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Abstract—Phasor measurement units (PMUs) are the key 

measurement devices of modern power networks monitoring 

systems. The high accuracy and fast reporting rates required for 

PMU implementations ask for improvements in both hardware 

and software solutions. Depending on the characteristics of the 

monitored voltages and currents, the accuracy of PMU 

algorithms may represent the main contribution to the overall 

measurement performance. For this reason, research is ongoing 

in the field of signal processing techniques for phasor and 

frequency estimation. In this context, Interpolated Discrete 

Fourier Transform (IpDFT) is one of the most interesting 

techniques, mainly because it allows accurate measurements 

under off-nominal frequency conditions while preserving 

simplicity and computational efficiency. In this paper, the 

applicability of IpDFT to three-phase signals that are typical of 

power networks is discussed. Then, it is proposed to combine the 

advantages of IpDFT with those of the Space Vector approach 

for positive sequence synchrophasor and frequency 

measurements. 

Keywords— Phasor Measurement Units (PMU); Voltage 

Measurement; Current Measurement; Frequency; Total Vector 

Error (TVE). 

I.  INTRODUCTION 

Phasor measurement units (PMUs) are becoming the most 
interesting instrument in the monitoring of power networks. 
PMUs provide a coordinated and synchronized current and 
voltage phasor monitoring across different nodes of the 
network. Their role is particularly important in Wide Area 
Monitoring Systems (WAMS) of power transmission systems, 
which are rapidly growing both in pervasivity and reliability. 
Nevertheless, the interest for the use of PMU and PMU-
enabled devices is widespread, in particular when looking 
towards the future scenarios of distribution networks and the 
smart grids. 

Since PMU is the sensing unit of the monitoring 
infrastructure, its performance plays a key role also on the 
upper layers of management and control applications that are 
expected to catch on in an automation perspective. For this 
reason, the focus is nowadays moved on the design of the 
instruments in all their aspects, from synchronization to 

acquisition including the computational issues a PMU has to 
tackle. 

In particular, in the last years, great attention has been paid 
to PMU algorithms, because, when considering input signals 
that deviate from nominal frequency and purely sinusoidal 
steady-state conditions, the adopted phasor measurement 
technique can be the main source of measurement error. In the 
literature, several signal processing methods have been 
proposed and tested in the context of synchrophasor 
measurements; different approaches have been explored, 
aiming at different targets, according to the class of the input 
signals. A general overview of the recent contributions can be 
found, for example, in [1]. 

One of the most popular techniques for implementing PMU 
measurement algorithms is certainly the Interpolated Discrete 
Fourier Transform (IpDFT) along with its variants. IpDFT 
comes from the spectral analysis world, thus is perfectly suited 
when spectral line measurement is concerned. For this reason, 
the employment of IpDFT has been recently investigated for 
PMU applications, where the characteristic parameters 
(amplitude, phase angle, and frequency) of the fundamental 
component of voltages or currents have to be estimated. 

In [2], the accuracy of the multicycle IpDFT is assessed, 
through numerical simulation, by considering the test signals 
given by the standard IEEE C37.118.1 [3] and the 
corresponding limits in terms of maximum total vector error 
(TVE). On the other hand, in [4] a PMU prototype based on an 
enhanced version of the IpDFT is proposed. These researches 
highlight the applicability of the IpDFT approach in the context 
of PMU. 

Even though there is a rich literature about IpDFT, its 
extensions, configurations and implementations, less attention 
is paid to its peculiarities when applied to three-phase 
quantities. In many important cases, frequency and positive 
sequence synchrophasor estimations are required. Such 
applications include monitoring and state estimation of high 
voltage power systems, but often the balanced assumption 
holds also for medium voltage grids during regular operation. 
Under this hypothesis, Space Vector (SV) based estimation 
methods [9], [10] have shown considerable advantages. For 
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this reason, the present paper proposes to combine the SV 
approach with the frequency-domain interpolation typical of 
IpDFT-based techniques. The aim is to investigate the 
performance of the resulting algorithms that appear promising 
for PMUs installed in three-phase systems. 

II. CONVENTIONAL INTERPOLATED DFT ALGORITHM 

Let us consider a real-valued sinusoidal signal x whose 
time-domain expression is given by: 

 ( ) ( )1 1 12 cosx t X tω ϕ= +  (1) 

being ω1≥0 the angular frequency and X1≥0 the rms amplitude. 
This signal may represent a voltage or current waveform in an 
ac power system, characterized by the rated frequency f0 and 

the rated angular frequency ω0. Its spectrum ( )X jω  is 

obtained analytically by applying the generalized Fourier 
Transform, thus resulting: 
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where δ denotes the Dirac delta distribution. It is clear that the 
Fourier transform contains information about the 
synchrophasor and frequency characterizing the signal. 
However, this computation is not feasible from a practical 
point of view: the waveform, assumed to be purely sinusoidal 
and stationary, has to be observed over an unlimited time 
interval. 

Practical frequency-domain synchrophasor measurement 
algorithms require to sample the time-domain signal with a 
proper interval Ts, corresponding to the rate fs which is usually 
a multiple of the rated frequency: 

 
0s
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The acquired signal is processed considering the N samples. 
The finite observation time result in a limited latency and in the 
capability to track slow changes of the sinewave parameters. 
Typically N=KM, with K positive integer, so that an integer 
number of periods at the rated frequency is processed. A 
suitable weighting window is applied to the acquired data in 
order to reduce spectral leakage effects that appears when ω1≠ 
ω0; let us call w(m) (m ranging from 0 to N-1) their real-valued 
weighting coefficients. Considering the time instant nTs, the 
windowed signal results: 

 ( ) ( ) ( )( )1 1 1, 2 cos 1
w s s

x nT m X w m n m N Tω ϕ= + − + +  (4) 

The Discrete Fourier Transform (DFT) of the windowed 

signal ( ),
w s b

X nT jkω is computed using the well-known 

algorithm, where ωb is the frequency resolution: 
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( ),
w s b

X nT jkω can be also expressed as the convolution 

between the Fourier transform of the continuous time signal x 

and the discrete time Fourier Transform of the window 

( )W jω : 
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where the exponential term, corresponding to a time shift, takes 
into account the slip between window and signal. Substituting 

the analytic expression of ( )X jω : 
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In general, each DFT term depends on both the two spectral 
lines of the input signal. Let us consider the highest DFT 

component, having positive frequency 
b

kωɶ . Assuming that the 

spectral interference is negligible thanks to the window: 

( ) ( ) ( )1 111
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,
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X
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ω ϕ
ω εω
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Having defined: 
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b
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ω
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ω
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whose absolute value is below 0.5. The magnitude of 

( ),
w s b

X nT jkωɶ  is proportional to that of the positive spectral 

line in the signal, but it is affected by scalloping loss due to 
non-coherent sampling. This effect can be compensated by 
using frequency-domain interpolation. The simplest two-point 
algorithm [5], known as Interpolated DFT (IpDFT), requires 
applying a window whose main lobe is at least 2L bins wide, 
with L≥2. Assuming K≥L and considering (7) there are at least 
three DFT terms produced by the positive-frequency spectral 
line of the signal falling below the main lobe of the window 
during the convolution. The highest has angular frequency 

b
kωɶ , while the second highest b

kγ ω
ɶ , that can be equal to 

( )1
b

k ω+ɶ  or ( )1
b

k ω−ɶ . Neglecting long-range leakage 

phenomena, the ratio γ between the magnitudes of the two 
highest DFT components results: 
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Reminding that the window magnitude response W is an 
even function, γ just depends on the window shape and on the 
absolute value of ε. Therefore, by computing this ratio and 
knowing the shape of the window |ε| is obtained, and hence 
also the signal frequency: 

 ( )( )1 sgn
2

bf k k kγ

ω
ε

π
= + −ɶ ɶ ɶ ɶ  (11) 



Analytic expressions [6] exists for Rife-Vincent class I 
windows [7], otherwise lookup tables can be employed [8]. 
Short-range leakage effects can be compensated, while the 
sinewave rms amplitude and phase are estimated as: 
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Finally, group and phase delays due to the window have to 
be removed in order to obtain synchrophasor and frequency 
estimations. The method does not directly provide a rate of 
change of frequency (ROCOF) estimation. However, it can be 
obtained by numerically differentiating the frequency 
measurement. 

III. SPACE-VECTOR INTERPOLATED DFT ALGORITHM 

Interpolated DFT can be usefully employed to evaluate the 
synchrophasor and frequency of ac power systems signals [2]. 
Electrical quantities are inherently three-phase, so the 
aforementioned algorithm has to be applied three times, one for 
each phase. Furthermore, many applications require the 
positive sequence synchrophasor, which is obtained by 
applying the Fortescue transformation to the three single-phase 
synchrophasors. 

As from the synchrophasor standard, frequency is unique 
for each three-phase quantity; on the contrary, when the IpDFT 
algorithm is employed, frequency estimations for each phase 
are provided. Sometimes, the three single-phase frequency 
measurements are averaged in order to derive a unique value. It 
becomes clear that this approach is somewhat questionable. 
Reference methods proposed by the standard [3] estimate 
frequency as its rated value plus the rotational speed of the 
positive sequence synchrophasor divided by 2π. In this way, 
angular frequency has a strong physical meaning: it 
corresponds to the angular speed of the air-gap field produced 
by a three-phase symmetrical current or voltage, defined by the 
positive sequence synchrophasor and applied to a two-pole, 
three phase balanced stator winding.  

Furthermore, it should be noticed that the main assumption 
behind IpDFT algorithms is that long-range leakage has to be 
negligible, hence that the effect of the negative frequency term 
of the input sinewave on the amplitudes of the two largest 
positive-frequency DFT components is not significant, so (10) 
can be written and inverted. Unfortunately, it is not always true 
when low-latency synchrophasor and frequency estimation is 
required, such as in P-class PMUs. In this case, a short-length 
window must be employed, but it is not able to suppress a 
disturbance (negative frequency term) having the same 
amplitude as the useful component. 

For this reason, frequency domain interpolation algorithms 
aimed at reducing the effect of the so-called negative frequency 
image have been proposed [4]. The drawback is that 
complexity increases together with the computational burden. 

When the target is estimating the positive sequence 
synchrophasor, Space Vector (SV) based methods [9], [10] can 

be employed. A SV approach can be combined with frequency 
domain interpolation, thus leading to considerable 
simplifications. For the purpose, let us consider a three-phase 
balanced signal: 
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The corresponding positive sequence phasor is: 
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1
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As usual, the three time-domain signals are acquired with 
proper sampling rate fs. After that, the SV transformation on a 

stationary reference frame is applied. The SV 
SV

x  is obtained 

as: 

 ( ) ( )22
1

3
SV s abc s

x nT nTα α= x  (15) 

Where 
2 /3j

e
πα = . Performing simple computations leads 

to: 

 ( ) 1 sj nT

SV s
x nT X e

ω
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In this case, the SV contains a unique term rotating in the 
complex plane with an angular speed ω1. Its amplitude and 
initial phase are given by the positive sequence phasor. 
Possibly a counter-rotating term may be present because of the 
(slight) unbalance in the three phase quantities, but its 
magnitude is at most a few percentage points of X+. A suitable 
window has to be applied to the space vector and its DFT can 
be computed. Frequency domain interpolation can be applied 
as explained in the previous section, but now long-range 
leakage artifacts are inherently negligible. Finally, positive 
sequence synchrophasor and frequency are obtained 
straightforwardly, requiring about one third of the 
computational burden with respect to the usual IpDFT. 

IV. SIMULATION RESULTS 

The algorithms are tested by means of numerical 
simulations under MATLAB environment using a 1 kHz 
sampling rate. The test signals are generated according to the 
standard IEEE C37.118.1-2011 [3] and its amendment IEEE 
C37.118.1a-2014 [11]. Three-phase balanced signals for 50 Hz 
systems are used, as indicated in the standards, and the focus is 
firstly on off-nominal frequency conditions in the range [45 
Hz, 55 Hz], as for M-class compliance tests. 

Fig. 1 summarizes the synchrophasor measurement 
accuracy, in terms of TVE %, achieved by different methods 
under off-nominal frequency conditions. The SV-based IpDFT 
(SV-IpDFT) directly returns the positive sequence 
synchrophasor, while, for the conventional IpDFT algorithm, it 
has been obtained by applying the Fortescue transformation to 



the three phase synchrophasor measurements; in both cases, 2-
cycle Hann windows have been used. In addition, the 
maximum TVE % achieved by the IpDFT in estimating the 
synchrophasor of each phase is also reported. It is interesting to 
notice that in this case quite large errors under off-nominal 
frequency conditions appear, but they are almost cancelled in 
positive sequence estimations. The errors in single-phase 
measurements are due to the image component that directly 
affects synchrophasor and frequency estimations, and, as a 
consequence, also scalloping loss compensation. Using the SV 
approach, the negative frequency term is only due to the 
negative sequence component and thus it does not appear under 
balanced conditions. As for the IpDFT, when the Fortescue 
transformation is applied to obtain positive sequence from 
single-phase phasors, a compensation between errors appearing 
in the single phases takes place, but, as it can be argued from 
the zoom box inset of Fig. 1, a full cancellation is not achieved, 
because the transformation only acts as a complex-coefficient, 
three-point averaging filter. 

Similar considerations hold for the frequency estimation 
(see Fig. 2) that is affected by spectral leakage effects due to 
the image component. In this case, it is important to highlight 
how the three-phase approach allows limiting FE, while the SV 
transformation permits a single frequency computation with 
higher accuracy and lower computational effort. 

Simulations have been performed in order to analyze the 

impact of window length: 2, 4 and 6 cycles Hann windows 

have been considered. Table I summarizes the results in terms 

of maximum percent TVEs and FEs for the estimations. As 

expected, the effect of long-range leakage decreases 

considerably with longer windows that result in higher 

accuracy. 

 

 

Fig. 1 Maximum TVE % for synchrophasor estimation, single- and 

three-phase signals. 

 

Fig. 2 Maximum frequency error, single- and three-phase signals 

TABLE I.  MAXIMUM TVE % AND FE,  HANN WINDOWS OF DIFFERENT 

LENGTHS 

Method 

Window Length [number of nominal cycles] 

2 4 6 

TVE 

[%] 

FE 

[mHz] 

TVE 

[%] 

FE 

[mHz] 

TVE 

[%] 

FE 

[mHz] 

SV-IpDFT 9E-6 0.009 8E-7 
0.3E-

3 
2E-7 4E-5 

IpDFT+ 

Fortescue 
0.003 0.342 8E-5 

1.2E-

3 
5E-6 8E-5 

Single-phase 

IpDFT 
0.376 

339.5

42 
0.078 

20.02

6 
0.032 3.599 

The results of the tests in presence of harmonics (as 

defined by [3]) are not reported since, thanks to the zeros of 

the Hann window in the frequency domain, disturbances 

having frequencies that are multiples of the nominal one are 

completely rejected. 

 

Fig. 3 TVE %, 2 Hz amplitude modulation. 
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As an example of dynamic test, Fig. 3 and Fig. 4 show the 

behavior of the previously discussed IpDFT algorithms 

employing a 4-cycle Hann window in presence of 2 Hz 

amplitude modulation. In this case, the underlying model (8) 

of the IpDFT algorithm no longer holds because of the 

multifrequency spectrum of the signal. Nevertheless, as for the 

synchrophasor estimation, the TVEs are rather low, but small 

oscillations due to the negative frequency component can be 

noticed when the single-phase algorithm is considered. 

Although errors are quite small also in this case, jumps appear 

in the frequency estimations. These jumps may lead to severe 

problems if the ROCOF is obtained by differentiating the 

measured frequency. In terms of maximum frequency error, 

the SV approach behaves almost like the single-phase DFT, 

because the model mismatch is prevailing at nominal 

frequency. However, the rate of the jumps is considerably 

lower when the SV approach is employed. If the frequency is 

computed by averaging the frequency estimations obtained by 

applying the conventional IpDFT to the three phases, it should 

be noticed that the frequency error becomes exactly one third. 

This happens because the jumps in the estimated frequencies 

of the three phases occur at different time instants. 

 
Fig. 4 Frequency error waveforms, 2 Hz amplitude modulation. 

Finally, the frequency ramp test suggested by [11] has 

been performed by considering a 45 Hz to 55 Hz range and 

constant ROCOF equal to 1 Hz/s. Results obtained for a 4-

cycle Hann window are reported in Table II. When looking at 

FEs, values are similar to those obtained in the off-nominal 

frequency test. On the contrary, TVEs are significantly higher 

because of the mismatch between the signal and the 

underlying model of the IpDFT approach. 

TABLE II.  MAXIMUM TVE % AND FE,  4-CYCLE HANN WINDOW 

Performance index 
Method 

SV-IpDFT 
IpDFT+ 
Fortescue 

Single-phase IpDFT 

TVE [%] 0.066 0.066 0.132 

FE [mHz] 5.9E-3 8.2E-3 19.829 

V. CONCLUSION 

The IpDFT is a widespread tool for estimating amplitude, 
phase and frequency of a sinusoidal signal. It is particularly 
interesting because it combines steady-state accuracy with 
computational efficiency. For this reason, it represents an 
established technique for PMU implementation.  

In this paper, the application of IpDFT to three-phase 
systems is discussed: significant differences with single-phase 
estimations are highlighted. In particular, it is shown how the 
SV approach and IpDFT complement each other very well. 
The negative frequency infiltration is one of the well-known 
weaknesses of classical IpDFT and the SV dramatically 
reduces its impact, since the disturbing component amplitude is 
reduced from the main component amplitude to that of the 
negative sequence component. 

Therefore, it is clear that the peculiarities of three-phase 
systems can be exploited to improve the accuracy of other 
PMU measurement techniques, thus opening further research 
perspectives. 
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