENCES

In [KP17b, Section 6.1] the authors characterized the set of nondegenerate φ ∈ V0g,n with
the property that the universal line bundle ω−⊗k

C (a1p1 + . . . + anpn) is φ-stable. For such
φ’s, Formula (8) reduces to the usual pullback σ∗(w(φ)) by the lci morphism σ and the
corresponding extension of the double ramification cycle is computed as

(18) [DR(φ)] = (−1)gcg (Rq∗ (ω−⊗k
C (a1p1 + . . . + anpn)))

The computation is derived by using the definition of w(φ) in Formula (6), invoking co-
homology and base change, and then applying the Grothendieck–Riemann–Roch formula
to the universal curve q∶ Cg,n →Mg,n as in [Mum83, Part II].

All other classes [DR(φ)] can in principle be computed by applying wall-crossing for-
mulae (as carried out in [KP17a, Theorem 4.1] by Kass–Pagani in the similar but simpler
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case of the theta divisor, the Brill–Noether class wrd with r = 0 and d = g − 1). As we men-
tioned in the introduction, this gives a new approach to computing the class of the double
ramification cycle — either [DRLGV] when k = 0, or for general k the cycle [DR◊], which
conjecturally agrees with Pixton’s formula, see [Hol17, Conjecture 1.4].

A natural question at this point is whether it is possible for some universal line bundle
ω−⊗k
C (a1p1 + . . . + anpn) to be φ-stable for some nondegenerate small perturbation of 0. This

happens only when the vector (k;a1, . . . , an) is trivial, i.e. when k(2 − 2g) = a1 = ⋅ ⋅ ⋅ =

an = 0. Indeed, if φ is nondegenerate, then on curves with 1 separating node there is
a unique φ-stable bidegree of line bundles by Definition 2. If φ is a small perturbation
of 0, this bidegree must be (0, 0). Therefore to be φ-stable, the universal line bundle
ω−⊗k
C (a1p1 + . . . + anpn) must have trivial bidegree on all curves with 1 separating node,

which implies that it is trivial.

A better question is to ask if it is possible that, for some nontrivial vector (k;a1, . . . , an),
the corresponding Abel–Jacobi section σ = σk;a1,...,an extends to a well-defined morphism
Mg,n → J g,n(φ) for some nondegenerate small perturbation φ of 0. This happens only
for the vectors (k;a1, . . . , an) that are very close to 0, in a sense that we make precise in
the following proposition.

Proposition 14. Let g,n ≥ 1 and assume (k;a1, . . . , an) is not trivial. The corresponding Abel–
Jacobi section σ extends to a well-defined morphism Mg,n → J g,n(φ) for some nondegenerate
small perturbation φ of 0 if and only if k(2 − 2g) = 0 and a = (0, . . . ,±1, . . . ,∓1, . . . , 0).

Proof. For simplicity we only discuss the case g ≥ 2 (the case g = 1 is similar and simpler).

To prove our claim we invoke [KP17b, Corollary 6.5], which implies that σ = σk;a1,...,an
extends to a well-defined morphism Mg,n → J g,n(φ) if and only if the universal line
bundleω−⊗k

C (a1p1 + . . . +anpn) is φ-stable on all stable pointed curves (C,p1, . . . , pn) that
consist of 2 smooth irreducible components meeting in at least 2 nodes.

Assume k = 0 and a = (0, . . . , ai = 1, . . . , aj = −1, . . . , 0) and define φ ∈ V0g,n using [KP17b,
Isomorphism (11)] to be the unique stability parameter that is trivial over all stable curves
with 1 separating node (in the notation of [KP17b], its projection toCg,n is trivial) and such
that

φ(Γi) = (
1

2
+ εi,−

1

2
− εi) , φ(Γj) = (−

1

2
− εj,

1

2
+ εj) , φ(Γk≠i,j) = (εk,−εk)

for some perturbation 0 < ∣∣(ε1, . . . , εn)∣∣ << 1 making the parameter φ nondegenerate.
(Here Γt for t = 1, . . . , n is any curve with a smooth component of genus 0 carrying the
marking pt, connected by 2 nodes to a smooth component of genus g − 1 with all other
markings). To check that φ is a small perturbation of 0, by [KP17b, Corollary 5.9] it is
enough to show that the trivial line bundle is φ-stable over all curves with 2 smooth irre-
ducible components, which is achieved by applying [KP17b, Formula (29)]. To conclude
we prove thatOC(a1p1+. . .+anpn) isφ-stable on every stable pointed curve (C,p1, . . . , pn)
that consists of 2 smooth irreducible components and at least 2 nodes. By applying
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[KP17b, Formula (29)] we deduce the inequality

(19) ∣ ∑
i∶pi∈C ′

ai −φ(C,p1, . . . , pn)C ′∣ <
#Sing(C)

2
,

where C ′ denotes either of the components of C. By Definition 2 we have that OC(a1p1 +
. . .+anpn) is φ-stable on (C,p1, . . . , pn) and we conclude that σ extends to a well-defined
morphism onMg,n.

For the other implication we use the following criterion. By Definition 2, if (C,p1, . . . , pn)
is a stable curve that consists of 2 smooth irreducible components meeting in 2 nodes and
φ is a nondegenerate small perturbation of 0, then a line bundle of bidegree (t,−t) is φ-
stable if and only if t = ±1 (because the φ-stable bidegrees are 2 consecutive bidegrees and
one of them is (0, 0)).

The universal line bundle ω−k(a1p1 + . . . + anpn) has bidegree (−2k, 2k) on the stable
curve that consists of a smooth component of genus 1 without markings connected by 2
nodes to a smooth component of genus g − 2 with all markings and by the criterion we
explained above the universal line bundle cannot beφ-stable unless k = 0. Assuming now
k = 0, if 0 ≠ a ≠ (0, . . . ,±1, . . . ,∓1, . . . , 0) there are 1 ≤ i ≤ j ≤ n such that ai + aj = t ≥ 2. The
universal line bundle has bidegree (t,−t) on the stable curve that consists of a smooth
component of genus 0 with the markings pi and pj, connected by 2 nodes to a smooth
component of genus g − 1 with all other markings. By applying the criterion again, the
universal line bundle is not φ-stable and the proof is concluded. �

The proposition makes it possible, when (k;a1, . . . , an) is nontrivial and very close to 0,
to describe the class [DRLGV] as a degree-gChern class similar to Formula (18). By [KP17b,
Proposition 6.4] the map σ extends to a well-defined morphism Mg,n → J g,n(φ) if and
only if the universal line bundle O(D(φ)) is φ-stable. Here O(D(φ)) is the unique uni-
versal line bundle satisfying the following two conditions:

(1) the line bundlesω−k(a1p1 + . . . + anpn) and O(D(φ)) coincide onMg,n and
(2) the line bundle O(D(φ)) is φ-stable on M≤1

g,n, the moduli stack of stable curves
with at most one node.

For (g,n) and (k;a1, . . . , an) and φ ∈ V0g,n as in Proposition 14, by arguing along the lines
of (18), we obtain

(20) [DRLGV] = (−1)gcg(Rq∗(O(D(φ)))).
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