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Abstract

A generalised probabilistic framework is proposed for reliability assessment and un-

certainty quantification under a lack of data. The developed computational tool allows

the effect of epistemic uncertainty to be quantified and has been applied to assess the

reliability of an electronic circuit and a power transmission network. The strength and

weakness of the proposed approach are illustrated by comparison to traditional proba-

bilistic approaches. In the presence of both aleatory and epistemic uncertainty, classic

probabilistic approaches may lead to misleading conclusions and a false sense of con-

fidence which may not fully represent the quality of the available information. In con-

trast, generalised probabilistic approaches are versatile and powerful when linked to a

computational tool that permits their applicability to realistic engineering problems.

Keywords: Uncertainty quantification, Information quality, Probability boxes,

Dempster-Shafer, Computational tool, Reliability

1. Introduction1

Nowadays it is generally well accepted that estimating the effect of uncertainty is2

a necessity, e.g. due to variation in parameters, operational conditions and in the mod-3

elling and simulations [1, 2]. In practical applications, situations are common where4

the analyst has to deal with poor quality data, few available specimens or inconsistent5

information. A typical example is a situation where very expensive samples have to be6
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collected, such as field proprieties of a deep reservoir [3] or performance of satellites7

[4]. In these cases, the amount of data will be scarce due to economic and time con-8

straints and in several cases, expert elicitation (i.e. the best estimate of an expert) may9

be the only viable way of carrying on with the analysis [5].10

As a consequence, strong assumptions may be needed to apply classical probabilistic11

methods given poor information quality, which can lead to erroneous reliability esti-12

mations and a false sense of confidence [6]. Generalised approaches, which fit in the13

framework of imprecise probability [6], are powerful methodologies for dealing with14

imprecise information and lack of data. These methodologies can be coupled to tradi-15

tional probabilistic approaches in order to give a different prospective on the results,16

whilst avoiding the inclusion of unjustified assumptions and enhancing the overall ro-17

bustness of the analysis. Generalised methods are rarely used in practice and this is18

probably due to lack of proper guidance, simulation tools, as well as some misconcep-19

tion in the interpretation of the results. Further comparison of different methodologies,20

both in theoretical aspects and in their applicability to real case studies, are required.21

22

An original throughout analysis of the applicability of different methodologies to23

deal with different level of imprecision is presented. In addition, this paper presents24

a novel computational framework for generalised probabilistic analysis that can be25

adopted to deal with low quality data, few available samples and inconsistent informa-26

tion. Efficient and generally applicable computational strategies have been developed27

and implemented into OpenCossan [7]. The proposed framework is applied to assess28

the reliability of an electric series RLC circuit (a problem proposed by the NAFEMS29

Stochastics Working Group [8]) and of a power transmission network, both affected by30

a lack of data.31

Generally speaking, different system performance indicators may be affected very dif-32

ferently by the same (lack of) data. The extent of a lack of information is not a-priori33

quantifiable and depends on the context of the analysis. The proposed approach is used34

to assess the information quality by comparison to classical probabilistic results and35

with respect to system reliability estimates. One of the main contributions of this work36

is a detailed comparison between classical and generalised probabilistic approaches37

from a straightforward applicative point of view and under different levels of impreci-38

sion. This serves as guidance for engineering practitioners to solve problems affected39

by a lack of data.40

2



41

The rest of the paper is structured as follows: Section 2, presents the mathematical42

framework. In Section 3, a synthetic overview of the numerical framework and the43

proposed approach is proposed. The NAFEMS reliability problem is described and44

solved in Section 4. A lack of data problem for power network reliability estimation45

is solved in Section 5. A discussion on the limitations of the different approaches is46

presented in Section 6 and Section 7 closes the paper.47

2. Mathematical Framework48

Uncertainty is generally classified into two categories, aleatory and epistemic un-49

certainty. Aleatory uncertainty (Type I or irreducible uncertainty), represents stochastic50

behaviours and randomness of events and variables. Hence, due to its intrinsic random51

nature it is normally regarded as irreducible. Some examples of aleatory uncertainty52

are future weather conditions, stock market prices or chaotic phenomenon. Epistemic53

uncertainty (Type II or reducible uncertainty), is commonly associated with lack of54

knowledge about phenomena, imprecision in measurements and poorly designed mod-55

els. It is considered to be reducible since further data can decrease the level of un-56

certainty, but this might not always be practical or feasible. In recent decades, efforts57

were focused on the explicit treatment of imprecise knowledge, non-consistent infor-58

mation and both epistemic and aleatory uncertainty. The methodologies are discussed59

in literature by different mathematical concepts: Evidence theory [9], interval prob-60

abilities [10], Fuzzy-based approaches [11], info-gap approaches [12] and Bayesian61

frameworks [13] are some of the most intensively applied concepts.62

In this paper, Dempster-Shafer structures and probability boxes are used to model quan-63

tities affected by epistemic uncertainty, by aleatory uncertainty, or by a combination of64

the two. In addition, the Kolmogorov-Smirnov test [14] and Kernel Density Estimator65

[15] have been used to characterise the parameter uncertainty in case of small sample66

sizes.67

2.1. Dempster-Shafer Structures and Probability Boxes68

The Dempster-Shafer (DS) theory is a well-suited framework to represent both69

aleatory and epistemic uncertainty. The difference between the axioms of classical70

probability theory and the DS theory is that the latter slacken the strict assumption of a71
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single probability measure for an event. It can be seen as a generalisation of Bayesian72

probability [16]. Mathematically, a Dempster-Shafer structure on the real line R can73

be identified with a basic probability assignment, that is a map as follows:74

m : 2R→ [0,1] (1)

where the probability mass is m([xi, xi]) = pi for each focal element [xi, xi]⊆R with75

i= 1, .., n. m(S) is equal 0 for the empty set S = ∅ and for S 6= [xi, xi], such that pi >76

0 ∀i and
∑
i pi = 1. The upper bound on probability is referred as plausibility and the77

lower bound as belief, the cumulative plausibility function Pl(x) and cumulative be-78

lief functionBel(x) can be computed as Pl(x) =
∑
xi≤x

mi andBel(x) =
∑
xi≤x

mi. The79

continuous equivalents of DS structures are the so-called probability boxes or P-boxes.80

Mathematically, a P-box is a pair of lower and upper cumulative distribution functions81

[FX , FX ] from the possibility space Θ to [0,1] such that FX(x) ≤ FX(x) ∀ x ∈ Ω82

and Ω is a classical probability space. The upper and lower bounds for the CDFs are83

FX = P (X ≤ x) and FX = P (X ≤ x), respectively. Note that the probability distri-84

bution family associated with the random variable x can be either specified or not speci-85

fied. The former are generally named distributional P-boxes, or parametric P-boxes, the86

latter are named distribution-free P-boxes, or non-parametric P-boxes [13]. The wider87

the distance between the upper and the lower bound is, the higher the incertitude asso-88

ciated to the random variable. P-boxes and DS structures offer a straightforward way89

to deal with multiple and overlapping intervals, inconsistent sources of information90

and small sample sizes. The drawback is that the computational cost of propagating91

P-boxes and DS structures through the system is generally quite high, especially for a92

large number of intervals (i.e. focal elements) and time-consuming models. Neverthe-93

less, the quantification approaches are generally not-intrusive and hence applicable to94

any model.95

3. Generalised Probabilistic Reliability Analysis and Numerical Implementation96

In modern engineering systems and critical infrastructures uncertainty quantifica-97

tion must be performed to assure an adequate level of safety and reliability. A broadly98

applied numerical approach, often used to deal with uncertainty propagation, is the99

Monte Carlo (MC) method. Typically the Monte Carlo algorithm allows uncertainty to100
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be propagated from inputs characterised by well-defined probability distribution func-101

tions (PDF) [17]. It is flexible, unbiased and one of the most well-established method-102

ologies to propagate uncertainty, but its classical implementation does not differenti-103

ate between aleatory and epistemic uncertainty. This is a disadvantage from several104

points of view. First, it makes the analyst unable to grasp how much of the uncer-105

tainty is due to inherent variability and to what extent the uncertainty is due to poor106

data quality (therefore suitable to be reduced in principle). Secondly, it relies upon a107

good characterization of the variables to be sampled, which usually requires a consider-108

able body of empirical information in order to properly define probability distributions.109

To overcome such limitations, more sophisticated MC algorithms can be used within110

generalised probabilistic frameworks to propagate both types of uncertainties without111

mixing them. For instance, the so-called double loop Monte Carlo algorithm [18] can112

be used. In this work, using classical probabilistic approaches the uncertain factors are113

described by probability distribution functions (PDFs) and a traditional MC approach114

is employed to propagate uncertainty. When generalised probabilistic approaches are115

adopted, parameters are characterised by P-boxes or DS structures and the uncertainty116

is propagated using the proposed double loop MC or Dempster-Shafer structures prop-117

agation algorithms (adopted as presented in Figure 1).118

The double loop MC is presented by Figure 1-(a). A first loop (outer loop) samples119

from the epistemic uncertainty space Θ. Each realisation corresponds to a classical120

probabilistic model for which only aleatory uncertainties must be considered. Then, a121

traditional MC simulation can be used (inner loop) to propagate aleatory uncertainty.122

The quantity Ne is the number of realisations in the epistemic space and Na is the123

number of samples from the aleatory space. θj is the set of uncertain parameters of124

the epistemic space realizations j, sampled from a known set of intervals [θ, θ]. The125

quantity xk,i is the sample i of the random variable k obtained from the inverse trans-126

form of the associated CDF FXk|θj (x), which depends on the epistemic realization θj .127

The cumulative distribution FY |θj (y) of the reliability performance y can be used to128

compute Pf,j , which is the system failure probability given the epistemic realization j.129

The probability results of the inner loop are not to be averaged over the outer loop but130

only collected. Then the minimum and maximum can be selected to obtain bounds on131

the quantity of interest [19].132

133

The Dempster-Shafer structures propagation procedure in Figure 1-(b), works as134
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follows:135

1. First, n “Parameter cells” are constructed by Cartesian product of the focal ele-136

ments. Hence, each parameter cell ω is an hypercube ω : {xω ≤ x ≤ xω ∀ x}.137

2. The minimum and maximum values of the system performance y are calculated138

based on optimization technique and constrained by the ω bounds.139

3. The n resulting min-max intervals (i.e. propagation of the focal elements) are140

used to construct Dempster-Shafer structures.141

4. Finally, Dempster-Shafer structures are converted to distribution-free P-boxes142

and the system reliability bounds [P f , P f ] obtained.143

The computational cost of the procedure is proportional to the number of input inter-144

vals to be propagated and the time needed to simulate the system. Applicability for145

complex systems with highly non-regular behaviour, which are hence computationally146

expensive, can require a meta-modelling approach to speed-up the propagation proce-147

dure (e.g. Polynomial Chaos, Artificial Neural Networks).148

OpenCossan [7] is a collection of methods and tools under continuous development149

at the Institute for Risk and Uncertainty, University of Liverpool, coded exploiting150

the object-oriented Matlab programming environment. It allows specialised solution151

sequences to be defined including a wide variety of reliability methods. Novel optimi-152

sation algorithms, reliability methods, and uncertainty quantification and propagation153

techniques can be easily integrated into the main software body. For these reasons, the154

developed methods (i.e. Algorithms in Figure 1) have been integrated into OpenCos-155

san and adopted for the solution of two reliability assessments, see Sections 4.2 and156

5. As a result of such development, OpenCossan can be used to perform uncertainty157

quantification adopting classical and generalised probabilistic methods.158

4. Case Study I: The NAFEMS Challenge Problem159

4.1. Problem Definition160

The challenge problem, prepared by the NAFEMS Stochastics Working Group [8],161

consists of four uncertainty quantification and information qualification tasks moti-162

vated by the need to promote best practices to deal with uncertainty to industry. The163

analysts are asked to evaluate the reliability of an electronic resistive, inductive, capac-164

itive (RLC) series circuit. Four different cases (A, B, C and D) have been proposed165
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System Solver

Estimate System Reliability

i=Na

yes

no

j=Ne
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Sample from Possibility Space

Compute Reliability Bounds

end
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j=1, i=1, set ,

(a) Double loop Monte Carlo.

Combine Focal Elements

last intervals
combination?

end

start

Assign probability masses to the
intervals of each parameter j

Solve Constrained Min-Max

Compute Probability Mass

no

yes

Combine Focal Elements
Compute Reliability Bounds

Save Focal Element

(b) Dempster-Shafer structures propagation.

Figure 1: Flow charts for the double loop Monte Carlo (a) and the DS structures propagation (b).

in [8], each one having incomplete, scarce or imprecise information about the system166

parameters, as shown in Table 1. In CASE-A single intervals, i.e. one upper bound167

and one lower bound for parameter R, L and C are given. In CASE-B, each parame-168

ter can lay within multiple intervals, i.e. three upper and lower bounds. In CASE-C,169

ten sampled points for each parameter are provided. Finally, for CASE-D, imprecise170

bounds and nominal values is the only available information. The last case is similar171

to CASE-A, but one bound is not precisely defined. The equations governing the RLC172

circuit, although very simple, are provided by the challengers and reported here for173

completeness. The transfer function of the system is defined as:174

Vc(t)

V
=

ω2

S2 + R
LS + ω2

(2)

Depending on the values of R, L and C, the system may be classified as under-damped175

(Z <1), critically damped (Z =1) or over-damped (Z >1) and having different solu-176

tions as detailed below.177
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Table 1: The available information for CASE-A, CASE-B, CASE-C, and CASE-D (data taken from[8]).

CASE R [Ω] L [mH] C [µF]

A: Interval [40,1000] [1,10] [1,10]

B: source 1 [40,1000] [1,10] [1,10]

B: source 2 [600,1200] [10,100] [1,10]

B: source 3 [10,1500] [4,8] [0.5,4]

C: Samples 861, 87, 430, 798, 219,

152, 64, 361, 224, 61

4.1, 8.8, 4.0, 7.6, 0.7,

3.9, 7.1, 5.9, 8.2, 5.1

9.0, 5.2, 3.8, 4.9, 2.9,

8.3, 7.7, 5.8, 10, 0.7

D: Interval [40,RU1] [1,LU1] [CL1,10]

D: Other info RU1 >650 LU1 >6 CL1 <7

D: Nominal Val. 650 6 7

178

Vc(t) =


V + (A1cos(ωt) +A2sin(ωt)) exp−αt if Z < 1

V + (A1 +A2t) exp−αt if Z = 1

V + (A1 expS1t+A2 expS2t) se Z > 1

(3)

Where α = R
2L , ω = 1√

LC
, the damping factor is Z = α

ω and roots obtained as S1,2 =179

−α±
√
α2 − ω2. Coefficients A1 and A2 are determined by assuming the initial volt-180

age and voltage derivative equal zero and a unitary step voltage function is considered.181

In this case study, the main goals consist in qualifying the value of information and182

evaluating the reliability of the system with respect to three requirements:183

Vc(t = 10ms) > 0.9 V , tr = t(Vc = 0.9V ) ≤ 8 ms , Z ≤ 1 (4)

where tr is the voltage rise time, i.e. the time required to increase Vc from 0 to 90% of184

the input voltage, and it has to be less than or equal 8 ms. The first two requirements185

are on the voltage at the capacitance Vc, the third requirement is on the damping factor,186

which assures that under-damped system responses are discharged (Z ≤1). Specifi-187

cally, Vc(10ms), Vc(8ms) and Z are regarded as performance variable for the system,188

and if these conditions are not satisfied the system is considered to have failed. Prob-189

abilistic and generalised probabilistic approaches are adopted to tackle the four cases190

and uncertainty characterization and propagation are presented for each case. Depend-191

ing on the approach selected, CDFs or P-boxes are obtained for the three performance192

variables (see Eq.(4)). If Vc(10ms),Vc(8ms) and Z result in crisp CDFs, the probability193
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of failure is computed by estimating the CDF values at 0.9 Volts for the requirements194

on Vc and voltage rise time tr as well as the CDF value at Z=1 for the requirement195

on the damping factor. Similarly, if bounds on the CDFs are obtained (i.e. P-boxes),196

then bounds on probability of not meeting the requirements are computed as explained197

in Sections 2, which are [PV c10, PV c10], [P tr, P tr], and [PZ , PZ ], respectively. This198

case study was previously tackled by different groups and the author using different199

approaches. For further reading the reader is reminded to Refs. [8]-[20]. This work200

presents additional analyses of the NAFEMS challenge problem by adopting novel al-201

gorithms in a unified computational framework.202

4.2. CASE-A and CASE-B203

In CASE-A, a single interval was provided for the parameters while multiple inter-204

vals were available in CASE-B (see, Table 1). CASE-B degenerates to CASE-A if the205

probability mass equal one is assigned to the first source of information. This because206

in CASE-B intervals values for source 1 corresponds to the interval values in CASE-A.207

Due to the considerations made, the two cases are presented and solved together.208

Probabilistic Approach209

In the CASE-A the intervals were propagated using a single loop Monte Carlo by210

assuming a uniform distribution within the bounds on R, L and C, which is an assump-211

tion made with respect to the principle of maximum entropy. The reliability is assessed212

by evaluating if the system requirements are met as shown in Eq. (4). For the solu-213

tions of CASE-A, failure probabilities have been estimated using 107 samples and are214

PV c10 =0.243, Ptr =0.345 and PZ =0.031. The probability of failure for requirement215

one is lower than the probability of failure for requirement two.216

For the solution of the CASE-B, each interval is considered individually. Hence, three217

different uniform distributions for each R, L, and C parameter are used, one for each218

source of information. The reliability analyses have been performed to compute 3219

probabilities of failure and results are shown in Table 2. The Source 3 has the lowest220

estimated probability of failure while the Source 1 shows an intermediate failure prob-221

ability. On the right-hand side of Figure 2 the resulting CDFs for the three sources of222

information and three requirements are displayed.223
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Table 2: The results for CASE-B obtained by Monte Carlo method and 107 samples.

CASE-B Source 1 Source 2 Source 3

PV c10 0.243 0.549 0.052

Ptr 0.340 0.660 0.129

PZ 0.031 1.25 10−5 0.069

Generalised Probabilistic Approach224

Possible values of the parameters (interval) can be represented by means of the

generalised probabilistic approach without defining a probability distribution. Param-

eter uncertainty has been characterised using Dempster-Shafer structures. For CASE-

A three Dempster-Shafer structures composed by a single focal element have been

defined as
{
R1,R1],m1

}
,
{

[L1,L1],m1

}
and

{
[C1,C1],m1

}
, where the probability

mass m1 is equal one. For CASE-B, each DS structure is defined as:{
([X1,X1],m1), ([X2,X2],m2), ([X3,X3],m3)

}
where [Xi,Xi] represents the ith interval source for one of the parameters (R, L or225

C) and mi is the associated probability mass. The CASE-B degenerate to the CASE-226

A if the probability mass m2 and m3 are set equal to zero. It was not possible here227

to establish if some sources of information are better, thus, pieces of information de-228

rived from different sources are assumed as equally likely, i.e. m1 = m2 = m3 = 1/3.229

Twenty-seven parameter cells are constructed by the permutation of the intervals. Then,230

minimizations and maximisations of Vc(8ms), Vc(10ms) andZ were performed to iden-231

tify the bounds of the system performance. The output Dempster-Shafer structures are232

used to create probability boxes for the system performances Vc(8ms), Vc(10ms) and233

Z and the corresponding failure probabilities obtained.234

Applying the procedure to the CASE-A, the resulting P-boxes give no valuable infor-235

mation on the failure probability for the three performance requirements. The proba-236

bility of failure is in fact just bounded in the interval [0,1] for all the requirements. The237

CASE-B includes all the information available for the CASE-A plus two additional238

sources of information. The additional intervals contribute to reducing the uncertainty239

on the system performance as shown on the right-hand side of Figure 2. Resulting240

bounds are also presented in Table 3 and it can be noticed that the outputs have high241

associated uncertainty, but less than that in the CASE-A. Ptr lays within the interval242
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Figure 2: Comparison of the Vc(8ms),Vc(10ms) and Z results for CASE-B, respectively. Resulting CDFs

obtained using the probabilistic approach (on the left) and P-boxes obtained from the generalised approach

(on the right).

[0,0.9], PV c10 within [0,1] and PZ lays within the interval [0,0.7]. Hence, failure prob-243

ability for requirement two does not show any reduction in the uncertainty.244

The failure probability computed by adopting classical approaches always lays within245

the bounds obtained using the Dempster-Shafer methodology, as shown in Figure 2.246

The maximum failure probability for the Z requirement is 0.069 (source 3), while the247
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Table 3: The results of CASE-B obtained adopting generalised probabilistic approach.

CASE-B Source 1 Source 2 Source 3 All Sources

PV c10 [0,1] [0,1] [0,1] [0,0.9]

Ptr [0,1] [0,1] [0,1] [0,1]

PZ [0,1] [0,1] [0,1] [0,0.7]

generalised approach bounds the results between 0 and 0.7. This reliability overesti-248

mation was due to the assumption made on the parent distribution needed to apply the249

classical methodology. In fact, by selecting a PDF we explicitly assume a well-defined250

stochastic behaviour for the parameters. As a matter of fact, no information was given251

to assume a random behaviour at all, and the imprecise information could be due to252

different experts advising for different scale ranges to be analysed.253

The computational time for CASE-B using classical Monte Carlo simulation was about254

6.7 seconds. The generalised solution to CASE-A and CASE-B was relatively compu-255

tationally inexpensive, taking about 0.07-0.08 seconds for the solution of each min-max256

problem. Thus, the DS structures propagation for the 3 reliability requirements took257

just 5-6 seconds for CASE-B on a 4 cores machine with 8.00 Gb ram and a 2.00 GHz258

Intel R© Core
TM

i5-4590T processor.259

4.3. CASE-C260

Probabilistic Approach261

For the solution of CASE-C, two methodologies were adopted. Firstly a uniform262

distribution approach and secondly a Kernel Density estimation (KDE) approach [15].263

The uniform distribution approach allows the values of the parameters to change within264

the sampled range (but not outside). The bounds are assumed equal to the minimum265

and maximum values of the samples. Then, 105 MC run have been performed ob-266

taining estimated probabilities of failure of PV c10=0.183, Ptr=0.273, PZ=0.016, re-267

spectively. The Kernel Density Estimator is a well-known approach that allows a268

probability distribution to be constructed based on sample data without assuming its269

distribution form. Different Kernels can be used and the Gaussian Kernel is a popu-270

lar choice which has been adopted in this work because it allows the incorporation of271

measurement error. The optimal bandwidth value was obtained using Silverman’s rule272

of thumb [15]. By adopting KDE the estimated failure probabilities are PV c10=0.232,273
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Ptr=0.292, PZ=0.121, respectively. These values are slightly larger compared to the274

one obtained with the uniform distribution approach. Higher values of the probability275

of failure are due to the tails of the Kernel fitted probability distribution (displayed in276

Figure 3) which allows the value of the parameter to change outside the range of the277

samples. Plots on the left-hand side in Figure 4 show the output CDFs when adopting278

uniform distributions and KDE to model parameter uncertainty. The CDF of Z has279

been zoomed around the value Z=1 for graphical reasons. The failure probabilities280

calculated using sampled values of R, L and C are also lower if compared to the ones281

obtained in CASE-A and CASE-B. This is due to the smaller upper bound on R in282

CASE-C (861 Ohm).283

Generalised Probabilistic Approach284

CASE-C is solved by applying the Kolmogorov-Smirnov (KS) test to characterise285

the uncertainty of the input parameters as shown in [14], and obtaining bounds on the286

empirical cumulative probability distribution function. Maximum and minimum values287

of the parameters are assumed and the CDF upper and lower bounds are truncated ac-288

cordingly. Due to the underlying physics governing the system, all the parameters must289

be positive and this condition allows the lower bounds to be set. Truncating the tails290

of the distributions, especially in reliability analysis, can lead to erroneous results and291

safety overconfidence. Thus a relatively high upper bound for the CDF truncation was292

selected, which was assumed equal to the sample mean plus three times the sample’s293

standard deviation. In Figure 3 the upper and lower bounds (dashed and solid lines)294

are shown for the empirical CDF (square marker blue line) and the Kernel density es-295

timator (blue dot-dashed line). Three different confidence levels for the KS test are296

used for each parameter. The bounds on the left-hand side plots refer to a confidence297

level α=0.05 and they are compared to the plots on the right-hand side which show the298

obtained bounds for α=0.01 (dashed and solid star marker lines), α=0.1 (dashed and299

solid blue lines) and α=0.2 (dashed and solid circle marker lines).300

The obtained P-boxes are propagated through the system. On the right plots of Fig-301

ure 4, the voltage at the 10th ms, 8th ms and damping factor P-boxes are presented,302

red blue and black colour lines with different markers refer to confidence level α=0.01,303

α=0.1 and α=0.2 respectively. The P-box of the damping factor has been zoomed304

around the value Z=1 to improve the readability of the plot. The bounds on the prob-305

abilities of failure are presented in the Table 4. It can be observed that the intervals306
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Figure 3: The Kernel fitting (on the right panel) and the P-box bounds (on the right panel) of the resistance

R for the CASE-C.

Table 4: The results for CASE-C, the probability bounds for the three requirements and the three confidence

levels.

CASE-C α=0.01 α=0.1 α=0.2

PV c10 [0,0.87] [0,0.7] [0,0.63]

Ptr [0,0.92] [0,0.77] [0,0.7]

PZ [0,0.83] [0,0.7] [0,0.64]

on the failure probability are quite wide, as already observed for CASE-A and CASE-307

B. Nevertheless, the failure probability bounds appear to be narrower if compared to308

CASE-A and CASE-B. This shows that the information provided for CASE-C is of309

higher quality, which allows less imprecise reliability estimates to be obtained. The310

results show that the uncertainty in the system reliability was underestimated by us-311

ing the Monte Carlo method because precise probability distribution functions were312

assumed despite the small sample size. The failure probabilities estimated by adopting313

the classical approach lay within the probability interval obtained by adopting gener-314

alised approaches.315

Using the same machine adopted for solving the previous cases, the classical proba-316

bilistic solution of CASE-C required about 0.07 seconds for the fitting and propagation317

of the Kernel probability densities and additional 0.05 seconds for the propagation318

of uniform probability densities. Conversely to the generalised solution to CASE-A319

and CASE-B, the computational time needed for the propagation of the focal elements320

is generally higher when compared to its classical probabilistic counterpart. The DS321
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Figure 4: CDFs (on the left pannel) and P-boxes (on the right pannel) of Vc(10ms), Vc(8ms) and Z for the

CASE-C

structures propagation took about 461 seconds for each confidence level α (i.e. about322

23 minutes for the 3 confidence levels). The higher computational cost is attributable323

to the larger number of min-max optimisations performed (i.e. 2197 combinations of324

focal elements).325
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4.4. CASE-D326

Similarly to CASE-A, the bounds of the parameters are provided. However, just327

one bound is precisely defined for each parameter. The upper bounds of R and L and328

the lower bounds of C are imprecisely defined as shown in the last row of Table 1. In329

addition, the nominal values for the parameter are provided. The problem has been330

tackled by defining upper bounds of R and L, which were redefined as T times their331

nominal value while the lower bound of C was redefined as its nominal value divided332

by T , where T =10. Thus, the maximum truncation bounds are Rn=6500 Ω, Ln=60333

mH and Cn=0.7µF. The quantity T is defined as ‘truncation level’ and n =10 linearly334

spaced intermediate bounds are also considered.335

Probabilistic Approach336

Uniform PDFs are assumed within the defined intervals and all combinations of337

upper and lower bounds are propagated by the Monte Carlo method. Having reduced338

the semi-definite intervals to a set of defined intervals, it is now possible to estimate339

the reliability of the systems by adopting the same approach as CASE-B. For the first340

two requirements, the probability of failure increases from 0.1 up to 0.9. The MC341

method is not efficient in providing solutions for the lower bounds of the intervals. In342

fact, the probability of having Z <1 goes from a maximum of 0.2 to a minimum of343

approximatively 0.0005 (requiring at least 105 samples for a rough estimation).344

Generalised Probabilistic Approach345

The parameters’ uncertainty has been characterised using a set of n multiple inter-346

vals translated into DS structures. A probability mass function equal to 1/n has been347

assigned to each interval (for normalization reasons) defining Dempster-Shafter struc-348

tures for the parameters, for instance the structure of R is
{

([R,R1], 1n ), ..., ([R,Rn], 1n )
}

.349

The three probabilities of failure lay within the interval [0,1]. In particular, the im-350

precision associated with the last requirement indicates a severe misjudgement of the351

real uncertainty when the only classical probabilistic solution is considered (obtain-352

ing a maximum PZ =0.2). In order to investigate the effect of the assumptions on353

the results, a sensitivity analysis of the values of Rn, Ln and Cn is performed. The354

sensitivity approach adopted is similar to the one-at-a-time method presented in [21].355

The selected base-case has truncation level T=10 and truncation bounds Rn=6500 Ω,356

Ln=60 mH and Cn=0.7µF. A total of 27 sensitivity cases are defined by selecting 9357
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Figure 5: Variation in the probability bounds due different values of Rn. The truncation values are

Rn=650·T Ω with T=1,..,10 and Ln=60 mH and Cn=0.7µF.

truncation level to T=9,8,7..,1 for each one of the parameters taken one-at-a-time. Then358

uncertainty propagation is carried out for the sensitivity cases and results compared to359

the bounds of the base case. The comparison shows that the shape of the P-boxes is360

affected most byRn. On the other hand, it does not have relevant effects on the bounds361

of the failure probability. Figure 5 displays the sensitivity analysis performed by vary-362

ing Rn.363

The computational time required to solve CASE-D is about 200 seconds by using the364

DS structure propagation algorithm whilst the classical approach required 1400 sec-365

onds for the solution (selecting 105 samples for the Mone Carlo and propagating all366

the combinations of upper and lower bounds).367

5. Case Study II: Analysis of a Power Transmission Network368

The case study selected for the analysis is a 6-bus and 11-lines power transmission369

network [22]. Figure 6 displays the network topology, nodes indices and load names.370

The nodes 1-3 represent the generator buses while the nodes 4-6 are the demand buses.371

To simplify the reliability assessment, loads correlation is neglected and grid stress is372

increased. The reference loads Ld4, Ld5 and Ld6 and the decreased maximum power373

capacity of the generators are reported in Figure 6.374

It is assumed that a lack of data is affecting the failure rate of the transmission lines.375

This is a common situation for highly reliable components for which at best only a few376

failures have been observed. A common practice used to estimate the failure rate of377
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Figure 6: The 6-bus power network system.

transmission lines is to merge the few available failure samples between similar lines.378

This procedure is named “data pooling” and assumes that the behaviour of similar379

components can be described by the same probabilistic model. This is often a ratio-380

nal assumption. However, when (similar) components are subjected to different work381

loads (e.g. close/far from their thermal limits), different conditions (e.g. in a harsh/mild382

environment) or with different maintenance policies such assumptions are rarely true.383

Different endogenous and operational-environmental factors will most likely influence384

the ageing of the components and produce a very different failure behaviour even for385

identical lines. For more details on the problem, the reader is referred to [23].386

The transmission links in the system are assumed to be LGJ-300 and for this specific387

line, an estimation of the failure rates (λl) for each link l is presented in [24]. The388

available data consists of 40 failure times collected over 10 years for a first line and 5389

years of failure times for a second. Over the first 5 years, the estimated λl is 0.00027390

[failure/h] while for the last 3 years the failure rate increases to 0.00042 [failure/h]391

(possibly due to a poorly described ageing effect). Similarly to CASE-A in the first392

case study (Section 4), an interval data source is considered for each line failure rate λl393

with l = 1, ..,11. The failure rate is imprecisely defined during the ageing of the line394

(e.g. between 5 years to 8 years from installation) and this might affect the estimation395

of the power network reliability.396

The Energy-not-Supplied (ENS) is a well-known reliability indicator for power grids397

and is employed here to assess the network failure probability. The power network is398
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simulated for a given period of time (e.g. 1 day) and random components’ failures are399

sampled from probability distributions used to model the components’ failure times.400

The probability of failure for a line is assumed to follow a Poison distribution and ob-401

tained similarly to [2]. During the simulation, the network power flow equations are402

solved and in the case of occurred failures or unsatisfied constraints (e.g. thermal or403

generators capacity limits), part of the power load can be curtailed. The power grid will404

fail to meet the performance requirement if the energy not provided to the customers405

is larger than a predefined threshold level (i.e. ENS > ENStsh). The ENStsh has406

been set equal to 0.05 % of the total load demand. Further details on the reliability407

model are available in Ref. [25]. First, a classical probabilistic approach is used to as-408

sess the power grid reliability. The probabilistic model for the grid has to be precisely409

defined. Hence, a point value for the failure rate of each ageing line has been se-410

lected and set equal to the mean failure rate (0.000345 [outage/years]). A plain Monte411

Carlo is employed to propagate 104 independent realisations of the power grid history.412

In each MC run, failures can randomly occur according to the line failure probabil-413

ity and the ENS is computed for the sampled network state. The resulting CDF of414

the Energy-Not-Supplied (FENS) is displayed by the blue circle markers line in Fig-415

ure 7. It can be used to obtain the probability of failure for the network as follows:416

P (ENS > ENStsh) = 1− FENS(ENStsh).417

The imprecise information available for the failure rate has been propagated using a

1-Pf

1-Pf

1-Pf

ENS threshold

Figure 7: The CDF, Cumulative belief and Cumulative plausibility functions for the ENS in [MWh]. The

plot is zoomed in to better display the reliability results and ENStsh.

418
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Table 5: The probability bounds resulting from the generalised approach accounting for 4 levels of impreci-

sion for the nodal load demand, Ldi.

Imprecision on Ldi 5% 10% 15% 20%

P f 0.0874 0.0964 0.0964 1

P f 0.0389 0.0387 0.0384 0.032

double loop Monte Carlo approach as presented in Section 3. In the outer loop, 50 val-419

ues of the failure rates are sampled from the interval [0.00027,0.00042] failure/h and420

forwarded to the inner loop. In the inner loop, analogously to the classical probabilis-421

tic analysis, a Monte Carlo simulation is used to obtain independent histories for the422

power network, sampling failed components and obtaining the ENS. The results are423

cumulative belief (black solid line) and plausibility (dot-dashed red line), displayed in424

Figure 7. The threshold ENStsh is also presented with a dashed line. The resulting425

reliability interval is [3.89, 6.09]·10−2 which includes the single-valued reliability es-426

timator obtained by the classical probabilistic approach, 4.99·10−2.427

The analysis has been extended by accounting for imprecision in the power loads Ld4,428

Ld5 and Ld6. In Ref. [26], power demand is affected by imprecision and modelled429

using two interval cases. Similarly, 4 imprecision levels on the power demanded (from430

5% to 20% of the design load) are considered here, due for instance to measurement431

errors or forecast incertitude. Table 5 summarises the result for increasing imprecision432

on the load value and Figure 8 displays the output cumulative Pl and Bel. The relia-433

bility bound gets wider the larger the imprecision surrounding the system loads is. It434

is worth noticing that when the load interval is increased from 15 to 20 % the upper435

failure probability increases drastically, from 9.64·10−2 to 1 (dashed marked lines in436

Figure 8). This because within the parameter cell ω :
{
Ldi ≤ Ldi ≤ Ldi ∀ i = 4,5,6

}
437

exists at least one combinations of loads (Ld4,Ld5,Ld6) for which the power flow can438

not satisfy the given constraints (i.e. power balance, thermal limit and generators ca-439

pacity constraints). As consequence, the power flow solver curtails a significant amount440

of load even for undamaged grid conditions and for each realisation within the inner441

loop the ENS exceeds ENStsh.442

In this final application, the developed framework has been tested using a more com-443

plex engineering application. Comparing the results obtained using the classical and444

generalised probabilistic approaches helped to understand the quality of the informa-445
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Figure 8: The Cumulative belief and plausibility functions for different levels of imprecision on the loads.

The plot is zoomed in to improve the graphical output.

tion on λl and loads and their impact on the network reliability. In the first case, the446

information quality was good and the imprecise data resulted in a moderate (but defi-447

nitely observable) effect on the network reliability. In the second analysis, an increasing448

level of imprecision affecting the power demand is considered. The results showed that449

more imprecision in the input load increases the imprecision in the reliability estimate.450

Moreover, the generalised approach pointed out that increasing the imprecision in the451

load up to 20%, drastically stretched the reliability bounds (about [0,1]). This is in-452

deed an indicator of a severe lack of the available information quality, which has been453

successfully pointed out by the generalised approach. The computational time for the454

solution was about 98 seconds using classical approaches (MC with 104 samples) and455

about 4900 seconds for the generalised approach (50 outer loop samples and 104 inner456

loop samples).457

6. Limitation Faced and Discussions458

Classical probabilistic approaches require the estimation of (or assuming) PDFs to459

describe parameters. Uncertainty and uniform distributions and Kernel density estima-460

tors have been used to characterise parameter uncertainty. In both cases, it has been461

explicitly assumed that the analysed parameters have some sort of stochastic nature,462

which in reality might not be true. One of the strongest limitations of classical prob-463

abilistic approaches is the need to represent the epistemic uncertainty as aleatory and464
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then mix these two types of uncertainty. The analysed NAFEMS reliability problem has465

confirmed that artificial model assumptions might lead to an underestimation of the un-466

certainty. Hence the reliability analysis might not represent precisely the real quality of467

the available data. For extreme cases, a severe lack of data can lead to non-informative468

bounds [0,1]. The large epistemic uncertainty about the system parameters may sug-469

gest considering an investment in collecting more empirical data rather than refining470

the model for the reliability assessment. The overall outcomes of the study highlighted471

some of the positive and negative aspects of employ a generalised approach with re-472

spect to classical uncertainty quantification methodologies.473

The reliability assessments were affected by severe uncertainty when, if tackled using474

classical probabilistic approaches, the analyst is forced to make unjustified assump-475

tions leading to a strong underestimation the true output uncertainty. A case affected476

by a severe lack of data was the NAFEMS reliability problem for which the epistemic477

component appeared to be a dominant part of the outcomes’ uncertainty. On the other478

hand, a reliability problem affected by a mild lack of data would have had results less479

sensitive to the epistemic uncertainty. This might be well-represented by the power480

grid reliability problem for which the failure rate imprecision influenced moderately481

(but visibly) the precision of reliability estimate. Similar results have been obtained for482

imprecision on the load demand up to 15 %. On the other hand, higher imprecision on483

the load (20%) drastically widened the reliability bounds. This has been pointed out484

thanks to the proposed comparison framework for classical and generalised probabilis-485

tic approaches.486

7. Conclusions487

In order to define a precise and ‘exact’ probabilistic model, a very high amount of488

data (possibly infinite) would be necessary. Unfortunately, a lack of information always489

affects engineering analysis and its extent cannot be quantified a priori. In general, the490

quality of the available information is context and scope-dependent, e.g. different sys-491

tems performance indicators may react very differently to the same lack of data. The492

proposed framework provides a simple but effective way to assess a data deficiency493

by comparing the system reliability bounds (obtained through generalised probabilistic494

approaches) against single-valued probability indicators (obtained adopting classical495

probabilistic methods). If the lack of knowledge is mild, the system reliability will496

result in relatively narrow bounds which include the point reliability estimator. In this497
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case, classical approaches will be well-suited to tackle the problem. Otherwise, the498

lack of data will be severe and reliability bounds wide or, for extreme cases, even499

non-informative ([0,1]). Combination of pure probabilistic approaches (e.g. Monte500

Carlo Simulation) and generalised uncertainty quantification approaches (e.g. based on501

Dempster-Shafer structures and probability boxes), implemented in a common compu-502

tational framework, are unavoidable tools for the industry which may rely on multiple503

accurate information qualification approaches. This will aid understanding if the data504

is of high quality or poor quality, with the aim of designing safer and more reliable505

systems and components. The NAFEMS uncertainty quantification challenge prob-506

lem and a power system reliability assessment have been selected as representative test507

cases and have been solved using the proposed computational tool. Essential informa-508

tion has been provided and the quality of the available data assessed.509
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