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Abstract. Orlov’s famous representability theorem asserts that any fully

faithful exact functor between the bounded derived categories of coherent

sheaves on smooth projective varieties is a Fourier-Mukai functor. This re-
sult has been extended by Lunts and Orlov to include functors from perfect

complexes to quasi-coherent complexes. In this paper we show that the latter

extension is false without the full faithfulness hypothesis.
Our results are based on the properties of scalar extensions of derived cat-

egories, whose investigation was started by Pawel Sosna and the first author.

Contents

1. Introduction 1
2. Acknowledgements 3
3. Moduli spaces of representations of algebras 3
4. Moduli spaces of vector bundles on curves 10
5. Homological identities 11
6. Lifting field actions in the hereditary case 13
7. Counterexamples to lifting in the hereditary case 16
8. Counterexamples to lifting in the geometric case 19
9. Non-Fourier-Mukai functors 19
10. Lifting using A∞-actions 22
Appendix A. Proof of Proposition 7.1 for the two loop quiver 33
References 34

1. Introduction

Unless otherwise specified, k is an algebraically closed base field of characteristic
zero. Orlov’s famous representability theorem [30, Thm 2.2] asserts that any fully
faithful exact functor between the bounded derived categories of coherent sheaves on
smooth projective varieties over k is a Fourier-Mukai functor. It is still unknown if
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the full faithfulness hypothesis is necessary in this theorem, although some positive
results were obtained by the first author in [35].

A number of extensions and variants of Orlov’s theorem are known. See e.g.
[2, 6, 7, 8, 10, 20, 27]. For an excellent survey on the current state of knowledge
see [9]. In particular, Lunts and Orlov proved the following natural extension of
Orlov’s theorem to quasi-coherent sheaves:

Proposition A. [27, Corollary 9.13(2)] Let X/k be a projective scheme such
that OX has no zero dimensional torsion and let Y be a quasi-compact separated
scheme. Then every fully faithful exact functor Ψ : Perf(X) → D(Qcoh(Y )) is
isomorphic to the restriction of a Fourier-Mukai functor associated to an object in
D(Qcoh(X × Y )).

One of the main results of this paper is that this extension is false if we drop
the condition that Ψ is fully faithful, even in the case that X, Y are smooth and
projective (see Theorem 9.1 below). Our arguments are based on the properties of
scalar extensions of derived categories, which we will outline below. We will get
back to Proposition A at the end of the introduction.

If a is a k-linear category and B is a k-algebra, we denote by aB the category
of B-objects in a, i.e. pairs (M,ρ) where M ∈ Ob(a) and ρ : B → a(M,M) is
a k-algebra morphism. If C is abelian then so is CB , but if T is triangulated there
is no reason for this to be the case for TB as well.

While investigating generalizations of Orlov’s theorem [36] the first author stud-
ied the obvious forgetful functor

F : Db(CB)→ Db(C)B
for B/k = L/k a field extension. She proved an essential surjectivity result for
trdegL/k ≤ 2 but it appeared difficult to go beyond that. Indeed, in the present
paper we will show that F is generally not essentially surjective when trdegL/k = 3.
To put this in context, we start with a positive result which is naturally proved
using A∞-techniques:

Proposition B. (See Propositions 10.1.1,10.1.2,10.1.3 below.) Assume that C is
a Grothendieck category.

• If B/k has Hochschild dimension ≤ 2, F is essentially surjective.
• If B/k has Hochschild dimension ≤ 1, F is in addition full.
• If B/k has Hochschild dimension 0, F is an equivalence of categories.

Recall that, for a finitely generated field extension L/k, the Hochschild dimension
is equal to the transcendence degree. Proposition B represents a strengthening of
the results in [21]. The case of Hochschild dimension 0 generalises results by Sosna
[41].

However, our next result shows that one cannot hope to substantially improve
Proposition B:

Theorem C. (See Theorem 8.1 below.) Let X/k be a smooth connected projective
variety which is not a point, a projective line or an elliptic curve. Then there exists
a finitely generated field extension L/k of transcendence degree 3 together with an
object Z ∈ Db(Qcoh(X))L which is not in the essential image of F .

The proof of this theorem will depend on a similar result for representations of
wild quivers, which we will prove first (see Proposition 7.1 below).
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As the reader may notice, Theorem C leaves out the case where X is a curve
of genus ≤ 1. The key point is that in this case the moduli space of indecom-
posable objects has dimension ≤ 1. We capture this in the concept of “essential
dimension”, which is roughly speaking the minimal number of parameters required
to define any family of indecomposable objects (see Definition 6.2.1 below for a
precise definition). From this theory it follows that if X is a curve of genus ≤ 1
and C = Qcoh(X), for any field extension L/k the essential image of F contains
all objects in Db(Qcoh(X))L whose cohomology lies in coh(XL) ⊂ Qcoh(XL) ∼=
Qcoh(X)L (see Remark 6.2.2 and Theorem 6.2.3 below). We suspect that F is in
fact essentially surjective, but we have not proved it.

Now we come back to Proposition A. A counterexample to this proposition,
when dropping the full faithfulness hypothesis, may be obtained using the following
result:

Theorem D. (See Theorem 9.1 below) Let X, Y be connected smooth projective
schemes. Let iη : η → X be the generic point of X and let L = k(η) be the function
field of X. Assume that Db(Qcoh(Y ))L contains an object Z which is not in the
essential image of Db(Qcoh(Y )L) (for example as in Theorem C). Define Ψ as the
composition

Perf(X)
i∗η // D(L)

L7→Z // D(Qcoh(Y )) .

Then Ψ is not the restriction of a Fourier-Mukai functor.

We start with a few technical sections that will provide tools for the proofs of
the main results. The impatient reader may wish to proceed directly to §6 at first
reading.
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3. Moduli spaces of representations of algebras

Moduli space of representations for algebras may be constructed in several dif-
ferent ways [22, 32]. We remind the reader of a construction which is based on the
properties of the Formanek center and which will be used in the proof Lemma 3.2.1
and Proposition 3.5.2, which are the main results of this section. We will use our
standing characteristic zero hypothesis to simplify the discussion.
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3.1. The representation functor. For a reference on this subject, the reader can
consult [32]. An Azumaya algebra is a matrix algebra for the étale topology. Let
A be a k-algebra and let n > 0. Consider the functor Azn,A from commutative k-
algebras to the category of sets defined as follows: if R is a commutative k-algebra,
Azn,A(R) is the set of equivalence classes of maps of k-algebras ρ : A → B, where
B is an Azumaya algebra of rank n2 over R satisfying ρ(A)R = B. Two maps
ρ : A → B, ρ′ : A → B′ are considered equivalent if there exists an isomorphism
of R-algebras ξ : B → B′ such that ξρ = ξ′. The functor Azn,A is a sheaf for the
Zariski topology, and hence extends canonically to a functor from k-schemes to the
category of sets.

The functor Azn,A is representable in the category of k-schemes (see [32, Ch IV,
Thm 1.8 and Ch VIII, Thm 2.2]). The representing scheme may be constructed as
a “Formanek center”, constructed as follows. Let Λ be a k-algebra. The identities
of n× n matrices with coefficients in Λ are defined as

I = {f(xs) ∈ Λ{Xs}|f(rs) = 0 for all rs ∈ (R)n},
where (R)n denotes the algebra of n × n matrices with coefficients in R, and R
is a generic commutative algebra in the variety of commutative algebras (see [32,
Definition 4.3]). If a ring C satisfies the identities of n× n matrices, the Formanek
center F (C) of C is defined as the subring of C obtained by evaluating all central
polynomials of n × n-matrices without constant term. A central polynomial for
n × n matrices is a polynomial in non-commuting variables that is non-constant,
but yields a scalar matrix whenever it is evaluated at n× n matrices.

By definition, F (C) ⊂ Z(C). Since the field is of characteristic zero, the usual
polarization argument [33] shows that we may compute the Formanek center by
evaluating central polynomials which are homogeneous of degree one in every vari-
able. From this it easily follows that it is an ideal.1 An algebra satisfying the
identities of n× n-matrices is Azumaya of rank n2 over its center if and only if the
Formanek center is equal to the ordinary center (this follows easily from [32, Ch
VIII, Th 2.1(6)], using the characteristic zero hypothesis again).

Let An be the quotient of A by the identities of n× n-matrices, and let Fn,A =

F (An) be the Formanek center of An. Put F en,A = F e(An)
def
= k + F (An) ⊂ An

and Ũn,A = SpecF en,A. Let Ãn be the sheaf of algebras on Ũn,A associated to An

and put Un,A
def
= Ũn,A − V (Fn,A). Finally, let An be the restriction of Ãn to Un,A.

Then An is a sheaf of Azumaya algebra of rank n2 with center equal to OUn,A
(presumably this depends on the characteristic zero hypothesis, see [32, Ch VIII,
Cor. 2.3] for a result valid in any characteristic). Note that Un,A has an affine
covering by schemes of the form Un,A,f = Spec(F en,A)f , where f runs through the

elements of Fn,A. The global sections of An restricted to Un,A,f are given by (An)f .

It follows from [32, Ch VIII, Thm 2.2] that Un,A is isomorphic to a differently
constructed scheme which represents Azn,A. For further reference we give a de-
scription of the bijection between Un,A(R) and Azn,A(R) as given in the proof of
[32, Ch VIII, Thm 2.2]. Assume ρ : A→ B represents an element of Azn,A(R). The
map ρ descends to a map ρn : An → B, and hence to a map ρn,f : (An)f → Bρn(f)
for f ∈ Fn,A. We obtain an induced map ρn,f : F e((An)f ) → F e(Bρn(f)). Now
Bρn(f) is an Azumaya algebra and hence F e(Bρn(f)) is equal to its center Rρn(f).

1We do not know if this is true in finite characteristic.
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It is easy to see that the maps (F en,A)f → Rρn(f) may be glued to a scheme map

ρn : SpecR→ SpecF en,A − V (Fn,A) = Un,A.
Conversely, if we start from a scheme map ρn : SpecR → Un,A, then we put

B = ρ∗n(An) (where here and below we usually identify quasi-coherent sheaves
on affine schemes with their global sections). Since the elements of A restrict to
sections of An, we obtain a corresponding map ρ : A→ B. The required condition
ρ(A)R = B is easily checked.

3.2. The main lemma. Let the notation be as in the previous section. For a not
necessarily closed point ix : x → Un,A we say that x is split if i∗x(An) is split as
a central simple algebra, i.e. if it is isomorphic to Mn(k(x)) as a k(x)-algebra. In

this case, Vx is defined to be the corresponding irreducible Ak(x)
def
= k(x) ⊗k A-

representation of dimension n over k(x).

Lemma 3.2.1. Assume x is split. We have EndA(Vx) = k(x).

The point of the lemma is that the endomorphisms are only assumed to be
A-linear, not Ak(x)-linear.

Proof. Let O(x) be the image of F en,A in k(x). Then k(x) is the field of fractions

of O(x) and we have

EndA(Vx) = EndAn(Vx)

= EndO(x)⊗Fe
n,A

An(Vx)

= Endk(x)⊗Fe
n,A

An(Vx)

= EndAk(x)(Vx)

= k(x).

In the second equality we use that An → O(x)⊗F en,A An is surjective. In the third

equality we use that O(x) ⊗F en,A An → k(x) ⊗F en,A An is an epimorphism of rings

and the fact that Vx is a k(x)⊗F en,AAn-module. For the fourth equality we use that

Ak(x) → k(x)⊗F en,A An is surjective. �

Example 3.2.2. Here is an example where one can check the conclusion of Lemma
3.2.1 directly. Let Q be the quiver with one vertex and three loops and A = kQ =
k〈X,Y, Z〉. Then it is easy to see that U1,A

∼= A3. Let Vη be the representation
corresponding to the generic point η of A3. It is defined over the field L = k(η) =
k(x, y, z) and has the form

L xee

y

DDz 99

One easily checks that Endk〈X,Y,Z〉(Vη) = L.

3.3. The split representation functor. In order to use Lemma 3.2.1, we must
be able to show that i∗x(An) is split. We discuss this next. For a k-scheme X, let
Mn,A(X) be the collection of equivalence classes of quasi-coherent sheaves of left
A ⊗k OX -modules V on X which are vector bundles or rank n over X such that
for every point x ∈ X we have that i∗x(V ) is simple. We consider V and W to be
equivalent if there exists an invertible OX -module I such that W = V ⊗X I.
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Lemma 3.3.1. Assume that Mn,A is representable in the category of k-schemes.
Then An is split and Mn,A is represented by Un,A.

Proof. Let Mn,A be the representing scheme forMn,A, and let Vn,A be the universal
bundle on Mn,A (determined up to tensoring with a line bundle). We have a natural
transformation

φ :Mn,A → Azn,A

sending V to EndX(V ). This yields a morphism between the representing schemes

(3.1) φ : Mn,A → Un,A

such that

(3.2) φ∗An = EndMn,A
(Vn,A).

Clearly, φ(X) is injective for any X, and surjective up to tale coverings. This means
that φ is actually an isomorphism and hence An is split by (3.2). �

3.4. Partitioning by ranks. Let l = ke1 + · · ·+kem be the semi-simple k-algebra
determined by eiej = δijei,

∑
i ei = 1. Let A be an l-algebra. By this we mean

that there is given a k-algebra morphism l → A. We denote the images of the
(ei)i in A also by (ei)i. Fix positive natural numbers α = (α1, . . . , αm) such

that |α| def=
∑
i αi = n. We let Azα,A(R) be the subset of Azn,A(R) consisting of

equivalence classes ρ : A→ B such that rkR ρ(ei)Bρ(ei) = α2
i for all i. It is easy to

see that Azα,A is an open subfunctor of Azn,A, and furthermore Azn,A =
∐
α Azα,A.

We obtain a corresponding decomposition Un,A =
∐
α Uα,A for the representing

spaces. The restriction of An to Uα,A will be denoted by Aα.
In a similar way we may define functors Mα,A ⊂ Mn,A, where we now require

that for V ∈ Mα,A(X) the rank of eiV is equal to αi. We will say that V has
dimension vector α. We have the following obvious generalization of Lemma 3.3.1:

Lemma 3.4.1. Assume that Mα,A is representable in the category of k-schemes.
Then Aα is split and Mα,A is represented by Uα,A.

3.5. Stability conditions. For λ, µ ∈ Zm write λ · µ =
∑m
i=1 λiµi. Let2 α ∈ Nm,

and choose λ ∈ Zm such that λ · α = 0.
If K/k is a field extension, then V ∈ Mα,A(K) is λ-(semi-)stable [22] if for any

proper AK-subrepresentation 0 6= W ( V with dimension vector β we have

λ · β(≥) > λ · α.
We say that V ∈Mα,A(X) is λ-(semi-)stable if for any i : SpecK → X with K/k a
field extension it is true that i∗(V ) is λ-(semi-)stable. We denote the corresponding
subfunctor of Mα,A by Mα,λ,A. Recall

Theorem 3.5.1. Assume that A is finitely generated over k and that α is indivis-
ible. Then Mα,λ,A is representable by a scheme of finite type over k.

This is [22, Prop 5.3]. The given reference assumes A to be finite dimensional,
but the proof carries over completely in the case where A is finitely generated over
k.

We denote the representing scheme by Mα,λ,A, and the corresponding universal
A-representation by Vα,λ,A. We will prove the following generalization of Lemma
3.2.1. The point is again that we take endomorphisms over A, and not over Ak(x).

2We assume 0 ∈ N.
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Proposition 3.5.2. Let A be finitely generated, and let α be indivisible. For ix :
x→Mα,λ,A put Vx = i∗x(Vα,λ,A). Then

(3.3) EndA(Vx) = k(x).

The proof of Proposition 3.5.2 uses the representation theory of quivers. See [5]
for a reference. Let Q = (Q0, Q1, h, t) be a finite quiver with vertices Q0 and arrows
Q1. The maps h, t : Q1 → Q0 associate an arrow with its head and tail. If R is a
k-algebra, we let RQ be the path algebra of Q with coefficients in R. Any finitely
generated l-algebra in the sense of §3.4 is a quotient of a suitable path algebra kQ
with l corresponding to

⊕
i∈Q0

kei, where ei is the length zero path in Q associated
to the vertex i. It is easy to see that it is sufficient to prove Proposition 3.5.2 in
the case A = kQ. Therefore we specialize to that case, and we will replace A in the
notation by kQ.

For a kQ-representation V we write Vi = eiV . Let Pi = kQei be the standard
projective representation corresponding to i ∈ Q0. Recall the following:

Proposition 3.5.3. (Green) Every projective kQ-module P is of the form
⊕

i∈Q0
Wi⊗k

Pi, where Wi is a k-vector space. The Wi are uniquely determined by P .

Proof. The fact that all projectives are of the indicated form is [15, Cor. 5.5]. Then
Wi can be recovered from P as Wi = Si ⊗kQ P , where Si is the standard simple
corresponding to vertex i. �

Below we will need a definition which is dual to the concept of dimension vector
dimV of V . Assume that V ∈ Mod(kQ) is finitely presented. Then V has a
projective resolution

0→ ⊕iP⊕bii → ⊕iP⊕aii → V → 0

with Pi the projective kQ-representation associated to vertex i. We put

(dimV )i = ai − bi.
It follows from Proposition 3.5.3 that this is a well defined element of ZQ0 .

For W a finitely presented and V a finite dimensional kQ-representation, one
has

dimW · dimV = dim HomkQ(W,V )− dim Ext1kQ(W,V ).

If HomkQ(W,V ) = Ext1kQ(W,V ) = 0 then we write W ⊥ V . Let W⊥ be the
category of all V such that W ⊥ V . Recall the following result

Theorem 3.5.4. [11, 12][40, Cor 1.1] Assume that V ∈ Mod(kQ) is finite-dimensional.
Then V is λ-semi-stable if and only there is a finitely presented 0 6= W ∈ Mod(kQ)
such that W ⊥ V , and such that dimW is a strictly negative multiple of λ.

For λ · α = 0, and for W such that dimW = −nλ, n > 0 we define a subfunctor
Mα,W,Q of Mα,λ,Q consisting of those representations V with dimV = α such
that W ⊥ V . If α is indivisible, then this subfunctor is representable by an open
subset Mα,W,Q of Mα,λ,Q. The above theorem may be rephrased as saying that
(Mα,W,Q)W is an open covering of Mα,λ,Q. We let Vα,W,Q be the restriction of
Vα,λ,Q to Mα,W,Q.

Let

0→ P
δ−→ Q→W → 0
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be a minimal projective resolution of W and let (kQ)δ be the corresponding uni-
versal localisation.3

Then V ∈W⊥ if and only if HomkQ(δ, V ) is invertible. In other words, V ∈W⊥
if and only if the kQ-action on V extends to a (kQ)δ-action. Thus we obtain

(3.4) W⊥ ∼= Mod((kQ)δ).

Note further

Lemma 3.5.5. [1, Lemma 3.1] Let W be a finitely presented kQ-representation
and let V ∈ W⊥ ∩Mod(KQ) be finite dimensional over K, where K/k is a field
extension. Then V is simple in W⊥∩Mod(KQ) if and only if V is −dimW -stable.

Proof. The blanket hypothesys in [1] that Q should not have any oriented cycles
is not necessary for this particular lemma. For the benefit of the reader we recall
the proof of the implication simple⇒stable, as it is instructive. Assume that V
is simple in W⊥ ∩ Mod(KQ), and let 0 6= V ′ ( V be a KQ-subrepresentation.
Since HomkQ(W,V ′) = 0, we have dimW · dimV ′ ≤ 0. If dimW · dimV ′ = 0 then

we also have Ext1kQ(W,V ′) = 0 and hence W ⊥ V ′. Since V is simple this is a

contradiction. It follows dim Ext1kQ(W,V ′) > 0, and so dimW · dimV ′ < 0. �

From this we easily obtain an isomorphism of functors

Mα,(kQ)δ
∼=Mα,W,Q

and hence, by Lemma 3.4.1, it follows that Aα,(kQ)δ is split and that there is an
isomorphism

Uα,(kQ)δ
∼= Mα,W,Q.

Proof of Proposition 3.5.2. There exists some W such that x ∈ Mα,W,Q. Now let
the notation be as above. Then by (3.4)

EndkQ(Vx) = End(kQ)δ(Vx).

It now suffices to invoke Lemma 3.2.1. �

Example 3.5.6. Let Q be the generalised Kronecker quiver with 4 arrows.

1

T //
X //
Y //
Z //

2 .

Let α = (1, 1) and λ = (−1, 1). A representation of dimension vector α is λ-
stable if not all arrows are zero, and two such representations are isomorphic if
one is obtained from the other by multiplying all arrows by the same scalar. This
corresponds to a point in P3. From there one easily shows that Mα,λ,A = P3. Let
Vη be the representation corresponding to the generic point η of P3. It is defined
over the field L = k(η) = k(x, y, z) and has the form

L

1 //
x //
y //
z //

L .

One easily checks that EndA(Vη) = L.

3If A is a ring and δ : P → Q is map between finitely generated projective left A-modules
then A → Aδ is universal for the ring extensions A → B such that B ⊗A δ is an isomorphism.
A → Aδ is an epimorphism in the category of rings and a left A-module M has a (necessarily

unique) Aδ-action provided the functor HomA(−,M) transforms δ into an invertible morphism.
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If P1, P2 denote the projective Q-representations corresponding to the vertices

1, 2 and W = coker(P2
T−→ P1) then Vη ∈ W⊥. The universal localisation of kQ

at T is obtained by adjoining to Q an inverse arrow T−1 from 2 to 1. One checks
that (kQ)T is Morita equivalent to k〈X,Y, Z〉, and this example reduces in fact to
Example 3.2.2.

It is difficult to say when Mα,λ,Q is non-empty, but Proposition 3.5.9 below will
be sufficient for our purposes. For α, β ∈ ZQ0 write

〈α, β〉 =
∑
i

αiβi −
∑
a∈Q1

αt(a)βh(a).

If W , V are finite dimensional kQ-representations then

〈dimW, dimV 〉 = dim HomkQ(W,V )− dim Ext1kQ(W,V ).

Put
(α, β) = 〈α, β〉+ 〈β, α〉

and let ei ∈ NQ0 be such that (ei)j = δij . The fundamental region [19] is defined
as

F (Q) = {α ∈ NQ0 | ∀i : (ei, α) ≤ 0, α has connected support}.
Recall

Lemma 3.5.7. F (Q) is empty for a Dynkin quiver and is spanned by a single
vector δ satisfying (δ, δ) = 0 in the case that Q is extended Dynkin. If Q contains a
component with more than one vertex which is not Dynkin or extended Dynkin then
F (Q) contains indivisible α such that (α, α) is an arbitrarily large negative number.

Proof. The first two cases are well known. So supposed that Q is connected and not
Dynkin or extended Dynkin and |Q0| > 1 By [19, Lemma 1.2] there exists α ∈ NQ0

such that all αi > 0 and (ei, α) < 0 for each i. In other words the cone

C(Q) = {β ∈ RQ0 | ∀i : βi ≥ 0, (ei, β) ≤ 0}.
had non empty interior and is of dimension |Q0| > 1. So intC(Q) ∩ ZQ0 con-
tains infinitely many indivisible elements (for example take the minimal elements
in smaller and smaller subcones which are disjunct except for 0).

Now if β ∈ intC(Q) ∩ ZQ0 then (β, β) =
∑
i βi(β, ei) < −

∑
i βi. So for any

N > 0 the set
{β ∈ intC(Q) ∩ ZQ0 | (β, β) > −N}

is finite. This shows that (β, β)→ −∞. �

Remark 3.5.8. It follows that if Q is a connected “wild” quiver (i.e. not Dynkin or
extended Dynkin) which is not the two loop quiver then F (Q) contains an indivisible
vector α such that (α, α) ≤ −4. This fact will be used below.

Proposition 3.5.9. [19, 22, 39] Let α be an indivisible dimension vector in F (Q).
Then there exists some λ satisfying λ · α = 0 such that Mα,λ,Q is non-empty. In
that case Mα,λ,Q has dimension −(1/2)(α, α) + 1.

Proof. Since α ∈ F (Q), the generic Q-representation with dimension vector α is a
Schur representation (i.e. it has only trivial endomorphisms) [19]. Therefore it is
stable for suitable λ by [38, Theorem 6.1]. The dimension maybe computed using
the standard fact that dimMα,Q = dim Ext1kQ(V, V ) = −〈dimV,dimV 〉 + 1 for V
generic. �
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4. Moduli spaces of vector bundles on curves

In this section we prove an analogue of Proposition 3.5.2 for vector bundles on
curves. Below X is a smooth projective curve over k of genus g. The theory of
moduli spaces of vector bundles on curves is well known, so we will not repeat it
here (see e.g. [29]).

Given r, d such that gcd(r, d) = 1, the functor Mr,d of families of stable vector
bundles of rank r and degree d on X has a fine moduli space Mr,d such that

dimMr,d = 1 + r2(g − 1).

Let Vr,d be the universal bundle on Mr,d. We will prove the following analogue of
Proposition 3.5.2

Proposition 4.1. Let x ∈ Mr,d and put Vx = i∗x(Vr,d). Let p : Xk(x) → X be the
map obtained by base extension from the structure map Spec k(x)→ Spec k. Then

EndX(p∗Vx) = k(x).

To prove Proposition 4.1 we will use the following analogue of Theorem 3.5.4,
which is a fundamental result by Faltings:

Theorem 4.2. [13] Let X be a smooth projective curve. A bundle E on X is
semi-stable if there exists a non-zero bundle F such F ⊥ E.

As before F ⊥ E if HomX(F , E) = 0, Ext1X(F , E) = 0. Given F ∈ coh(X),
we define as in the quiver case a subfunctor Mr,d,F of Mr,d consisting of those
families in Mr,d that are right orthogonal to F . This subfunctor is representable
by an open subset of Mr,d, which we denote by Mr,d,F .

Let F ∈ coh(X) be such that SuppF = X. Put

F⊥ = {E ∈ Qcoh(X) | HomX(F , E) = Ext1(F , E) = 0}.
It is easy to see that F⊥ is an abelian subcategory of Qcoh(X) closed under direct
sums. So it is in particular a Grothendieck category. We will now use some results
by Aidan Schofield, which are unfortunately not officially published. Proofs can be
found in [37].

Proposition 4.3. [37] The inclusion F⊥ ⊂ Qcoh(X) has a left adjoint.

Denote the left adjoint to F⊥ → Qcoh(X) by L. Let p ∈ X. There exists an
epimorphism φ : F → Op. Put F ′ = kerφ, P = L(F ′).

Proposition 4.4. [37] The object P is a small projective generator for the cate-
gory F⊥. If E ∈ F⊥ then HomX(P, E) is finite dimensional if and only if E is
coherent.

Put A = EndX(P). It follows that there is an equivalence of categories

(4.1) F⊥ → Mod(A) : E 7→ HomX(P, E)

which is an analogue to (3.4). With a similar argument as in the discussion there-
after, we obtain an isomorphism of functors

Mr,A
∼=Mr,d,F

and hence by Lemma 3.3.1 it follows that Ar,A is split and there is an isomorphism

Ur,A ∼= Mr,d,F .
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Proof of Proposition 4.1. There exists some F such that x ∈ Mr,d,F . Now let the
notation be as above. Then by (4.1)

EndX(p∗Vx) = EndA(Vx).

It now suffices to invoke Lemma 3.2.1. �

5. Homological identities

We recall the basic notions regarding Hochschild cohomology. We state the
definitions for graded algebras since this is the generality which we will need later.
For a comprehensive introduction, see [42].

Let B be a graded k-algebra and let M be a graded B-B-bimodule. Construct
the (graded) Hochschild complex as

Ci(B,M) = Homgr(k)(B
⊗i,M) =

⊕
j

Homk(B⊗i,M)j

where Homk(B⊗i,M)j represents the set of k-multilinear maps B⊗i → M of de-
gree j. The differential is given by

dHoch(f)(r0, . . . , ri) = r0f(r1, . . . , ri)−f(r0r1, . . . , ri)+· · ·+(−1)i−1f(r0, . . . , ri−1ri)

+ (−1)if(r0, . . . , ri−1)ri.

The Hochschild cohomology is defined as

HHi(B,M) = HiC∗(B,M)

and has a decomposition HHi(B,M) =
⊕

j HH
i(B,M)j , where the elements of

HHi(B,M)j are represented by the cocycles of degree j with i arguments.
The Hochschild dimension of a k-algebra B is the projective dimension of B as

an B ⊗k Bop-module. Equivalently, it is the maximum d such that there exists an
B-B-bimodule M with HHd(B,M) 6= 0. If B is a finitely generated field extension
of k, then [31] the Hochschild dimension of B equals its transcendence degree over
k.

In this section we use Hochschild cohomology to compute Ext-groups in base
extended categories. We first recall the following “change of rings” result:

Proposition 5.1. Let C be a k-linear Grothendieck category and let B be a k-
algebra. Then for M,N ∈ D(CB) we have

(5.1) RHomB⊗kB◦(B,RHomC(M,N)) = RHomCB (M,N).

This proposition is an immediate consequence of the following lemma by setting
C = B, P = B:

Lemma 5.2. Let C be a k-linear Grothendieck category, and let B, C be k-algebras.
Then the following identity holds:

(5.2) RHomC⊗kB◦(P,RHomC(M,N)) = RHomCC (P
L
⊗B M,N)

where M ∈ D(CB), N ∈ D(CC), P ∈ D(C ⊗k B◦).
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Proof. We may assume that N is fibrant for the standard model structure on com-
plexes over CC (e.g. [3]) and that P is cofibrant as C⊗kB◦-complex for the projective
model structure on complexes [18]. It easy to see that N is fibrant as a complex
over C and P is cofibrant as a B◦-complex. In that case we must show

HomC⊗kB◦(P,HomC(M,N)) = HomCC (P ⊗B M,N).

where Hom(−,−) denotes the morphism complex. We claim the left and right
hand side are the same complex. It is enough to show this when P,M,N are
objects concentrated in degree zero (with P projective and N injective). In this
case we must show

HomC⊗kB◦(P,HomC(M,N)) = HomCC (P ⊗B M,N).

Since P is projective, we may reduce to the case that P is free, so that P = C⊗kB◦.
Then we must show

HomC⊗kB◦(C ⊗k B◦,HomC(M,N)) = HomCC ((C ⊗k B◦)⊗B M,N),

which is clearly true. �

The following is a useful corollary:

Corollary 5.3. Assuming that M is right bounded and N is left bounded, we get
a convergent spectral sequence

Ep,q2 = HHp(B,ExtqC(M,N))⇒ Extp+qCB (M,N).

Below we will need the following consequence:

Corollary 5.4. Assume that C has global dimension one. Assume furthermore
M,N ∈ CB. Then there is an isomorphism

HH0(B,HomC(M,N)) = HomCB (M,N)

as well as a long exact sequence

HH1(B,HomC(M,N))→ Ext1CB (M,N)→ HH0(B,Ext1C(M,N))→

HH2(B,HomC(M,N))→ Ext2CB (M,N)→ HH1(B,Ext1C(M,N))→

HH3(B,HomC(M,N))→ Ext3CB (M,N)→ HH2(B,Ext1C(M,N))→ .

In particular, if CB also has global dimension one then

(5.3) HH1+i(B,Ext1C(M,N)) ∼= HH3+i(B,HomC(M,N))

for i ≥ 0.

Proof. Writing HHp(Extq) for HHp(B,ExtqC(M,N)), the spectral sequence looks
like

0 0 0 0

HH0(Ext1)

++

HH1(Ext1)

++

HH2(Ext1) HH3(Ext1) . . .

HH0(Ext0) HH1(Ext0) HH2(Ext0) HH3(Ext0) . . .

.

The conclusion easily follows. �
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Finally, here is another corollary we will use.

Corollary 5.5. Assume that there is a k-algebra morphism ρ : C → B. Let N be
in D(C ⊗k B◦). Then there is a canonical isomorphism

RHomB⊗kB◦(B,RHomC(B,N)) = RHomC⊗kC◦(C,N)

where we have considered B as a C ⊗k B◦ module via the map ρ⊗ 1 : C ⊗k B◦ →
B ⊗k B◦.

Proof. We apply (5.1), where C = Mod(C), M = B. In this way we get

RHomB⊗kB◦(B,RHomC(B,N)) = RHomB◦⊗kB(B◦,RHomC(B,N))

= RHomC⊗kB◦(B,N)

= RHomC⊗kC◦(C,N)

The last equality follows from “change of rings” since (C⊗kB◦)
L
⊗C⊗kC◦C = B. �

6. Lifting field actions in the hereditary case

Recall that a k-algebra A is defined to be of finite representation type if there are
finitely many isomorphism classes of indecomposable left A-modules. A is tame if it
is not of finite representation type and if the isomorphism classes of indecomposable
left A-modules in any fixed dimension are almost all contained in a finite number
of 1-parameter families.

Let A be a finite dimensional k-algebra which is either tame or of finite repre-
sentation type and let X/k a smooth projective curve of genus g ≤ 1. Let L/k be
an arbitrary field extension.

The principal application of the results in this section is the fact that the essential
images of the functors

Db(mod(AL))→ Db(Mod(A))L

and
Db(coh(XL))→ Db(Qcoh(X))L

are precisely the objects which have cohomology in mod(AL) ⊂ Mod(AL) =
Mod(A)L in the first case and in coh(XL) ⊂ Qcoh(XL) = Qcoh(X)L in the second
case.

To be consistent with the setup in the introduction, we would have preferred to
talk about mod(A)L instead of mod(AL) and similarly about coh(X)L instead of
coh(XL). Unfortunately, this is incorrect. If C is a Hom-finite abelian category and
L/k is an infinite field extension, then CL contains only the zero object.

In order to be able to describe our results abstractly, we will first discuss a
different notion of base extension for essentially small abelian categories such as
mod(A), coh(X) which behaves in the way we expect.

6.1. Base extension for essentially small abelian categories. Let C be an
essentially small abelian category. The category Ind C is obtained by formally clos-
ing C under direct limits (see e.g. [26, §2.2]). It is well known that Ind C is a
Grothendieck category and, furthermore, C can be recovered as Fp Ind C, the cate-
gory of finitely presented objects in Ind C.

A Grothendieck category is said to be locally coherent if it is locally finitely
presented (that is: generated by its finitely presented objects) and the finitely
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presented objects form an abelian subcategory. Thus Ind C is locally coherent.
Conversely, if D is a locally coherent Grothendieck category then D ∼= Ind FpD.

Now assume that C is in addition k-linear, and let B be a k-algebra. If C ∈ C,
then B ⊗k C is finitely presented in (Ind C)B , and hence (Ind C)B is locally finitely
presented. Set

C[B] = Fp((Ind C)B).

In good cases, C[B] will be abelian (or equivalently: (Ind C)B will be locally coher-
ent). Here are some typical examples:

Example 6.1.1. (1) IfX is a k-scheme of finite type, then coh(X)[L] = coh(XL)
for L/k an arbitrary field extension.

(2) If A a finite dimensional k-algebra, then mod(A)[L] = mod(AL).

We need to extend this notion of base extension to the derived setting. Assuming
that C[B] is abelian, we will define Db(C)[B] as the full subcategory of Db(Ind C)B
whose objects have cohomology in C[B]. Thus we have a 2-Cartesian commutative
diagram

(6.1) Db(C[B])

[F ]

��

� � // Db((Ind C)B)

F

��
Db(C)[B]

� � // Db(Ind C)B

The full faithfulness of the lower horizontal arrow is by definition, whereas the full
faithfulness of the upper arrow is an application of [26, Prop. 2.14], which asserts
that for an essentially small abelian category D the natural functor

Db(D)→ Db(IndD)

is fully faithful (and its essential image is Db
D(IndD)). We apply this result with

D = C[B] since then by construction we have IndD = Ind Fp((Ind C)B) ∼= (Ind C)B .

6.2. General discussion. Let D be a k-linear hereditary category, i.e. an abelian
category of global dimension one, and let L/k be a field extension. Let Z ∈ Db(D)L.
In Db(D) we have Z ∼=

⊕
i s
iH−i(Z), where s denotes the shift functor. Thus

EndD(Z) is given by lower triangular matrices
. . . . . . . . . . . . . . .
. . . EndD(H

−i+1(Z)) 0 0 . . .
. . . Ext1D(H

−i+1(Z), H−i(Z)) EndD(H
−i(Z)) 0 · · ·

. . . 0 Ext1D(H
−i(Z), H−i−1(Z)) EndD(H

−i−1(Z)) · · ·
. . . . . . . . . . . . . . .


Similarly ExtjD(Z,Z) is given by
(6.2)
. . . . . . . . . . . . . . .
. . . HomD(H

−i+1(Z), H−i+1−j(Z)) 0 0 . . .
. . . Ext1D(H

−i+1(Z), H−i−j(Z)) HomD(H
−i(Z), H−i−j(Z)) 0 · · ·

. . . 0 Ext1D(H
−i(Z), H−i−1−j(Z)) EndD(H

−i−1(Z), H−i−1−j(Z)) · · ·
. . . . . . . . . . . . . . .


The L-bimodule structure on ExtjD(Z,Z) is given by its action on Z, i.e. by its
morphism L→ EndD(Z).
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Definition 6.2.1. Let C be an essentially small k-linear abelian category which
satisfies the following additional conditions for every field extension L/k:

(E1) C[L] is abelian.
(E2) Every object in C[L] is a direct sum of indecomposable objects.

We say that C is of essential dimension ≤ d if every indecomposable object V in C[L]
with L algebraically closed can be defined over a finitely generated field extension
of k of transcendence degree ≤ d. More precisely, there exists a finitely generated
L0/k such that trdegk L0 ≤ d and V0 ∈ C[L0] such that V ∼= L⊗L0 V , where −⊗L0 V
is the unique finite colimit preserving functor such that L0⊗L0V = V . The minimal
such d valid for all V is called the essential dimension ess C of C. If such d does not
exist then ess C =∞.

Note that (E2) holds if C[L] is Hom-finite.

Remark 6.2.2. • If C = mod(A), where A is a finite dimensional hereditary
k-algebra, then it follows from the classification of indecomposable rep-
resentations for Dynkin and extended Dynkin quivers [14, 34] as well as
the existence of arbitrarily large moduli spaces in the other cases (e.g.
Proposition 3.5.9) that ess C = 0, 1,∞ depending on whether C is of finite
representation type, tame or wild.
• If C = coh(X), where X is a projective smooth curve/k, then it follows from

the Grothendieck classification of indecomposable coherent sheaves on P1

and the corresponding (much harder) classification by Atiyah for elliptic
curves, as well as the existence of arbitrarily large moduli spaces in the
other cases (e.g. §4), that ess C is 1 if X is P1 or an elliptic curve and ∞
otherwise.
• It is not clear to us if there can be examples with ess C strictly bigger than 1

but finite. In the standard algebraic and geometric cases this is probably
excluded by the tame-wild dichotomy.

Theorem 6.2.3. Let C be an essentially small k-linear abelian category satisfying
(E1)(E2) above, and assume in addition that Ind C is hereditary. Consider the usual
forgetful functor [F ] : Db(C[L])→ Db(C)[L] for an arbitrary field field extension L/k.

• If C has essential dimension ≤ 2, [F ] is essentially surjective.
• If C has essential dimension ≤ 1, [F ] is in addition full.
• If C has essential dimension 0, [F ] is an equivalence of categories.

Proof. The three parts of the theorem are similar, so we will only prove the first
assertion. Assume thus ess C ≤ 2.

Set D = Ind C and let Z ∈ Db(C)[L] ⊂ Db(D)L. By (6.1) it is sufficient to prove

that Z is in the essential image of Db(DL).

The lower triangular structure of the matrix (6.2) equips ExtjD(Z,Z) in a natural
way with a two-step filtration stable under the left and right EndD(Z)-action.

Hence ExtjD(Z,Z) is a two-step filtered L-bimodule and the associated quotients
are sums of

ExtlD(U, V )

where U, V are among the Hi(Z). In particular U, V are objects in C[L].
To prove essential surjectivity, we have to show the vanishing of

HHn(L,Ext−n+2
D (Z,Z))
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for n ≥ 3 (see Proposition 10.1.1 below). Using the above filtration, it is sufficient
to show the vanishing of

(6.3) HHn(L,ExtlD(U, V ))

for all l, n ≥ 3 and for U, V ∈ C[L]. Let L̄ be the algebraic closure of L. We have

HHn(L̄,ExtlD(L̄⊗L U, L̄⊗L V )) = HHn(L̄,HomL(L̄,ExtlD(U, L̄⊗L V )))

= HHn(L,ExtlD(U, L̄⊗L V ))) (Corollary 5.5).

Since V is a direct summand of L̄ ⊗L V , it suffices to prove that (6.3) vanishes in
the case that L is algebraically closed. It is clear that we may assume in addition
that U, V are indecomposable. Since ess C ≤ 2 we may write U = L⊗L0

U0 where
L0/k is a finitely generated field extension of transcendence degree at most two and

U0 is in DL0
. We then find ExtlD(U, V ) = HomL0

(L,ExtlD(U0, V )) and so

HHn(L,ExtlD(U, V )) = HHn(L,HomL0
(L,ExtlD(U0, V )))

= HHn(L0,ExtlD(U0, V )) (Corollary 5.5)

= 0 (since n ≥ 3) �

7. Counterexamples to lifting in the hereditary case

In this section we prove a non-lifting theorem in the hereditary case. In contrast
to the previous section we use standard base extension for abelian categories as
defined in the introduction.

Proposition 7.1. Let either C be Mod(kQ) with Q be a connected finite “wild”
quiver (i.e. Q is not Dynkin or extended Dynkin) or else C be Qcoh(X) with X a
curve of genus ≥ 2. Then there exists a finitely generated field extension L/k of
transcendence degree 3 together with an object Z ∈ Db(C)L which is not a direct
summand of an object in the essential image of the forgetful functor F : Db(CL)→
Db(C)L. We may in addition assume that the cohomology of Z lies in mod(kQL)
or coh(XL), depending on the situation.

The proof will occupy the rest of this section. For simplicity we will assume
that Q is not the quiver with one vertex and two loops, as this case needs a more
general argument which we will give in Appendix A.

We first give a necessary and sufficient condition for an object in Db(C)L to be
in the essential image of F assuming that, after forgetting the L-action, it has the
form Z = U ⊕ sV ∈ Db(C) for U, V ∈ C. We do this by specializing the general
formulas from §6.2. We have

Λ
def
= EndC(Z) =

(
EndC(U) 0

Ext1C(U, V ) EndC(V )

)
.

An L-action on Z is a k-algebra morphism

φ : L→ Λ.

We may write

φ =

(
φ11 0
φ21 φ22

)
where φ11, φ22 represent an action of L on U and V respectively, so that (U, φ11)
and (V, φ22) are in CL. We will denote by (Z, φ) the corresponding object of Db(C)L.
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The condition that φ is compatible with multiplication yields(
φ11(l1l2) 0
φ21(l1l2) φ22(l1l2)

)
=

(
φ11(l1) 0
φ21(l1) φ22(l1)

)(
φ11(l2) 0
φ21(l2) φ22(l2)

)
=

(
φ11(l1)φ11(l2) 0

φ22(l1)φ21(l2) + φ21(l1)φ11(l2) φ22(l1)φ22(l2)

)
In other words,

φ21 : L→ Ext1C(U, V )

must be a k-derivation for the L-bimodule structure on Ext1C(U, V ) obtained from
the L-structures on U and V .

Lemma 7.2. (Z, φ) as above is in the essential image of F if and only if φ21 is
trivial in

HH1(L,Ext1C(U, V )).

Proof. We will write φtriv for the trivial action on Z coming from the given L-action
on U , V (so that φ21 = 0).

Assume that (Z, φ) is in the essential image of F . In other words, there exists
Y ∈ Db(CL) such that

(7.1) (Z, φ) ∼= FY.

Since C is either Mod(kQ) or Qch(X), CL is of the same type (e.g. Mod(kQ)L =
Mod(LQ)), hence it is hereditary as well and we have in Db(CL)

Y ∼=
⊕
n

snH−n(Y ).

Furthermore, in CL we have

H−n(Y ) = H−n(Z) =


U if n = 0

V if n = 1

0 otherwise.

Thus Y , considered as an element of Db(C)L, is precisely (Z, φtriv). In other words
(Z, φ) ∼= FY for some Y ∈ Db(CL) iff there is an isomorphism in Db(C)L
(7.2) π : (Z, φ) ∼= (Z, φtriv).

We may view π as a unit in Λ, and the condition that π is compatible with the
L-action may be expressed as

πφ(l) = φtriv(l)π

for all l ∈ L, i.e.

(7.3) φ(l) = π−1φtriv(l)π.

We now write all conditions explicitly: we have

φ =

(
φ11 0
φ21 φ22

)
φtriv =

(
φ11 0
0 φ22

)
π =

(
π11 0
π21 π22

)
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π−1 =

(
π−111 0

−π−122 π21π
−1
11 π−122

)
and condition (7.3) translates into(

φ11 0
φ21 φ22

)
=

(
π−111 φ11π11 0

−π−122 π21π
−1
11 φ11π11 + π−122 φ22π21 π−122 φ22π22

)
which yields

π11φ11 = φ11π11

π22φ22 = φ22π22

φ21 = −π−122 π21π
−1
11 φ11π11 + π−122 φ22π21.

Taking into account the commutation relation given by the first two relations, the
last one can be written as

φ21 = φ22(π−122 π21)− (π−122 π21)φ11.

In other words, the existence of π implies that φ21 is an inner derivation, which
means precisely that φ21 is a coboundary in the Hochschild complex. It is easy to
see that this implication is reversible. �

Lemma 7.3. If (Z, φ) ∈ Db(C)L as above is not in the essential image of F , then
it is also not a direct summand of an object in the essential image of F .

Proof. Assume that (Z, φ) is not in the essential image of F but there exist W ∈
Db(C)L, Y ∈ Db(CL) such that

(7.4) (Z, φ)⊕W ∼= FY.

Note that the truncation functors τ≤i, τ≥i commute with F . Applying τ≤0τ≥−1
to (7.4) we obtain the existence of objects (Z ′, φ′) ∈ Db(C)L (Z ′ = U ′ ⊕ sV ′,
U ′, V ′ ∈ C), Y ′ ∈ Db(CL) such that (Z ⊕ Z ′, φ + φ′) ∼= FY ′. This means that
φ21 +φ′21 is zero in HH1(L,Ext1C(U ⊕U ′, V ⊕V ′)). However, it is clear that φ21 and
φ′21 land in different summands of HH1(L,Ext1C(U ⊕ U ′, V ⊕ V ′)). So this implies
φ21 = 0, which is in contradiction with the fact that (Z, φ) is not in the essential
image of F . �

Proof of Proposition 7.1. Now we recall that by (5.3) we have

HH1(L,Ext1C(U, V )) ∼= HH3(L,HomC(U, V )).

Let C0,L = mod(kQL) or coh(XL), depending on whether C is equal to Mod(kQ)
or Qcoh(X). To construct Z as in the statement of the proposition, it suffices by
Lemmas 7.2 and 7.3 to find L and U, V ∈ C0,L such that HH3(L,HomC(U, V )) 6= 0.
We will in fact produce a finitely generated field extension L/k of transcendence
degree 3 and U ∈ C0,L such that EndC(U) = L, and let V = U . This will do what
we want by the Hochschild-Kostant-Rosenberg theorem [17].

Let us first consider the case C = Mod(kQ), Q not the two-loop quiver. Choose
α indivisible, and in the fundamental region as in Proposition 3.5.9, such that
dimMα,λ,Q ≥ 3. Let x be the generic point of a three dimensional irreducible
subvariety of Mα,λ,Q, and put L = k(x). Let U = Vx as in Proposition 3.5.2. Then
according to (3.3) we have indeed EndkQ(U) = L.

Next consider C = Qcoh(X). We choose r, d, gcd(r, d) = 1 such that dimMr,d ≥
3. Then we proceed as in the case C = Mod(kQ), but now using Proposition 4.1. �
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8. Counterexamples to lifting in the geometric case

In this section we will prove the following result:

Theorem 8.1. Let Y/k be a smooth connected projective variety which is not a
point, a projective line or an elliptic curve. Then there exists a finitely gener-
ated field extension L/k of transcendence degree 3 together with an object Z ∈
Db(Qcoh(Y ))L which is not a direct summand of an object in the essential image
of the forgetful functor F : Db(Qcoh(Y )L)→ Db(Qcoh(Y ))L. We may in addition
assume that the cohomology of Z lies in coh(YL).

Proof. If Y is a curve then this follows from Proposition 7.1, so we may assume
dimY ≥ 2. We start by considering the case Y = Pd, d ≥ 2. Put T = OY ⊕OY (1)
and A = EndY (T )◦. Then T is a partial tilting object and we have functors

Db(Mod(A))
T
L
⊗A−−−−−→
i

Db(Qcoh(Y ))
RHomY (T,−)−−−−−−−−−→

j
Db(Mod(A))

such that ji is the identity. We can define analogous functors, also denoted by i
and j, on Db(Mod(AL)), Db(Mod(A)L), etc., and i, j commute with the functor
F . Now A is the path algebra of a Kronecker quiver with d+ 1 ≥ 3 arrows, and so
according to Proposition 7.1 there exists a finitely generated field extension L/k of
transcendence degree three and an object Z0 ∈ Db(Mod(A))L with cohomology in
mod(AL) which is not a direct summand of the image of an object in Db(Mod(A)L).
Put Z1 = i(Z0) ∈ Db(Qcoh(Y ))L. Clearly Z1 has cohomology in coh(YL). If there
exists Z ′ ∈ Db(Qcoh(Y ))L, Y ∈ Db(Qcoh(Y )L) such that Z1 ⊕ Z ′ = FY , then
applying j we get Z0 ⊕ j(Z ′) = F (j(Y )) in Db(Mod(A)L), which we had excluded.
This finishes the proof in the case Y = Pd.

Now let Y be general, choose a finite (necessarily flat) map π : Y → Pd,
and let Z1 ∈ Db(Qcoh(Pd))L be as above. Set Z = π∗Z1. If there exists Z ′ ∈
Db(Qcoh(Y ))L, Y ∈ Db(Qcoh(Y )L) such that Z ⊕ Z ′ = FY then applying Rπ∗
we get Rπ∗π

∗Z1 ⊕ Rπ∗Z ′ = F (Rπ∗Y ). Now Rπ∗π
∗Z1 = π∗OY ⊗OPd

Z1 and OPd

is a direct summand of π∗OY in coh(Pd) (by the trace map). Hence Z1 is a direct
summand of Rπ∗π

∗Z1 in Db(Qcoh(Pd))L, and thus Z1 is also a direct summand of
F (Rπ∗Y ) in Db(Qcoh(Pd))L. This is a contradiction with the choice of Z1. �

Example 8.2. Assume that Y = P3
k, L = k(x, y, z) and let p : P3

L → P3
k be

obtained by base extension of the structure map SpecL→ Spec k. If we construct
Z0 using the object Vη in Example 3.5.6 (see the proof of Proposition 7.1) then we
find that, after forgetting the L-structure, Z ∼= p∗R⊕ p∗sR, where R is given by

cone(OP3
L

(−1)3
(Tx−X,Ty−Y,Tz−Z)−−−−−−−−−−−−−−→ OP3

L
)

and T,X, Y, Z are homogeneous coordinates on P3.

9. Non-Fourier-Mukai functors

Below X, Y are smooth connected projective schemes over k, although we could
get by with substantially less. Let iη : η → X be the generic point and let L = k(η)
be the function field of X. Assume that Db(Qcoh(Y ))L contains an object Z
which is not in the essential image of Db(Qcoh(Y )L). Define the exact functor
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Ψ̃ : D(Qcoh(X))→ D(Qcoh(Y )) as the composition

Ψ̃ : D(Qcoh(X))
i∗η // D(L)

ψ // D(Qcoh(Y ))

where ψ : D(L) −→ D(Qcoh(Y )) is the unique additive functor commuting with
shifts and coproducts which sends L to Z, and is determined on morphisms by
the structure of Z as an L-object. This functor is exact, because L is a field. By
construction, Ψ̃ commutes with coproducts. Let Ψ : Perf(X) → Db(Qcoh(Y )) be

the restriction of Ψ̃ to Perf(X) = Db(coh(X)).

Theorem 9.1. The functor

Ψ : Perf(X)→ Db(Qcoh(Y ))

as defined above is not the restriction of a Fourier-Mukai functor D(Qcoh(X)) →
D(Qcoh(Y )) associated to an object in D(Qcoh(X × Y )).

Taking Y , Z, L as in Theorem 8.1, and letting X be a smooth projective model
for L, i.e. such that K(X) = L, gives a counterexample to Proposition A in the
introduction if we drop the condition that Ψ is fully faithful. By taking Z as in
Example 8.2 we get a counterexample where X = Y = P3.

We will give the proof of Theorem 9.1 below, after some preparatory lemmas.

Lemma 9.2. Assume that

Φ : D(Qcoh(X))→ D(Qcoh(Y ))

is an exact functor, commuting with coproducts, whose restriction to Perf(X) is

naturally equivalent to Ψ. Then Φ is naturally equivalent to Ψ̃.

Proof. We first claim that Φ factors uniquely as

(9.1) D(Qcoh(X))
i∗η−→ D(L)

φ−→ D(Qcoh(Y )),

where φ is an exact functor commuting with coproducts. To see this note that the
first arrow i∗η is a Verdier localization at the the full subcategory C of D(Qcoh(X))
spanned by objectsM such that i∗ηM = 0. We claim that C is generated by objects
which are compact in D(Qcoh(X)) (i.e. perfect complexes).

By following the inductive procedure of the proof of [28, Prop. 2.5] (also [4,
Thm 3.1.1]) one reduces this claim to the case that X = SpecR. In that case
D(Qcoh(X)) = D(R) and L is the quotient field of R. The complexes M(s) =

R
s×−−→ R, s ∈ R − {0} are generators for the kernel of D(R)

L⊗R−−−−−→ D(L). Indeed
if N is in this kernel and is right orthogonal to all shifts of all M(s) for s ∈ R−{0}
then for all such s and all i the map Hi(N)

s×−−→ Hi(N) is an isomorphism. On
the other hand since Hi(N) is annihilated by L, a non-zero element of Hi(N) is
annihilated by some s ∈ R − {0} which impossible. Thus Hi(N) = 0 for all i and
hence N = 0.

Since the restriction of Φ to the perfect complexes in C is equal to Ψ and since
Ψ annihilates such complexes and furthermore since Φ preserves coproducts, Φ
vanishes on C. Thus the asserted factorization (9.1) follows.

Thus it suffices to prove that ψ and φ are naturally equivalent, given that we
know that ψ ◦ i∗η and φ◦ i∗η are naturally equivalent when restricted to Perf(X). For
this we must show that ψ(L) and φ(L) are isomorphic as L-objects in D(Qcoh(Y )).
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Now we have L = i∗η(OX), and so

ψ(L) = (ψ ◦ i∗η)(OX) ∼= (φ ◦ i∗η)(OX) = φ(L).

So we certainly have an isomorphism σ : ψ(L) ∼= φ(L) in D(Qcoh(Y )). To prove
that this isomorphism is compatible with the L-structure, we observe that any map
f : L→ L is of the form i∗η(g)◦ i∗η(h)−1 where g, h are morphisms OX(−nE)→ OX
with E an ample divisor and h non-zero. Thus we get a diagram

(9.2) ψ(L)

σ

++

ψ(f)

��

(ψ ◦ i∗η)(OX)
∼= //

(ψ◦i∗η)(h)
−1

��

(φ ◦ i∗η)(OX)

(φ◦i∗η)(h)
−1

��

φ(L)

φ(f)

��

(ψ ◦ i∗η)(OX(−nE))
∼= //

(ψ◦i∗η)(g)
��

(φ ◦ i∗η)(OX(−nE))

(φ◦i∗η)(g)
��

ψ(L)

σ

33(ψ ◦ i∗η)(OX) ∼=
// (φ ◦ i∗η)(OX) φ(L)

where:

(1) the leftmost rectangle is commutative, since it is obtained by applying ψ
to f = i∗η(g) ◦ i∗η(h)−1;

(2) the rightmost rectangle is commutative for the same reason;
(3) the lower middle rectangle is commutative, since it is obtained from the

natural isomorphism ψ ◦ i∗η ∼= φ ◦ i∗η;
(4) the upper middle rectangle is commutative, since it is obtained from in-

verting the vertical arrows in the commutative diagram

(ψ ◦ i∗η)(OX)
∼= // (φ ◦ i∗η)(OX)

(φ ◦ i∗η)(OX(−nE))

(ψ◦i∗η)(h)

OO

∼=
// (φ ◦ i∗η)(OX(−nE)).

(φ◦i∗η)(h)

OO

It follows that the outer rectangle in (9.2) is commutative, and hence σ is indeed
compatible with the L-structure. �

Lemma 9.3. Assume that

Φ : D(Qcoh(X))→ D(Qcoh(Y ))

is a Fourier-Mukai functor. Then the L object (Φ ◦ iη∗)(L) in D(Qcoh(Y )) lies in
the essential image of F : D(Qcoh(Y )L)→ D(Qcoh(Y ))L.

Proof. Assume that Φ is isomorphic to the Fourier-Mukai functor ΦV with kernel

V ∈ D(Qcoh(X × Y )), i.e. ΦV = Rp2∗(V
L
⊗ Lp∗1(·)). Consider the object Vη ∈

D(Qcoh(SpecL × Y )) given by Vη = (iη × id)∗V . Below we show that there is a
natural isomorphism

(9.3) ΦV ◦ iη∗ ∼= ΦVη

as functors D(L)→ D(Qcoh(Y )).
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So it suffices to show that the L object ΦVη (L) = Rp2∗Vη in D(Qcoh(Y )) lies in
the essential image of F . Now there is a canonical identification c : Qcoh(SpecL×
Y ))→ Qcoh(Y )L which fits in a commutative diagram

D(Qcoh(SpecL× Y ))

c

��

Rp2∗ // D(Qcoh(Y ))L

D(Qcoh(Y )L)
F

// D(Qcoh(Y ))L.

Thus we find Rp2∗Vη = F (cVη) which proves what we want.

Now we verify (9.3). Consider the morphisms

D(Qcoh(X × Y ))

Rp2∗

��

D(Qcoh(SpecL× Y ))

R(iη×id)∗

OO

Rp2∗

$$
D(Qcoh(X))

Lp∗1

44

D(L)

Lp∗1
55

iη∗oo D(Qcoh(Y ))

.

We have

(ΦV ◦ iη∗)(−) = Rp2∗(Lp
∗
1(iη∗(−))

L
⊗ V )

= Rp2∗((iη × id)∗(Lp
∗
1(−))

L
⊗ V )

= Rp2∗(iη × id)∗(Lp
∗
1(−)

L
⊗ (iη × id)∗V )

= Rp2∗(Lp
∗
1(−)

L
⊗ (iη × id)∗V )

= ΦVη (−)

The second equality is flat base change for p1 : X × Y → X. The third equality is
the projection formula [24, Prop. 3.9.4] for iη × id. �

Proof of Theorem 9.1. Assume that that Ψ is the restriction of a Fourier-Mukai

functor Φ : D(Qcoh(X))→ D(Qcoh(Y )). According to Lemma 9.2 we have Φ ∼= Ψ̃.

According to Lemma 9.3 (Φ ◦ iη∗)(L) ∼= (Ψ̃ ◦ iη∗)(L) is in the essential image of

D(Qcoh(Y ))L. But since (Ψ̃ ◦ iη∗)(L) = (ψ ◦ i∗η ◦ iη∗)(L) = ψ(L) = Z, this is a
contradiction. �

10. Lifting using A∞-actions

From now on we only assume that k is a field. We will prove Proposition B
stated in the introduction. The results from this section were also used in the proof
of Theorem 6.2.3. For the benefit of the reader we will provide some preliminary
material concering A∞-actions.
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10.1. Introduction. A graded category A is a category enhanced in the cate-
gory of graded k-vector spaces. To stress the grading we will sometimes write
HomA(−,−) to denote the Hom-spaces. We denote the part of degree zero of
HomA(−,−) by HomA(−,−).

Let C be a k-linear Grothendieck category. The category of complexes over C
(denoted by C(C)) is a DG-category, and, in particular, a graded category. To
simplify the notation we write HomC for HomC(C) to denote the morphism complex,

and similarly for HomC for HomC(C). Let B be a DG-algebra over k (at first reading
one may assume that B is just an algebra, concentrated in degree zero). We define
the DG-category C(B, C) as the category of pairs (M,ρM ), where M ∈ C(B, C)
and ρM : B → HomC(M,M) is a DG-algebra morphism giving the B-action on M .
We put

D(B, C) = Z0(C(B, C))[Qis−1].

The construction of D(B, C) represents no set-theoretic difficulties since it may
be obtained from a model structure on C(B, C) [25, Prop. 5.1]4. D(B, C) can be
identified with D(CB) when B is concentrated in degree zero.

If A is an arbitrary graded category and B is a graded k-algebra, we may define
the category AB whose objects are the objects in A equipped with a B-action.

Let us go back to the case of a DG-algebra B over k. There is an obvious functor

F : D(B, C)→ D(C)H∗(B),

where H∗(B) is the graded k-algebra ⊕i∈ZHi(B), with the multiplication induced
by the multiplication on B. The functor F is obtained by noticing that ρM : B →
HomD(C)(M,M) factors through H∗(B) since coboundaries are homotopic to zero.

Below we give proofs of the following results:

Proposition 10.1.1. Let M ∈ D(C)H∗(B) be such that for n ≥ 3

HHn(H∗(B),Ext∗C(M,M))−n+2 = 0.

Then there exists an object M̃ in D(B, C) together with an isomorphism F (M̃) ∼= M
in D(C)H∗(B).

Proposition 10.1.2. Let M,N ∈ D(B, C) be such that for n ≥ 2

HHn(H∗(B),Ext∗C(M,N))−n+1 = 0.

Then the map

HomD(B,C)(M,N)→ HomD(C)H∗(B)
(FM,FN)

is surjective.

Proposition 10.1.3. Let M,N ∈ D(B, C) be such that for n ≥ 1

HHn(H∗(B),Ext∗C(M,N))−n = 0.

Then the map

HomD(B,C)(M,N)→ HomD(C)H∗(B)
(FM,FN)

is injective.

These results imply Proposition B in the introduction.

10.2. Reminder on A∞-algebras and morphisms.

4The proof of this result is based on [3].
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10.2.1. A∞-algebras. LetA be a graded vector space. We denote by BA =
⊕

n≥1(sA)⊗n

the tensor coalgebra (without counit) of sA. Sometimes we write sa1⊗ · · · ⊗ san ∈
BA as a tuple (sa1, . . . , san). With this convention, the comultiplication is given
by

∆(sa1, . . . , san) =

n−1∑
i=1

(sa1, . . . , sai)⊗ (sai+1, . . . , san).

By definition, an A∞-structure on A is given by a (graded) coderivation b : BA→
BA of degree 1 and square zero. Thus

∆ ◦ b = (b⊗ id + id⊗b) ◦∆

b2 = 0

The coderivation b is determined by its Taylor coefficients (bn)n≥1, which are the
compositions

(sA)⊗n
inclusion−−−−−→ BA b−→ BA projection−−−−−−→ sA.

The fact that b is a coderivation implies

b =
∑

p,q,r≥0

id⊗p⊗bq ⊗ id⊗r .

Corresponding to the bn we have the more traditional operations

mn : A⊗n → A

of degree 2− n, which are related to the bn by the formula

bn = s−n+1mn.

Explicitly, in the cases n = 1 and n = 2

(10.1)
b1(sa) = −sm1(a)

b2(sa, sb) = (−1)|a|sm2(a, b).

A DG-algebra is the same as an A∞-algebra with bn = 0 for n ≥ 3.

10.2.2. A∞-morphisms. If A, C are A∞-algebras, an A∞-morphism ψ : A → C
is by definition a graded coalgebra morphism ψ : BA → BC commuting with the
differentials. Thus

∆ ◦ ψ = (ψ ⊗ ψ) ◦∆

bC ◦ ψ = ψ ◦ bA
Again ψ is determined by its Taylor coefficients (ψn)n≥1, which are the compositions

(sA)⊗n
inclusion−−−−−→ BA ψ−→ BC projection−−−−−−→ sC.

This time we have
ψ =

∑
r,n1,...,nr

ψn1
⊗ ψn2

⊗ · · · ⊗ ψnr .

There are no sign issues since all ψn have degree zero. For this reason we will
identify ψ1 : sA→ sC with a map ψ1 : A→ C (thus ψ1(sa) = sψ1(a)).
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10.2.3. A∞-modules. We will define A∞-modules over a k-linear Grothendieck cat-
egory C, which we fix throughout. If A is an A∞-algebra, an A∞-A-module in
C(C) is an object M ∈ C(C) together with an A∞-morphism A → HomC(M,M).
Alternatively, define

BM = (BA)+ ⊗kM,

where (−)+ means adjoining a counit: (BA)+ = ⊕n≥0(sA)⊗n and ∆(sa1, . . . , san) =∑n
i=0(sa1, . . . , sai)⊗(sai+1, . . . , san) where empty parentheses are to be interpreted

as 1. Then BM is a left BA-comodule via

∆M (sa1, . . . , san,m) =

n∑
i=1

(sa1, . . . , sai)⊗ (sai+1, . . . , san,m)

and an A∞-structure on M is given by a BA coderivation bM on BM of degree one
and square zero. Thus bM satisfies

∆M ◦ bM = (bA ⊗ id + id⊗bM ) ◦∆M

b2M = 0

Needless to say, bM is again determined by its Taylor coefficients, which are mor-
phisms

bM,n : (sA)⊗n−1 ⊗kM →M

in C(C). We have

bM =
∑

p,q,r≥0

id⊗pA ⊗bA,q ⊗ id⊗rA ⊗ idM +
∑
m,n≥0

id⊗mA ⊗bM,n.

We denote the category of A∞-A-modules in C(C), with morphisms given by mor-
phisms of complexes, by Cstrict

∞ (A, C). It is easy to see that this is a Grothendieck
category.

10.2.4. A∞-morphisms between A∞-modules. LetA be anA∞-algebra and letM,N ∈
C(C) be two A∞-A-modules in C. An A∞-morphism ψ : M → N is a comodule
morphism of degree zero ψ : BM → BN satisfying bN ◦ψ = ψ◦bM . Thus ψ satisfies

∆ ◦ ψ = (id⊗ψ) ◦∆.

This time, the Taylor coefficients are

ψn : (sA)⊗n−1 ⊗kM → N

and ψ is given by

ψ =
∑
p,q≥0

id⊗p⊗ψq.

We denote the category of A∞-A-modules in C(C) equipped with A∞-morphisms
by C∞(A, C).

A homotopy between A∞-morphisms ψ1, ψ2 : M → N is a comodule morphism
h : BM → BN of degree −1 such that ψ1 − ψ2 = bN ◦ h+ h ◦ bM .
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10.2.5. Units. Let A be an A∞-algebra. We say that A has a homological unit if
H∗(A) has a unit element 1A. Let M ∈ C∞(A, C). We say that M is homologically
unital if 1A acts as the identity on H∗(M). All constructions for A∞-algebras
outlined above have a unital analogue in which we require that on the level of
cohomology the units behave as expected. We write Chu,strict

∞ (A, C), Chu
∞ (A, C) for

the corresponding categories. Furthermore we put

Dstrict
∞ (A, C) = Chu,strict

∞ (A, C)[Qis−1]

D∞(A, C) = Chu
∞ (A, C)[Qis−1]

It follows in the usual way that homotopic maps ψ1, ψ2 : M → N in C∞(A, C) yield
equal maps in Dstrict

∞ (A, C) and D∞(A, C).

Lemma 10.2.1. Let A be a DG-algebra. Then the natural functors

D(A, C)→ Dstrict
∞ (A, C)(10.2)

D(A, C)→ D∞(A, C)(10.3)

are equivalences of categories.

Proof. The proof in the strict and non-strict cases is the same, so we consider only
(10.3). If C is the category of k-vector spaces and we restrict ourselves to so-called
“strictly unital”5 modules, this is [23, Lemme 4.1.3.8]. The proof in loc. cit. goes
more or less through in our setting. The first step is the definition of a functor

A⊗∞A − : C∞(A, C)→ C(A, C).
This definition is given in [23, Lemme 4.1.1.6]. The next step is to prove that
A⊗∞A − yields a quasi-inverse to (10.3) after inverting quasi-isomorphisms. This is
part of the proof of [23, Lemme 4.1.1.6]. Ultimately it reduces to (the well-known)
Lemma 10.2.2 below. �

Lemma 10.2.2. Assume that A is a homologically unital A∞-algebra and M ∈
Chu
∞ (A, C). Then BM is acyclic.

Proof. The fact that BM is acyclic is proved in [23, Lemme 4.1.1.6], under the
hypothesis that A and M are “strictly unital”, by providing an explicit contracting
homotopy. If we only assume that A,M are homologically unital then we cannot
use this argument.

So we proceed differently. We have to show that H∗(BM) = 0. We define an
ascending filtration on BM

FnBM =
⊕
m≤n

(sA)⊗m ⊗M

and we consider the resulting spectral sequence. One checks that the first page of
this spectral sequence is

BH∗(M)

where we consider H∗(M) as an A∞-module over H∗(A) with bi = 0 for i 6= 2. Since
H∗(A) has a true unit and H∗(M) is truly unital, it is well-known that BH∗(M)
is acyclic (for example by using contracting homotopy given in the proof of [23,
Lemme 4.1.1.6] alluded to above). �

5An A∞-module is strictly unital if bM,n, with n ≥ 2, vanishes as soon as one of the arguments

is 1 and b2,M (idM ⊗ 1A) = idM where η is the unit of A.
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10.3. Proof of Proposition 10.1.1.

Lemma 10.3.1. Let A,C be two A∞-algebras over k and let φ : A → C be a k-
linear map commuting with the differentials m1 such that H∗(φ) : H∗(A)→ H∗(C)
is a graded algebra morphism. Assume that for all n ≥ 3 we have

HHn(H∗(A), H∗(C))−n+2 = 0.

Then there exists an A∞-morphism ψ : A→ C such that ψ1 = φ.

Proof. This is close to the obstruction theory in [23, Appendix B.4] for minimal
A∞-algebras. Rather than reducing to it by invoking the fact that any A∞-algebra
is A∞-homotopy equivalent to a minimal one, we give a simple direct proof for the
benefit of the reader.

We will construct ψ step by step. We first put ψ1 = φ. φ is compatible with the
multiplications on A and C up to a homotopy, which we take to be −ψ2. Thus

(10.4) bC,2 ◦ (ψ1 ⊗ ψ1)− ψ1 ◦ bA,2 = −bC,1 ◦ ψ2 + ψ2 ◦ (bA,1 ⊗ id + id⊗bA,1).

Assume that we have constructed ψ1, . . . , ψn. Let ψ≤n : BA→ BC be the coalgebra
map such that

(ψ≤n)i =

{
ψi i = 1, . . . , n

0 otherwise

Assume furthermore that

(10.5) bC ◦ ψ≤n = ψ≤n ◦ bA restricted to (sA)⊗i for 1 ≤ i ≤ n.
It follows from (10.4) that we have already achieved this for n ≤ 2.

Our aim is to construct ψn+1 such that bC ◦ ψ≤n+1 = ψ≤n+1 ◦ bA when re-
stricted to (sA)⊗i for 1 ≤ i ≤ n+ 1. Before we start, we warn the reader that the
construction of ψn+1 will involve changing ψn.

Consider

(10.6) D = bC ◦ ψ≤n − ψ≤n ◦ bA.
Then D : BA → BC is a ψ≤n coderivation of degree 1. By construction we have
Dm = 0 for m = 1, . . . , n. Moreover, it is clear that we have

(10.7) bC ◦D +D ◦ bA = 0.

Evaluating (10.7) on (sA)⊗n+1, we find

bC,1 ◦Dn+1 +Dn+1 ◦ (
∑

p+r=n

id⊗p⊗bA,1 ⊗ id⊗r) = 0,

or succinctly

(10.8) [b1, Dn+1] = 0.

Here [b1,−] is our notation for the differential on Homk((sA)⊗n+1, sC) induced by
bA,1 and bC,1.

We now evaluate (10.7) on (sA)⊗n+2. We get

bC,1 ◦Dn+2 + bC,2 ◦ (Dn+1 ⊗ ψ1 + ψ1 ⊗Dn+1)

+Dn+2 ◦ (
∑

p+r=n+1

id⊗p⊗bA,1 ⊗ id⊗r) +Dn+1 ◦ (
∑

p+r=n

id⊗p⊗bA,2 ⊗ id⊗r) = 0
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Written more nicely:

[b1, Dn+2]+bC,2◦(Dn+1⊗ψ1)+
∑

p+r=n

Dn+1◦(id⊗p⊗bA,2⊗id⊗r)+bC,2◦(ψ1⊗Dn+1) = 0.

This may be rewritten as

(10.9) 0 = dHoch(D̄n+1)

where D̄n+1 is the image ofDn+1 inH1(Homk((sA)⊗n+1, sC)) = Homk(H∗(A)⊗n+1, H∗(C))−n+1,
and where dHoch represents the Hochschild differential. Thus D̄n+1 represents an
element of HHn+1(H∗(A), H∗(C))−n+1.

At this point we use the idea that we may modify ψn as long as condition (10.5)
remains valid. Let ψ′≤n be like ψ≤n except that ψn is replaced by ψ′n = ψn + δn,

with δn : (sA)⊗n → sC. Then condition (10.5) remains valid for ψ′≤n provided

[b1, δn] = 0. We will assume this. Now let D′ be like D but computed from ψ′≤n.

Then we find by (10.6)

D′n+1 = Dn+1 + bC,2 ◦ (δn ⊗ ψ1 + ψ1 ⊗ δn)− δn ◦ (
∑

p+r=n−1
id⊗p⊗bA,2 ⊗ id⊗r).

In other words
D̄′n+1 = D̄n+1 ± dHoch(δ̄n).

Combining this with (10.9), together with the assumption HHn+1(H∗(A), H∗(C))−n+1 =
0 (as n ≥ 2), it follows that we may modify ψn in such a way that D̄n+1 = 0.

Let ψn+1 be arbitrary. The condition bC ◦ ψ≤n+1 = ψ≤n+1 ◦ bA when restricted
to (sA)n+1 may be succinctly written as

(10.10) [b1, ψn+1] = −(bC ◦ ψ≤n − ψ≤n ◦ bA) | (sA)⊗n+1,

which may again be rewritten as

[b1, ψn+1] = −Dn+1.

Since D̄n+1 = 0, this equation has a solution. �

Proof of Proposition 10.1.1. We may assume that M is a fibrant object in C(C) for
the standard model structure [3]. Put A = HomC(M,M). The H∗(B)-action on
M is represented by a graded map H∗(B) → H∗(A). We may lift this map to a
graded linear map φ : B → A, commuting with the differentials on B and A.

Since H∗(A) = Ext∗C(M,M), the hypotheses together with Lemma 10.3.1 imply
that φ may be lifted to an A∞-morphism ψ : B → A such that ψ1 = φ. Then M
becomes a homologically unital A∞-B-module, that is, an object in D∞(B, C). The
proposition now follows by invoking Lemma 10.2.1, together with the commutative
diagram

D(B, C) //

��

D∞(B, C)

��
D(C)H∗(B) D(C)H∗(B)

�
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10.4. Proof of Proposition 10.1.2. LetM,N ∈ D(B, C) be as in the statement of
Proposition 10.1.2 and assume that N is fibrant for the model structure on C(B, C)
[25, Prop. 5.1]. Then it is easy to see that N is also fibrant when considered as
an element of C(C). In particular, an element ϕ ∈ HomD(C)H∗(B)

(FM,FN) may

be considered as an actual map ϕ : M → N in C(C) commuting with the H∗(B)-
action, up to homotopy. We will construct a morphism f : M → N in C∞(B, C)
such that f1 = ϕ. This is sufficient by Lemma 10.2.1.

Consider
bN,2 ◦ (idB ⊗ f1)− f1 ⊗ bM,2.

This is a map B ⊗kM → N , which we may consider as a map B → HomC(M,N).
The latter is zero on cohomology. Hence on the level of complexes of k-vector spaces
it is zero up to homotopy. Call this homotopy −f2 : B → HomC(M,N) and view
it as a map B ⊗kM → N in C(C). Thus we have

(10.11) bN,2 ◦ (idB ⊗ f1)− f1⊗ bM,2 = −bN,1 ◦ f2 + f2 ◦ (idB ⊗bM,1 + bB,1⊗ idM ).

Assume that we have constructed f1, . . . , fn. Define f≤n as the comodule map
BM → BN given by the Taylor coefficients (f1, . . . , fn, 0, . . .). Assume furthermore
that

(10.12) bN ◦ f≤n = f≤n ◦ bM restricted to (sB)⊗i ⊗M for 0 ≤ i ≤ n− 1.

It follows from (10.11) that we have already achieved this for n ≤ 2. Our aim
is now to construct fn+1 such that bN ◦ f≤n+1 = f≤n+1 ◦ bM when restricted to
(sB)⊗i ⊗M for 0 ≤ i ≤ n. As in the proof of Proposition 10.1.1, this will involve
retroactively changing fn.

Define D = bN ◦ f≤n − f≤n ◦ bM . Then we have Dm = 0 for m = 0, . . . , n. We
will now show that [b1, Dn+1] = 0. To do this, notice that

bN ◦D +D ◦ bM = 0 .

Evaluate this equation on (sB)⊗n ⊗M and get
(10.13)

bN,1◦Dn+1+Dn+1◦

( ∑
p+r=n−1

id⊗p ⊗ bB,1 ⊗ id⊗r ⊗ idM

)
+Dn+1◦(id⊗nB ⊗bM,1) = 0

which is precisely the statement that bN,1 ◦Dn+1 +D ◦ bM,1 = 0.
We now want to take the adjoint map (sB)⊗n → HomC(M,N). To do this, first

define

bN,1 :HomC(M,N)→ HomC(M,N), bN,1(f) = bN,1 ◦ f

bM,1 :HomC(M,N)→ HomC(M,N), bM,1(f) = (−1)|f |f ◦ bM,1

Dn+1 :(sB)⊗n → HomC(M,N), Dn+1(sa1, . . . , san)(−) = Dn+1(sa1, . . . , san,−)

Later we will also use

bN,2 :HomC(M,N)⊗ sB → HomC(M,N), (bN,2(f, sa))(m) = (−1)|sa|·|f |bN,2(sa, f(m))

bM,2 :HomC(M,N)⊗ sB → HomC(M,N), (bM,2(f, sa))(m) = (−1)|f |(f ◦ bM,2)(sa,m)
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Now that we have all of these maps in place, let us go back to (10.13) and write
down the corresponding equation for the adjoint map (sB)⊗n → HomC(M,N),

bN,1 ◦Dn+1 + (−1)|Dn+1|bM,1 ◦Dn+1 + Dn+1 ◦

( ∑
p+r=n−1

id⊗p ⊗ bB,1 ⊗ id⊗r

)
= 0

which, remembering that D has degree 1, becomes

bN,1 ◦Dn+1 − bM,1 ◦Dn+1 + Dn+1 ◦

( ∑
p+r=n−1

id⊗p ⊗ bB,1 ⊗ id⊗r

)
= 0 .

We may consider Dn+1 as an element in Homk((sB)⊗n,HomC(M,N)). The in-
duced differential on HomC(M,N) is bHomC(M,N),1 = bN,1−bM,1. Then Homk((sB)⊗n,HomC(M,N))

is a complex with differential [b1,−]. By the computation above, [b1,Dn+1] = 0.
Define D̄n+1 as the image of Dn+1 in

H1(Homk((sB)⊗n,HomC(M,N))) = Homk(H∗(B)⊗n,Ext∗C(M,N))−n+1.

Now evaluate bN ◦D +D ◦ bM = 0 on (sB)⊗n+1 ⊗M to get

bN,1 ◦Dn+2 + bN,2 ◦ (id⊗Dn+1)+

+Dn+2 ◦

( ∑
p+r+2=n+2

id⊗p ⊗ bB,1 ⊗ id⊗r ⊗ idM + id⊗n+1
B ⊗ bM,1

)

+Dn+1 ◦

( ∑
p+r+2=n+1

id⊗p ⊗ bB,2 ⊗ id⊗r ⊗ idM + id⊗nB ⊗ bM,2

)
= 0 .

Rewrite the sums as

bN,1 ◦Dn+2 +Dn+2 ◦ (id⊗n+1
B ⊗ bM,1)

+Dn+2 ◦

( ∑
p+r=n

id⊗p ⊗ bB,1 ⊗ id⊗r ⊗ idM

)
+ bN,2 ◦ (id⊗Dn+1) +Dn+1 ◦ (id⊗nB ⊗ bM,2)

+Dn+1 ◦

( ∑
p+r=n−1

id⊗p ⊗ bB,2 ⊗ id⊗r ⊗ idM

)
= 0

By adjointness this gives maps (sB)⊗n+1 → HomC(M,N) such that (remember
that D has degree 1, so (−1)|Dn+2| = −1)

bN,1 ◦Dn+2 − bM,1 ◦Dn+2

+ Dn+2 ◦

( ∑
p+r=n

id⊗p ⊗ bB,1 ⊗ id⊗r

)
+ bN,2 ◦ (id⊗Dn+1)− bM,2 ◦ (id⊗Dn+1)

+ Dn+1 ◦

( ∑
p+r=n−1

id⊗p ⊗ bB,2 ⊗ id⊗r

)
= 0 ;

this means that D̄n+1 is a cocycle in (Homk(H∗(B)⊗n,Ext∗C(M,N), dHoch)−n+1,
hence an element of

HHn(H∗(B),Ext∗(M,N))−n+1.
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Now let f ′≤n be like f≤n except that fn is replaced by fn + δn, where δn :

(sB)⊗n−1 ⊗M → N is such that [b1, δn] = 0, and let D′ = bN ◦ f ′≤n − f ′≤n ◦ bM .

Since bN ◦ f ′≤n− f ′≤n ◦ bM |sB⊗i⊗M = 0 for i = 0, . . . , n− 1, we still have D′i = 0 for
i = 1, . . . , n, whereas

D′n+1 = Dn+1 + bN,2 ◦ (id⊗ δn)− δn ◦ (
∑

p+r=n−1
id⊗p⊗ bB,2⊗ id⊗r + id⊗n−1⊗ bM,2)

The corresponding map D′n+1 : (sB)⊗n → HomC(M,N) is given by

D′n+1 = Dn+1+bN,2 ◦(id⊗δn)−δn ◦(
∑

p+r=n−1
id⊗p⊗bB,2⊗ id⊗r)−bM,2 ◦(id⊗δn)

where δn : (sB)⊗n−1 → HomC(M,N), δn(sa1, . . . , san−1)(−) = δn(sa1, . . . , san−1,−).

Hence D̄
′
n+1 = D̄n+1±dHoch(δ̄n). Since we have assumed HHn(H∗(B),Ext∗(M,N))−n+1 =

0, it means D̄n+1 is a coboundary, and hence we can assume it is actually zero after
replacing it with D̄n+1 ± dHoch(δ̄n).

Given a map fn+1, the condition that f≤n+1 needs to satisfy to complete the
induction step is bN ◦ f≤n+1 = f≤n+1 ◦ bM when restricted to (sB)⊗n ⊗M . This
gives

[b1, fn+1] = −(bN ◦ f≤n − f≤n ◦ bM ) (on (sB)⊗n ⊗M)

which gives
[b1, fn+1] = −Dn+1

and since D̄n+1 = 0, and hence D̄n+1 = 0, this equation has a solution. �

10.5. Proof of Proposition 10.1.3. Let M,N ∈ D(B, C) be as in the statement
of Proposition 10.1.3 and assume that N is fibrant for the model structure on
C(B, C) [25, Prop. 5.1]. Assume that g : M → N is a morphism in C∞(B, C) which
is sent to zero in HomD(C)H∗(B)

(FM,FN) ⊂ HomD(C)(M,N).
Assume that gi = 0 holds for i ≤ n. We will change g by a homotopy h, with

hi = 0 for i 6= n, n + 1 such that gi = 0 for i ≤ n + 1. Iterating this we find that
our original g : M → N is homopic to zero.

Consider first n = 0. Then, since g is zero in HomD(C)(M,N), we have h1 :
M → N such that g1 = bN,1 ◦ h1 + h1 ◦ bM,1. Let h : BM → BN be the coalgebra
map (h1, 0, · · · ) and put g′ = g − (bN ◦ h+ h ◦ bM ). Then g′1 = 0.

Now assume n ≥ 1. When evaluating bN ◦ g = g ◦ bM on (sB)⊗n ⊗M we get

[b1, gn+1] = 0 .

Hence gn+1 is a cocycle in the complex Homk((sB)⊗n ⊗M,N) with differential
[b1,−]. We may consider it as an element of Homk((sB)⊗n,HomC(M,N))0 by
adjointness. Call the adjoint map gn+1, and ḡn+1 its image in the cohomology
H0(Homk((sB)⊗n ⊗M,N)) = Homk(H∗(B)⊗n,Ext∗C(M,N))−n.

Now evaluate bN ◦ g = g ◦ bM on (sB)⊗n+1 ⊗M to get:

bN,1 ◦ gn+2 + bN,2 ◦ (id⊗ gn+1)+

− gn+2 ◦

( ∑
p+r+2=n+2

id⊗p ⊗ bB,1 ⊗ id⊗r ⊗ idM + id⊗n+1
B ⊗ bM,1

)

− gn+1 ◦

( ∑
p+r+2=n+1

id⊗p ⊗ bB,2 ⊗ id⊗r ⊗ idM + id⊗nB ⊗ bM,2

)
= 0
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By adjointness this gives maps (sB)⊗n+1 → HomC(M,N) such that

bN,1 ◦ gn+2 − bM,1 ◦ gn+2

− gn+2 ◦

( ∑
p+r=n

id⊗p ⊗ bB,1 ⊗ id⊗r

)
+ bN,2 ◦ (id⊗ gn+1)− bM,2 ◦ (id⊗ gn+1)

− gn+1 ◦

( ∑
p+r=n−1

id⊗p ⊗ bB,2 ⊗ id⊗r

)
= 0

Since g has degree zero, this means that dHoch(ḡn+1) = 0, i.e. that ḡn+1 is a cocycle
in (Homk(H∗(B)⊗n,Ext∗C(M,N), dHoch)−n hence an element of

HHn(H∗(B),Ext∗C(M,N))−n ;

which we have assumed to be zero for n ≥ 1, hence ḡn+1 is a coboundary. Which

means that there exists a h̄n ∈ (Homk(H∗(B)⊗n−1,Ext∗C(M,N))−n such that
ḡn+1 = dHoch(h̄n).

We may lift h̄n to a map hn : (sB)⊗n−1 → HomC(M,N) such that [b1,hn] = 0,
or equivalently by adjointness a map hn : (sB)⊗n−1 ⊗M → N . Because ḡn+1 =

dHoch(h̄n), their difference is a boundary:
(10.14)

gn+1−(bN,2(id⊗hn)+bM,2◦(id⊗hn)−(−1)|h|=−1hn◦(
∑

id⊗p⊗bB,2⊗id⊗r)) = [b1,hn+1]

for some hn+1 in Homk((sB)⊗n,HomC(M,N))−1.
Let h be the comodule map BM → BN such that hi = 0 for i 6= n, n + 1 and

hn, hn+1 as above. These h will be the required homotopy. In fact, by rewriting
(10.14), we obtain

gn+1 =bN,1 ◦ hn+1 − bM,1 ◦ hn+1

+ hn+1 ◦

( ∑
p+r=n

id⊗p ⊗ bB,1 ⊗ id⊗r

)
+ bN,2 ◦ (id⊗ hn)− bM,2 ◦ (id⊗ hn)

+ hn ◦

( ∑
p+r=n−1

id⊗p ⊗ bB,2 ⊗ id⊗r

)
which, by adjointness, gives us (h has degree -1 so this accounts for the change in
signs)

gn+1 =bN,1 ◦ hn+1 + bM,1 ◦ hn+1(10.15)

+ hn+1 ◦

( ∑
p+r=n

id⊗p ⊗ bB,1 ⊗ id⊗r

)
+ bN,2 ◦ (id⊗ hn) + bM,2 ◦ (id⊗ hn)

+ hn ◦

( ∑
p+r=n−1

id⊗p ⊗ bB,2 ⊗ id⊗r

)
Define g′ = g − (bN ◦ h+ h ◦ bM ). It follows from (10.15) that g′n+1 = 0 and hence
we are done. �
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Appendix A. Proof of Proposition 7.1 for the two loop quiver

Let Q be the two loop quiver, and let α ∈ N − {0}. The proof of Proposition
7.1 depends crucially on the construction of a representation U over LQ for L/k a
field of transcendence degree three such that HH3(L,EndkQ(U)) 6= 0.

Assume we try to find our U as defined over the generic point of a closed sub-
variety of dimension three in a suitable Mα,λ,Q. In this case there is only one
possibility for λ, namely λ = 0. If α = 1 then dimMα,0,Q = 2 which it too small
for our purposes. However, when α > 1 then α is divisible and so Proposition 3.5.2
does not apply.

We proceed as follows. Assume n = α > 1 and put A = kQ. Then it is well
known [32] that Un,A is nonempty and that An is not split. In fact, it is generically
a division algebra6. Let x be the generic point of a three dimensional irreducible
subvariety of Un,A and put K = k(x). Let C = i∗xAn. Then C is a central simple
algebra of rank n2 over K. Thus we have C = Mm(D) where D is a division algebra
such that [D : K] = p2 with n = pm. Let L/K be a maximal subfield of D. Then
L⊗K C = Mm(L⊗K D) = Mmp(L) = EndL(U) where U = Ln. As in the proof of
Lemma 3.2.1 we obtain

EndA(U) = EndC(U)

The following lemma does what we want by the Hochschild-Kostant-Rosenberg
theorem [17].

Lemma A.1. One has HH∗(L,EndC(U)) ∼= HH∗(K,L).

Proof. By Morita theory we have

EndC(U) = EndD(U0)

where U0 = Lp. So we may and we will assume that C = D, U = U0, m = 1, n = p.

Since D/K is central simple we have an isomorphism of algebras

D ⊗K D◦ → EndK(D) : d⊗ d′ 7→ (x 7→ dxd′)

Taking centralisers of 1 ⊗K L and L ⊗K L on both sides, we find corresponding
isomorphisms

(A.1) D ⊗K L ∼= EndL(DL)

(A.2) L⊗K L ∼= EndL⊗KL(LDL),

where DL, LDL denote D viewed respectively as a right L-module and as a left-
right L-bimodule. Since L ⊗K L is a direct sum of fields, (A.2) implies that LDL

is isomorphic to L ⊗K L as L-bimodules. Since we also have L = HomK(L,K) as
L-vector spaces (both are one-dimensional), we obtain that LDL is also isomorphic
to

(A.3) LDL
∼= HomK(L,K)⊗K L = HomK(L,L)

as L-bimodules.
The equality (A.1) implies that U ∼= DL with the standard left D-module struc-

ture on D. Thus
EndD(U) = EndD(DL) = D◦

6Suitably called the generic division algebra of index n.
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with the L-bimodule structure on D◦ given by the left and right action. Combining
this with (A.3) we get

HH∗(L,EndC(U)) ∼= HH∗(L,HomK(L,L))

∼= HH∗(K,L)

where in the last line we have used Corollary 5.5. �
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