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Abstract

We study the problem of information gathering in ad-hoc radio networks without collision detection,
focusing on the case when the network forms a tree, with edges directed towards the root. Initially, each
node has a piece of information that we refer to as a rumor. Our goal is to design protocols that deliver
all rumors to the root of the tree as quickly as possible. The protocol must complete this task even
though the actual tree topology is unknown when the computation starts. In the deterministic case,
assuming that the nodes are labeled with small integers, we give an O(n)-time protocol for the model
with unbounded message size, and an O(n logn)-time protocol for the model with bounded message size,
where any message can include only one rumor. We also consider fire-and-forward protocols, in which a
node can only transmit its own rumor or the rumor received in the previous step. We give a deterministic
fire-and-forward protocol with running time O(n1.5), and we show that it is asymptotically optimal. Our
last two results are concerned with randomized algorithms. We present a randomized O(n logn)-time
protocol in the model without node labels and without aggregation, and we prove that this bound is
asymptotically optimal.

1 Introduction

We consider the problem of information gathering in ad-hoc radio networks, where initially each node has a
piece of information called a rumor, and all these rumors need to be delivered to a designated target node as
quickly as possible. A radio network is defined as a directed graph G with n vertices. At each time step any
node v of G may attempt to transmit a message. This message is sent immediately to all out-neighbors of v.
However, an out-neighbor u of v will receive this message only if u is in the receiving state and no in-neighbor
of u other than v attempted to transmit at the same step. The event when two or more in-neighbors of
u transmit at the same time is called a collision. We do not assume any collision detection mechanism; in
other words, not only this u will not receive any message in this time step, but it will not even know that a
collision occurred.

One other crucial feature of our model is that the topology of G is not known at the beginning of com-
putation. We are interested in distributed protocols, where the execution of a protocol at a node v depends
only on the identifier (label) of v and the information gathered from the received messages. Randomized
protocols typically do not use node labels, and thus they work even if the nodes are indistinguishable from
each other. The protocol needs to complete its task independent of the topology of G.

Several primitives for information dissemination in ad-hoc radio networks have been considered in the
literature. Among these, the two most extensively studied are broadcasting and gossiping.
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The broadcasting problem is the one-to-all dissemination problem, where initially one source node has a
rumor that needs to be delivered to all nodes in the network (assuming that all other nodes are reachable
from the source node). In the model where the nodes of G are labelled with consecutive integers 0, 1, ..., n−1,
the fastest known deterministic algorithm for broadcasting runs in time O(n logD log log(D∆/n)) [16], where
D is the diameter of G and ∆ is the maximum in-degree. The best lower bound on the running time in
this model is Ω(n logD) [15]. (See also [12, 28, 6, 7, 18, 19, 17] for earlier work.) Allowing randomization,
broadcasting can be accomplished in time O(D log(n/D) + log2 n) with high probability [17], even if the
nodes are not labelled. This matches the lower bounds in [2, 29].

The gossiping problem is the all-to-all dissemination problem. Here, each node starts with its own rumor
and the goal is to deliver all rumors to each node. Naturally, for gossiping to be well defined, the underlying
graph needs to be strongly connected. There is no restriction on the size of messages; in particular, different
rumors can be transmitted together in a single message. (Models with restrictions on message size have also
been studied, see [24, 10].) With randomization, gossiping can be solved in expected time O(n log2 n) [17] (see
[30, 13] for earlier work), even if the nodes are not labelled. In contrast, for deterministic algorithms, with
nodes labelled 0, 1, ..., n−1, the fastest known gossiping algorithm runs in time O(n4/3 log4 n) [25], following
earlier progress in [12, 43]. (See also the survey in [23] for more information.) It is quite obvious that no
algorithm, deterministic or randomized, can achieve gossiping faster than in time Ω(n) for arbitrary graphs.
To the best of our knowledge, and contrary to folklore, no better lower bounds have been yet established in
the literature. (To clarify, we point out that the Ω(n log n) lower bound proofs for broadcasting in [15, 7] do
not apply to gossiping, because they either use acyclic graphs or assume that nodes are inactive until they
receive the broadcast message. The lower bound in [8] for many-to-many communication does not apply for
the same reason. The lower bound in [24] is for the model with restricted message size.) Reducing the gap
between lower and upper bounds for deterministic gossiping to a poly-logarithmic factor remains a central
open problem in the study of radio networks with unknown topology.

Our work has been inspired by this open problem. It is easy to see that for strongly connected directed
graphs gossiping is equivalent to information gathering, in the following sense. On one hand, trivially, any
protocol for gossiping also solves the problem of gathering. On the other hand, we can apply a gathering pro-
tocol and follow it with a protocol that broadcasts all information from the target node r; these two protocols
combined solve the problem of gossiping. So if we can solve information gathering in time O(npolylog(n)),
then we can also solve gossiping in time O(n polylog(n)). With this observation in mind, we can consider
information gathering to be an extension of gossiping, because information gathering is well defined for a
broader class of graphs, namely all graphs where the target node is reachable from all other nodes.

Our results. To gain better insight into the problem of information gathering in radio networks, we focus
on networks with tree topology. Thus we assume that our graph is a tree T with root r and with all edges
directed towards r. In this model, a gathering protocol knows that the network is a tree, but it does not
know its topology.

We consider several variants of this problem, for deterministic or randomized algorithms, and with or
without restrictions on the message size or processor memory. We provide the following results:

• In the first part of the paper we study deterministic algorithms, under the assumption that the nodes
of T are labelled 0, 1, ..., n − 1. First, in Section 4, we examine the model without any bound on
the message size. In particular, protocols for this model are allowed to aggregate any number of
rumors into a single message. (This is a standard model in existing gossiping protocols in unknown
radio networks; see, for example, the survey in [23]). We give an optimal, O(n)-time protocol using
unbounded messages.

• Next, in Section 5, we consider the model with bounded messages, where a message may contain only
one rumor. For this model we provide an algorithm with running time O(n log n).

• In Section 6 we consider an even more restrictive model of protocols with bounded messages, that we
call fire-and-forward protocols. In those protocols, at each step, a node can only transmit either its own
rumor or the rumor received in the previous step (if any). Fire-and-forward protocols are very simple to
implement and require very little memory, since nodes do not need to store any received messages. (We
remark that our model of fire-and-forward protocols resembles hot-potato packet routing in networks
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that has been well studied; see, for example [5, 22]). For the fire-and-forward model we provide a
deterministic protocol with running time O(n1.5) and we show a matching lower bound of Ω(n1.5).

• We then turn our attention to randomized algorithms (Sections 7 and 8). For randomized algorithms
we assume that the nodes are not labelled. In this model, we give an O(n log n)-time gathering protocol
and we prove a matching lower bound of Ω(n log n). The upper bound is achieved by a simple fire-
and-forward protocol that, in essence, reduces the problem to the Coupon Collector’s Problem. Our
main contribution here is the lower bound proof.

We add that our last result (the lower bound result for randomized algorithms) is in fact stronger, as we
show that the optimum expected and high-probability running time to achieve information gathering in star
graphs (trees of depth 1) is (c±o(1))n lnn, where c = 1/ ln2 2 ≈ 2.08. This can be also interpreted as a tight
bound for randomized contention resolution in multiple-access channels without feedback (see [26, 31, 44]
for some related work.)

Other related work. Prior to this paper, there does not seem to be any work in the literature that directly
addresses the information gathering problem in our model of ad-hoc radio networks. Some communication
protocols for radio networks use forms of information gathering on trees as a sub-routine; see for example
[4, 8, 27]. However, these solutions typically focus on undirected graphs, which allow direct feedback. They
also solve relaxed variants of information gathering where the goal is to gather only a fraction of rumors
in the root, which was sufficient for the applications studied in these papers (since, with feedback, such a
procedure can be repeated until all rumors are collected). In contrast, in our work, we study directed trees
without any feedback mechanism, and we require all rumors to be collected at the root.

Variants of information gathering problems have been studied, however, in other network models. For
example, Onus et al. [33] consider information gathering in an ad-hoc network of wireless devices that are
located in the plane. Issues related to information gathering in sensor networks are addressed in [9, 35].
Online competitive algorithms for information gathering (in a very different network model) were studied
in [3].

In our ad-hoc radio network model we are assuming that each node has a unique label from 0, 1, ..., n−1.
There is some work on information dissemination in ad-hoc radio networks where this assumption is relaxed,
allowing the labels to be chosen from a larger domain. For example, the O(n4/3 log4 n)-time gossiping algo-
rithm of Gasieniec et al. [25] works even if the labels are drawn from a polynomial size domain

{
0, 1, ..., nb

}
,

for some constant b ≥ 1.

2 Preliminaries

Radio networks. In this section we give formal definitions of radio networks and gathering protocols. We
define a radio network as a directed graph G = (V,E) with n nodes, with each node assigned a different label
from the set [n] = {0, 1, ..., n− 1}. (All the results in the paper remain valid if the label range is [L], where
L ≥ n and L = O(n).) Denote by label(v) the label assigned to a node v ∈ V . One node r is distinguished
as the target node, and we assume that r is reachable from all other nodes. Initially, at time 0, each node v
has some piece of information that we will refer to as rumor and we will denote it by ρv. The objective is
to deliver all rumors ρv to r as quickly as possible, according to the rules described below.

The time is discrete, namely it consists of time steps numbered with non-negative integers 0, 1, 2, ... .
At any step, a node v may be either in the transmit state or the receive state. A gathering protocol A
determines, for each node v and each time step t, whether v is in the transmit or receive state at time t.
If v is in the transmitting state, then A also determines what message is transmitted by v, if any. This
specification of A may depend only on the label of v, time t, and on the content of all messages received by
v until time t. We stress that, with these restrictions, A does not depend on the topology of G nor on the
node labeling.

All nodes start executing the protocol simultaneously at time 0. If a node v transmits at a time t, the
transmitted message is sent immediately to all out-neighbors of v, that is to all u such that (v, u) is an edge.
If (v, u) and (v′, u) are edges and both v, v′ transmit at time t then a collision at u occurs and u does not
receive any message. More specifically, an out-neighbor u of v will receive v’s message if and only if (i) u is
in the receive state at time t, and (ii) no collision at u occurs at time t. We do not assume any feedback
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from the transmission channel or any collision detection features, so, in case of a collision, neither the sender
nor any node within its range knows that a collision occurred.

Throughout the paper, we will focus on the case in which the graph is a rooted tree, with all edges
directed towards the root. We will typically use notation T for this tree and r for its root.

The running time of a deterministic information gathering protocol A is defined as the minimum time
T (n) such that, for any tree T with root r and n nodes, any assignment of labels from [n] to the nodes of
T , and any node v, the rumor ρv of v is delivered to r no later than at step T (n). In case of randomized
protocols, we evaluate them either using the expectation of their running time T (n), which is now a random
variable, or by showing that T (n) does not exceed a desired time bound with high probability.

We consider three types of information gathering protocols:

Unbounded messages: In this model a node can transmit or receive arbitrary information in a single step.
In particular, multiple rumors can be aggregated into a single message.

Bounded messages: In this model no aggregation of rumors is allowed. Each message consists of at most
one rumor and O(log n) bits of additional information.

Fire-and-forward: In a fire-and-forward protocol, each message consists of just one rumor, without any
other information. If a node v received a message in the previous step, then in the current step v
must either transmit (forward) this message, or it can transmit its own rumor (that is, “fire”), or else
it can enter the receiving state. Thus each rumor ρx, after being fired from its origin node x, travels
towards the root one hop at a time, until either it vanishes or it successfully reaches the root. A rumor
can vanish when it collides with another rumor, when it is transmitted to a node that is not in the
receiving state, or when it is dropped by a node that decided to fire its own rumor.

For illustration, consider a protocol called RoundRobin, where all nodes transmit in a cyclic order, one
at a time. Specifically, at any step t, RoundRobin transmits from the node v with label(v) = t mod n,
with the transmitted message containing all rumors received by v until time t. The running time is O(n2),
because initially each rumor ρu is at distance at most n− 1 from the root and in any consecutive n steps it
will decrease its distance to the root by at least 1. (RoundRobin has been used as a subroutine in many
protocols in the literature, and it achieves running time O(n2) for information gathering or gossiping in
arbitrary graphs where these problems are well-defined.)

RoundRobin can be adapted to use only bounded messages for information gathering in trees. At any
round t and any node v, if v has the rumor ρu of node u such that label(u) = t mod n, and v has not
transmitted ρu before, then v transmits ρu at time t. Since T is a tree, each rumor follows the unique path
towards the root. Therefore any two sibling nodes will never transmit at the same time, that is, collisions
will never occur. This implies that after at most n2 steps r will receive all rumors. (Later in the paper, we
refer to this method as rumor-based RoundRobin.)

3 Some Structure Properties of Trees

As we will show later in Sections 4 and 5, the efficiency of our algorithms depends on some subtle topological
property of trees — roughly, on how “bushy” the tree is. To capture this property we use the concept of
γ-depth. We define this concept in this section and establish its properties needed for the analysis of our
algorithms.

γ-Depth of trees. Let T be the given tree network with root r and n nodes. We use standard terminology
for rooted trees: children, descendants, ancestors, and leaves. By the degree of a node v ∈ T we mean
the number of its children. Tv will denote the subtree of T rooted at v that contains all descendants of v,
including v itself.

Fix an integer γ in the range 1 ≤ γ ≤ n−1. We define the γ-height of a node v of T , denoted heightγ(v),
as follows. If v is a leaf then heightγ(v) = 0. If v is an internal node then let g be the maximum γ-height of a
child of v. If at least γ children of v have γ-height equal g then heightγ(v) = g+ 1; otherwise heightγ(v) = g.
We then define the γ-depth of T as Dγ(T ) = heightγ(r).

In the analysis of our algorithms the nodes which contribute to the increase of γ-height will play a special
role — they are called γ-frontier nodes. Formally, v is called a γ-frontier node if its γ-height is greater than
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γ-heights of all its children. The γ-frontier nodes with γ-height 0 are (vacuously, from the definition) the
leaves of T .

For any nodes v and u ∈ Tv, we call u a (γ, h)-tributary descendant of v if all the nodes on the path from
u to v, including u but excluding v, have γ-height at most h. If heightγ(v) ≤ h or if v is a frontier node with
heightγ(v) = h+ 1 then all descendants of v are, by definition, (γ, h)-tributary. (See Figure 1.) This concept
is used in Section 5.

In our proofs, we may also consider trees other than the input tree T . If H is any tree and v is a node of
H then, to avoid ambiguity, we will write heightγ(v,H) for the γ-height of v with respect to H. Note that if
H is a subtree of T and v ∈ H then, trivially, heightγ(v,H) ≤ heightγ(v).

By definition, the 1-height of a node is the same as its height, namely the longest distance from this node
to a leaf in its subtree. For a tree, its 1-depth is equal to its depth. Figure 1 shows an example of a tree
whose depth equals 4, 2-depth equals 3, and 3-depth equals 1.

0 0 0 0 0

0

0 0

11

1

0 1

1

1 0

21

2 2

3

1

0 0 0 0

0

0

0

 T  

u u’

v

Figure 1: An example illustrating the concept of γ-depth of trees, for γ = 1, 2, 3. The depth of this tree T
is 4. The number in each node is its 2-height; thus the 2-depth of this tree is 3. All light-shaded nodes have
3-height equal 0 and the four dark-shaded nodes have 3-height equal 1, so the 3-depth of this tree is 1. For
γ = 2, u is a (2, 1)-tributary descendant of v but u′ is not.

The lemmas below spell out some simple properties of γ-heights of nodes that will be useful for the
analysis of our algorithms.

Lemma 1. Dγ(T ) ≤ logγ n.

Proof. It is sufficient to show that |Tv| ≥ γheightγ(v) holds for each node v. The proof is by simple induction
with respect to the height of v.

If v is a leaf then the inequality is trivial. So suppose now that v is an internal node with heightγ(v) = g.
If v has a child u with heightγ(u) = g then, by induction, |Tv| ≥ |Tu| ≥ γg. If all children of v have γ-height
smaller than g then g ≥ 1 and v must have at least γ children with γ-height equal g − 1. So, by induction,
we get |Tv| ≥ γ · γg−1 = γg.

The concept of γ-heights was used earlier in [14], independently and under a different name, to develop
some radio network protocols, based on a variant of Lemma 1. (We include a simple proof above for the sake
of completeness.) For γ = 2, the definition of 2-height is equivalent to that of Strahler numbers [36], used in
hydrology to measure the complexity of watersheds (see also [38]). In particular, Lemma 1 generalizes the
bound from [38] for γ = 2.

We will be particularly interested in subtrees of T consisting of the nodes whose γ-height is above a given
threshold. Specifically, for h = 0, 1, ..., Dγ(T ), let T γ,h be the subtree of T induced by the nodes whose
γ-height is at least h (see Figure 2). Note that, since γ-heights are monotonically non-decreasing on the
paths from leaves to r, T γ,h is indeed a subtree of T rooted at r. In particular, for h = 0 we have T γ,0 = T .
The leaves of T γ,h are exactly the γ-frontier nodes with γ-height equal h.

For any h, T −T γ,h is a collection of subtrees of type Tv, where v is a node of γ-height less than h whose
parent is in T γ,h. When h = 1, all such subtrees contain only nodes of γ-height equal 0, which implies that
they all have degree less than γ. In particular, for γ = 2, each such subtree Tv is a path from a leaf of T to
v.
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Figure 2: The subtree T 2,1 obtained from tree T in Figure 1. The numbers in the nodes are their 2-heights
with respect to T 2,1.

Lemma 2. For any node v ∈ T γ,h we have heightγ(v, T γ,h) = heightγ(v)− h. Thus, in particular, we also

have Dγ(T γ,h) = Dγ(T )− h.

Proof. Let T ′ = T γ,h. The proof is by induction on the height of v in T ′. If v is a leaf of T ′ then
heightγ(v) ≥ h and heightγ(v, T ′) = 0, by definition. All children of v in T are outside T ′ so their γ-heights
are at most h− 1. Therefore heightγ(v) = h and thus the lemma holds for v.

Suppose now that v is not a leaf of T ′ and that the lemma holds for all children of v. This means that
each child u of v in T is of one of two types: either u /∈ T ′ (that is, heightγ(u) ≤ h− 1), or u ∈ T ′ (that is,
heightγ(u) ≥ h) and heightγ(u, T ′) = heightγ(u)− h.

Let heightγ(v) = f ≥ h. If v has a child with γ-height equal f then there are fewer than γ such children.
By induction, these children will have γ-height in T ′ equal f − h, and each other child that remains in T ′
has γ-height in T ′ smaller than f − h. So heightγ(v, T ′) = f − h.

If all children of v have γ-height smaller than f then f ≥ h+ 1 (for otherwise v would have to be a leaf
of T ′) and v must have at least γ children with γ-height f − 1. These children will be in T ′ and will have
γ-height in T ′ equal f − 1− h, by induction. So heightγ(v, T ′) = f − h in this case as well, completing the
proof.

From Lemma 2, we obtain that the operation of taking subtrees T γ,h is, in a sense, transitive.

Corollary 1. For any g, h ≥ 0 such that h+ g ≤ Dγ(T ), we have (T γ,h)γ,g = T γ,h+g.

4 Deterministic Algorithms with Aggregation

As explained in Section 2, it is easy to achieve information gathering in time O(n2). In this section we
prove that using unbounded-size messages this running time can be improved to O(n). This is optimal for
arbitrary n-node trees, since no better time can be achieved even for paths or star graphs. We start with a
simpler protocol with running time O(n log n), that we use to introduce our terminology and techniques.

We can make some assumptions about the protocols in this section that will simplify their presentation.
Since we use unbounded messages, we can assume that each transmitted message contains all information
received by the transmitting node, including all received rumors. We also assume that all rumors are different,
so that each node can keep track of the number of rumors collected from its subtree. To ensure this we can,
for example, have each node v append its label to its rumor ρv.

We will also assume that each node knows the labels of its children. To acquire this knowledge, we can
precede any protocol by a preprocessing phase where nodes with labels 0, 1, ..., n−1 transmit, one at a time,
in this order. Thus after n steps each node will receive the messages from its children. This does not affect
the asymptotic running times of our protocols.

4.1 Warmup: a Simple O(n log n)-Time Algorithm

We now present an algorithm for information gathering on trees that runs in time O(n log n). In essence,
any node waits until it receives the messages from its children, then for 2n steps it alternates RoundRobin
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steps with steps when it always attempts to transmit. A more detailed specification of the algorithm follows.

Algorithm UnbDTree1. We divide the time steps into rounds, where round s = 0, 1, 2, ...
consists of two consecutive steps 2s and 2s + 1, which we call, respectively, the RR-step and the
All-step of round s.

For each node v we define its activation round, denoted αv, as follows. If v is a leaf then αv = 0.
For any other node v, αv is the first round such that v has received messages from all its children
when this round is about to start.

For each round s = αv, αv + 1, ..., αv + n − 1, v transmits in the All-step of round s, and if
label(v) = s mod n then it also transmits in the RR-step of round s. In all other steps, v stays in
the receiving state.

Analysis. For any node v we say that v is dormant in rounds 0, 1, ..., αv − 1, v is active in rounds αv, αv +
1, ..., αv + n − 1, and that v is retired in every round thereafter. Since v will make one RR-transmission
when it is active, v will successfully transmit its message to its parent before retiring and before this parent
is activated. By a simple inductive argument, the message transmitted by v contains all rumors from its
subtree Tv. This implies that Algorithm UnbDTree1 is correct, namely that eventually r will receive all
rumors from T . This will happen, in fact, in at most O(n2) steps. Further, we have that at any round
Algorithm UnbDTree1 satisfies the following invariants:

(J1) Any path in T from a leaf to r consists of a segment of retired nodes, followed by a segment of active
nodes, which is then followed by a segment of dormant nodes (each of these segments possibly empty).

(J2) Each rumor has reached a node that is dormant or active.

(J3) Any dormant node has at least one active descendant.

We now give a more accurate analysis of the running time of Algorithm UnbDTree1, starting with the
lemma below which provides a bound on the activation time αv of each node v.

Lemma 3. Let d = D2(T ). For any h = 0, 1, ..., d and any node v with height2(v) = h, we have that

(i) if v is a 2-frontier node then αv ≤ 2hn; otherwise,

(ii) αv ≤ (2h+ 1)n.

Proof. The proof is by induction on h — although with a twist. In the base case we observe that, directly
from the description of Algorithm UnbDTree1, condition (i) holds for 2-frontier nodes with 2-height equal
0, that is for the leaves of T .

In the inductive step, fix some h ≥ 0, and assume that Lemma 3 holds for all nodes with 2-height smaller
than h, and that, additionally, condition (i) holds for the 2-frontier nodes with 2-height equal h. We then
show that Lemma 3 holds for all nodes with 2-height equal h, and that condition (i) holds for the 2-frontier
nodes with 2-height equal h+ 1 (as long as h < d). This will be sufficient to prove the lemma.

Given the inductive assumption stated above, we proceed as follows. Consider first a node v with
height2(v) = h that is not a 2-frontier node. In order to reduce clutter, denote Z = T 2,h. From Lemma 2,
we have that height2(v,Z) = 0, which implies that Zv is a path from a leaf of Z to v. Let Zv = v1, v2, ..., vq
be this path, where v1 is a leaf of Z (that is, a 2-frontier node with 2-height h) and vq = v.

Assume that v is still dormant at step 2nh, for otherwise (ii) would follow trivially from αv ≤ 2hn ≤
(2h + 1)n. The nodes in T − Z have 2-height smaller than h, so, by the inductive assumption, they are
activated no later than in round (2h− 1)n, and therefore in round 2hn they are already retired. Thus (from
invariant (J3) applied to v) some node on Zv other than v is active in round 2nh. Choose the largest p for
which vp is active. In round 2nh and later, all children of the nodes vp, vp+1, ..., vq that are not on Zv do
not transmit, because they are already retired. This implies that for each ` = 0, ..., q − p − 1, node vp+`+1

will get activated in round 2nh+ `+ 1 as a result of the All-transmission from node vp+`. In particular, we
obtain that αv ≤ 2nh+ q − p ≤ (2h+ 1)n, as needed.
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Next, suppose that h < d and that v is a 2-frontier node with 2-height equal h + 1. If u is a child of v
then height2(u) ≤ h, so αu ≤ (2h + 1)n, by the inductive assumption (if height2(u) < h) and by the proof
of (ii) above (if height2(u) = h). In one of the rounds αu, αu + 1, ..., αu + n− 1, node u will transmit all by
itself, which guarantees that v will receive the message from u before round αu + n ≤ 2(h+ 1)n. Since this
holds for each child of v, we conclude that αv ≤ 2(h+ 1)n, completing the proof.

We have height2(r) = d and d = O(log n), by Lemma 1. Applying Lemma 3, this implies that αr ≤
(2d+ 1)n = O(n log n), which gives us that the overall running time is O(n log n). Summarizing, we obtain
the following theorem.

Theorem 1. For any tree with n nodes and any assignment of labels, Algorithm UnbDTree1 completes
information gathering in time O(n log n).

4.2 An O(n)-Time Deterministic Algorithm

In this section we show that, for the model with unbounded size messages, the running time of information
gathering in trees can be improved to O(n), which is of course optimal. The basic idea is to use (n, k)-
strongly-selective families to speed up the computation.

Recall that an (n, k)-strongly-selective family, where 1 ≤ k ≤ n, is a collection F0, F1, ..., Fm−1 ⊆ [n] of
sets such that for any set X ⊆ [n] with |X| ≤ k and any x ∈ X, there is an index j for which Fj ∩X = {x}.
It is well known that for any k = 1, 2, ..., n, there is a (n, k)-strongly-selective family with m = O(k2 log n)
sets [20, 15]. Note that in the special case k = 1 the family consisting of just one set F0 = [n] is (n, 1)-
strongly-selective. This corresponds to All-transmissions in the previous section. For k = ω(

√
n/ log n) we

can also improve the O(k2 log n) bound to O(n) by using the set family corresponding to the RoundRobin
protocol, namely the n singleton sets {0}, {1}, ..., {n− 1}.

In essence, an (n, k)-strongly-selective family can be used to speed up information dissemination through
low-degree nodes. Consider the protocol k-Select that works as follows: for any step t and any node v, if
label(v) ∈ Ft mod m then transmit from v, otherwise v stays in the receive state. Suppose that w is a node
with at most k children, and that these children collected the messages from their subtrees by time t. Steps
t, t+ 1, ..., t+m− 1 of this protocol use all sets F0, F1, ..., Fm−1 (although possibly in a different order), so
each child of w will make a successful transmission by time t+m, which, for k = o(

√
n/ log n), is faster than

time O(n) required by RoundRobin.
To achieve linear time for arbitrary trees, we will interleave the steps of protocol k-Select with RoundRobin

(to deal with high-degree nodes) and steps where all active nodes transmit (to deal with long paths).
Below, we fix parameters κ = dn1/3e and m = O(κ2 log n), the size of an (n, κ)-strongly-selective family

F0, F1, ..., Fm−1. (The choice of κ is somewhat arbitrary; in fact, any κ = Θ(nc), for 0 < c < 1
2 , would work.)

In the rest of this section we assume that m ≤ n; we can make this assumption because this inequality will
hold for sufficiently large n.

Algorithm UnbDTree2. We divide the steps into rounds, where each round s = 0, 1, 2, ...
consists of three consecutive steps 3s, 3s + 1, and 3s + 2, that we will call the RR-step, All-step,
and Sel-step of round s, respectively.

For each node v we define its activation round, denoted αv, as follows. If v is a leaf then αv = 0.
For any other node v, αv is the first round such that before this round starts v has received the
messages from all its children.

In each round s = αv, αv+1, ..., αv+m−1, v transmits in the All-step of round s, and if label(v) ∈
Fs mod m then v also transmits in the Sel-step of round s. In each round s = αv, αv+1, ..., αv+n−1,
if label(v) = s mod n then v transmits in the RR-step of round s. If v does not transmit according
to the above rules then v stays in the receiving state.

Analysis. Similar to Algorithm UnbDTree1, in Algorithm UnbDTree2 each node v goes through three
stages. We call v dormant in rounds 0, 1, ..., αv − 1, active in rounds αv, αv + 1, ..., αv + n − 1, and retired
thereafter. We will also refer to v as being semi-retired in rounds αv +m,αv +m+ 1, ..., αv +n− 1 (when it
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is still active, but only uses RR-transmissions). Assuming that v gets activated in some round, since v makes
at least one RR-transmission when it is active, it will successfully transmit its message to its parent before
retiring, and before its parent gets activated. By straightforward induction on the depth of T , this implies
that each node will eventually get activated, proving that Algorithm UnbDTree2 is correct.

By a similar argument, Algorithm UnbDTree2 satisfies the same invariants (J1), (J2) and (J3) as
Algorithm UnbDTree1. In addition, in invariant (J1) we also have that among the active nodes, the
semi-retired nodes precede those that are not semi-retired.

It remains to show that the running time of Algorithm UnbDTree2 is O(n). The idea of the analysis
is to show that Sel- and All-steps disseminate information very fast, in linear time, through subtrees where
all node degrees are at most κ. (In fact, this applies also to nodes with higher degrees, as long as they have
at most κ active children left.) The process can stall, however, if all active nodes have parents of degree
larger than κ. In this case, a complete cycle of RoundRobin will transmit the messages from these nodes
to their parents. We show, using Lemma 1, that, since κ = dn1/3e, such stalling can occur at most 3 times
in total. So the overall running time will be still O(n). We formalize this argument in the remainder of this
subsection.

Let d̄ = Dκ+1(T ). From Lemma 1, we have d̄ ≤ 3. We fix some integer g ∈ {0, 1, 2, 3}, a node w with
heightκ+1(w) = g, and we let Y = T κ+1,g

w ; that is, Y is the subtree of T κ+1,g rooted at w. This subtree Y
consists of the descendants of w (including w itself) whose (κ + 1)-height in T is exactly g. By Lemma 2,
the (κ+ 1)-height of these nodes within T κ+1,g is equal 0. (See Figure 3 for illustration.) This means that
all nodes in Y have degrees, with respect to Y, at most κ.

We also fix s̄ to be the first round when all nodes in T − T κ+1,g are either active or already retired. In
particular, for g = 0 we have s̄ = 0. Our goal now is to show that w will get activated in O(n) rounds after
round s̄.

w

Y
T 

T κ+1,g

Y

 

Z =Y 2,h

w

v
Zv

Figure 3: On the left, tree T , partitioned into layers consisting of nodes with the same (κ + 1)-height.
(This figure should not be interpreted literally; for example, nodes of (κ+ 1)-height 3 may have children of
(κ+ 1)-height 0 or 1.) The figure on the right shows subtree Y of T , partitioned into Z and Y −Z. Within
Z, subtree Zv is a path from v to a leaf.

Lemma 4. αw ≤ s̄+O(n).

Proof. Let d = D2(Y). By Lemma 1, d = O(log |Y|) = O(log n). For h = 0, ..., d, let lh be the number
of nodes u ∈ Y with height2(u,Y) = h. The overall idea of the proof is similar to the analysis of Algo-
rithm UnbDTree1. The difference is that now, since all degrees in Y are at most κ, the number of rounds
required to advance through the h-th layer of Y, consisting of the nodes in Y of 2-height (with respect to Y)
equal h, can be bounded by O(m+lh), while before this bound was O(n). Adding up the bounds for all layers,
all terms O(lh) will now amortize to O(n), and the terms O(m) will add up to O(md) = O(n2/3 log2 n) = O(n)
as well. We now fill in the details.

Claim 1. Let v be a node in Y with height2(v,Y) = h. Then the activation round of v satisfies αv ≤ sh,
where sh = s̄+ 2n+

∑
i≤h li + 2hm.
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First, we observe that Claim 1 implies the lemma. This is because for v = w we get the bound αw ≤
s̄+ 2n+

∑
i≤d li + 2dm ≤ s̄+ 2n+ n+ 2 ·O(log n) ·O(n2/3 log n) = s̄+O(n), as needed. Thus, to complete

the proof, it remains to justify Claim 1. We proceed by induction on h.
Consider first the base case, when h = 0. We focus on the computation in the subtree Yv, which (for

h = 0) is simply a path v1, v2, ..., vq = v, from a leaf v1 of Y to v. In round s̄ + n all the nodes in T − Y
must be already retired. If v is active or retired in round s̄ + n, we are done, because s̄ + n ≤ s0. If v is
dormant, at least one node in Yv must be active, because of the invariant (J3) and the fact that all nodes
in T − Y are already retired. So choose p to be the maximum index for which vp is active in round s̄ + n.
Each node vi, for i = p+ 1, p+ 2, ..., q has already received messages from all its children except vi−1. The
activation round of vp satisfies s̄ < αvp ≤ s̄+ n. Thus vp+1 will get a message from vp before round αvp + n
(using some RR-transmission, if not other), so its activation round satisfies s̄+n < αvp+1

≤ s̄+ 2n. Since we
have no interference from outside Yv, v will then be activated in round αvp+1 + q − p − 1 using a sequence
of All-transmissions. As q ≤ l0, we conclude that αv = αvp+1 + q− p− 1 ≤ s̄+ 2n+ l0 = s0, which is exactly
the bound from Claim 1 for h = 0.

In the inductive step, fix some h > 0, and assume that Claim 1 holds for nodes with 2-height smaller than
h. Denoting Z = Y2,h, we consider the computation in Zv, the subtree of Z rooted at v. (See Figure 3.) Zv
is a path v1, v2, ..., vq = v from a leaf v1 of Z to v.

The argument is similar to the base case. There are two twists, however. One, we need to show that v1
will get activated no later than in round sh−1 + m; that is, after delay of only m, not O(n). Two, in the
time interval between sh−1 + m and sh (when we need the message from v1 to reach v) the children of the
nodes on Zv that are not on Zv are not guaranteed to be retired anymore. However, they are semi-retired,
which is good enough for our purpose.

Consider v1. We want to show first that v1 will get activated no later than in round sh−1 + m. All
children of v1 in T can be grouped into three types:

Type 1: The children of v1 in T − Y. These are activated no later than in round s̄, so they retire no later
than in round s̄+ n.

Type 2: The children of v1 in Y − Z that were activated before round s̄+ n.

Type 3: The children of v1 in Y − Z that were activated at or after round s̄+ n.

This classification is well defined because all children of v1 are either in T − Y or in Y − Z.
Clearly, v1 will receive the messages from its children of Type 1 and Type 2, using RR-transmissions (if

not other), before round s̄ + 2n ≤ sh−1 + m. (The reason we need to consider Type 2 children separately
from those of Type 3 is that children of Type 2 may activate when v1 still has more than κ active children,
so their Sel-transmissions may not be successful.)

The children of v1 of Type 3 are in Y−Z and they activate no earlier than in round s̄+n. Since they are
in Y−Z, their 2-height in Y is strictly less than h, so they activate no later than in round sh−1, by induction.
(Note that sh−1 ≥ s̄ + 2n.) Thus each child u of v1 in Y of Type 3 will complete all its Sel-transmissions,
that include the complete (n, κ)-strongly-selective family between rounds s̄+n and sh−1 +m−1 (inclusive).
In these rounds all children of v1 in T −Y are retired, so at most κ children of v1 are active in these rounds.
This implies that the message of u will be received by v1 using a Sel-transmission, if no other. Putting it all
together, v1 will receive messages from all its children before round sh−1 +m, and thus it will be activated
no later than in round sh−1 +m.

Since αv1 ≤ sh−1+m, we obtain that in round sh−1+m either there is an active node in Zv or all nodes in
Zv are already retired. The remainder of the argument is similar to the base case. If v itself is active or retired
in round sh−1 + m then we are done, because sh−1 + m ≤ sh. So suppose that v is still dormant in round
sh−1 +m. Choose p to be the largest index for which vp is active in this round. Thus αvp ≤ sh−1 +m and
αvp > sh−1 +m−n ≥ s̄+n. The last inequality gives us that during the whole time when vp is active, vp+1

has at most κ active children (because its degree in Y is at most κ and all nodes in T −Y are already retired).
So vp+1 will receive the message from vp in at most m steps, and therefore αvp+1 ≤ αvp + m ≤ sh−1 + 2m.
By the choice of p, we also have that, at round sh−1 +m and later, for each i = p+ 1, p+ 2, ..., q, all children
of vi except vi−1 are either retired or semi-retired, so they do not participate in All-transmissions anymore.
Therefore, since there is no interference, v will get activated in q− p− 1 additional rounds using consecutive
All-transmissions. So αv ≤ αvp+1

+ q− p− 1 ≤ sh−1 + 2m+ lh = sh, completing the inductive step, the proof
of Claim 1, and the lemma.
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From Lemma 4, all nodes in T with (κ + 1)-height equal 0 will get activated in at most O(n) rounds.
For g = 1, 2, 3, all nodes with (κ + 1)-height equal g will activate no later than O(n) rounds after the last
node with (κ + 1)-height less than g is activated. This implies that all nodes in T will be activated within
O(n) rounds. Summarizing, we obtain the main result of this section.

Theorem 2. For any tree with n nodes and any assignment of labels, Algorithm UnbDTree2 completes
information gathering in time O(n).

Algorithm UnbDTree2 can be modified to work if we allow labels to be from the range [L], for some
L ≥ n, assuming that all nodes know the value of L. There are two ways to do that. If L is not too large,
say L = O(n), then in the algorithm we simply replace n by L. The running time will be still O(n). If L is
large, then we can replace the RR-steps by an (L, n)-strongly-selective family of size O(n2 logL). This will
give us an algorithm with running time O(n2 logL). (This explanation assumes that n is known. If n is not
known, an algorithm can “guess” n using a standard doubling trick that successfully tries larger and larger
values of n. Although the nodes will compute forever, they will still complete gathering within the claimed
time bound.) Combining these two approaches gives running time O(min(L, n2 logL)).

5 Deterministic Algorithms without Aggregation

In this section we consider deterministic information gathering without aggregation, where each message
can contain at most one rumor, plus additional O(log n) bits of information. For this model, we give an
algorithm with running time O(n log n).

In our algorithm we will assume that each node in T knows its 2-height. These values can be computed
in linear time using a modification of Algorithm UnbDTree2. In this modified algorithm, the message from
each node contains its 2-height. When a node v receives such messages from all its children, it can compute
its own 2-height, which it can then transmit to its parent. Using 2-heights allows us to synchronize the
computation of different nodes; in particular all nodes with the same 2-height will be working in lockstep,
executing the same code. This leads to a relatively simple analysis.

To streamline the description of the algorithm, we will also temporarily assume that we are allowed to
receive and transmit at the same time. Later, we will show how to remove this assumption.

Algorithm BndDTree. Let ` = dlog ne. We divide the computation into ` + 1 phases. Phase
h, for h = 0, 1, ..., `, consists of 3n steps 3nh, 3nh + 1, ..., 3n(h + 1) − 1. In phase h, only the
nodes of 2-height equal h participate in the computation. Specifically, consider a node v with
height2(v) = h. We have two stages:

Stage AllTransmit: In each step t = 3nh, 3nh+ 1, ..., 3nh+ 2n−1, if v contains any rumor ρu that
it still has not transmitted, v transmits ρu. (Recall that ρu is the rumor that originated in
node u.)

Stage RumorRR: In each step t = 3nh+ 2n+ u, for u = 0, 1, ..., n− 1, if v has rumor ρu, then v
transmits ρu.

In any other step, v does not transmit.

To clarify, in Stage AllTransmit the algorithm keeps track of the rumors that it already transmitted, say
by marking them. Newly arriving, non-duplicate rumors are not marked. At each step, if a node has any
non-marked rumors, it transmits an arbitrary non-marked rumor and marks it.

Stage RumorRR can be thought of as “rumor-based” version of RoundRobin, where the decision whether
a node v transmits is not based on its own label, but on the label associated with the rumors it has already
collected (or, more precisely, with the labels of nodes where these rumors originated). In each step of
RumorRR multiple nodes may transmit, although they all must be on the same leaf-to-root path.

Analysis. By Lemma 1, each node has 2-height at most `, so all nodes will participate in the computation
and the whole algorithm will complete computation in O(n log n) steps. It remains to show that r (the root
of T ) will receive all rumors. The proof of this relies on the following lemma.
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Lemma 5. For each h = 0, 1, ..., `, at the beginning of phase h, every node v ∈ T has rumors from all its
(2, h−1)-tributary descendants. (In particular, if height2(v) < h or if v is a frontier node with height2(v) = h
then v has all rumors from Tv.)

We should stress that this lemma applies to all nodes v, without any restriction on their 2-height. Recall
that a (2, h′)-tributary descendant of a node v is a node u ∈ Tv such that all the nodes on the path from u
to v (including u but excluding v) have 2-height at most h′.

Proof. The proof is by induction on h, the index of the phase. The lemma is vacuously true at the beginning,
when h = 0.

In the inductive step, assume that the lemma holds for some h < `, and consider phase h. We want to
show that when phase h ends then each node v has rumors from all (2, h)-tributary descendants. By the
inductive assumption, when phase h ends (in fact, even when it starts) node v already has all rumors from
its (2, h − 1)-tributary descendants. So if v does not have any proper descendants of 2-height h (that is, if
height2(v) ≤ h− 1 or if v is a frontier node with height2(v) = h) then we are done.

Let v be a node with height2(v) ≥ h. It remains to prove that if v has a child u with height2(u) = h then
right after phase h all rumors from Tu will also be in v.

Since height2(u) = h, the subtree T 2,h
u , namely the subtree consisting of the descendants of u with 2-

height equal h, is a path u1, u2, ..., uq = u, where u1 is a 2-frontier node and a leaf of T 2,h. From the
inductive assumption, when phase h starts all rumors from Tu are in T 2,h

u . Also, the children of the nodes
in T 2,h

u , except possibly for one child that is in T 2,h
u , do not transmit in phase h, so all transmissions from

u1, u2, ..., uq−1 in Stage AllTransmit will be successful. We show that, thanks to pipelining, all rumors that
are in T 2,h

u when phase h starts will reach u during Stage AllTransmit.
For any step 3nh+ s, s = 0, 1, ..., 2n− 1, and for i = 1, 2, ..., q− 1, we let φs,i to be the number of rumors

in ui which are still not in ui+1. Our argument uses a potential function defined by Φs =
∑q−1
i=as

max(φs,i, 1),
where as is the smallest index for which φs,as 6= 0.

Claim 2. For s = 0, 1, ..., 2n− 2, if Φs > 0 then the value of the potential function Φs will decrease in step
3nh+ s, that is Φs+1 < Φs.

Indeed, for i < q, each node ui with φs,i > 0 will transmit a new rumor to ui+1 in step 3nh + s. Since
φs,i = 0 for i < as, node uas will not receive any new rumors. We have φs,as > 0, by the choice of as. If
φs,as > 1 then max(φs,as , 1) will decrease by 1. If φs,as = 1 then the index as itself will increase. In either
case, uas ’s contribution to Φs will decrease by 1. For i > as, even if ui receives a new rumor from ui−1,
the term max(φs,i, 1) cannot increase, because if φs,i > 0 then ui transmits a new rumor to ui+1, and if
φs,i = 0 then this term is 1 anyway. Therefore, overall, Φs will decrease by at least 1, completing the proof
for Claim 2.

We have Φ0 ≤ q + n, because each rumor contributes to at most one term in Φ0. Since Φs strictly
decreases in each step, Φs will become 0 in at most 2n steps. In other words, in 2n steps u will receive all
rumors that were in T 2,h

u when phase h started, and thus all rumors from Tu.
In Stage RumorRR, u will transmit all collected rumors to v, without collisions. As a result, at the

beginning of the next phase v will contain all rumors from Tu, completing the proof of the inductive step
and the lemma.

We still need to explain how to modify Algorithm BndDTree to eliminate the assumption that we can
transmit and receive at the same time. This can be accomplished by adding 3n more steps to each phase,
as follows:

• We first add a new stage at the beginning of each phase, consisting of n steps. Note that each node v
with height2(v) = h knows h and also it knows whether it has a child of 2-height h. If v does not have
such a child, then v is a frontier node and the initial node of a path consisting of nodes of 2-height
equal h. At the very beginning of phase h, v sends a message along this path, so that any node on this
path can determine whether it is an even- or odd-numbered node along this path.

• Then we double the number of steps in Stage AllTransmit, increasing its length from 2n to 4n. In this
stage, among the nodes with 2-height h, “even” nodes will transmit in even steps, and “odd” nodes
will transmit in odd steps. In this way, each node will never receive and transmit at the same time.
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As mentioned earlier, it is possible that several nodes transmit at the same step of Stage RumorRR. If that
happens, these nodes must be on the same leaf-to-root path and must transmit the same rumor. In that case,
only the node highest in the tree is relevant for the algorithm, so this situation does not cause a problem.

We thus obtain the main result of this section:

Theorem 3. For any tree with n nodes and any assignment of labels, Algorithm BndDTree completes
information gathering in time O(n log n).

Similar to Algorithm UnbDTree2, we can adapt Algorithm BndDTree to the model where labels
are from [L], for some L ≥ n. If we use Algorithm UnbDTree2 as is, but using labels 0, 1, ..., L − 1,
the running time will be O(L logL). Alternatively, we can replace Stage RumorRR by an (L, n)-strongly-
selective family of size O(n2 logL). Overall, choosing the better of these two options, the running time will
be O(min(L logL, n2 log n logL)). In particular, for L = O(n), the running time will remain O(n log n).

6 Deterministic Fire-and-Forward Protocols

We now consider a simple type of protocols that we call fire-and-forward protocols. As defined in Section 2,
in such protocols each message consists of just one rumor and no other information. They also satisfy the
following condition: for any node v, at any time t, v can only choose one of three actions: (i) enter the
receiving state, (ii) if v received a rumor ρz in step t − 1 then it can transmit (forward) ρz, or (iii) it
can transmit (fire) its own rumor ρv. The idea behind fire-and-forward protocols is that all messages travel
towards the root without any delay. A message may vanish along the way, if it collides with another message,
or if it gets refused by a node that is in the transmitting state, or if it gets dropped by a node that decides
to fire.

In Section 7 we will show that there exists a randomized fire-and-forward protocol that accomplishes
information gathering in time O(n log n). This raises the question whether this running time can be achieved
by a deterministic fire-and-forward protocol. (As before, in the deterministic case we assume that the nodes
are labelled 0, 1, ..., n−1.) There is a trivial deterministic fire-and-forward protocol with running time O(n2):
release all rumors one at a time, spaced at intervals of length n. In this section we show that this can be
improved to O(n1.5) and that this bound is optimal.

It is convenient to formulate our arguments in terms of a yet simpler and mathematically more elegant
model of basic fire-and-forward protocols, that we define shortly. We will refer to the above definition as the
standard fire-and-forward model. After proving our upper and lower bounds for the basic model, we show
later how to adapt our proofs to the standard model.

6.1 Basic Fire-and-Forward (BFF) Protocols

In the basic fire-and-forward (BFF) model, we allow nodes to receive and transmit at the same time. Each
message consists of one rumor and no other information. If a node v receives a rumor ρz at time t − 1, v
must forward (that is, transmit) ρz at time t. At any time v can also decide to fire, that is transmit its own
rumor ρv. The situation when both events occur (receiving a rumor at step t − 1 and firing at step t) is
treated as a collision at v, and in this case both messages disappear.

If rumors fired from two nodes collide at all, they will collide at their lowest common ancestor. This can
happen only when the difference in times between these two firings is equal to the difference of their depths
in the tree. More precisely, let T be the tree on input, denote by depth(v) the depth of a node v in T (its
distance to the root), and suppose that some node v fires its rumor ρv at time t. Then ρv is guaranteed to
reach the root providing that no other node u fires at time t+ depth(v)−depth(u). (It may happen, however
that ρv will reach the root even if u fires at time t + depth(v) − depth(u), since ρu could collide with some
other rumor before meeting ρv.)

The BFF protocol we develop below is oblivious, in the sense that the decision whether to fire or not
depends only on the label of the node and the current time. Such protocols are defined by specifying, for
each label l ∈ [n], the corresponding set Fl of firing times. Then a node v with label(v) = l fires at the times
in Fl.

In fact, it is easy to show that any BFF protocol can be turned into an oblivious one without affecting
its asymptotic running time. The idea is that leaves of the tree receive no information at all during the
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computation. For any BFF protocol A that runs in time f(n), and for any tree T , imagine that we run this
protocol on the tree T ′ obtained by adding a leaf to every node v and giving it the label of v. Label the
original nodes with the remaining labels. This modification exactly doubles the number of nodes, so A will
complete in time O(f(n)) on T ′. (We tacitly assume here that f(cn) = Θ(f(n)) for any constant c > 0,
which is true for the time bounds we consider.) In the execution of A on T ′ the leaves receive no information
and all rumors from the leaves will reach the root. For l ∈ [n], let Fl be the set of firing times in T ′ of the
leaf v with label(v) = l. Now apply A to T , with all nodes firing obliviously according to the sets Fl, and
completely ignoring all information received during the computation. Since the relative depths of the nodes
with labels from [n] in T ′ are exactly the same as in T , all rumors will also reach the root in T . In other
words, after this modification, we obtain an oblivious protocol A′ with running time O(f(n)).

6.2 An O(n1.5) Upper Bound in the BFF Model

We now present our O(n1.5)-time fire-and-forward protocol for the basic model. As explained above in
Section 6.1, this protocol should specify a set of firing times Fl for each label l. For the protocol to be
correct, it is sufficient that it has the following property: for any mapping [n] → [n], that maps each label
to the depth of the node with this label, and for any label l, there is a firing time t ∈ Fl that does not
“collide” with firing times of other nodes, in the sense that each other set Fl′ does not have a firing time t′

such that t − t′ is equal to the difference of depths of the nodes with labels l and l′. We also want each of
these firing times to be at most O(n1.5). To this end, we will partition all labels into batches, each of size
roughly

√
n, and show that for any batch we can define such collision-avoiding firing times from an interval

of length O(n). Since we have about
√
n batches, this will give us running time O(n1.5).

Our construction of firing times is based on a concept of dispersers, defined below, which are reminiscent
of various rulers studied in number theory, including Sidon sequences [40], Golomb rulers [41], or sparse
rulers [42]. The particular construction we give in the paper is, in a sense, a multiple set extension of a
Sidon-set construction by Erdös and Turán [21].

We now give the details. For z ∈ Z and X ⊆ Z, let X + z = {x+ z : x ∈ X}. Also, let s be a positive
integer. A set family D1, ..., Dm ⊆ [s] is called an (n,m, s)-disperser if for each function δ : {1, ...,m} → [n]
and each j ∈ {1, ...,m} we have

Dj + δ(j) 6⊆
⋃

i∈{1,...,m}−{j}

(Di + δ(i)).

The intuition is that Dj represents the set of firing times of node identified by j (in the sense to be explained
later) and δ(j) represents this node’s depth in the tree. Then Dj + δ(j) are the times when this node’s
messages would arrive at the root, if they did not collide along the way. Therefore the disperser condition
says that, for each depth function δ, some firing in Dj will not collide with firings of other nodes.

Lemma 6. There exists an (n,m, s)-disperser with m = Ω(
√
n) and s = O(n).

Proof. Let p be the smallest prime such that p2 ≥ n. For each a = 1, 2, ..., p− 1 and x ∈ [p] define

da(x) = (ax mod p) + 2p · (ax2 mod p).

We claim that for any a 6= b and any t ∈ Z the equation da(x) − db(y) = t has at most two solutions
(x, y) ∈ [p]2. For the proof, fix a, b, t and one solution (x, y) ∈ [p]2. Suppose that (u, v) ∈ [p]2 is a different
solution. Thus we have da(x)−db(y) = da(u)−db(v). After substituting and rearranging, this can be written
as

(ax mod p)− (by mod p)− (au mod p) + (bv mod p)

= 2p[−(ax2 mod p) + (by2 mod p) + (au2 mod p)− (bv2 mod p) ].

The expression on the left-hand side is strictly between −2p and 2p, so both sides must be equal 0. This
implies that

ax− au ≡ by − bv (mod p) and (1)

ax2 − au2 ≡ by2 − bv2 (mod p). (2)
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From equation (1), the assumption that (x, y) 6= (u, v) implies that x 6= u and y 6= v. We can then divide
the two equations, getting

x+ u ≡ y + v (mod p). (3)

With addition and multiplication modulo p, Zp is a field. Therefore for any x and y, and any a 6= b, equations
(1) and (3) uniquely determine u and v, completing the proof of the claim.

Now, let m = (p− 1)/2 and s = 2p2 + p. By Bertrand’s postulate we have
√
n ≤ p < 2

√
n, which implies

that m = Ω(
√
n) and s = O(n). For each i = 1, 2, ...,m, define Di = {di(x) : x ∈ [p]}. It is sufficient to show

that the sets D1, D2, ..., Dm satisfy the condition of the (n,m, s)-disperser.
The definition of the sets Di implies that Di ⊆ [s] for each i. Fix some δ and j from the definition of

dispersers. It remains to verify that Dj + δ(j) 6⊆
⋃
i 6=j(Di + δ(i)). For x ∈ [p] and i ∈ {1, 2, ...,m}, we say

that i kills x if dj(x) + δ(j) ∈ Di + δ(i). Our earlier claim (with t = δ(i)− δ(j)) implies that any i 6= j kills
at most two values in [p]. Thus all indices i 6= j kill at most 2(m− 1) = p− 3 integers in [p], which implies
that there is some x ∈ [p] that is not killed by any i. For this x, we will have dj(x) + δ(j) /∈

⋃
i 6=j(Di + δ(i)),

completing the proof that D1, ..., Dm is indeed an (n,m, s)-disperser.

We now describe our algorithm.

Algorithm BFFDTree. Let D1, D2, ..., Dm be the (n,m, s)-disperser from Lemma 6. We par-
tition all labels (and thus also the corresponding nodes) arbitrarily into batches B1, B2, ..., Bk, for
k = dn/me, with each batch Bi having m nodes (possibly except the last batch, that could be
smaller). Order the nodes in each batch arbitrarily, for example according to increasing labels.

The algorithm has k phases. Each phase q = 1, 2, ..., k consists of s′ = s+ n steps in the time
interval [s′(q − 1), s′q − 1]. In phase q, the algorithm transmits rumors from batch Bq, by having
the j-th node in Bq fire at each time s′(q − 1) + τ , for τ ∈ Dj . Note that in the last n steps of
each phase none of the nodes fires.

Analysis. We now show that Algorithm BFFDTree correctly performs gathering in any n-node tree in time
O(n1.5). Since m = Ω(

√
n), we have k = O(

√
n) phases. Also, s′ = O(n), so the total running time of the

protocol is O(n1.5).
It remains to show that during each phase q each node in Bq will have at least one firing that will send

its rumor to the root r without collisions. Fix some tree T and let δ(j) ∈ [n] be the depth of the jth node in
batch Bq. For any batch Bq and any v ∈ Bq, if v is the jth node in Bq then v will fire at times s′(q− 1) + τ ,
for τ ∈ Dj . From the definition of dispersers, there is τ ∈ Dj such that τ + δ(j)− δ(i) /∈ Di for each i 6= j.
This means that the firing of v at time s′(q − 1) + τ will not collide with any firing of other nodes in batch
Bq. Since the batches are separated by empty intervals of length n, this firing will not collide with any firing
in other batches. So v’s rumor will reach r.

Summarizing, we obtain our main result of this section.

Theorem 4. There is a BFF protocol for information gathering in trees with running time O(n1.5).

6.3 An Ω(n1.5) Lower Bound in the BFF Model

In this section we show that any basic fire-and-forward protocol needs time Ω(n1.5) to deliver all rumors to
the root for an arbitrary tree with n nodes. Fix some fire-and-forward protocol A. Without loss of generality,
as explained earlier in this section, we can assume that A is oblivious, namely that A is specified by the sets
Fl of firing times, for each label l. A node v with label(v) = l fires at the time steps in Fl and not in other
time steps.

Let T be the running time of A, and denote by #(A) =
∑
l∈[n] |Fl| the total number of firings in A,

among all possible nodes. We will first prove the lower bound under the assumption that A fires at most
T times in total, that is #(A) ≤ T . Later we will show how to extend our argument to protocols with an
arbitrary number of firings.
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We will show that there is a constant c > 0 such that if T < cn1.5 and n is sufficiently large then A will
fail even on a “caterpillar” tree, consisting of a path P of length n with n leaves attached to the nodes of this
path. (For convenience we use 2n nodes instead of n, but this does not affect the asymptotic lower bound.)
This path P is fixed, and the label assignment to the nodes on P is not important for the proof, but, for the
ease of reference, we will label them n, n+1, ..., 2n−1, in order in which they appear on the path, with node
labeled 2n − 1 being the root. The leaves have labels from the set [n] = {0, 1, ..., n− 1}. To simplify the
argument we will identify the labels with nodes, and we will refer to the node with label l simply as “node
l”. (See Figure 4.) The objective is to show that if T < cn1.5, then, for any collection {F0, F1, . . . , Fn−1} of
firing time sets, there is a way to attach the nodes from [n] to P to make A fail. Here “failure” means that
there is at least one node w such that all firings of w will collide with firings from other nodes.

3

5

12 04

11109876

Figure 4: A caterpillar graph from the proof, for n = 6. The nodes on the path P are represented by
rectangles, and the leaves are represented by circles. In this example, the root is 11.

Without loss of generality, assume that T is a multiple of n, and let k = T/n. We divide the time range
0, 1, ..., T − 1 into k bins of size n, where the ith bin is the interval [in, (i + 1)n − 1], for i = 0, 1, ..., k − 1.
If a node v ∈ [n] fires at time t, we say that a node u ∈ [n]− {v} covers this firing if u has a firing at time
t′ such that t′ ≥ t and bt′/nc = bt/nc, that is t, t′ are in the same bin. For a subset L ⊆ Fv of firings of v,
denote by C(L) the cover of L, that is the set of nodes that cover the firings in L.
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Figure 5: An example illustrating firing sets, bins, and the cover relation. Here, n = 7, k = 5 and T = 35.
The bins are separated by vertical lines. The numbers above each time represent the vertices that fire at
that time. For example, F4 = {3, 20, 24, 33}. For a set L = {3, 20, 33} ⊆ F4, its cover is C(L) = {0, 1, 2, 3, 5}.
For a set L′ = {20, 24} ⊆ F4, its cover is C(L′) = {0, 1, 2, 3, 6}.

Lemma 7. Suppose that {F0, F1, . . . , Fn−1} is the collection of firing time sets of a protocol A successful on
all caterpillar trees. Then, for each node v ∈ [n], there is a set of firings L ⊆ Fv such that |C(L)| < |L|.

Proof. The proof of the lemma is by contradiction. Suppose that there exists a node w ∈ [n] with the
property that for each L ⊆ Fw we have |C(L)| ≥ |L|. Then Hall’s Theorem implies that there is a perfect
matching between the firing times in Fw and the nodes in [n]− {w} that cover these firings. Let the firing
times of w be Fw = {t1, t2, . . . , tj}, and for each i = 1, 2, ..., j, let ui be the node matched to ti in this
matching. By the definitions of bins and covering, each ui fires at some time ti + si, where 0 ≤ si ≤ n− 1.
We can then construct a caterpillar tree by attaching w to node n and attaching each ui to node n+ si on
P. In this caterpillar tree, the firing of w at each time ti will collide with the firing of ui at time ti + si (if
not earlier). So the rumor from w will not reach the root, contradicting the correctness of A. This completes
the proof of the lemma.

Now, consider the sets F0, F1, . . . , Fn−1 of firing times for all nodes, as specified by A. Using Lemma 7,
for each v ∈ [n], we can now choose a set Lv ⊆ Fv with |C(Lv)| < |Lv|. Obviously, each set Lv is non-empty.
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Let Q be the set of ordered pairs (u, v) of different nodes u, v ∈ [n] for which there is a bin which contains a
firing from Lu and a firing from Lv, in this order in time. So (u, v) ∈ Q implies that v ∈ C(Lu).

We will bound |Q| in two different ways. On the one hand, each u ∈ [n] appears as the first element in at
most |C(Lu)| pairs in Q. Adding up over all u, using Lemma 7 and the assumption that the total number
of firings is at most T , we get

|Q| ≤
∑
u∈[n] |C(Lu)|

<
∑
u∈[n] |Lu|

≤
∑
u∈[n] |Fu| = #(A) ≤ T. (4)

On the other hand, we can also establish a lower bound on |Q|, as follows. Choose a specific representative
firing tv from each Lv. For each bin i = 0, 1, ..., k− 1, let ni be the number of representatives in the ith bin.
Any two representatives in bin i contribute one pair to Q. So |Q| ≥ 1

2

∑k−1
i=0 ni(ni − 1). Since

∑k−1
i=0 ni = n,

if we let all ni take real values then the value of
∑k−1
i=0 ni(ni − 1) will be minimized when all ni are equal to

n/k. This implies that

|Q| ≥ 1
2 · k

((
n
k

)2 − n
k

)
= 1

2 · (
n2

k − n) = 1
2 · (

n3

T − n). (5)

Combining bounds (4) and (5), we obtain that T ≥ |Q| ≥ 1
2 (n3/T − n), which implies that T ≥ 1

3n
3/2

for any sufficiently large n. (The choice of constant 1
3 is arbitrary; any coefficient strictly smaller than 1√

2

would work.) This completes the proof of the lower bound, with the assumption that #(A) ≤ T .

We now consider the general case, without any restriction on #(A), the total number of firings in A. Let
A be any protocol whose running time T satisfies T ≤ 1

50n
1.5 for sufficiently large n. Using a probabilistic

argument and a reduction to the above special case, we will show that we can construct a caterpillar tree
and a node w for which A will fail.

We start by choosing a random set Ṽ of nodes, where each node is included in Ṽ independently with
probability 1

3 . Let ñ = |Ṽ |, and let Z̃ be the set of times at which only nodes from Ṽ fire in A. Define

Ã to be a sub-protocol of A obtained by restricting A to the steps in Z̃. In other words, for each time
t = 0, 1, ..., T − 1, if t ∈ Z̃ then Ã has exactly the same firings as A; otherwise, for t /∈ Z̃, Ã does not fire at
all. The idea of the argument is to construct a bad caterpillar tree for Ã and then extend it to a bad tree
for A.

Lemma 8. P[ #(Ã) ≤ T ] ≥ 2
3 .

Proof. Consider the random variable #(Ã). If t is a time where A has j ≥ 1 firings, then the probability
that t ∈ Z̃ is ( 1

3 )j , so the contribution of t to E[#(Ã)], the expected number of firings in Ã, is j( 1
3 )j ≤ 1

3 . It

follows that E[#(Ã)] ≤ 1
3T . Therefore, using Markov’s inequality, we get

P[ #(Ã) ≥ T ] ≤ E[#(Ã)]

T
≤ 1

3 ,

and the lemma follows.

Lemma 9. For sufficiently large n we have P[T ≤ 1
3 ñ

1.5 ] ≥ 2
3 .

Proof. Since the events “ v ∈ Ṽ ” are independent for different nodes v, the distribution of ñ is binomial with
parameters n and p. In particular, the expected value of ñ is E[ñ] = 1

3n, and its variance is Var[ñ] = 2
9n.

Using Chebyshev’s inequality, we get

P[ñ < 1
6n] ≤ P[ |ñ− 1

3n| ≥
1
6n ]

= P[ |ñ− E[ñ]| ≥ 1
6n ]

≤ Var[ñ]

( 1
6n)2

=
8

n
≤ 1

3 ,

17



for n ≥ 24. So, for such n, P[ñ ≥ 1
6n] ≥ 2

3 . But whenever ñ ≥ 1
6n, as long as n is large enough, we have

T ≤ 1
50n

1.5 ≤ 1
3 ( 1

6n)1.5 ≤ 1
3 ñ

1.5,

which implies that P[T ≤ 1
3 ñ

1.5 ] ≥ 2
3 as well.

From Lemmas 8 and 9, we have

P[ #(Ã) ≤ T ≤ 1
3 ñ

1.5 ] ≥ P[ #(Ã) ≤ T ] + P[T ≤ 1
3 ñ

1.5 ]− 1

≥ 2
3 + 2

3 − 1 = 1
3 .

So there must be some set V̄ of nodes, such that letting n̄ = |V̄ |, denoting by Z̄ the set of times when only
nodes from V̄ fire, and by Ā the restriction of A to Z̄, we have that

#(Ā) ≤ T ≤ 1
3 n̄

1.5.

Therefore we can apply our earlier construction to obtain a caterpillar tree T with nodes from V̄ and a
node w ∈ V̄ for which Ā fails. (Note that V̄ may not be of the form [n̄], but our construction of the “bad”
caterpillar tree, where all firings of some node are unsuccessful, did not depend on the labels of the leaves
being of this form.)

We still need to show that we can modify T so that not only Ā, but also A itself will fail. Let T ′ be a
modified tree obtained from T by adding all nodes that are not in V̄ as siblings of w. Consider now a firing
of w in T ′ at some time t. If t ∈ Z̄, then t is used by Ā, so this firing collides with another firing from V̄ .
If t /∈ Z̄, then, by the definition of Z̄, there is a node u outside of V̄ that fires at the same time (otherwise t
would be included in Z̄) and is a sibling of w in T ′. So again, this firing from w will collide with the firing
of u. We can thus conclude that the rumor from w will not reach the root, completing the proof of the
following lower bound.

Theorem 5. If A is a deterministic BFF protocol for information gathering in trees, then the running time
of A is Ω(n1.5).

6.4 Extension to the Standard Model

It remains to explain how we can extend this result to the standard model, where nodes are not allowed to
receive and transmit at the same time. The lower bound from the previous section applies to the standard
model without any changes. (In particular, it is still valid to restrict the argument to oblivious algorithms.)
This is because, for the caterpillar tree T constructed in this proof, and for any collection of firing time sets
{Fv}v∈[n] for the leaves, if a message from w (the leaf that is attached to node n and whose all messages are

forced to collide in the lower-bound construction) collides in the basic model then it also either collides or
gets dropped in the standard model (possibly earlier), no matter how the nodes along the main path behave.

For the upper bound, we argue that our Algorithm BFFDTree from Section 6.2 can be adapted to
the standard model. We only give a sketch of the argument. The idea is that if, at some time step,
some node z transmits a rumor ρv and receives a rumor ρu, and if v fired at time t, then u fired at
time t + depth(v) − depth(u) + 1. We can then extend the definition of collisions to include this situation.
Incorporating this into the construction from Lemma 6, any index i may now kill more than two x’s, but
not more than four. So taking m = b(p− 1)/4c, we still will always have an x that is not killed by any i.
By using such modified concept of dispersers, we obtain an O(n1.5)-time protocol in the standard fire-and-
forward model.

Theorem 6. (i) There is a deterministic fire-and-forward protocol for information gathering in trees with
running time O(n1.5). (ii) Any deterministic fire-and-forward protocol for information gathering in trees has
running time Ω(n1.5).

7 An O(n log n)-Time Randomized Algorithm

We now show a randomized algorithm for information gathering in trees, in the model without rumor
aggregation, with expected running time O(n log n). The algorithm does not use node labels. It is specified

18



as a fire-and-forward algorithm, as defined in Sections 2 and 6; that is, each message consists of just one
rumor and no other information, and at each step each node v chooses one of three options: it can be in the
receiving mode, it can fire (transmit its own rumor), or it can forward the rumor received in the previous
step, if any.

In the description of the algorithm we assume that the number n of nodes is known. Using a standard
doubling trick that tries values of n that are successive powers of 2, the algorithm can be extended to one
that does not depend on n. (This new algorithm will complete the task in expected time O(n log n), but it
will keep running forever.)

In our presentation, we first specify our algorithm in the basic fire-and-forward (BFF) model (see Sec-
tion 6); that is, we allow nodes to receive and transmit at the same time. Thus we only need to specify the
(random) set of firing times for each node. For the sake of uniformity we assume that the root r also needs
to fire successfully in order to receive its own rumor (at the same time step). We explain later how to modify
this algorithm to make it compatible with the standard fire-and-forward model. The algorithm is extremely
simple:

Algorithm RTree. Any node v, at each step t, fires with probability 1/n, independently of other
nodes.

Analysis. At the fundamental level, the problem resembles the Coupon Collector’s Problem (see, for example,
[32]), with rumors playing the role of coupons. There are two differences though. One, in our case the rumors
“choose themselves” (when their origin nodes fire) independently of each other, so it’s possible that no rumor
will be selected at some steps, either because of all nodes deciding not to fire or because of collisions. Two,
we need to account for the delay from the time when a node fires until its rumor reaches the root. The
analysis can be carried out through a reduction to the “distributed” variant of Coupon Collector’s Problem
in [13]. We present an independent argument, for the sake of self-containment. We start with the following
lemma.

Lemma 10. For each node z, and for each time step t ≥ n− 1, the probability that r receives rumor ρz at
step t is at least 1

n (1− 1
n )n−1. Further, for different t, the events of r receiving ρz are independent.

Proof. To prove the lemma, it helps to view the computation in a slightly different, but equivalent way.
Imagine that we ignore collisions, and we allow each message to consist of a set of rumors. If some children
of v transmit at a time t, then v receives all rumors in the transmitted messages, and at time t + 1 it
transmits a message containing all these rumors, possibly adding its own rumor, if v also fires at step t+ 1.
We will refer to these messages as rumor bundles. In this interpretation, if r receives a rumor bundle that is
a singleton set {ρz}, at some time t, then in Algorithm RTree this rumor ρz will be received by r at time
t. (Note that the converse is not true, because it may happen that r will receive a rumor bundle that has
other rumors besides ρz, but in Algorithm RTree these other rumors may collide between themselves and
disappear before meeting ρz, allowing ρz to reach r.)

For any time t and node v, define two random events, one of v firing its rumor and the other of r receiving
only ρv:

fire(v, t) = “node v fires at time t”,

singl(v, t) = “rumor bundle received by r at time t is the singleton {ρv}”.

For any fixed time t ≥ n−1 and node z ∈ T we can then express r receiving only ρz at time t with a boolean
expression involving firing events, as follows:

singl(z, t) ≡ fire(z, t− depth(z)) ∧ ∀u∈T −{z}¬ fire(u, t− depth(u)). (6)

By the algorithm, all the firing events in this expression are independent, so the probability of the combined
event (6) is equal exactly 1

n (1− 1
n )n−1. As explained in the first paragraph of the proof, this event’s occurrence

implies that in the BFF model ρz will be received by r at time t; thus the first claim of the lemma follows.
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To show the second claim, consider some fixed vertex z. The event that r receives ρz (in the BFF model)
can also be described by a boolean expression composed of firing events fire(u, t−depth(u)). This expression
is significantly more complicated than the one in (6) and it is dependent on the tree topology: in addition to
fire(z, t− depth(z)) it needs to say that all rumors ρu 6= ρz for which fire(u, t− depth(u)) holds (that is, they
might potentially collide with ρz) collide between themselves before meeting ρz. The actual formula for this
expression is not important – what matters is that, like in (6), the expressions corresponding to different
times t involve disjoint sets of firing events. All these firing events are independent. Therefore the events of
r receiving ρz, for different times t, are independent as well.

Instead of analyzing rumor arrival times directly, we will reduce the problem to the slowed down variant
of the Coupon Collector’s Problem (SD-CCP) where, at each time step:

• With probability p =
(
1− 1

n

)n−1
we make a decision to collect (otherwise we skip the step).

• If we make a decision to collect, then each of the n coupons is chosen uniformly at random.

Lemma 10 implies that, beginning at time n − 1, the rate at which Algorithm RTree gathers rumors at
r is at least as large as the rate at which coupons are collected in SD-CCP. More formally, for each time
t ≥ n − 1 and integer j, the probability that r has received at least j different rumors by time t is at least
as large as the probability of collecting at least j coupons in the first t steps. Therefore, to estimate the
expected running time and its concentration bounds for Algorithm RTree, it is sufficient to establish the
corresponding results for SD-CCP.

In the SD-CCP process, let X1 be the number of steps until the first decision to collect, and for i ≥ 2 let
Xi be the number of steps between the (i−1)th and ith decision to collect. All variables Xi are independent,
identically distributed, and their expectation is E[Xi] = 1/p ≤ e. Let also Tcc denote the random variable
equal to the number of steps in the standard Coupon Collector’s Problem (or, equivalently, the number of
decisions to collect in SD-CCP) until all coupons are collected. It is well known that E[Tcc] = nHn, where
Hn is the n-th Harmonic number (see, for example, Section 3.6 of [32]). Treating Tcc as the stopping time,
we can apply Wald’s Equation [39], which gives us that the expected time until all coupons are collected in
SD-CCP is

E[
∑Tcc

i=1Xi ] = (1/p) · E[Tcc ] ≤ enHn = (e + o(1))n lnn.

As explained earlier, Lemma 10 implies that (e + o(1))n lnn is also an upper bound for the expected time
for all rumors to reach the root in Algorithm RTree.

An extension of this argument establishes concentration. We claim that with probability 1− o(1) Algo-
rithm RTree will collect all rumors in the first (e + o(1))n lnn steps. By Lemma 10, it is sufficient to show
the corresponding bound for SD-CCP.

Let T = en(lnn + 2 ln lnn). Let also Dt be the number of decisions to collect in the first t steps of the
SD-CCP process. The expectation of Dt is E[Dt] = tp ≥ t/e. According to the Chernoff bound (see [32], for
example), for any δ ∈ (0, 1) we have

P[DT < (1− δ)T/e ] ≤ P[DT < (1− δ)Tp ] < e−Tpδ
2/2 ≤ e−Tδ

2/2e.

Taking δ = 1/ lnn, the above bound implies that, for sufficiently large n,

P[DT < n(lnn+ ln lnn) ] ≤ P[DT < (1− δ)T/e ]

≤ e−Tδ
2/2e = o(1). (7)

In other words, with probability 1 − o(1), in T steps of SD-CCP we will make at least n(lnn + ln lnn)
decisions to collect. Conditioned on this occurring, the expected number U of uncollected coupons can be
bounded as follows:

E[U ] ≤ n
(
1− 1

n

)n(lnn+ln lnn)

≤ ne− lnn−ln lnn

= e− ln lnn = 1
lnn = o(1).
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It follows from Markov’s inequality that P[U ≥ 1] ≤ E[U ] = o(1). Thus, conditioned on making at least
n(lnn + log log n) decisions to collect, the probability of collecting all coupons in SD-CCP is also 1 − o(1).
Combining it with (7), we conclude that the probability that in T steps of SD-CCP all coupons wil be
collected is 1− o(1) as well.

In terms of our gathering problem, applying Lemma 10, the bound in the above paragraph gives us
that with probability 1− o(1) Algorithm RTree will gather all rumors in the root in at most n− 1 + T =
(e + o(1))n lnn steps.

It remains to argue that we can convert Algorithm RTree into the standard model, where receiving and
transmitting at the same time is not allowed. We modify the algorithm in two ways: (i) the firing probability
is reduced to 1

2n (this is done both to simplify analysis and to improve the constant in Theorem 7 resulting
from the below argument), and (ii) each node enters the transmitting state whenever it transmits and the
receiving state otherwise. If a node v received a rumor in the previous step and now the outcome of its
random choice is to fire, the action of v is arbitrary (it can transmit its own message, forward the message
received in the previous step, or go into the receiving state). Note that now some rumors may get rejected
when they are transmitted (without collision) to a node that happens to be in the transmitting state, or
when they get transmitted to a node whose random choice is to fire in the next step.

We claim that our analysis above can be extended to this new algorithm. The key is to consider only
rumors that arrive at r at even-numbered times. The outline of the argument is this:

• We first prove an analog of Lemma 10, claiming that for each even-numbered time t ≥ n the probability
that r receives rumor ρz at time t is at least 1

2n (1 − 1
2n )2n−1. The proof also uses the reduction with

rumor bundles. We observe that if the rumor bundle received by r at time t is a singleton {ρz} and
the rumor bundle received at time t − 1 is empty then in our algorithm ρz will reach r at time t. By
the same argument as in Lemma 10, the probability of this event is at least 1

2n (1− 1
2n )2n−1, as needed.

The proof that the events of r receiving ρz at different even times are independent is also analogous
to the argument in the proof of Lemma 10.

• Then, as before, we proceed by reduction to the slowed-down variant of Coupon Collector’s Problem,
but now we use an instance with 2n coupons, even though we only have n rumors. (Say, we can
associate coupons numbered 0, 1, ..., n−1 with rumors, while the remaining coupons n, n+ 1, ..., 2n−1
are “dummy” coupons.) In the slowed-down variant, the decision to collect is now made with probability
(1 − 1

2n )2n−1, and then each of 2n coupons is collected with equal probability. The slow-down factor
is still e + o(1), but since we only use even steps, and since we have 2n coupons, the expected (and
high-probability) running time will now be (4 + o(1))en lnn.

Theorem 7. The modified Algorithm RTree has expected running time at most (4 + o(1)) en lnn in the
standard model. In fact, it will complete gathering in time (4 + o(1)) en lnn with probability at least 1−o(1).

8 An Ω(n log n) Lower Bound for Randomized Algorithms

In this section we show that Algorithm RTree is within a constant factor of optimal for the model without
node labels, even if the topology of the tree is known in advance. Actually we will show something a bit
stronger, namely that there is a constant c such that any algorithm for unlabelled trees with running time
less than cn lnn will almost surely have some rumors fail to reach the root on certain trees.

The specific tree we will use here is that of the n-star, illustrated in Figure 6, consisting of the root with
n children that are also the leaves in the tree. (We use n + 1 nodes instead of n, for convenience, but this
does not affect our asymptotic lower bound.) In the n-star, these leaves are entirely isolated: no leaf receives
any information from the root or from any other leaf. Thus at each time step t, each leaf v transmits with
a probability that can depend only on t and on the set of previous times at which v transmitted. As the
actions of the root r are irrelevant, we will use the terms “node” and “leaf” synonymously.

For the n-star, Algorithm RTree will have each leaf node transmit with probability 1
n+1 at each time step,

regardless of when or whether it had transmitted previously. What makes our argument quite complicated
is that, in general, the actions of a node v at different steps may not be independent. In fact, as it turns
out, allowing dependence between time steps does lead to a constant factor improvement on star graphs (see
Theorem 9), but improvement beyond this constant factor is not possible (see Theorem 8).
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Figure 6: The n-star graph for n = 5.

Any randomized protocolR for the n-star that does not use node labels and completes in T time steps can
be represented as a probability distribution over all subsets of {0, 1, . . . , T − 1}. In this algorithm, each node
v independently picks a subset Fv according to this distribution (the same for all nodes), and then transmits
only at the times in Fv. We say that node v succeeds in transmitting if there is a time t ∈ {0, 1, ..., T − 1}
such that t ∈ Fv, but t /∈ Fw for any w 6= v.

The main result of this section is the following lower bound.

Theorem 8. If R is a randomized protocol for information gathering on trees then, for certain trees, the
expected running time of R is Ω(n lnn). More specifically, if we run R on the n-star graph for T ≤ cn lnn
steps, where c < 1

ln2 2
, then with probability 1− o(1) at least one rumor will fail to reach the root.

As we show, our lower bound is very tight, in the sense that the value of the constant 1
ln2 2
≈ 2.08 in the

above theorem is best possible for star graphs.

Theorem 9. If T = cn lnn, where c > 1
ln2 2

, then there is a protocol which succeeds on the n-star in time
at most T with probability 1− o(1).

Recall from Section 7 that on the same star graph, Algorithm RTree takes time approximately en log n.
So allowing dependence between time steps leads to a roughly 25% improvement in running time.

The proof of Theorem 8 is given in Sections 8.1-8.3. The proof of Theorem 9 is in Section 8.4.

8.1 Proof of Theorem 8 (Under Two Assumptions)

Overloading notation, we will simply write R for the probability distribution on transmission sets Fv ⊆
{0, 1, ..., T − 1} induced by Algorithm R. To prove Theorem 8, we will first assume that R satisfies two
additional simplifying assumptions for every node v and n ≥ 3:

Assumption 1: |Fv| ≤ ln10 n with probability 1.

Assumption 2: 1
n3 ≤ P[t ∈ Fv] ≤ ln4 n

n , for each time t.

Later, in Section 8.3, we will show how to remove these assumptions.

For each time t, let qt = P[t ∈ Fv] be the (unconditional) probability that a given node transmits at time

t (which, by Assumption 2, is between 1
n3 and ln4 n

n ). Then the conditional probability that a node v fails to
transmits its rumor at time t, given that it attempted to transmit, is

P [ v fails at time t | t ∈ Fv ] = 1− (1− qt)n−1 ≥ 1− e−(n−1)qt .

What we would like to do is to use this inequality to lower-bound the probability of v’s rumor not reaching
r after T steps, given v’s transmission set Fv. If the transmissions were independent, this would be easy:
just take the product of the above failure probabilities at each time in Fv. We cannot do this for arbitrary
distributions because of possible dependencies between transmissions, but, as the lemma below shows, this
idea still nearly works.
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Lemma 11. For any transmission distribution R that satisfies Assumptions 1 and 2, and any fixed v and
Fv, we have

P [ v fails | Fv ] ≥
∏
t∈Fv

(
1− e−nqt(1−n

−5/6+o(1))
)
,

where “v fails” is the event that the rumor from v does not reach the root by time T .

In general, the lower bound in Lemma 11 is not tight. As an example, consider the case where T = 2n and
each node transmits at times 2i and 2i+ 1, for a uniformly chosen i ∈ {0, 1, ..., n− 1}. Then if a node’s first
transmission collides, it increases the likelihood of failure in the next step; in fact its second transmission
is guaranteed to fail. What the lemma states, in essence, is that dependencies between transmissions at
different times cannot make transmission failures significantly less likely.

For now we will assume that Lemma 11 holds and we will continue with the proof of Theorem 8. We will
return to the proof of Lemma 11 later, in Section 8.2.

From now on, fix some constant c < 1
ln2 2

. To allow asymptotic notation in the calculations, we consider
n to be some sufficiently large integer. Let X be the random variable equal to the number of nodes whose
rumors fail to reach the root in the first T steps of Algorithm R, where T ≤ cn lnn. We next show that the
expectation of X is large, which is equivalent to showing that the probability that any fixed node v fails is
significantly larger than 1/n. By Lemma 11, we have

P[ v fails ] = EFv [P [v fails Fv] ]

≥ EFv
[∏

t∈Fv

(
1− e−nqt(1−n

−5/6+o(1))
)]

= EFv
[∏T−1

t=0

(
1− e−nqt(1−n

−5/6+o(1)) · χ(t ∈ Fv)
)]
.

Here χ(t ∈ Fv) is an indicator function equal to 1 if t ∈ Fv and 0 otherwise. We now apply a variant
of Jensen’s inequality (see, e.g., Section 6.5.2 of [34]) which states that f(E[Y ]) ≥ E[f(Y )], for a random
variable Y and a concave function f(Y ). Using this inequality, we have

lnP[ v fails ] ≥ lnEFv
[∏T−1

t=0

(
1− e−nqt(1−n

−5/6+o(1)) · χ(t ∈ Fv)
)]

≥ EFv
[
ln
(∏T−1

t=0

(
1− e−nqt(1−n

−5/6+o(1)) · χ(t ∈ Fv)
))]

=
∑T−1
t=0 EFv

[
ln
(

1− e−nqt(1−n
−5/6+o(1)) · χ(t ∈ Fv)

)]
=

∑T−1
t=0 qt ln

(
1− e−nqt(1−n

−5/6+o(1))
)

≥ T

n(1−n−5/6+o(1))
infx>0 (x ln (1− e−x))

= −(c+ o(1)) ln2 2 lnn.

The last equality holds because x ln(1− e−x), for x > 0, is minimized when x = ln 2.
Let ε = 1− c ln2 2 > 0. The above bound on lnP[v fails] implies that

P[ v fails ] ≥ e−(c+o(1)) ln
2 2 lnn

= n−c ln
2 2−o(1) = n−1+ε−o(1).

This bound holds for any individual node v, so the expected number of nodes that fail is E[X] ≥ n ·
n−1+ε−o(1) = nε−o(1).

To complete the proof of Theorem 8 (i.e. to show that X is almost surely positive), we need to establish
concentration around this expectation of X, for which we utilize Talagrand’s inequality. Think of X as a
function of transmission sets, X = X(F0, F1, . . . , Fn−1). This function X is Lipschitz, in the sense that
changing a single Fw can only change X by at most ln10 n. (By Assumption 1, node w transmits at most
ln10 n times, and each transmission can only interfere with at most one otherwise successful transmission.)
Furthermore, X is locally certifiable in the following sense: If X ≥ k for some k, then there is a subset I of
at most k(ln10 n + 1) nodes such that X remains larger than k no matter how we change the transmission
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patterns of the nodes outside I. For example, we can construct I as follows. Start with I0 being a set of k
nodes that failed to transmit successfully. Then, for each v ∈ I0 let Jv be a set of at most ln10 n nodes such
that whenever v transmits then at least one of the nodes in Jv also transmits. Then the set I = I0∪

⋃
v∈I0 Jv

has the desired properties.
Let m be the median value of X (not the mean). It follows from the above two properties of X, together

with Talagrand’s Inequality [37] (see Section 7.7 of [1] for the specific version used here), that for any γ > 0
we have

P
[
|X −m| ≥ γ ln15 n

√
2m
]
≤ 4e−γ

2/4. (8)

In particular, applying this bound with γ =
√
m/2 ln−15 n gives

P[X = 0 ] ≤ P[ |X −m| ≥ m ] ≤ 4e−m ln−30 n/8 (9)

To finish, it is therefore enough to show that m is large.
Taking γ =

√
2 lnn in (8), we have

P
[
X ≥ m+ 2 ln16 n

√
m
]
≤ 4e− ln2 n/2. (10)

Since X is always at most n, inequality (10) implies that the contribution to E[X] from the values of X that

are at least m + 2 ln16 n
√
m is at most 4e− ln2 n/2 · n = o(1). On the other hand, the contribution to E[X]

from the remaining values of X can be at most m+ 2 ln16 n
√
m. It follows that

nε−o(1) ≤ E[X] ≤ m+ 2 ln16 n
√
m+ o(1),

from which we have m ≥ nε−o(1). Substituting this bound for m into the right-hand side of (9), we obtain
that

P[X = 0 ] ≤ 4e−n
ε−o(1) ln−30 n/8 = o(1),

which is exactly the claim in the second part of Theorem 8.

It remains to prove Lemma 11 and to remove Assumptions 1 and 2, that we originally placed on the
distribution of transmission times.

8.2 Proof of Lemma 11

We present first a rough idea behind our argument: Suppose we fixed Fv and all of the qt, and tried to choose
our distribution so as to minimize the probability that v fails. (Here and throughout this section we will say
that v “fails” if no transmission from v reaches the root in T steps. Otherwise we say that v “succeeds”).
As the example discussed following the statement of Lemma 11 shows, we can increase the probability of v’s
failure by choosing a distribution in which a single other node interferes with multiple transmissions from
v. Conversely, one might hope that to minimize v’s failure probability the distribution should be such each
node interferes with at most one transmission time in Fv. In this section we give a rigorous argument that
formalizes this intuition.

For the remainder of this section, we will treat Fv as fixed (for u 6= v, Fu remains distributed according
to R). For each U ⊆ Fv and a node u 6= v, define yU by

yU = P[Fu ∩ Fv = U ].

This definition does not depend on our choice of u, as the distributions of sets Fu are identical for all u 6= v.
Note that we allow U to be ∅, and that qt =

∑
t∈U⊆Fv yU , for t ∈ Fv. We can think of y as the restriction

of our distribution R to time steps in Fv. Since the success or failure of v depends only on what happens at
times in Fv, the probability that v fails remains identical if we replace distribution R by that of y, for each
u 6= v. The intuition in the previous paragraph is formalized in the following claim.

Claim 3. There is a distribution ỹ on subsets of Fv with the following properties:

(i) ỹ is supported on {{t} : t ∈ Fv}∪{∅}, namely on subsets of Fv of cardinality at most 1. (That is, ỹU = 0
for all U ⊆ Fv with |U | ≥ 2.)
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(ii) If a node u 6= v transmits according to ỹ then the probability that u transmits at a time t ∈ Fv is qt
(same as in y).

(iii) The probability that v fails if all nodes other than v transmit according to ỹ is no larger than if they
transmit according to y.

Above, when we say that “u transmits according to y” (resp. ỹ), we mean that it chooses each transmission
set U ⊆ Fv with probability yU (resp. ỹU ) and then, once its transmission set U is chosen, it transmits at
each time in U .

Let us for now assume the truth of Claim 3. (The proof of Claim 3 is given in Section 8.2.1.) In the rest
of this section we assume that all nodes u 6= v transmit according to distribution ỹ, and we prove a lower
bound on the probability of failure (analogous to Lemma 11) under this assumption. By Claim 3(iii), this is
sufficient to prove Lemma 11.

Let us now fix Fv = {t1, t2, ..., tk}, where t1 < t2 < · · · < tk. By Assumption 1, we have k ≤ ln10 n = no(1).
For each i = 1, 2, ..., k, let gi be the random variable equal to the number of nodes other than v that transmit
at time ti, and let Ei be the event that 1 ≤ gi ≤ n1/6. We can bound the conditional probability that v fails
given Fv from below by the probability that every event Ei occurs, that is

P[ v fails | Fv ] ≥ P
[ k∧
i=1

Ei

]
=

k∏
i=1

P [Ei | E1 ∧ · · · ∧ Ei−1 ] . (11)

To estimate the right-hand side of (11), we will bound each term in this product directly by separately
bounding the conditional probabilities that gi = 0 and that gi > n1/6.

We start with some auxiliary estimates. Let pi−1 be the (unconditional) probability that a node u 6= v
transmits at least once during t1, t2, . . . , ti−1. By Claim 3(i), u transmits at most once in Fv, so we have

pi−1 =
∑i−1
j=1 qtj ≤ i ·maxt qt ≤ ln10 n · ln

4 n
n = ln14 n

n ,

where the second inequality follows from Assumptions 1 and 2. Let q′ti be the probability with which a node
u 6= v transmits at a time ti, provided that it did not transmit at times t1, ..., ti−1. Then we have

q′ti =
qti

1−pi−1
≤ qti

1−(ln14 n)/n
= qti(1 + o(1)).

Thus, using Assumption 2 again, probabilities qti and q′ti satisfy:

qti ≤ q′ti = qti(1 + o(1)) ≤ ln4 n
n (1 + o(1)). (12)

Now, to show (11), we fix some i and assume that all events E1, . . . , Ei−1 have occurred. Then the set A of
nodes that did not transmit at any time t1, t2, ..., ti−1 has cardinality at least n− 1− n1/6k = n− n1/6+o(1)
and at step i each of them will transmit with probability q′ti . Restricting attention to the nodes in A and
using (12), we estimate the probability that gi = 0, as follows:

P [ gi = 0 | E1 ∧ · · · ∧ Ei−1 ] ≤
(
1− q′ti

)|A|
(13)

≤
(
1− q′ti

)n−n1/6+o(1)

≤ e−q
′
ti

(n−n1/6+o(1)) = e−nqti(1−n
−5/6+o(1)). (14)

(The second inequality in the above derivation follows from 1− x ≤ e−x, for x ≥ 0.)
To bound the probability that gi is large, we use the union bound. If gi > n1/6, there must be some set

of nodes B of cardinality n1/6, not including v, all of whose nodes transmit at time ti. (To avoid clutter,
here and in the calculations below we write n1/6 to mean dn1/6e.) Denote by DB the event that all nodes
in B transmit at time ti. If H is an event that describes the complete history of transmissions from B at
steps t1, ..., ti−1, then either P[DB | H] = 0, if some node in B already transmitted at one of these times, or
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otherwise P[DB | H] = q′ti
|B|

. This implies that P[DB | E1 ∧ · · · ∧ Ei−1] ≤ q′ti
|B|

. Applying this inequality

and |B| = n1/6, we get

P
[
gi > n1/6 | E1 ∧ · · · ∧ Ei−1

]
≤
∑
|B|=n1/6 P[DB | E1 ∧ · · · ∧ Ei−1 ]

≤
(
n

n1/6

)
q′ti

n1/6

≤
(
n

n1/6

)( (1+o(1)) ln4 n
n

)n1/6

(15)

≤
(

2e ln4 n
n1/6

)n1/6

(16)

=
(
n−1/6+o(1)

)n1/6

= e(−1/6+o(1))n
1/6 lnn = e−ω(n

1/6), (17)

where inequality (15) follows from (12), and inequality (16) follows from 1 + o(1) ≤ 2 (for n large enough)
and from

(
n
k

)
≤ (nek )k. Summing the bounds (14) and (17) and taking logarithms, we obtain

lnP [¬Ei | E1 ∧ · · · ∧ Ei−1 ] ≤ ln
(

e−nqti(1−n
−5/6+o(1)) + e−ω(n

1/6)
)

≤ −nqti
(

1− n−5/6+o(1)
)

+
e−ω(n

1/6)

e−nqti(1−n
−5/6+o(1))

(18)

≤ −nqti
(

1− n−5/6+o(1)
)

+ e−ω(n
1/6)eln

4 n (19)

= −nqti
(

1− n−5/6+o(1)
)
. (20)

We now justify the steps of this derivation. Inequality (18) follows from ln(y + z) ≤ ln y + z
y for all y, z > 0.

Inequality (19) holds because, by Assumption 2, nqti ≤ ln4 n. In expression (19), the value of nqti ·n−5/6+o(1)
is at least (1 − o(1))n−17/6 in magnitude (by the lower bound in Assumption 2) while the second term is
smaller than any polynomial. This leads to the absorption in the final step (20).

We thus have
P [Ei | E1 ∧ · · · ∧ Ei−1 ] ≥ 1− e−nqti(1−n

−5/6+o(1)). (21)

Substituting the bound (21), for each i, into the right-hand side of (11), we obtain the inequality in Lemma 11.
To complete the proof of Lemma 11, it remains to prove Claim 3.

8.2.1 Proof of Claim 3

The idea of this proof will be to repeatedly apply a series of transformations on the distribution y. Each
transformation will in turn decrease the total mass of y on non-singleton subsets, without increasing the
failure probability. In the arguments below we assume (tacitly) that n is sufficiently large.

We first observe that the total mass of y on any particular subset U of size at least 2 cannot be too large:

Claim 4. For any U ⊆ Fv with |U | ≥ 2, we have yU < y∅.

Proof. Let fu be the expected number of times a node u 6= v transmits during Fv. (Note that fu does not
actually depend on u.) On the one hand, we have

fu =
∑
t∈Fv

qt ≤ |Fv| ·max
t∈Fv

qt ≤ ln10 n · ln4 n

n
< 1, (22)

where in the second inequality we used Assumptions 1 and 2. On the other hand, for a set U ⊆ Fv with
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|U | ≥ 2, we can write

fu =
∑
S⊆Fv

|S|yS

= |U |yU +
∑
S⊆Fv
S 6=U,∅

|S|yS

≥ 2yU +
∑
S⊆Fv
S 6=U,∅

yS = 1 + yU − y∅.

Comparing the two bounds on fu, the inequality yU < y∅ follows.

Consider some U ⊆ Fv with |U | ≥ 2. We now define a new distribution y′ as follows: Fix some τ ∈ U ,
and define

y′U = 0 y′U−{τ} = yU−{τ} + yU

y′{τ} = y{τ} + yU y′∅ = y∅ − yU

with y′B = yB for all B 6= U . Effectively, what we are doing here is moving mass yU from each of U and ∅
to each of U − {τ} and {τ} (Claim 4 guarantees that ∅ has enough mass to perform this operation). Note
that this operation does not change the value of qt for any t ∈ Fv. This can be seen by expressing

qt =
∑

W :t∈W⊆Fv

yW .

If t /∈ U , all sets containing t have their probabilities unchanged by the transformation. If t 6= τ and t ∈ U ,
then the loss in yU is exactly cancelled out by the gain in yU−{τ}. Similarly, if t = τ , then the loss in yU
exactly cancels with the gain in y{τ}.

The intuition above is that this separates the transmission times, so this should reduce the failure prob-
ability of v. Actually, a stronger monotonicity property is true:

Claim 5. Fix some node w 6= v, and assume that, for each node u ∈ V − {v, w}, the transmission set of
u within Fv is distributed either according to y or according to y′. Then the probability that v fails if w
transmits according to y′ is not larger than the probability that v fails if w transmits according to y.

Proof. It is sufficient to prove the claim for the failure probabilities conditioned on all transmission patterns
Fu ∩ Fv, for u ∈ V − {v, w}, having some fixed (but arbitrary) values. This is because, once we prove
the claim for such conditional probabilities, the claim for non-conditional probabilities will follow by simple
averaging. (In fact, this remains true if the transmission sets within Fv of all u /∈ {v, w} are arbitrary, not
necessarily restricted to y or y′.)

So let us fix all sets Fu ∩ Fv, for u ∈ V − {v, w}. The argument below will be conditioned on these
patterns being fixed. From this point on, the proof of the claim essentially comes from direct verification.

Let S = Fv −
⋃
u/∈{v,w} Fu; that is, S is the set of times at which v transmits but no node u ∈ V −{v, w}

transmits. So v can only succeed at the times in S when w does not transmit. Let F̂w = Fv ∩ Fw be the
random variable representing the transmission times of w within Fv. In this notation, v will fail if and only
if S ⊆ F̂w.

We now analyze how moving the mass between distributions y and y′ affects the probability of v failing,
that is the probability of the event that S ⊆ F̂w. It is sufficient to consider only the four sets F̂w ∈
{U, {τ}, U − {τ}, ∅}, since the probabilities of all other sets F̂w remain unchanged. We have four cases:

Case 1: S = ∅. Then v fails for all four choices of F̂w, so moving the mass does not affect the failure
probability.

Case 2: S − U 6= ∅. Then moving the mass again has no impact on the success probability, because v
succeeds for all four choices of F̂w.
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Case 3: S ⊆ U and |S| ≥ 2. Then v fails when F̂w = U , but succeeds when F̂w = {τ}. So we are moving
mass from a pair of elements with one failure (F̂w = U) and one success (F̂w = ∅) to a pair of elements
with at least one success (for F̂w = {τ}); therefore we cannot increase the failure probability.

Case 4: S = {τ}. Then the operation moves mass from a pair of elements with one failure (F̂w = U) and
one success (F̂w = ∅) to a pair of elements with one failure (F̂w = {τ}) and one success (F̂w = U−{τ}).
So the failure probability is unchanged.

This completes the proof of Claim 5.

The complete process of converting y into ỹ is this. We start with all nodes different from v transmitting
according to y. Then, we proceed in phases. In each phase we choose some U ⊆ Fv in the support of y that
satisfies |U | ≥ 2, and we apply the y → y′ change of distribution, described above, in succession to each node
w 6= v. Observe that within a phase, some nodes u ∈ V − {v, w} will use distribution y while others will
use the new distribution y′. At the end, all nodes other than v will transmit according to y′. Since Claim 5
holds at each step, we obtain that the probability that v fails when all of the nodes other than v transmit
according to y′ is no larger than when they all transmit according to y.

As explained earlier, y′ has the same values of all probabilities qt as y. Also, in y′ each node transmits on
average less than once, which is the only specific property (namely inequality (22)) that we needed in order
to transform y into y′. Therefore, if after the phase the support of y′ still contains a set U with |U | ≥ 2, we
can proceed to the next phase where we apply again the same transformation with y′ in place of y.

After each phase the sum of the squares of the cardinalities of the sets in the support of y decreases, so
this process must terminate after a finite number of phases. After the last phase, the resulting distribution
y′ must only have singletons and the empty set in its support. Thus letting ỹ be this y′, we obtain Claim 3.

8.3 Removing Assumptions 1 and 2

So far, in Sections 8.1 and 8.2, we have shown that any probability distribution R on the sets Fv of trans-
mission times that satisfies both Assumptions 1 and 2 will lead to at least one rumor failing to reach the
root with high probability. Recall that Assumption 1 states that |Fv| ≤ ln10 n with probability 1, while

Assumption 2 states that 1
n3 ≤ qt ≤ ln4 n

n , where qt = P[t ∈ Fv] is the (unconditional) probability that a
given node v transmits at a time t. To complete the proof of Theorem 8, we now show how to eliminate
these assumptions.

Eliminating Assumption 1. We first consider distributions satisfying Assumption 2, but not necessarily
Assumption 1. For such a distribution, the expected number of times when a given node v transmits is

E[ |Fv| ] =
∑T−1
t=0 qt ≤ cn lnn · ln

4 n
n = c ln5 n. (23)

We now think of the transmission sets Fv as being generated in a two step exposure process:

• First, we expose the set V ′ of all nodes v for which |Fv| ≤ ln9 n, and then,

• in the second step, the actual transmission sets Fv, for all nodes v, are exposed.

According to our assumption, c < 1
ln2 2

. Fix a sufficiently small ε > 0 such that for c′ = c
1−3ε we have

c′ < 1
ln2 2

. Let n′ = |V ′| and let E′ be the event that n′ > (1 − 2ε)n. Let also Esucc be the event that all
rumors are successfully transmitted in the first T steps. Our goal is to show that P[Esucc] = o(1). We have

P[Esucc ] ≤ P[¬E′ ] + P[Esucc ∧ E′ ]. (24)

We bound each term on the right side of (24) separately.
For the first term, we note that by Markov’s inequality and (23), we have for any particular v that

P[ v /∈ V ′ ] = P[ |Fv| > ln9 n ] ≤ E[|Fv|]
ln9 n

≤ c
ln4 n

,

which implies that
E[n′] ≥

(
1− c

ln4 n

)
n ≥ (1− ε)n, (25)
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for sufficiently large n. Thus, for n large enough, using (25) and the Chernoff bound [32] (which is applicable,
because the events v ∈ V ′ are independent for different nodes v), we have

P[¬E′ ] = P[n′ ≤ (1− 2ε)n ]

≤ P[n′ ≤ (1− ε)E[n′] ]

≤ e−E[n
′]ε2/2 ≤ e−ε

2(1−ε)n/2 = o(1). (26)

We now turn to the second term of (24). First, we note that for n′ > (1− 2ε)n, we have

T = cn lnn < c n′

1−2ε ln( n′

1−2ε ) <
c

1−3εn
′ lnn′ = c′n′ lnn′,

where the last inequality holds for sufficiently large n. For a fixed set V0 ⊆ V with |V0| > (1 − 2ε)n,
we now consider the distribution R′ given by conditioning R on V ′ = V0. (Thus for R′ event E′ holds.)
Note that R′ satisfies Assumption 1 for vertex set V0 and sufficiently large n, because for v ∈ V0 we have
|Fv| ≤ ln9 n ≤ ln10 n′. As shown in Section 8.1, since c′ < 1

ln2 2
, this gives that with probability 1−o(1) there

is a node w ∈ V0 that fails to transmit successfully in the first c′n′ lnn′ steps, even if the nodes in V −V0 do
not transmit at all. Of course, including the nodes in V − V0 can only make the failure probability larger.
Since c′n′ lnn′ ≥ T , this implies an analogous statement for the original transmission distribution R of all
nodes in V , namely that with probability 1 − o(1) there will be a node w ∈ V that will fail to deliver its
rumor to r in the first T = cn lnn steps.

It follows that for any particular choice of V0 satisfying |V0| > (1− 2ε)n we have P[Esucc|V ′ = V0] = o(1).
Averaging over all possible choices of such sets V0, we have P[Esucc|E′] = o(1), which in turn implies
P[Esucc ∧ E′] = o(1), because we also have P[E′] = 1− o(1), from (26).

Since both terms on the right side of (24) are o(1), it follows that P[Esucc] = o(1) as well, completing the
proof that Assumption 1 can be eliminated from Theorem 8.

Eliminating Assumption 2. It remains to consider distributions which do not necessarily satisfy Assumption 2.
Let Llow and Lhigh be the time steps where Assumption 2 does not hold; specifically

Llow = {t : qt <
1
n3 } and Lhigh = {t : qt >

ln4 n
n }.

Let Elow and Ehigh be the events that at least one node transmits successfully at time steps in Llow and
Lhigh, respectively. Then

P[Elow ] ≤
∑
t∈Llow

∑
v

P[ v succeeds at time t ]

≤
∑
t∈Llow

∑
v

P[ v transmits at time t ]

=
∑
t∈Llow

∑
v

qt ≤ Tn · 1
n3 ≤ c lnn

n = o(1) ,

and

P[Ehigh ] ≤
∑

t∈Lhigh

∑
v

P[ v succeeds at time t ]

≤
∑

t∈Lhigh

∑
v

P[ each node u 6= v does not transmit at time t ]

≤
∑

t∈Lhigh

∑
v

(1− qt)n−1

≤ Tn
(

1− ln4 n
n

)n−1
≤ cn2 lnn · (1 + o(1))e− ln4 n = cn− ln3 n+2 lnn · (1 + o(1)) = o(1).
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Let Emid be the event that all nodes transmit successfully in a time not in Llow ∪ Lhigh. Consider a
modified distribution with all time steps in Llow ∪ Lhigh removed. More precisely, for each time step t let
`t = |(Llow ∪ Lhigh) ∩ {0, 1, ..., t− 1}|. We replace each set Fv ⊆ {0, 1, ..., T − 1} of transmissions by

F ′v = {t− `t : t ∈ Fv − (Llow ∪ Lhigh)}.

In this new distribution set F ′v has the same probability as Fv had in the original distribution, and F ′v ⊆
{0, 1, ..., T ′ − 1}, for some T ′ ≤ cn lnn. Since this new distribution satisfies Assumption 2 in the time interval
{0, 1, ..., T ′ − 1}, by the previous analysis we have P[Emid] = o(1).

The event that all nodes transmit their rumors in T steps is a subset of Elow ∪ Ehigh ∪ Emid. So, using
the above bounds on the probabilities of these events, the total success probability is at most P[Elow] +
P[Ehigh] + P[Emid] = o(1) + o(1) + o(1) = o(1). The proof of Theorem 8 is now complete.

8.4 Proof of Theorem 9

We now show that for c > 1
ln2 2

there is a protocol which succeeds on the n-star in time T = cn lnn with
probability approaching 1. The protocol is straightforward: The set {0, 1, . . . , T − 1} of possible transmission
times is partitioned into T ln 2

n = c ln 2 lnn disjoint time intervals of length n
ln 2 each, that we will refer to as

phases. (To avoid clutter, we will treat the values of c ln 2 lnn and n
ln 2 as if they were integral. In reality, they

need to be appropriately rounded. This rounding will not affect asymptotic values of the estimates below.)
Each node independently and uniformly chooses a single time step in each phase at which to transmit.

Fix some arbitrary node v 6= r. Clearly, v will succeed in a given phase iff all other nodes choose their
transmission times in this phase to be different than that of v. Thus the probability that v succeeds in this
phase is at least (

1− ln 2
n

)n−1 ≥ 1
2 .

In other words, the probability that v fails in this phase is at most 1
2 . Let ε = c ln2 2 − 1 > 0. By the

independence of v’s transmission times in different phases, the probability that v fails in all phases is at
most (

1
2

)c ln 2 lnn
= n−c ln

2 2 = n−1−ε.

This holds for each node v 6= r, so, using the union bound, the probability that there exists a node that fails
in all phases is at most n · n−1−ε = n−ε = o(1). We can thus conclude that with probability 1 − o(1) all
rumors reach r, completing the proof of Theorem 9.

9 Final Comments

Our work leaves several open problems, with the most intriguing one being the time complexity of deter-
ministic information gathering in trees in the model without rumor aggregation, when each message may
contain only one rumor. In Section 5 we gave an O(n log n)-time algorithm for this problem. In very recent
work, Chrobak and Costello [11] improved this upper bound to O(n log log n). The question whether this
can be further improved to O(n) still remains open.

It would also be interesting to refine our results by expressing the running time in terms of the tree depth
D and the maximum degree ∆. Consider, for example, deterministic algorithms in the model with rumor
aggregation, for which we gave an O(n)-time information gathering algorithm in Section 4.2. In a certain
sense this bound is optimal: trivially, it cannot be improved for trees that have depth Ω(n) or contain a
vertex of degree Ω(n). But it is conceivable that sub-linear time algorithms may be possible for trees with
smaller depth and smaller maximum degree.

We have established a tight bound of Θ(n log n) for randomized algorithms, in the model where the
nodes in the tree have no labels. One research direction we have not yet explored is to consider randomized
algorithms for information gathering in trees where the nodes are labelled. The combination of labels and
randomization may be sufficient to overcome the issue of congestion at high-degree nodes, and it is conceivable
that such algorithms could achieve running time O(n) in the model where aggregation is not allowed, even
if it’s not possible to do it deterministically.
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All our algorithms for deterministic protocols can be extended to the model where the node labels are
drawn from a set 0, 1, ..., L−1, for L ≥ n. In this model we assume that all nodes know L. If L = O(n) then
the running times of our algorithms are not affected. If L is arbitrary, the algorithms can be modified to
achieve running times O(n2 logL) and O(n2 log n logL), respectively, although this requires that all nodes
known both L and n. (See Section 4.2, near the end, for more discussion.) These bounds are far from
satisfactory, and improving them, or showing some non-trivial lower bounds, would be of interest.

In regard to broader research directions, information gathering in other classes of graphs, beyond trees, is
not well understood and deserves an in-depth study. As explained in the introduction, in strongly connected
graphs information gathering is equivalent to gossiping, for which the computational complexity remains an
open problem. In fact, it does not seem possible to adapt the sub-quadratic gossiping algorithms in [12, 25] to
perform information gathering without also achieving gossiping. Roughly, the reason is that these algorithms
need to occasionally broadcast some information to all nodes in the network, for example to synchronize the
computation when electing a leader. It would be interesting to clarify to what degree this indirect feedback
is needed for efficient information gathering. The most natural research direction here would be to consider
information gathering in graphs where such feedback is just not possible — namely in directed acyclic graphs.

Acknowledgements. We would like to thank the anonymous referee, who spotted a number of potentially
embarrassing mistakes in the earlier version of this paper and provided numerous thoughtful comments that
helped us improve the presentation.
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